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Abstract — In this paper wireless multipath fields
are modelled using classes of orthogonal func-
tional expansions based on the solutions to the
Helmholtz (wave) equation. These expansions
permit a multipath field—generated by any num-
ber of nearfield, farfield, specular and diffuse mul-
tipath reflections—to be modelled to any preci-
sion in a region of interest. Two expansions are
provided, one suitable for multipath fields which
show no variation with height, and the other suit-
able for general 3D fields. We establish that the
dimensionality of the functional expansion, and
thereby the multipath field, scales with the size
of the boundary of the region in space. When the
region of interest is small in wavelengths, typical
of antenna arrays apertures in practice, then the
multipath field can be modelled by only a small
number, given by the dimensionality, of arbitrar-
ily located sources. Multipath field synthesis can
be done using combinations of arbitrarily located
distinct farfield, nearfield, point and spatially dis-
tributed sources. These results establish rigorous
bounds on the spatial richness of multipath.

I. Introduction

Using the spatial aspects of multipath is an increasingly
active thread of research in wireless communications [1].
This has lead to the general notion of space-time receivers
which exploit the spatial variations of the signal by using
multiple antennas with suitable processing augmented to
conventional temporal signal processing techniques. This
improves the performance of wireless receivers because of
spatial diversity gains. However, the degree of benefit is
rarely quantified apart from asymptotic gains obtained
when antenna elements are spaced so far apart that one
can assume independence and hence full diversity gains.
This spatially asymptotic case often bears little relevance
in practice. For example, wireless handsets are tending
to become so small that they could well pose a choking
hazard to small children. For multiple antennas, the case
of interest that needs to be studied is when the antenna
elements are very close (fraction of a wavelength) which

1T.D. Abhayapala also has a joint appointment with the De-
partment of Engineering, Faculty of Engineering and Information
Technology, ANU.

corresponds to a regime where the diversity and capacity
gains can be expected to be much less in comparison with
the independent antennas case.

A wireless multipath environment can be modelled in a
number of ways. It is useful to briefly review these as they
contrast with the model that we introduce. The most di-
rect model is to use multiple discrete farfield sources [2,3]
where the gains associated with each path are obtained
by assuming some physical configuration of scatterers.
Other models target the statistical characterization of a
multipath environment and have been guided by mea-
surements and experiments. The investigated parameter
characteristics include angle of arrival [4], spatial signal
correlation [5] and changes in multipath profile [6]. In yet
other approaches, geometrical models are used to charac-
terize diffuse multipath fields [7], and in [8] a theoretical
model is introduced to derive fading statistics.

II. Multipath Field Expansions

Let x represent a vector in 3D space and let ‖x‖ de-
note the euclidean distance of x from the origin which
is the centre of some region of interest. Let x̂ , x/‖x‖.
Further, let φ ∈ [0, 2π) represent the azimuth angle and
θ ∈ [−π/2, π/2] the elevation. Consider two cases: height
invariant multipath (2D) and general 3D multipath.

II.A. Height Invariant Multipath (2D)

First, consider the situation where the multipath is re-
stricted to the horizontal plane, having no components
arriving at significant elevations. Without loss of gener-
ality, this may be considered as a 2D multipath environ-
ment (since the multipath field is height invariant). In
this case the use of polar coordinates2 is natural and we
write x ≡ (‖x‖, φ).

The narrowband (low fractional bandwidth) multipath
field, F (x; k), is a complex function of the position, x, and
the wave number, k = 2π/λ, where λ is the wavelength.
It is a solution to the 2D Helmholtz wave equation in
polar coordinates [9], and can be written

F (x; k) =

∞∑

n=−∞
αn Jn

(
k‖x‖

)
einφ (1)

2This can be regarded as a cylindrical coordinate representation
where the third coordinate, the height, plays a minor role since the
field does not change with height. There is no confusion in using x

to represent either a 2D space or this special case in 3D space.

76



10
0

10
1

10
2

10
3

-0.4

-0.2

0

0.2

0.4

Argument z

J 5(z
)

10
0

10
1

10
2

10
3

-0.2

-0.1

0

0.1

0.2

Argument z

J 50
(z

)

10
0

10
1

10
2

10
3

-0.05

0

0.05

Argument z

J 50
0(z

)

Fig. 1: High pass character of the Bessel functions J5(z),
J50(z) and J500(z) versus argument z (log scale).

where αn ∈ C are complex constants independent of posi-
tion and Jn(·) is the order n Bessel function [10]. That is,
in (1) the field strength at a point x can be represented
as a weighted sum of orthogonal basis functions. This is
our preferred model for height invariant multipath fields.

