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ABSTRACT

We establish that an arbitrary narrowband multipath field in any
circular region in two dimensional space has an intrinsic functional
dimensionality of (πe)R/λ ≈ 8.54 R/λ that scales only linearly
with radius R/λ in wavelengths. This result implies there is no
such thing as an arbitrarily complicated multipath field. That is,
a field generated by any number of nearfield and farfield, specu-
lar and diffuse multipath reflections is no more complicated than
a field generated by a limited number plane waves. As such, there
are limits on how rich multipath can be. This result has significant
implications including means: i) to determine a parsimonious pa-
rameterization for arbitrary multipath fields, ii) of synthesizing ar-
bitrary multipath fields with arbitrarily located nearfield or farfield,
spatially discrete or continuous sources. We give examples of mul-
tipath field analysis and synthesis.

1. INTRODUCTION

The study of the spatial aspects of multipath in wireless commu-
nications environments is an increasingly important addition to
the study of the temporal aspects in the search for ways to im-
prove system performance, including range extension, capacity
improvement, high data rates and improved bit error rate perfor-
mance [1, 2]. The understanding of the spatial characteristics of
wireless channels is incomplete and the true potential of space-
time receivers has yet to be realized in a form that is compatible
with the restrictions imposed by physics.

There are many approaches to characterizing the spatial as-
pects of the wireless multipath environment in the literature. A
common approach is to assume a multiple discrete farfield source
model [3, 4]. The complex gains of the multipaths are linearly
combined at each receiver sensor, weighted by the gain of that
sensor in the direction of arrival of the corresponding multipath
component. The complex gains of the multipaths are modelled ac-
cording to the assumed distribution of scatterers causing the mul-
tipath.

In experimental approaches, physical measurements are taken
in order to statistically characterize a specific wireless multipath
environment with the intent of generalizing for similar environ-
ments. Parameter characteristics for which a statistical model can
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be useful include angle of arrival [5], spatial signal correlation [6]
and changes in multipath profile [7]. In yet other approaches, ge-
ometrical models are used to characterize diffuse multipath fields
[8] and, in [9], a purely theoretical model is used in which the con-
cept of multipath shaping factors is introduced to derive second
order small-scale fading statistics.

We use a theoretical model which can be applied to any nar-
rowband multipath environment regardless of the number or nature
of the multipath sources. We show that there is an intrinsic dimen-
sionality to a narrowband multipath field in a region of space of
a given size. We use this to show that there is an upper limit on
the degree of multipath richness which can exist in a given sized
area. Closely matched theoretical and experimental results are pre-
sented.

We show that the field in a given area of space can be rep-
resented by relatively few terms of a functional expansion, the
number of which represent the dimensionality. Furthermore, it is
possible to synthesize an arbitrary field as accurately as desired
using an appropriate combination of arbitrary sources, nearfield or
farfield, discrete or continuous. We demonstrate the specific case
of a small number of plane wave sources synthesizing an arbitrary
field. Such small parameterizations of arbitrary narrowband mul-
tipath fields indicate that even a diffuse field can be synthesized by
relatively few discrete multipath terms.

2. GENERAL 2D MULTIPATH FIELD

Consider a two dimensional (2D) narrowband multipath interfer-
ence in a given sized region1. The multipath signals may have
sources which are nearfield or farfield, specular or diffuse. We use
polar coordinates to represent a point in space x ≡ (‖x‖, φx).
The field, F (x; k), is a function of the position and the wave num-
ber, k = 2π/λ, where λ is the wavelength. It is a solution to
the Helmholtz wave equation in polar coordinates [10], the most
general solution of which is

F (x; k) =

∞∑
n=−∞

αn Jn(k‖x‖) einφx (1)

where αn are complex constants independent of position and Jn(·)
is the order n Bessel function [11]. That is, in (1) the field strength

1This models the situation in 3D where the multipath is restricted to the
horizontal plane, having no components arriving at significant elevations.
As such, the multipath field is height invariant.
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at a point x is represented as a weighted sum of orthogonal basis
functions.

Plane and circular waves are examples of 2D waves which can
be expressed in the form (1). A single plane wave with complex
amplitude ap and propagation direction φp has αn = apine−inφp

[12, p.66]. A single circular wave with source position vector,
yp ≡ (‖yp‖, φp), has αn = ape−inφpH

(1)
n (k‖yp‖) [12, p.66]

where H
(1)
n (·) is the order n Hankel function of the first kind.

