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Abstract — We use a recently developed expression
for the bivariate Rayleigh cumulative distribution
function (CDF) to derive a novel analytical for-
mula for the average signal-to-noise ratio (SNR)
of the correlated dual selection combining (SC)
system under slow Rayleigh fading. We relate the
average SNR diversity gain to spatial correlation
as well as to antenna separation. Furthermore,
we also develop a more practical channel model in
which multipath scatters are from more than one
incident angle, each with a certain beamwidth.
For any scattering field from our model, the av-
erage SNR diversity gain can be easily related to
the antenna separation. Finally, we corroborate
our theory with a simulation study.

I. Introduction

The presence of multipath scatters in wireless commu-
nication channels generally degrades the performance of
wireless systems significantly [1]. With the use of multi-
ple antennas, space diversity techniques can combat this
degradation caused by multipath scatters [2].

The general idea of space diversity is simple. On the
receiving side, antennas are placed in different locations
so that the received signals at each location will generally
have different multipath signatures. Since more than one
version of the transmitted signal are received with differ-
ing levels and degrees of distortions, we can in principle
combine these signals to achieve some diversity perfor-
mance gain over a single receiving antenna. The most
common combining methods are maximal ratio combin-
ing (MRC), equal gain combining (EGC) and selection
combining (SC) [1,3]. The first two diversity schemes re-
quire co-phasing on each received signal before combining
the signals, while SC does not.

One of the meaningful diversity performance metrics is
the average SNR diversity gain. An analytical expression
for it was determined under the statistical assumption
that the received signals from different antennas are in-
dependent [4]. However, this assumption generally (but
not necessarily) requires that the antennas be sufficiently
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well separated from each other and this is not always fea-
sible in practice. Therefore, it is important to understand
how the correlation between received signals affects the
diversity gain. That is, the objective is to better quanti-
tatively understand how the degree of correlation relates
to the degree of diversity gain. Practically, it is of great
interest to relate the separation of antennas to diversity
gain. Both questions are considered in this paper, partic-
ularly for the correlated dual selection combining diver-
sity (SC) system under slow Rayleigh fading.

In this paper, we first report the recently determined
expression for the bivariate Rayleigh CDF [5]. Then, with
a new CDF expression developed in this paper, we derive
a novel analytical formula for the average SNR of the
correlated dual SC system. The average SNR diversity
gain is then related to spatial correlation. Moreover, we
develop a more practical channel model in which multi-
path scatters are from more than one incident angle, each
with a certain beamwidth. For the diffuse scattering field
and a particular scattering field from our model, the av-
erage SNR diversity gain is plotted against the antenna
separation. At the end of the paper, we corroborate the
analytical results with simulations.

II. Problem Formulation

In a dual (two channel or two antenna) selection com-
bining system, the antenna that has the higher SNR, at
any time instant, is selected and the signal from other an-
tenna is not used. As in most papers in the literature, the
sum of the multipath signals is assumed to be complex
Gaussian distributed due to the use of the central limit
theorem [1, 6, 7]. The correlated multiplicative complex
Gaussian processes on the two receivers are also assumed
to be jointly Gaussian [1, 3].

Define z , max{y2
1, y

2
2}, where y2

i is the local mean
SNR, y2

i = |si|2/(2Ni), si is the signal and Ni is the two
sided noise power spectral density, of the ith antenna.
The joint PDF of y1 and y2 at any instant [3, 7] can be
expressed in terms of the modified Bessel function as fol-
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lows

f(y1, y2) =
4y1y2

Ω1Ω2(1− |ρ|2)
I0

( 2|ρ| y1y2
(1− |ρ|2√Ω1Ω2

)
×

exp
(
− 1

(1− |ρ|2)
(
y2
1/Ω1 + y2

2/Ω2

))
(1)

where Ωi = E{y2
i }, ρ = E{s1s∗2}/E{s1s∗1}, E{·} denotes

the expectation operator, and ∗ denotes complex conjuga-
tion. Furthermore, the probability that the output SNR
z is below some value (which is the same as the CDF) is
defined as

Pr(z < γ) = Pr(y1 <
√
γ, y2 <

√
γ). (2)

With the use of infinite series representations as in [5],
the CDF becomes

Pr(z < γ) =
(
1− |ρ|2

) ∞∑

k=0

|ρ|2k
(k!)2

×

G
(
k + 1,

γ(
1− |ρ|2

)
Ω1

)
G

(
k + 1,

γ(
1− |ρ|2

)
Ω2

)
, (3)

where G(n, x) =
∫ x
0 t

n−1e−tdt, n > 0, is the incomplete
Gamma function [8, (8.35)]. This expression contrasts
the classical results which are expressed in terms of the
Marcum Q-function [1, 7]. With this new expression, we
can derive a novel expression for the average SNR of the
correlated dual SC system under slow Rayleigh fading,
which is shown in the next section.