Bessel Function Properties and Bounds

Bessel functions Jn(·) for n ≥ 1 in (1) have a spatial
high pass character (J0(·) is spatially low pass). That is,
as illustrated in Fig. 1, for n ∈ {5, 50, 500}, Jn(z) starts
small increasing monotonically to its maximum at argu-
ments around O(n) before decaying slowly asymptotically
to zero as z →∞. Also shown overlaid in Fig. 1 are limits
imposed by three upper bounds on |Jn(z)|. The uniform
in argument z bounds, 0.6748851/n1/3, and the uniform
n bounds, 0.7857468704/z1/3, come from the recent work
of Landau [11]. The third bound

∣∣Jn(z)
∣∣ ≤ zn

2nΓ(n+ 1)
, z ≥ 0 (2)

was proven in [12] is asymptotically tight as z → 0 and
is a central inequality for this work.3

Superpositions of 2D Sources

A classical multipath model is to model every distinct
path explicitly as a plane wave, viz.,

F (x; k) =
∑

p

ap e
−ikx·η̂p , (3)

where the plane wave of index p has complex amplitude
ap ∈ C and propagation direction φp ∈ [0, 2π) with nor-
malized (zero elevation) direction η̂p ≡ (cosφp, sinφp)

′.
Cartesian form (3) can be brought into the polar form
(1) by noting the component plane waves have expansion
coefficients [13, p.66]

αn = αn(ap, φp) , ap i
n e−inφp . (4)

3Note Γ(n + 1) = n! for integer n.

Hence (3) can be written

F (x; k) =
∑

p

ap

∞∑

n=−∞
in Jn

(
k‖x‖

)
ein(φ−φp) (5)

which is in form (1) with

αn ,
∑

p

ap i
n e−inφp =

∑

p

ap e
−in(φp−π/2). (6)

Similarly, a nearfield source of complex amplitude a ∈
C at location y ≡ (‖y‖, φ) yielding circular waves4 has
expansion coefficients [13, p.66]

αn = αn(a,y) , a e−inφH(1)
n

(
k‖y‖

)
, (7)

where H
(1)
n (·) is the order n Hankel function of the first

kind. The superposition of multiple such sources will also
be of the form (1).5

II.B. General 3D Multipath

To model the case when multipath can come from any
range of elevations and azimuths we adopt an expansion
in spherical coordinates

F (x; k) =

∞∑

n=0

jn
(
k‖x‖

) n∑

m=−n
αnm Ynm(x̂) (8)

where αnm ∈ C are complex constants independent of
position, and

jn(z) ,

√
π

2r
Jn+1/2(z), (9)

are the spherical Bessel functions which can be bounded,
using (2), as follows

∣∣jn(z)
∣∣ ≤ zn

(2n+ 1)!!
≡
√
π

2

1

Γ(n+ 3
2 )

(z
2

)n
, z ≥ 0 (10)

where (2n+ 1)!! = (2n+ 1) · · · 5 · 3 · 1, and

Ynm(x̂) ,

√
2n+ 1

4π

(n− |m|)!
(n+ |m|)! P

|m|
n (cos θ) eimφ (11)

are the spherical harmonic functions, which are expressed
in terms of the associated Legendre functions Pmn (cos θ).
The spherical harmonics are the most natural basis for
functions defined on a sphere. A property which is useful
for bounding the spherical harmonic functions is the non-
trivial identity

n∑

m=−n
Ynm(x̂)Ynm(ŷ) =

2n+ 1

2π
Pn

(
x̂ · ŷ

)
(12)

≤ 2n+ 1

2π
(13)

4The sources will need to be line sources in 3D to ensure the field
is height invariant and the corresponding waves will be cylindrical.

5By linearity of the wave equation, superpositions of arbitrary
numbers of fields which are in the form of (1) trivially will also be
of the form (1). That all solutions can be put in the form (1) in the
appropriate sense is not treated here.
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where z means the complex conjugate of z, and Pn(cos θ)
is the Legendre function of order n which is bounded by
unity, and θ is the angle between x̂ and ŷ.