We illustrate an application of (1) with fields generated by a
superposition of P plane waves. Let plane wave of index p have
complex amplitude ap and propagation direction φp with normal-
ized direction η̂p ≡ (cos φp, sin φp)

′. The field strength at x is
then given by

F (x; k) =
P∑

p=1

ape−ik〈x,η̂p〉 (2)

=

P∑
p=1

ap

∞∑
n=−∞

inJn(k‖x‖)ein(φx−φp) (3)

where (2) is a cartesian form and (3) is the polar equivalent. Note
(3) is in the form of (1) with

αn =

P∑
p=1

apine−inφp =

P∑
p=1

ape−in(φp−π/2). (4)

Similarly, a field of P circular waves, where yp ≡ (‖yp‖, φp) is
the position vector of the source of index p, is given by

F (x; k) =

P∑
p=1

ap
eik‖x−yp‖

‖x − yp‖
(5)

=

P∑
p=1

ap

∞∑
n=−∞

H(1)
n (k‖yp‖) Jn(k‖x‖)ein(φx−φp) (6)

and for the representation (1) we have

αn =
P∑

p=1

apH(1)
n (k‖yp‖)e−inφp . (7)

We could also form a field of plane and circular waves by linearly
combining (3) and (6) to obtain an equation of the form of (1), with
αn the weighted sum of (4) and (7).

The Bessel functions Jn(·) for n ≥ 1 in (1) have a spatial high
pass character (J0(·) is spatially low pass). That is, as illustrated
in Fig. 1, for n = 8 and n = 80, Jn(z) starts small increasing
monotonically to its maximum at arguments around O(n) before
decaying asymptotically to zero as z → ∞ (oscillating as it does
so). Also shown in Fig. 1 are limits imposed by three upper bounds
on |Jn(z)|: 1/n!(z/2)n (see Appendix A), 0.6748851/n1/3 and
0.7857468704/z1/3 [13].

3. DIMENSIONALITY OF MULTIPATH

We wish to quantify the complexity of an arbitrary multipath field
F (x; k) in circular region of radius R/λ in wavelengths by defin-
ing the effective dimensionality of the field. We do this by trun-
cating the series in (1) and determining the minimum number of
terms, 2N + 1, for the field FN (x; k), so generated, to be within
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Fig. 1. High pass character of the Bessel functions J8(z) and
J80(z) versus argument z (logarithmic scale). Also shown are a
combination of three bounds as described in the text.

a specified error, ε, of the actual field F (x; k). Thus, the approxi-
mate field strength FN (x; k) is defined by the finite sum

FN (x; k) =
N∑

n=−N

αnJn(k‖x‖)einφx , (8)

where we wish the approximation to be sufficiently accurate for
‖x‖ ≤ R.

Fig. 2 shows the actual field strength of the sum of 30 plane
waves, as in (2), over a 3λ × 3λ area, compared with the same
field represented by the truncated series in (8) with αn given by
(4) and N = 7. Clearly FN (x; k) can model very well F (x; k) in
a finite region about the origin.

Fig. 2. Example of accuracy of truncation in (8). The actual field
(2) has 30 component plane waves in random directions. The ap-
proximate field (8) has 2N + 1 = 15 plane waves. The approxi-
mate field is within 1×10−3 of the actual field for R/λ ≤ 0.3890.

3.1. Bounding the Relative Error

To form a relative error, first bound the peak amplitude of the mul-
tipath field to unity. This implies, by Appendix A, that |αn| ≤
1, ∀n. Define the error between the actual and approximate fields
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by εN (x). Then

εN (x) =
∣∣F (x; k) − FN (x; k)

∣∣ =
∣∣ ∑
|n|>N

αn Jn(k‖x‖) einφx
∣∣

≤
∑

|n|>N

∣∣Jn(k‖x‖)∣∣ = 2
∑
n>N

∣∣Jn(k‖x‖)∣∣ (9)

Now we need a bound on |Jn(·)| for n > N . For integer
n ≥ 0, the order n Bessel function is given by [14]

Jn(z) =
∞∑

=0

(−1)(z)2+n

22+n �! (� + n)!
, n ≥ 0. (10)

It is shown in Appendix B that Jn(·) is always bounded by the first
term in (10). An example of this upper bound is shown in Fig. 1
for J8(·) and J80(·).

By using the Stirling lower bound on n! [14] we can further
bound |Jn(k‖x‖)|, as follows∣∣Jn(k‖x‖)∣∣ ≤ (k‖x‖)n

2nn!
≤ 1√

2πn

(
ke‖x‖

2n

)n

≤ ρ(N, R)n√
2π(N + 1)

, n > N, ‖x‖ ≤ R. (11)

where

ρ(N, R) =
keR

2(N + 1)
=

πeR/λ

(N + 1)
. (12)

Substituting (11) and (12) into (9) and choosing N large enough
such that ρ(N, R) < 1, we obtain an expression for a bound on
the error for given values of N and R

εN (x) ≤
√

2

(N + 1)π
· ρ(N, R)N+1

1 − ρ(N, R)
, ∀‖x‖ ≤ R. (13)

The restriction on ρ(N, R) gives a lower bound on N

N > (πe) R/λ − 1 ≈ 8.54 R/λ. (14)

With N thus selected F (x; k) and FN (x; k) are essentially indis-
tinguishable within ‖x‖ ≤ R. As 2N + 1 basis elements are used
then 2N + 1 characterizes the dimensionality.

