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ABSTRACT

The well known results of the spatial correlation function for 2-
dimensional and 3-dimensional diffuse fields of narrowband sig-
nals are generalised to the case of general distributions of scatter-
ers. A method is presented which allows closed form expressions
for the correlation function to be obtained for arbitrary scattering
distribution functions. These closed form expressions are derived
for a variety of commonly used scattering distribution functions.

1. INTRODUCTION

HERE is growing interest in the literature in the use of mul-

tiple sensors - particularly multiple antennas for transmis-
sion and/or reception of wireless signals. As well as diversity
reception [1], this includes such areas as Multiple-Input Multi-
ple Output (MIMO) systems, spatio-temporal equalisation, adap-
tive arrays and space-time coding {2]. Most of the work assumes
that each receiving sensor receives uncorrelated signals, and con-
versely that the signal received from each transmitting source is
uncorrelated. A widely used “rule” is that half a wavelength sepa-
ration is required in order to obtain de-correlation. This arises from
the first null of the sinc(-) function, which is the spatial correlation
function for a three dimensional diffuse field {3].

Several approaches have been used in the case of signals con-
fined to a limited azimuth and/or elevation [4]. In this letter a
modal analysis approach is presented which can be used to ob-
tain closed form expressions for the spatial correlation function
for narrowband signals for a wide variety of scattering distribution
functions.

2. SPATIAL CORRELATION FORMULATION

Consider two sensors located at points @, and ;. Let s1(t) and
s2(t) denote the complex envelope of the received signal at two
sensors, respectively. Then the normalized spatial correlation func-
tion between the complex envelopes of the two received signals, is

defined by

B{s\()s3(1)} 0
E{s1(t)s1(t)}
where E{-} denotes the expectation operator and -* denotes com-
plex conjugation. We consider a general scattering environment

with a large number of scatters distributed sufficiently far from the
two sensors. If the transmitted signal is a narrowband signal e®?,

p(xz — 1) =
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Fig. 1. Spatial Correlation versus Separation for different elevation
ranges. This figure shows that the spread of interference in eleva-
tion plays only a secondary role in influencing spatial correlation
and hence diversity within the horizontal plane.

where w is the angular frequency, i = y/—1 and ¢ is the time, then
the received signal at the lth receiver is

m0=5“/A@n*ﬁW%@l=Lz @

where c is the speed of wave propagation, 4 is a unit vector point-
ing in the direction of wave propagation, and A(g) is the complex
gain of scatterers as a function of direction which captures both the
amplitude and phase distribution. Also note that the integration in
(2) is over a unit sphere in the case of a 3-dimensional multipath
environment or unit circle in the 2-dimensional case. We substitute
(2) in (1) and assume that scattering from one direction is indepen-
dent from another direction, to get

mm—zn=/P@kW”””%@ )

where k = w/c is the wave number, and

_E{A@I}
JE{|A@)*}dd’
is the normalized average power of a signal received from direction
Y, or the distribution function of scatterers over all angles.

7’(1‘1). = @)
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3. 3 DIMENSIONAL SCATTERING ENVIRONMENT

To gain a better understanding of spatial correlation, we now use
a spherical harmonic expansion of plane waves, which is given [5]
as

eiszﬁ =4ﬂ_z(_z)n]"(k”z") E Ynm(:i)y',:m(g) (5)

n=0 m=-—-n

& x/2rd,,

where & = z/||z||, jn(r)
functions, and

1 (r) are spherical Bessel

Ynm(fi}) = Ynm(931¢fc)
2n+1(n—|m|)! pim! iméa
pread |m|)' (cosbz)e ©)

where O and ¢ are the elevation and azimuth respectively of
the unit vector x, and where P, (-) are the associated Legendre
functions of the first kind. Equations (3) and (5) may be combined
to obtain

p(m2 —_ $1) =47 Z(—Z)n]n(knitz - El”) Z ﬂnm

n=0 m=-n
T2 — Ty
= ?
where
Bom = / PV, (9)d. ®

The fact that the higher order spherical Bessel functions, (and in
section 4 the higher order Bessel functions) have small values for
arguments near zero, means that to evaluate the correlation for
points near each other in space, only a few terms in the sum need
to be evaluated in order to obtain a very good approximation.