The spherical harmonics are orthonormal with respect
to the inner product

〈
f, h

〉
,

∫ π

0

∫ 2π

0

f(θ, φ)h(θ, φ) sin θ dφ dθ. (14)

It can be readily verified that
〈
Ynm, Ynm

〉
= ‖Ynm‖2 = 1

(the L2-norm),
〈
Ynm, Ypq

〉
= 0 when n 6= p or m 6= q

and Ynm = Yn,−m. Using this inner product any square-
integrable function on the sphere may be expanded in the
spherical harmonic basis. The expansion is given by

f =

∞∑

n=0

n∑

m=−n
f̃(n,m)Ynm (15)

where f̃(n,m) ,
〈
f, Ynm

〉
is the Spherical Harmonic

Transform of f . Let Fρ(x̂) ≡ Fρ(θ, φ) be the field F (x; k)
on the surface of a sphere of radius ρ, ‖x‖ = ρ, where ρ
satisfies jn(kρ) 6= 0. Then the αnm can be obtained by
the following scaled spherical harmonic transform expres-
sion:

αnm ,
1

jn(kρ)

〈
Fρ, Ynm

〉
. (16)

III. Dimensionality of Multipath

We wish to quantify the complexity of an arbitrary mul-
tipath field F (x; k) in a region of maximum radius R by
defining the effective dimensionality of the field. We do
this by truncating the series expansion such that |n| ≤ N
in (1) and 0 ≤ n ≤ N in (8), calling this FN (x; k), and
dividing it by a bound on the maximum field intensity
to ensure normalization. A bound on the maximum field
intensity follows from an alternate decomposition, which
generalizes (3). The field F (x; k) can be written

F (x; k) =

∫

Ω

aF (ŷ) eikx·ŷdŷ (17)

where aF (ŷ) is the angular distribution of multipath en-
ergy and the integral is over Ω meaning all azimuth di-
rections (in the 2D case).6 Whence we have the bound

γF ,

∫

Ω

∣∣aF (ŷ)
∣∣ dŷ ≥

∣∣F (x; k)
∣∣. (18)

The relative error is defined by normalizing with respect
to γF in (18), viz.,

εN(x) ,

∣∣F (x; k)− FN (x; k)
∣∣

γF
. (19)

The two multipath cases will now be considered; the 3D
case in less depth due to space limitations.

6This expression works equally well in the 2D and 3D case. In
the 3D, Ω represents the unit sphere.

III.A. Height Invariant Multipath Dimensionality (2D)

Here the region of interest is a circular region of radius
R/λ wavelengths or ‖x‖ ≤ R. Truncating the series in
(1) to 2N + 1 terms gives

F (x; k) ,

N∑

n=−N
αn Jn

(
k‖x‖

)
einφ, (20)

where using (17) we have the alternate representation

αn =

∫ 2π

0

aF (φ) in e−inφ dφ. (21)

Now from (21) it is clear that |αn| ≤ γF using (18), and
then combining with (19) and (20) we can write

γF · εN(x) =
∣∣∣

∑

|n|>N
αn Jn

(
k‖x‖

)
einφ

∣∣∣

≤
∑

|n|>N
|αn|

∣∣Jn
(
k‖x‖

)∣∣. (22)

Hence, the normalized error, (19), can be bounded

εN (x) ≤ 2
∑

n>N

∣∣Jn
(
k‖x‖

)∣∣ (23)

≤ 2
∑

n>N

(
π‖x‖/λ

)n

n!
. (24)

by applying (2) in (23) with k = 2π/λ and using the
symmetry

∣∣Jn(·)
∣∣ =

∣∣J−n(·)
∣∣.

In (24) it is clear that, for a fixed x, by taking the
truncation depth N large enough we can make εN(x) as
small as we like. It is also clear that such a choice of
N needs to be an increasing function of ‖x‖. The next
result makes this statement more precise.

Theorem 1 (Relative Truncation Error). Given the
relative truncation error, εN(x) (19), on a multipath field
F (x; k) define the critical threshold function

N (x) , de π‖x‖/λe. (25)

Then the following hold:

εN (x)(x) ≤ 0.16127 (26)

εN (x)+∆(x) ≤ exp(−∆) εN (x)(x) (27)

for any integer ∆ > 0. That is, the relative trunca-
tion error is small once N equals the critical threshold
N (x), and decreases at least exponentially to zero as N
increases.