The dimensionality of fields of radius R/λ ≤ 3, for error
thresholds between 10−1 and 10−4 are shown in Fig. 3. The num-
ber of extra terms required to achieve an error of 10−4 over an
error of 10−1 is relatively small. For R/λ = 1, the minimum val-
ues of N required are 10 and 15, respectively, meaning that just 10
extra terms give 3 orders of magnitude improvement in accuracy.

Simulation results for the relationship between N and the error
ε between actual and approximate fields of radius R/λ = 1 are
shown in Fig. 4. Simulated actual fields had from P = 4 to 50
plane wave components. The error appears to converge, regardless
of P at around N = 10.

Remarks
1. Field complexity or dimensionality, (2N + 1), increases

linearly with R/λ.
2. The actual number of terms required to represent an arbi-

trary field to high accuracy is relatively small. The addition
of just a few terms can give orders of magnitude improve-
ment in the relative error.

3. Any wave field, including a a diffuse field, consisting of any
number of actual wave components may be represented by
relatively few parameters.
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Fig. 3. Minimum N required for different error thresholds ε, as
given by theoretical bounds (13) and (14), for increasing values of
radius R/λ.

4. PLANE WAVE SYNTHESIS

We have shown in (8) that an arbitrary wave field in a given re-
gion can be represented by a finite number of terms, regardless of
the complexity of the scattering environment. We now show that
such a field can also be closely approximated by an appropriate
combination of plane waves.

Once the coefficients αn in (8) are determined for the field
of interest, one can use (4) to define a set of plane waves pro-
ducing the same αn’s over the critical indices |n| ≤ N . Let
α = [α−N , · · · , αn, · · · , αN ]′ and a = [a1, · · · , ap, · · · , aP ]′.
We define the diagonal matrix Θ = diag[iN , · · · , in, · · · , i−N ]
and the Vandermonde matrix

V =




eiNφ1 · · · eiNφp · · · eiNφP

...
...

...
...

...
e−inφ1 · · · e−inφp · · · e−inφP

...
...

...
...

...
e−iNφ1 · · · e−iNφp · · · e−iNφP




. (15)

Then we can rewrite (4) in matrix form as

Θα = V a. (16)

As each of the φp’s are distinct, it is known that V is non-singular.
Thus, given specific α, V and Θ we can always solve (16) for
a. Therefore, at most P = 2N + 1 plane waves from arbitrary
directions can synthesize an arbitrary field over a region ‖x‖ ≤ R
whenever N ≈ (πe)R/λ.

Remarks

1. There are an infinite number of plane wave combinations
which can represent a given field F (x; k). The choice of
directions {φp} is arbitrary.

2. By choosing φp = 2pπ/P , V in (15) becomes a scaled
discrete Fourier transform matrix and the plane wave ap

can be computed using the FFT from the weights αn.
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Fig. 4. Average error between actual and approximate fields, as
in (2) and (8) for up to P = 50 plane waves and N ≤ 15 for
R/λ = 1.

3. The result is not restricted to plane waves, any superpo-
sition of sources can be used, such as a superposition of
nearfield point sources, etc. That is, 2N +1 distinct sources
generically generate a set of distinct and linearly indepen-
dent α’s which form a basis.

4. Wave field synthesis reduces to a problem in linear algebra
implying that 2N + 1 sources are necessary, in general.

5. CONCLUSIONS

We have defined and determined the dimensionality of a wave
field as a measure of field complexity. The dimensionality in-
creases only linearly with the radius of the field. For example,
we have shown that an arbitrary narrowband wave field can be
reproduced as accurately as desired by a limited number of appro-
priately weighted plane waves of arbitrary direction.

The existence of small dimensional parameterizations of arbi-
trary narrowband multipath fields indicate that even a diffuse field
can be synthesized by relatively few discrete multipath terms.

All results have been extended to the three-dimensional and
broadband cases and will be reported separately.

A. BOUNDEDNESS OF |αn|
Consider the magnitudes of the αn coefficients for a superposition
of a possibly infinite number of plane waves indexed by p with
amplitudes ap. From (4)

|αn| ≤
∣∣∣ ∑

p

apine−in(φp− π
2 )

∣∣∣ ≤ ∑
p

|ap| (17)

The RHS of (17) is an upper bound on the field strength at any
point being the sum of the amplitudes of the plane waves con-
stituting the given wave field. On physical grounds we assume the
field is bounded at all points in space which implies

∑
p |ap| < B.

Without loss of generality we take B = 1, amounting to a normal-
ization such that the field strength is is bounded by unity. Hence
|αn| ≤ 1 ∀n.

B. UPPER BOUND ON Jn(·)
From [11, p.192] we have, for n > −1/2

Jn(z) =
1√

π Γ(n + 1/2)

(z

2

)n
∫ +1

−1

eiλz(1 − λ2)n−1/2 dλ

≤ 1√
π Γ(n + 1/2)

(z

2

)n
∫ +1

−1

(1 − λ2)n−1/2 dλ (18)

where Γ(·) is the Gamma function. From [15, eqn. 15.24], the
integral in (18) is given by

√
π Γ(n + 1/2)/Γ(n + 1). QED
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