III. Derivation of Average SNR

Based on the expression of CDF (3), we now derive the
expression for the average SNR of the correlated dual SC
system. The expected value of the SNR is defined as

Ez{γ} =

∫ ∞

0

γ fz(γ) dγ, (4)

where fz(γ) is the PDF of z. To simplify notation, let

ξi(γ) ,
γ

(1− |ρ|2) Ωi
, i ∈ {1, 2}. (5)

We can calculate the PDF by differentiating the CDF in
(3) with respect to γ, as follows

fz(γ) ,
d

dγ
Pr(z < γ)

=
∞∑

k=0

(1− |ρ|2)|ρ|2k
(k!)2

×

d

dγ

{ ∫ ξ1(γ)

0

tke−t dt
∫ ξ2(γ)

0

tke−t dt

}
. (6)

After some simplifications, the PDF will be equal to

fz(γ) =

∞∑

k=0

{ |ρ|2kγke−ξ1(γ)

(1− |ρ|2)k(k!)2Ωk+1
1

G
(
k + 1, ξ2(γ)

)

+
|ρ|2kγke−ξ2(γ)

(1− |ρ|2)k(k!)2Ωk+1
2

G
(
k + 1, ξ1(γ)

)}
(7)

The expected value of the SNR becomes

Ez{γ} =

∞∑

k=0

|ρ|2k
(1− |ρ|2)k(k!)2

(
Bk + Ck

)
(8)

where

Bk ,
1

Ωk+1
1

∫ ∞

0

γk+1e−ξ1(γ)G
(
k + 1, ξ2(γ)

)
dγ (9)

Ck ,
1

Ωk+1
2

∫ ∞

0

γk+1e−ξ2(γ)G
(
k + 1, ξ1(γ)

)
dγ. (10)

From [8, (6.455)],

∫ ∞

0

xµ−1e−βxG(v, αx) dx =
αvΓ(µ+ v)

v(α+ β)µ+v
×

F
(
1, µ+ v; v + 1;

α

α+ β

)
(11)

where Re(α + β) > 0, Re(β) > 0, Re(µ + v) > 0 and
F (·, ·; ·; ·) is the Gauss hypergeometric function. There-
fore, substituting (11) into (9) and (10), we obtain

Bk = Dk · F
(

1, 2k + 3; k + 2;
Ω1

Ω1 + Ω2

)
(12)

Ck = Dk · F
(

1, 2k + 3; k + 2;
Ω2

Ω1 + Ω2

)
(13)

where

Dk ,
(1− |ρ|2)k+2(2k + 2)!Ωk+2

1 Ωk+2
2

(k + 1)(Ω1 + Ω2)2k+3
. (14)

Furthermore, from [8, (9.14)], we know that

F (a, b; c; d) ,

∞∑

n=0

(a)n(b)n
(c)n

dn

n!
(15)

where (·)n is the Pochhammer symbol which is defined
by (y)n , (y − n− 1)!/(y − 1)!. Therefore,

Bk = Dk

∞∑

n=0

(2k + 2 + n)!

(2k + 2)!

(k + 1)!

(k + 1 + n)!

Ωn1
(Ω1 + Ω2)n

(16)

Ck = Dk

∞∑

n=0

(2k + 2 + n)!

(2k + 2)!

(k + 1)!

(k + 1 + n)!