Note that when truncating F (x; k) to (20), the number
of terms is 2N + 1, hence, we can assert:

Definition 1 (Dimensionality of 2D Multipath).
For a circular region in space given by ‖x‖ ≤ R the max-
imum dimensionality of 2D multipath is given by

DR , 2de π R/λe+ 1 ≈ 17.079R/λ. (28)
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We make a few comments on the interpretation of di-
mensionality before giving a proof of Theorem 1:

1) The dimensionality, DR, bounds the spatial richness of
multipath and increases only linearly with the size of
the region R/λ (in wavelengths). Hence the dimension
scales only with the size of the region’s boundary (the
circumference) and not the area.

2) The dimension increases if greater precision is desired.
What (28) is really specifying is a threshold when the
truncation error is small and becoming exponentially
smaller with the truncation depth.

3) A vector of α’s of dimension DR specifies the given
field F (x; k). Hence, any given field can be synthe-
sized using linear algebra by superimposing DR dis-
tinct sources.

Proof. Defining the non-negative scalar z , π‖x‖/λ,
bound (24) can be written as

εN (x) ≤ 2RN (z) (29)

where
RN (z) ,

∑

n>N

zn

n!
= exp(z)−

N∑

n=0

zn

n!
(30)

=
zN+1

(N + 1)!

( ∞∑

n=0

(N + 1)!

(N + 1 + n)!
zn

)
. (31)

By Taylor’s theorem, for some ηN ∈ [0, 1],

∞∑

n=0

(N + 1)!

(N + 1 + n)!
zn = exp(ηN z) (32)

which is upper bounded by exp(z). A tighter bound than
exp(z) when z is sufficiently large is derived next.

Note that for integer n ≥ 0

(N + 1)!

(N + 1 + n)!
zn ≤

( z

N + 2

)n
.

Hence, for integer N ≥ 0 satisfying N > z − 2 we can
upper bound (32) by a the sum of a geometric series, viz.,

exp(ηN z) ≤
( N + 2

N + 2− z
)

(33)

Combining (31), (32) and (33) we have for any integer
N ≥ 0 satisfying N > z − 2

RN (z) ≤ zN+1

(N + 1)!

( N + 2

N + 2− z
)

(34)

≤ 1√
2π(N + 1)

( e z

N + 1

)N+1( N + 2

N + 2− z
)

(35)

≤ exp(e z −N − 1)√
2π(N + 1)

( N + 2

N + 2− z
)

(36)

where the second inequality, (35), follows from the Stir-
ling lower bound, n! >

√
2πnnn e−n, and the third in-

equality, (36) follows from (1 + x/n)n ≤ ex, n 6= 0 (with
equality in the limit n→∞).

To contain the exponential in (35) we require N ∼
e z or greater and this motivates the choice of critical
threshold (25) given z ≡ π‖x‖/λ. That is, for z > 0, we
can define a variation of critical threshold (25), by

Nz , de ze (37)

from which it can be shown
( Nz + 2

Nz + 2− z
)
≤ e

e− 1
= 1.58197... (38)

and

exp(e z −Nz − 1) ≤ 1/e = 0.36787.... (39)

Then using (37), (38) and (39) in bound (36)

RNz
(z) ≤ 1

(e− 1)
√

2π(Nz + 1)
=

0.23217...√Nz + 1
(40)

The piecewise nature of RNz
(z), as a function of z, im-

plies there are local maxima at z ≤ N/e. By searching
over these local maxima we can use the exact expression
(31) to obtain a uniform tight bound:

RNz
(z) ≤ max

N
RN (N/e) = R2(2/e)

= exp
(2

e

)
−

(
1 +

2

e
+

2

e2

)
= 0.080635... (41)

which improves on (40) when Nz ≤ 7. Fig. 2 displays the
truncation error bounds for (31), (37) and (41).
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Fig. 2: Remainder RN (z), (31), with N = Nz ≡ de ze, (37).
The stepped curve is the bound is given by (40) and the uni-
form bound corresponds to (41).

