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This paper introduces an efficient parameterization for the nearfield broadband beamforming
problem with a single parameter to focus the beamformer to a desired operating radius and another
set of parameters to control the actual broadband beampattern shape. The parameterization is based
on an orthogonal basis set of elementary beampatterns by which an arbitrary beampattern can be
constructed. A set of elementary beamformers are then designed for each elementary beampattern
and the desired beamformer is constructed by summing the elementary beamformers with frequency
and source-array distance dependent weights. An important consequence of our result is that the
beamformer can be factored into three levels of filterifigbeampattern independent elementary
beamformers(ii) beampattern shape dependent filters; @nydradial focusing filters where a single
parameter can be adjusted to focus the array to a desired radial distance from the array origin. As
an illustration the method is applied to the problem of producing a practical array design that
achieves a frequency invariant beampattern over the frequency range givhitf is suitable for

speech acquisition using a microphone arraand with the array focused either to farfield or
nearfield where at the lowest frequency the radial distance to the source is only three wavelengths.
© 2000 Acoustical Society of Amerid&0001-49680)03901-1

PACS numbers: 43.60.Gk, 43.38.Si, 43.30MCB]

INTRODUCTION nearfield beamforming. One method uses time delays to
compensate for differing propagation delays due to spherical
Consider the problem of designing a microphone arraypropagatiort. However, this ignores the variation of the mag-
for speech acquisition. Not only does the array require anitude with distance and angle and assumes a point source.
narrow main beam, but it should operate uniformly over aln another method, there was consideration initially for
large bandwidth and be able to cope with nearfield sourcesearfield theoretical development but this was ignored in the
While there has been a deal of progress in designing broacctual array design. The few other related works we are
band arrays, having them operate well in the nearfield stilaware of dealing with design of nearfield arrays can be found
requires ratherad hoc solutions. In this paper, we will in the references;*°
present a systematic way of designing nearfield broadband A novel methodology to obtain precise nearfield array
sensor arrays. In particular, we will explicitly show how to designs has been recently developeti.is based on writing
parameterize the beamformer in order to focus the array tethe solution to the wave equation in terms of spherical har-
practically any operating radius from the array origin using amonics and allowing a nearfield beampattern specification to
single parameter while maintaining a predetermined broadse transformed to the farfield, and the subsequent use of well
band angular beampattern using another set of parametersunderstood farfield theory, to design the nearfield beam-
Most of the array processing literature assumes a farfielformer. These nearfield—farfield transformations have been
source having only plane waves impinging on the sensoused for many years in the radio antenna community for
array. However, in many practical situations, such as microreconstructing farfield antenna patterns from nearfield
phone arrays in car environmertthe source is well within - measurement€ though these transformations are computa-
the nearfield. The use of farfield assumptions to design théonally involved. The theory of nearfield—farfield transfor-
beamformer in these situations may severely degrade th@ation was used to establish a computationally simple de-
beampattern. In many cases the approximate distance gign procedure that numerically implements the nearfield—
which the farfield assumption begins to be valid ris farfield transformatiort® Farfield broadband beamforming
=2L2%/\, wherer is the distance from an arbitrary array has been consider8d®and reviewed in Ref. 14.
origin, L is the largest array dimension, ainds the operat- In this paper, a new method of beamforming is proposed
ing wavelengtif. However, we will show in Sec. | C that this in which an arbitrary desired beampattern in both frequency
common rule-of-thumb for farfield approximation is not a and angle may be produced either in nearfield or farfield. We
necessary condition. have used the wave equation based representation of
There appears to be little work in the literature onbeampatterrs to identify the class of elementary beampat-
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z is constructed by combination of all possible modes of the
form!?

r1/2H§]l+)1/2(kr)p\nm‘(cosﬂ)ejmd)v D

where integersm=0 and m (such that|m|=<n) index the
modesk=2=fc ! is the wave numbef,is the frequency of
: the wave, ana is the speed of wave propagation. The func-
0 5 tions P](-) are associated Legendre functions and
: H(), () is the half-odd integer order Hankel function of

the first kind which is defined byH(® () =Jnsva+)

T1¥n412(-), whereJy,q(-) and Y, q(-) are the half-

integer order Bessel functions of first and second kind, re-
; y spectively. A property we will rely on is that there is no
0 e nonnegative integen and no real number>0 such that
" H(Y, ,(r)=0. This result follows from the fact that there are
no common zeros for the functiodg, 1/5(r) and Y, 1x(r)
(Ref. 17, p. 30.

