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Abstract — The channel capacity of multi-element
communication systems in independent Rayleigh
channels has been shown to scale linearly with
the number of antennas. In reality, the signals re-
ceived by different receiver antennas can be cor-
related with each other due to the non-uniform
scattering environment and limited aperture of
the antenna system. In this paper, the effect of
spatial correlation between receiver antennas on
capacity is investigated for various scattering en-
vironments. The physics of signal propagation is
combined with statistics of the scattering environ-
ment to derive a capacity expression in terms of
spatial correlation, antenna spacings/placement,
aperture size, and power distribution of scatters.
This result is used to show that for a given aper-
ture size, one can increase the capacity approxi-
mately linearly up to a certain value by increasing
the number of antennas but further increase will
not give any significant capacity gain.

I. Introduction

Multiple element antenna communication systems have
been shown theoretically to drastically improve the ca-
pacity over traditional single antenna element systems
[1,2]. A common assumption in the study of such systems
is that the channels between different pairs of transmitter-
receiver antennas are independent of each other. How-
ever, in reality the signals received by different receiver
antennas are correlated with each other which will reduce
the capacity gain. In this paper, we investigate the effects
of spatial correlation between receiver antennas on capac-
ity for not only uniform scattering environment but also
for other realistic scattering scenarios.

There are few other works reported in the literature on
the effect of spatial correlation on capacity of multi an-
tenna systems [3–7]. However, most of the previous stud-
ies have been either confined to Rayleigh fading channels,
where an isotropic scattering environment is implicitly as-
sumed, or they use a one-ring scattering model. In [4],
an exponential correlation matrix model has used to in-
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vestigate channel capacity. However, these approaches
fall short of fully describing the effect of scattering envi-
ronment, aperture size, number of antenna elements, and
antenna separation on capacity.

In this paper, we combine the understanding of the
physical signal propagation with the statistics of the scat-
tering environment to study these effects.

II. Spatial Correlation

Signals received by two points in space are, in general,
correlated, with the correlation coefficient depending on
separation of two points and the angular spread of the
incoming waves. Consider two antennas located at points
xp and xq . Let zp(t) and zq(t) denote the complex envelop
of the received signal at two antennas respectively. Then
the normalized spatial correlation function between the
complex envelopes of the two received signals by points p
and q, is defined by

ρpq =
E{zp(t)z∗q (t)}
E{z0(t)z∗0(t)} (1)

where E{·} denotes the expectation operator, ·∗ denotes
the complex conjugation and z0(t) is the received signal
at a suitably chosen origin. It was shown [8] for a 2
dimensional propagation environment that

ρpq =

∞∑

m=−∞
αmJm

(
k‖xp − xq‖

)
eimφpq (2)

where k = 2π/λ is the wavenumber, λ is the wave length,

αm = im
∫ 2π

0

P(φ)e−imφdφ, (3)

where P(φ) is the normalized average power received from
direction φ and φpq is the angle of the vector connecting
xp and xq .

The Bessel functions Jm(·) for m ≥ 1 in (2) have a
spatial high pass character (J0(·) is spatially low pass).
The fact that the higher order Bessel functions have small
values for arguments near zero, means that to evaluate
the correlation for points near each other in space, only
a few terms in the sum (2) need to be evaluated in order
to obtain a very good approximation. It was shown in
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[9] that the above summation can be truncated for m =
−M : M where

M ∼ πe

λ
max
p,q

{
‖xp − xq‖

}
. (4)

Thus, we treat that the correlation expression (2) has
only a finite number of terms 2M + 1 where M is given
by (4).

In this paper, we have only considered the 2D propa-
gation environment, since the practical wireless channels
tend to have multipaths mainly in the azimuth plane.
The equivalent 3D results can be found in [8].

Note that the spatial correlation expression (2) cap-
tures both physical propagation characteristics as well as
statistical properties of the scattering environment. We
now give explicit expressions for the coefficients αm for
commonly used scattering scenarios.

II.A. 2D Omni-Directional (Isotropic) Diffuse Field

For the special case of scattering uniformly over all angles
in the plane containing two points, (2) reduces to a single
term, and so the correlation coefficient is given by

ρ = J0

(
k‖xp − xq‖

)
. (5)

This is the most simplest form of a multipath field and
has been used extensively in modelling space-time chan-
nels in the literature. For example, if the received sig-
nal at a single antenna is Rayleigh distributed, then the
scattering environment is omni-directional and the corre-
lation between signals received at two points are given by
(5).