3.1. 3D Omni-directional Diffuse Field

If waves are incident on the two points from all directions in 3-
dimensional space, then (7) reduces to a single term, and so the
correlation coefficient is given by p = jo(k||z2 —z1]|) = sinc(k|
x1 — x2||), where sinc(z) £ sin(zx)/z for z # 0, and sinc(0) 2
1. This is the classical result [3]. The first zero crossing is at \/2.

3.2. Uniform Limited Azimuth/Elevation Field

Without loss of generality, the coordinate system may be chosen
so that gy —o, = 7/2 and @g,—z, = 0. If the scatters are uni-
formly distributed over the sector Q2 € {(,¢);0 € [01,62],¢ €
[¢1, #2]}, then the correlation can be expressed as

ple) = (00501—c0592)(¢2 é1) Z( —8)"jn (k)

n=0

[(952 - ¢1)Pn(0)/ ? Pp(cos0)sin do

sin(md1) P™(0)

+2z (n — m)! sin(m¢s) -

1 (n+m)! m

/ P*(cos8)sind dﬁ] ®
01

Note that (9) is actually expressible in closed form (the integrals
can be evaluated for example by using recursions in m and n).
Hence, this result can be used to build up the result for a general
scattering situation. An arbitrary scattering can be regarded as the
limiting summation of a weighted set of uniformly distributed in-
cremental solid angle contributions.

The case where energy is arriving from all azimuth directions
(uniformly) but the elevation spread is in some range of angles
either side of zero elevation is shown in Fig. 1. The spatial cor-
relation is shown for four sets of elevation spread: =, 7/2, 7/3
and 0, each centred on § = /2. Generally we can conclude
that multipath spread in elevation does not have a great effect on
spatial correlation in the horizontal plane. Multipath which may
have some small elevation spread (in many practical situations we
would not expect much) may be modeled as only coming from the
horizontal plane.

3.3. Spherical Harmonic Model

The distribution function P in (4) may be expressed as a weighted
sum of orthonormal spherical basis functions

’

Z In'm/! Yn'm' (i‘); (10)

3

where the coefficients -y,,,+ are chosen so that the distribution
function is normalised. In many cases the number of basis func-
tions required to approximate the distribution function may be quite
small. By substitution into (8) B~ can be simply expressed in
terms of the coefficients v,,/,,,s as

Bam = / E Z Yn'm! Yarm? (y)ynm(y)dy

n'=0m’/=—n’

= Ynm. 11

4. 2 DIMENSIONAL SCATTERING ENVIRONMENT

If the fields may be considered as arriving from the azimuthal plane
only, it is more useful to consider the 2 dimensional modal expan-
sion {5]

V= S bzl )

m=—00

where ¢ and ¢, are the angles of  and §j. Equations (3) and (12)
may be combined to obtain

plez—m1) = Y amJm(kllzs —zi))e™*2  (13)
where
2n X
am = i™ P(d)e”™dg, (14)

0

P(#) is the distribution function equivalent to P(f) in (4), and
¢12 is the angle of the vector connecting , and 2. Without loss
of generality, this can be considered to be zero.
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4.1. 2D Omni-directional Diffuse Field

For the special case of scattering over all angles in the plane con-
taining two points, (13) reduces to a single term, and so the cor-
relation coefficient is given by p = Jo(k|lzz — x1]})), another
classical result [1]. As can be seen by an examination of Fig. 1,
Jo(-) and sinc(-) are qualitatively similar.

4.2. Uniform Limited Azimuth Field

In the case of energy arriving uniformly from a restricted range of
azimuth (¢o — A, ¢o + A),

im(/2—g0)

am =€ sinc(mA). (15)

This result is equivalent to that derived in [6].

4.3. von-Mises distributed field

Non-isotropic scattering in the azimuthal plane may be modeled
by the von-Mises distribution {e.g., 7], for which the density is
given by

1  cos(9—o)

P(#) = 2mlo(k) €

|6 — ¢o| <, ~ (16)

where ¢ represents the mean direction, £ > 0 represents the de-
gree of non-isotropy, and I, (k) is the modified Bessel function of
the first kind. In this case, using (3.937) of [8]

o = ™ /2" " cos(¢—¢o)eim¢d¢
™ 2wIo(k) Jo

; —o0) I-m(K)
— gim(m/2-¢0)
e AOR an

4.4. cos?P ¢ distributed field

Another azimuthal distribution used for calculation of correlation
is [9, 10]

P#) = Qoo™ (852), o-ml<m a9
where @ is a normalisation constant. Using (335.19) of [11],
— im22p—11-\2(p + 1) otm 2p ¢ — ¢0 —ime
R O TSV ( 2 ) e