Ωn2
(Ω1 + Ω2)n

(17)
Now substitute (16) and (17) into (8); the expected

value of the SNR becomes

Ez{γ} =
(
1− |ρ|2

)2
∞∑

k=0

∞∑

n=0

{
|ρ|2k(2k + n+ 2) ×

Ωk+2
1 Ωk+2

2 (Ωn1 + Ωn2 )

(Ω1 + Ω2)2k+n+3

(
2k + n+ 1

k

) }
(18)

where
(
p
n

)
,

p!

n!(p− n)!
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Finally, define

m ,
Ω1

Ω2
. (19)

Then the expected value of the SNR becomes

Ez{γ} =
(
1− |ρ|2

)2
Ω1

∞∑

k=0

∞∑

n=0

{ (
2k + n+ 1

k

)
×

|ρ|2k(2k + n+ 2)mk+2(1 +mn)

(1 +m)2k+n+3

}
. (20)

The average SNR is a function of the absolute value of
correlation, |ρ|, and the local SNR average in the two re-
ceivers, Ω1 and Ω2. In the context of this paper the cor-
relation is the spatial correlation which means the signals
are obtained by detecting them at physically separated
points in space. By explicitly relating the spatial corre-
lation to distance we can then explicitly determine how
diversity is affected by antenna separation.

IV. Average SNR Diversity Gain

Now consider the case when each receiver has an identi-
cal local SNR average, m = 1, i.e., Ω1 = Ω2, then (20)
becomes

Ez{γ} =
(
1− |ρ|2

)2
Ω1 ×

∞∑

k=0

∞∑

n=0

(
2k + n+ 1

k

) |ρ|2k(2k + n+ 2)

22k+n+2
. (21)

When both received signals are uncorrelated, ρ = 0, we
can immediately see that (21) becomes 1.5 Ω1 (1.761 dB),
which agrees with the result in [1,4]. When two received
signals are fully correlated, ρ = 1, we obtain, by taking
the limit ρ → 1 in (21), that 1 Ω1 (0 dB). That is, there
is no average SNR gain when the two received signals are
identical, as expected.

Let us now consider for all other spatial correlations
coefficients, the average SNR diversity gain is defined as

GdB , 10 log10

{
Ez{γ}

Ω1

}

= 10 log10

{(
1− |ρ|2

)2 ×
∞∑

k=0

∞∑

n=0

(
2k + n+ 1

k

) |ρ|2k(2k + n+ 2)

22k+n+2

}
. (22)

For the numerical calculations, we use only the first 1001
terms of k and n as they are sufficient to bound the error
(caused by the truncation of the infinite series) to below
10−10. The truncated version of the average SNR diver-
sity gain becomes

GdB ≈ 10 log10

{(
1− |ρ|2

)2 ×
1000∑

k=0

1000∑

n=0

(
2k + n+ 1

k

) |ρ|2k(2k + n+ 2)

22k+n+2

}
. (23)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
Dual Selection Diversity Gain (dB) vs. Spatial correlation

Spatial correlation

A
ve

ra
ge

 S
N

R
 D

iv
er

si
ty

 G
ai

n 
(d

B
)

Fig. 1: Average SNR diversity gain in dual SC system under
slow Rayleigh fading.

We use (23) to generate Fig. 1. It shows the relationship
between the diversity gain and the correlation coefficients.

Again, from Fig. 1, we can check that both trivial cases,
ρ = 0 and ρ = 1, agree with the result in [1, 4]. Now let
us relate the average SNR Diversity Gain to the antenna
separation. It is well known that if the scatters form a
2D Omni-directional diffuse field, the spatial correlation
is given by

ρ(d) = J0(2πd/λ), (24)

where J0(·) is the zero order Bessel function of the first
kind, and d is the antenna separation.
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Fig. 2: The relationship between average SNR diversity gain
and antenna separation for a 2D diffuse field.

Fig. 2 shows the relationship between diversity gain
and antenna separation. Since we know the relationship
between diversity and spatial correlation (as shown in
Fig. 1, the plot of the diversity gain in Fig. 2 relates
to the plot of spatial correlation in Fig. 3, as expected.
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It is noticed that slightly under 0.4 wavelength separa-
tion is sufficient to have a full diversity gain for a 2D
Omni-directional diffuse field. A more practical scatter-
ing pattern is discussed in the next section.
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Fig. 3: Spatial correlation between the complex envelopes
of the two received signals from two antennas, with x wave-
lengths separation to each other.