II.B. Uniform Limited Azimuth Field

In the case of energy arriving uniformly from a restricted
range of azimuth (φ0 − ∆φ, φ0 + ∆φ), it was shown [8]
that αm in (3)

αm = eim(π/2−φ0) sinc(m∆φ). (6)

II.C. Von-Mises Distributed Field

Non-isotropic scattering in the azimuthal plane may be
modeled by the von-Mises distribution [10], for which the
density is given by

P(φ) =
1

2πI0(κ)
eκ cos(φ−φ0), |φ− φ0| ≤ π, (7)

where φ0 represents the mean direction, κ > 0 repre-
sents the degree of non-isotropy, and Im(κ) is the modi-
fied Bessel function of the first kind. In this case, using
(3.937) of [11] αm in (3) is given by

αm =
im

2πI0(κ)

∫ 2π

0

eκ cos(φ−φ0)eimφdφ

= eim(π/2−φ0) I−m(κ)

I0(κ)
. (8)

III. Capacity of Space-Time Channels

Consider Q receiving antennas and P transmitting anten-
nas, and let r = [r1, r2, . . . , rQ]T be the vector of received
signals, n = [n1, n2, . . . , nQ]T be the zero mean additive
white gaussian noise vector of the signal received by Q
sensors and s = [s1, s2, . . . , sP ] be the vector of symbols
sent by the P transmitting antennas. Also, let

r = z + n (9)

where z = [z1, · · · , zQ] is the signal component of the
observed vector r due to the transmitted signal vector s.

The received information, I(s, r) about s when r is
observed is defined [12] as

I(s, r) = H(s)−H(s|r) = H(r)−H(r|s), (10)

where H(·) is the entropy of the argument. If s is a
multidimensional gaussian random variable, then its en-
tropy [13]H(s) = log

(
(2πe)

P
2 |Vs|

)
where |·| denotes ma-

trix determinant, Vs = E{ss∗}. Similarly, we can write,

H(r) = log
(
(2πe)

Q
2 |Vr|

)
and H(n) = log

(
(2πe)

Q
2 |Vn|

)

where Vr = E{rr∗} and Vn = E{nn∗}. By observing
H(r|s) = H(n), we rewrite (10) as

I(s, r) =
1

2
log

∣∣∣Vr

Vn

∣∣∣. (11)

Assuming, the noise n and the signal components z of the
observed signal vector are independent of each other, we
use (9) to write

Vr = E{zz∗}+ Vn. (12)

Similar to [12,14], we remove the factor 1/2 from (11) by
assuming complex data, use base 2 logarithm, and assume
the noise at each receiver antenna is gaussian with zero
mean and σ2 variance, to express capacity C in bits/Hz
as,

C = log2

∣∣∣IQ +
E{zz∗}
σ2

∣∣∣, (13)

where IQ is the Q×Q identity matrix. Note that E{zz∗}
is the Q × Q covariance matrix of the signal part of the
received signal and can be written as

E{zz∗} =



E{z1z∗1} . . . E{z1z∗Q}

...
. . .

...
E{zQz∗1} . . . E{zQz∗Q}


 . (14)

Each entry of (14) is proportional to the spatial correla-
tion between the corresponding two points, i.e.,

E{zpz∗q} = σ2
sρpq, (15)

where σ2
s is the average signal power received at a point

and ρpq is given by (2). Now, we can write

E{zz∗}
σ2

= ηR, (16)
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where

R
∆
=



ρ11 . . . ρ1Q

...
. . .

...
ρQ1 . . . ρQQ


 , (17)

η = σ2
s/σ

2 is the average signal to noise ratio at any one
of the receiving antennas and σ2 is the noise variance.
By writing (16), we also assumed that P transmitted sig-
nals are independent of each other, total transmitted sig-
nal power is constant irrespective of number transmitting
antennas and the scattering environment is same for all
transmitted signals.1

We call R as the spatial correlation matrix. We sub-
stitute (16) in (13) to derive a new capacity formula for
space-time channels which depend on spatial correlation
between receiver antenna elements as

C = log2

∣∣IQ + ηR
∣∣. (18)

Equation (18) together with (17) and (2) form a set
of tools which can be used to categorize the capacity
of space-time channels. Specifically, the relationship be-
tween the capacity and sensor placement, separation, and
scattering environment can be explained from these two
equations.

IV. Capacity Limits

The capacity of space-time channels will be maximum,
when there is no correlation between receiver antenna el-
ements. For this special case, R = IQ and

Cmax = Q log2(1 + η). (19)

In practice this can only happen if the antenna elements
are sufficiently away from one another.