When N ≥ Nz , which we refer to as the critical regime,
we infer from (41) that RN ≤ 0.080635.... Therefore, us-
ing (29), εN (x) ≤ 0.16127 which establishes (26), and

from (37) and (40) we can show RNz
(z) ≤ O(z−

1
2 ) as

z → ∞. Therefore, the critical threshold defines the
point where N is sufficiently large such that the remain-
der RN (z) is small.

Now we show that RN (z), for fixed z, exponentially
decreases as N increases provided N > z − 2. From the
definition of exp(ηN z) in (32) we observe

exp(ηN+∆ z) ≤ exp(ηN z) (42)
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for any integer ∆ ≥ 0, and hence from (32) the ratio

RN+∆(z)

RN (z)
=

zN+∆+1

(N + ∆ + 1)!
· (N + 1)!

zN+1
· exp(ηN+∆ z)

exp(ηN z)

≤ z∆

(N + 2)(N + 3) · · · (N + ∆ + 1)
(43)

≤
( z

N + 2

)∆

=
1

α∆

∣∣∣∣
α=(N+2)/z

. (44)

Therefore, whenever N > z − 2, we have α > 1 and
the remainder RN+∆(z) decreases exponentially as ∆ in-
creases.

In the critical regime, N ≥ Nz, where α > e, the
exponential decrease is at least as fast as exp(−∆) by
(44). That is, at worst, we have log10 e ≈ 0.43429 orders
of magnitude reduction per increment in ∆. For small z
the decrease is considerably faster. For example, z = 3.3
implies the critical threshold is Nz = 9 and ∆ = 1, 2, 3, 4,
and 5 give, using (43), the upper bounds on the ratios are
0.27, 0.068, 0.016, 0.0034, and 0.00067, respectively.

III.B. General 3D Multipath Dimensionality

Here the region of interest is a spherical region of radius
R/λ wavelengths or ‖x‖ ≤ R. Conceptually the results
for the 3D case, where the truncation takes the form

FN (x; k) =
N∑

n=0

jn
(
k‖x‖

) n∑

m=−n
αnm Ynm(θ, φ), (45)

are more difficult but qualitatively similar to the 2D case;
and will only be sketched here. From (19)

γF · εN(x) =
∣∣∣

∑

n>N

jn
(
k‖x‖

) n∑

m=−n
αnm Ynm(x̂)

∣∣∣

≤
∑

n>N

∣∣jn
(
k‖x‖

)∣∣
∣∣∣

n∑

m=−n
αnm Ynm(x̂)

∣∣∣. (46)

Again we need to implement some form of normalization,
and we will rely on a generalization of (21) given by

αnm ≡
∫

Ω

a(ŷ) in Ynm(ŷ) dŷ. (47)

Then, using (12) and (13) we see

∣∣∣
n∑

m=−n
αnm Ynm(x̂)

∣∣∣ =
∣∣∣2n+ 1

2π

∫

Ω

a(ŷ) in Pn
(
x̂ · ŷ

)
dŷ

∣∣∣

≤ 2n+ 1

2π
· γF (48)

and this can be used in (46). Hence, the normalized error,
(19), can be bounded

εN (x) ≤ 1

2π

∑

n>N

(2n+ 1)
∣∣jn

(
k‖x‖

)∣∣ (49)

≤ 1

2π

∑

n>N

(
2π‖x‖/λ

)n

(2n− 1)!!
(50)

by applying (10) with k = 2π/λ. This is analogous to (24)
for the 2D case. Again the same style of proof techniques
can be applied as used for Theorem 1. Note that when
truncating F (x; k) to the form given by (45), the number
of terms is (N − 1)2, hence, we can assert:

Definition 2 (Dimensionality of 3D Multipath).
For a spherical region in space given by ‖x‖ ≤ R the
maximum dimensionality of 3D multipath is given by

DR ,
(
de π R/λe − 1

)2 ≈ 72.923 (R/λ)2. (51)

IV. Conclusions

A multipath model was developed that can quantify spa-
tial richness. The spatial variation of multipath was mod-
elled by a set of orthogonal functions in space which cor-
respond to elementary solutions to the Helmholtz (wave)
equation. We show that only a bounded number of terms
are needed to model any multipath field to a given preci-
sion. As such the spatial variation of multipath cannot be
arbitrarily complex and this has important ramifications
for a number of problems such as: spatially extrapolating
multipath signals; limiting the number of parameters in
an adaptive receiver; determining the well-posedness of
direction of arrival estimation, etc.
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