V. Average SNR Gain in a Practical Channel
Model

In Section IV, we considered scatters,which form a 2D
Omni-directional diffuse field. We now generalize the
scatters distribution by extending the channel model in
[9]. The channel model in [9] assumes multipaths are from
a particular incident angle with a certain beamwidth.
However, in real environments, multipath scatters are
usually reflected from more than one object in different
directions. Therefore, our model assumes multipath scat-
ters are uniformly distributed from certain incident angles
with certain beamwidths. This model is shown in Fig. 4.
We would like, for this more general and practical multi-
path field channel model, to relate the diversity gain to
antenna separation. The received signals from antennas
one and two are

s1(t) = eiωt
R∑

r=1

∫ θr+∆r/2

θr−∆r/2

Ar(θ)e
−iφr(θ)dθ (25)

s2(t) = eiωt
R∑

r=1

∫ θr+∆r/2

θr−∆r/2

Ar(θ)e
−iφr(θ)e−i2πd cos θ/λdθ

(26)

where R is the number of scattering sources, θr is the
incident angle of the scattering source r, ∆r is the angle
spread (beamwidth) of the scattering source r, d is the
antenna separation in metres, Ar(θ) is the signal ampli-
tude of a particular scatter at angle θ for source r, and
φr(θ) is the signal phase of a particular scatter at angle θ
for source r. If there is no overlapping between scattering

Fig. 4: The 2D multipath scattering model. This model as-
sumes multipath scatters are uniformly distributed from cer-
tain incident angles with certain beamwidths.

sources, (25) and (26) can be modified to

s1(t) = eiωt
∫ 2π

0

A(θ)e−iφ(θ)dθ (27)

s2(t) = eiωt
∫ 2π

0

A(θ)e−iφ(θ)e−i 2πd cos θ/λ dθ, (28)

where A(θ) is the aggregate signal amplitude in analogy
to the definition of Ar(θ) above. The spatial correlation
between antennas is

ρ(d) =

∫ 2π

0 E{|A(θ)|2}e−i 2πd cos θ/λ dθ
∫ 2π

0
E{|A(θ)|2} dθ

(29)

The expected value of |A(θ)|2 is equal to 1 when it is
from a scattering source and is 0 when it is not from a
scattering source. Now we use the same expansion as in
paper [10], namely

ei2πd cos θ/λ =
∞∑

m=−∞
imJm(2πd/λ) e−imθ (30)

The correlation coefficient ρ can be simplified to

ρ(d) =

∞∑

m=−∞

R∑

r=1

∆r

∆T
eim(π/2−θr) ×

sin(m∆r/2)

m∆r/2
Jm(2π d/λ) (31)

where ∆T =
∑R

r=1 ∆r. If there is only one scattering
source, R = 1, the spatial correlation (31) is equivalent
to the one derived in [9] and [10]. By substituting (31)
into (22), we can relate the diversity gain to the antenna
separation.

VI. Example

Let us consider an example with three scatters sources.
The incident angles are 150◦, 173◦ and 280◦; beamwidths

93



are 20◦, 6◦ and 20◦, respectively. The analytical result
is plotted with the simulating result in Fig. 5. The sim-
ulating result is used to indicate the correctness of the
analytical formula. Our simulation method is reported
in [11] and is summarized in four steps here:

1) Replace integrals in s1(t) and s2(t) as shown in (25)
and (26) with the sum of 30 randomly directed mul-
tipaths with Gaussian distributed amplitude N(0, 1)
and uniformly distributed phase (0◦ to 360◦).

2) Record the received signal power from the antenna
with the higher SNR.

3) Repeat step one and two 10, 000 times.

4) Estimate the gain by averaging these samples.

As we expected, the analytical results and simulation
gain plots have a similar shape (as shown in Fig. 5).
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Fig. 5: The analytical gain and simulation gain plots for a
particular multipath scattering environment.

VII. Conclusion

We derived an analytical expression of the average SNR
diversity gain in a dual selection combining system under
slow Rayleigh fading. This expression relates the diver-
sity gain to spatial correlation and antenna separation.
Moreover, we developed a more practical channel model
in which multipath scatters are from more than one inci-
dent angle, each with a certain beamwidth. We showed
that the analytical gain agreed were corroborated by the
simulations. We have also extended our analytical ex-
pression to correlated Nakagami-m fading channels and
will report these results shortly.
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