When there is perfect correlation between each pair of
antenna elements, the capacity of MIMO channels will be
minimum and R = 1Q, where 1Q is a Q × Q matrix of
ones. In practice, this can only be achieved if all antennas
are located in a single point in space. Thus, the minimum
capacity of MIMO channel is

Cmin = log2(1 + ηQ). (20)

That is the capacity will increase loarithmically with the
number of receiver antennas. However, this capacity im-
provement is due to the assumption that the noise at each
antenna element is independent of each other. This is an
unrealistic assumption in the case of all antennas located
in a single point but is valid in other cases. However,
(20) gives the capacity improvement due to only noise
averaging of the received signal and, the capacity expres-
sions (18) and (19) are due to both the signal and noise
components of the received signal.

We can further rearrange (18) to write

C = Cmax + log2 ∆Q, (21)

1These assumptions enable us to derive capacity expressions
which are independent of the properties of the transmitter anten-
nas but dependent on scattering environment and receiver antenna
properties.

where

∆Q = det




1 η
1+η ρ12 . . . η

1+ηρ1Nr

η
1+η ρ21

. . .
...

...
. . .

...
η

1+ηρNr1 . . . 1



. (22)

Note that 0 ≤ ∆Q ≤ 1 due to the positive semi-definite
property of the matrix involved. Thus, log2 ∆Q ≤ 0, that
is the capacity gain will be reduce if there is any signal
correlation between antenna elements.
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Fig. 1: Capacity of a space time channel with 2D omni-
directional diffuse scattering field versus number of equally
spaced antennas on a constant aperture lengths D = 0.5, 1, 2, 3
and 4. Also shown is the theoretical maximum and minimum
capacities.

V. Simulations

We use (21) and (2) to calculate the capacity of space
time channels for different scattering environments given
in Section II. Specifically, we like to answer the questions
such as: does the capacity increase linearly with the num-
ber of antennas for all scattering scenarios? (as suggested
by [2]), How many antennas needed to achieve maximum
capacity in a fixed aperture? What will happen to the
capacity if the aperture is increased? For all our simula-
tions, we use equally spaced linear antenna arrays, and
set the signal to noise ratio η = 20 dB.

First we consider the 2D omni-directional diffuse scat-
tering environment given in Section II.A. We calculate
the capacity by increasing the number of antennas within
a constant aperture length and the results are depicted
in Fig. 1. It can be observed from Fig. 1 that the capac-
ity increases approximately linearly with the number of
antennas only up to a certain saturation point and then
increase at a decreasing rate. Thus, by over crowding a
given aperture by large number of antennas, one cannot
achieve large capacities as predicted by [2]. Note that the
capacity increase evident in the second part of the curves
is mainly due to the assumption of independent noise at
each individual antenna.
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Fig. 2: Capacity of a space time channel with 2D diffuse scat-
tering field versus aperture length of equally spaced antennas
with constant number of antennas N ∈ {2, 3, 4, 5}.

By studying Fig. 1, we can propose a “rule of thumb”
for choosing the number of antennas to maximize the ca-
pacity for a given aperture D for the 2D omni-directional
scattering environment. Specifically,

N ∼ 2
(D
λ

+ 1
)
, (23)

will give a guide for smart antenna receiver designers.

Fig. 2 shows the capacity for the same environment
against the aperture length for a set of fixed number of
antenna elements. For zero aperture size, the curves do
not start from the same point due to the assumption of
independent noise at each antenna. However, it can be
seen that for a given number of receiver antenna elements,
there is a minimum aperture size which maximize the ca-
pacity. Further increase in aperture size will not increase
capacity significantly. Observe that the results in Fig. 2
can also be used to derive the rule of thumb given by (23).

We have also calculated the capacity versus number
of antennas for two other non-isotropic scattering envi-
ronments. Fig. 3 depicts the capacity against the num-
ber of antennas for a constant aperture length of D = 2
wavelengths for uniform but limited azimuth fields. An-
gular spread of azimuth is given by (φ0 −∆φ, φ0 + ∆φ)
where φ0 = π/2 from the linear antenna array axis and
∆φ = π, π/8, π/16 and π/32. Note that ∆φ = π rep-
resents an isotropic field. One can see that there is a
reduction of capacity corresponding to a reduction in an-
gular spread of scatterers. However, overall behaviour of
capacity with the number of antennas within a given aper-
ture size is qualitatively similar to that of the isotropic
scattering case.