The modes Eq(l) are associated with waves propagat-

X ing toward the origin(the half-odd integer order Hankel
functions of thesecondkind give the waves propagating
away from the origih We assume that the propagation
speed is independent of frequency, implyirkgs a constant
terns by which any arbitrary beampattern can be constructeghyltiple of frequencyf. Consequently, throughout this paper
These elementary beampatterns form an orthogonal basis s@fe will often refer tok as “frequency.” By combining
We use the concept of a theoretical continuous sensor tgodes for all possible andm an arbitrary beampattern can
design elementary beamformers for each elementary beame written as
pattern. Then the desired beamformer is constructed by sum- % n
ming the elementary beamformers with frequency and radial N m U2, (1 m ‘m
distance dependent weights. The proposed beamformagf(e’¢’k)_r1§=:o m;n an (K1 Hﬁ‘ll’z(kr)P‘” ‘(cosa)el 2
structure has three major processing blodksa beampat- (2

tern independent filtering block consisting of elementarywhere{anm(k)} is a set of frequency dependent coefficients.

beamforme_r;;(ii) a peampat.tern.shape dependent fiI_teringBy introducing frequency dependence to the coefficients, we
block; and(iii) a radlql focusing filter block, where a single can use Eq(2) to represent an arbitrary beampattern speci-
parameter can be adjusted to focus the array to different M&ation in both spacéangle and frequency. To complete the
beampattern transformation model, it can be shidwmat the

vides an efficient parametrization for adaptive beamformersam(k) coefficients can be obtained from taealysisequa-

where only the beampattern shape dependent filters and % .
radial distance dependent parameter need to be adapted. '

The paper is organized as follows: Section | introduces (n+3) (n—m)!

the notion of elementary shape invariant beampatterns agn (k)= 124 (1) |

- . 2ar L (k) (n+m)!

building blocks of beampatterns. The design of a general

FIG. 1. Spherical coordinate system.

broadband theoretical continuous sensor as a sum of elemen- 2w (m N i o

tary continuous sensors is discussed in Sec. Il. Section llI Xfo fo b, (6, p:k)Py"(cosb)e sinfdode.
shows how to approximate the theoretical continuous sensor

by a practical discrete array of sensors. Guidelines for choos- )

ing the nonuniformly spaced sensor locations and the cons&ince we can invert the representation Et).via Eq.(3) we
quence of spatial sampling are addressed in Sec. IV. Wgonclude that thea!M(k) uniquely represent an arbitrary
conclude with an example broadband beamformer, WhiChbeampattern_ Equatiomg) and(3) form an orthogona| trans-
can be focused to either nearfield or farfield, in Sec. V. form pair. This implies the following linearity property
which will be used later: if we have more than one beampat-

| THEORY OF ELEMENTARY SHAPE INVARIANT tern at one fixed radius, then linearly adding them and trans-

BEAMPATTERNS formmg their sum to another radius is equivalent to the trans-
. formation of each beampattern separately to the second
A. Beampattern formulation radius and then adding them together.

The nearfield—farfield transformation is obtained by
solving the physical problem governed by the classical wav
equation in the spherical coordinate systénhet r denote
radial distance, an@ and 6 be the azimuth and elevation As we have seen in Ed2), any physically realizable
angles as shown in Fig. 1. Then a general valid beampattetmeampattern can be constructed by combining modes of Eq.

%. Elementary beampatterns
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(2). Inversely, an arbitrary beampattern can be decomposedaeam shapes such as omni-directional, dipole, etc.

into modes by Eq(3). These modes in E¢l) are also valid The standard farfield design techniques can be applied to
beampatterns. Let us denote these beampatterns by beampatterns such as H§) with the resulting beamformer
EM(r,0,:K) 2 Ro(1,K) ™6, ), @ automatically inheriting the radial invariance property if the

farfield pattern is accurately realized. Note that the rule-of-
where thumb for farfield approximatidris not applicable for radial
invariant beampatterns. For an arbitrary beampattern, the ac-

A 1204(1)
Ra(r,K) =1 H 0 1(kT) ®) curacy of this rule depends on the relative combination of
and ESIBs in Eq.(7).
enm(0,¢)éPLm|(cose)ejm"’. ©) A possible application of radially invariant beampatterns

is in the microphone array design with a mixed nearfield/
The quantitye,'(6,¢) can be considered as an elementaryfarfield problemt® where the array needs to focus to a
beam shape and the quantRy(r,k) is a complex function nearfield sourcéthe talkej but to attenuate farfield interfer-
parameterized by distanceand frequencyk. Therefore, the ence (reverberation Keeping the same shape in both
shape of the beampattern Hg) is invariant with frequency nearfield and farfield could be a useful solution to such a
as well as with distance. Hence we denote these beampatroblem.

terns asElementary Shape Invariant Beampatte(i&SIB). Radially invariant beampatterns are only one of the pos-
These are elementary because any physically realizabkible applications of ESIBs. In the remainder of this paper
beampattern can be decomposed into a weighted sum afe will illustrate how ESIBs can be used to develop theory
ESIBs: for more general broadband beamforming.