*(p+1)
'p-m+1DI'(p+m+1)

im(m/2-¢o)

=€

(19)

4.5. Laplacian distributed field

In [12] the Laplacian distribution is proposed as a realistic model
of the power distribution function in some circumstances. Here

P(O) = <= N, ool <5, @)

where @ is a normalisation constant. It is straightforward to show

that
_ imr/2-40) (1= (=1) [m/21¢ Fom)
(1+02m?/2)(1-¢)

@1

Envelope correlation {p]2

2 3
Spatial Scparation, ||@z — @1||/2

Fig. 2. Correlation for angle of incidence 60° from broadside
against separation of sensors with angular spread as parameter,
based on a Laplacian power distribution function

where £ = e V2o, and F,, = 1 for m even, and F}, = mo/v/?2
for m odd.

To demonstrate the power of the technique, Fig. 5b from [13]
is reproduced in Fig. 2, except that the distribution used here is
the Laplacian, considered in [13] to be realistic but mathemati- -
cally intractable. Approximately 100 terms of the summation (13)
were required to obtain results to about 10 significant figures at
the largest spatial separation on the figure (5X), or 70 terms for
5 significant figures. For separations up to 2A only 40-50 terms
are required. The angular spread used to distinguish between the
data sets in the figure is defined as the square root of the variance,
which for this distribution is given by

8% = I—i—g <02 - %(ﬂ'z +40% + \/57"’)) N ¢-2))

4.6. Gaussian distributed field

Several researchers [4, 10] have used the Gaussian distribution for
modelling the distribution of scatterers, thus

Q9 et o si<T
P(¢) = ‘\/EO’ € ) |¢ ¢0| S PX (23)

where o is the standard deviation, and @ is a normalisation con-

stant. It can be shown using (313.6) of [14], and the symmetries of
the error function for complex arguments discussed in [15], that

im(n/2-¢0)—m2a? /2 Re (erf ( i

. erf (%)

It can be seen that contrary to the assertion of [13], a closed form
solution for the correlation function is available for distribution
functions other than the Gaussian (such as the cos™ ¢ distribu-
tion), and that the Gaussian case is neither a simple nor natural
choice. If however, the beam is narrow, a good approximation for

am =e 24)
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the Gaussian case can be obtained by performing integration over
the domain (—oo0, 00}, since the tails will cause very little error. In
this case using (337.3) of [11], it is straightforward to show that

am X e

im(1r/2—4>0)—m2(72/2. 25)

4,7. Cylindric Harmonic Model

The distribution function P may be expressed as the sum of or-
thogonal basis functions

P@)= Y, me*, (26)

k=—o00

where the coefficients -y are chosen to that the distribution func-
tion is normalised. In many cases the number of basis functions re-
quired to approximate the distribution function may be quite small.
The coefficients ay, in (13) can be simply expressed in terms of
the coefficients ,, as

am = 1" 2T Ym. 27

5. MUTUAL COUPLING

When the sensors are antennas, there can be mutual coupling ef-
fects between the sensors. For a given spacing, mutual coupling of
terminated antennas can actually decrease the correlation between
the sensors from that calculated using the expressions above. One
interpretation of this is that the presence of other antennas creates
a slow-wave structure which in effect decreases the wavelength of
the signal in their vicinity, and thus increases the number of wave-
lengths separation between the elements. This phenomenon was
first reported in [16], and has recently been reported in [17]. If it
proves true in general that mutual coupling effects decrease cor-
relation, then the closed form expressions of the previous sections
may be considered as upper bounds on the correlation between an-
tennas in an electromagnetic field.

6. CONCLUSION

Closed form solutions have been presented for the correlation be-
tween the signal at physically separated points in a field with the
signal power distributed in solid or planar angle following a variety
of commonly used distribution functions. Unlike some other ap-
proaches the method can be applied to many distribution functions,
and for small spatial separations, accurate results are obtained with
very few terms.

Application of the method reveals that restriction of the sig-
nal elevation does not have a large impact on the signal correlation
coefficient, provided there is omni-directionality in one plane con-
taining the two points. Restriction of the signal in both planes con-
siderably increases signal correlation. In order to exploit diversity
for sensors spaced A\ /2 or closer, there must be omni-directionality
in at least one plane. To obtain un-correlated signals with direc-
tional sensors the spacing must be considerably larger.
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