Finally, we show the capacity of channels with von-
Mises scattering fields with κ = 0, 5, 10 and 20 in Fig. 4.
Note that κ = 0 represents the isotropic case and the
width of the angular spread grows as we increase κ.
Again, the characteristics of capacity of these channels
are qualitatively similar to the isotropic case.
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Fig. 3: Capacity of a space time channel with uniform
limited azimuth scattering field versus number of equally
spaced antennas for different range of angular spreads ∆φ =
π, π/8, π/16 and π/32, for aperture length D = 2 wavelengths.
Also shown is the theoretical maximum and minimum capac-
ities.

The main message from the simulation results is that
for a given aperture size, one can increase the capacity of
a communication system approximately linearly up to a
certain value by increasing the number of antennas but
further increase will not give any significant capacity gain
irrespective of the scattering environment. Further, we
have suggested a “rule of thumb” to select the optimum
number of antennas needed to achieve maximum capacity
for given aperture area for the isotropic scattering envi-
ronment. We are currently investigating to extend this
“rule of thumb” to other scattering scenarios and to sup-
port them with theoretical results.

References

[1] G. J. Foschini, “Layered space-time architecture for wireless
communication in a fading environment when using multi ele-
ment antennas,” Bell Labs Technical Journal, pp. 41–59, Au-
tumn 1996.

[2] G. J. Foschini and M. J. Gans, “On limits of wireless communi-
cations in a fading environment when using multiple antennas,”
Wireless Personal Communications, vol. 6, pp. 311–335, 1998.

[3] D. Gesbert, D. Gore, and A. Paulraj, “MIMO wireless
channels: Capacity and performance prediction,” Proc. IEEE
Globecom Conference, pp. 285–288, Nov. 2000.

[4] S. L. Loyka, “Channel capacity of MIMO architecture using the
exponential correlation matrix,” IEEE Communi. Lett., vol. 5,
no. 9, pp. 369–371, Sept. 2001.

[5] D. Chizhik, F. R. Farrokhi, J. ling, and A. Lozano, “Effect of
antenna seperation on the capacity of blast in correlated chan-
nels,” IEEE Communi. Lett., vol. 4, no. 11, pp. 337–339, Nov.
2000.

[6] A. M. Sayeed, “Modeling and capacity of realistic spatial
MIMO channels,” in Proc. IEEE Int. Conf. Acoust., Speech
Signal Processing, May 2001, pp. 695–700.

[7] D. Shiu, G. J. Foschini, M. J. Gans, and J. M. Kahn, “Fad-
ing correlation and its effect on the capacity of multielement
antenna systems,” IEEE Trans. Communi., vol. 48, no. 3, pp.
502–513, Mar. 2000.

[8] P. D. Teal, T. D. Abhayapala, and R. A. Kennedy, “On spa-
tial correlation for general distributions of scatterers,” in Proc.

103



0 2 4 6 8 10 12 14 16
0

10

20

30

40

50

60

Number of antennas

C
ap

ac
ity

 b
ps

/H
z

κ=0 

κ=5 

κ=10 

κ=20 

Fig. 4: Capacity of a space time channel with von-mises dis-
tributed scattering field versus number of equally spaced an-
tennas for angular spreads determined by κ = 0, 5, 10 and 20,
and for aperture length D = 2 wavelengths. Also shown is the
theoretical maximum and minimum capacities.

IEEE Int. Conf. Acoust., Speech Signal Processing, to appear
2002.

[9] H. M. Jones, R. A. Kennedy, and T. D. Abhayapala, “On
dimensionality of multipath fields: Spatial extent and richness,”
in Proc. IEEE Int. Conf. Acoust., Speech Signal Processing, to
appear 2002.

[10] A. Abdi and M. Kaveh, “A versatile spatio-temporal corre-
lation function for mobile fading channels with non-isotropic
scatterers,” in IEEE Workshop Stat. Signal Processing, 2000,
pp. 58–62.

[11] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series,
and Products, Academic Press, San Diego, 1994.

[12] P. B. Rapajic, “Information capacity of the space division mul-
tiple access mobile communication system,” Wireless Personal
Communications, vol. 11, pp. 131–159, 1999.

[13] A. D. Wyner, “Shanneon-theoretic approach to a gaussian cel-
lular multiple access channels,” IEEE Trans. Inform. Theory,
vol. IT-40, pp. 1713–1727, 1994.

[14] C. E. Shannon, “A mathematical theory of communication,”
Bell Sys. Tech. Journal, vol. 27, pp. 379–423, 1948.

104


	AusCTW 02 - Table of Contents