o0 n
bi(6.4:K) =2 X ap(KER(r,6,¢ik), v

“om=mn Il. BROADBAND CONTINUOUS SENSOR DESIGN
where a;'(k) are the decomposition coefficients. From this
point onward, we refer to E¢7) as themodal representation
of beampatterns. Some examples of the lower order elemen- In previous sections we developed a new method for
tary beam shapes;'(8,¢) for m=0 (which implies the decomposing a given beampattern into elementary shape in-
shape is invariant withp) are illustrated in Fig. 2 where the variant beampatternd&SIBs. We will now address the en-
magnitude o&2( 6, ¢) is plotted againsk. The shapes in Fig. gineering problem of physically realizing these ESIBs using
2 are the standard omni-directional, dipole, etc., patterns. @n array of sensors. We begin with the conceptarftinuous
is evident that the number ¢dbespresent is proportional to  sensor in order that an exact relationship between ESIBs

A. Elementary continuous sensors

the moden. and aperture illumination can be developed. The illumination
function of the continuous sensor will then be approximated
C. Radially invariant beampatterns by a discrete sensor array to permit practical implementation.

In order to be able to completely describe results for
gifferent array configurations we introduce the notation
p(x,y,z;k) for the broadband aperture illumination or the
response of the aperture at a paialy,2 and for a frequency
k. The response of a continuous sensor to planar waes
those generated by a farfield point souricepinging from an
angle(6,¢) is then

b..(u,v,w;k)

As a simple illustration of the modal representation Eq.
(7), we now introduce a novel class of beampatterns relate
to ESIBs which are radially invariant with respect to their
shape. A radially shape invariant beampattefv, ¢;k) has
the following property: Forr,, rg>0, 8e[0,7] and ¢
€[0,27) there exists a complex consta®=C(r 5 ,rg) such
that

by, (6. ¢k)=Chby (6, :K). ®
One such class of beampatterns can be found excluding all = fw er fm p(X,y,Z;k)ejk(ux+vy+wz)dX dy dz (10)
but a single indexn in Eqg. (7) as —o) o)

n where (,v,w)=(sindcos¢,sindsin ¢,cosd), 6[0,7] and
b, (6, b;K)invarian=Rn(r,K) >, aM(K)eM(6,4), (9  ¢e[0,2m]. Equation(10) is the standard three-dimensional
m=-—n

Fourier transform relating the farfield beampattern to aper-
where, in Eq. (8), the complex scaling factorC  ture illumination for a frequenck. The three-dimensional
=Ry(ra,k)/Ry(rg,k). Here, the shape of the beampattern isinverse Fourier transform corresponding to EL) is given
fixed with respect to radiusbut its amplitude and phase are by

scaled with the distance from the array origin. However, this E

variation of phase and amplitude is same for all angleg. The p(X,y,Z:K) = _) f f f b..(u,v,w:K)

beampattern class E(P) covers only a subset of all possible 2m

arbitrary beampatterns E(f). An example of a beampattern —jk(ux+vy+wz)

of the form Eq.(9) is illustrated in Fig. 3. All radially invari- e dudv dw, (D

ant beam shapes of the form B§) need two-dimensional where the three-dimensional integration is over the unit
arrays[where a}'(k)=0 for m#0 in Eq. (9)] except trivial  sphere.
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FIG. 2. Magnitude of few lower order elementary beam
shapesep'(9,¢) [given by Eq.(6)] for m=0 plotted
against the anglé. Note that these shapes are the stan-
dard omni directional, dipole, etc. patterns.
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In order to establish an exact relationship between thé&q. (12) into Eq.(11) and rearranging, we obtain the desired
ESIBs Eq. (4 and the aperture illumination function relationship as
p(x,y,z;k), we write an arbitrary farfield beampattern in the .
modal representation E¢7) as -
Py, zK=2 2 af(Ry(=ker(xy.zk), (13

b.(uv,wk)=> > aMKEM=,uv,wk), (12

n=0m=-n where
where {a]'(k):neZ*, meZ, |m/<n and keR"} are E
the decomposition coefficients andg]'(e,u,v,w;k) o(x,y,zk)2 ) f f f €M(u,v,w)
2lim,_,., Ep(r,u,v,w;k) is the farfield beampattern given in 277_
Eq. (4) but expressed in th@i,v,w) coordinates. Substituting X @ KXtV H+W2) gy gy dw, (14)
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> n | 2
e Py z=2 X« o T o R((r k))] on(x.y,z;k),

C. One-dimensional sensor

. . : (16)
: 7 \‘ ' . where the elementary aperture illumination functions Eg.
-5y 5 \\\ -/[ “ I;i' ””'I bl (14) o™M(x,y,z;k) and the complex functions,R k) [see
_ 3 % \' L, .. en(x.y,z| plex fu R,
) S \\\\\“ “\\\‘ ' : : Eqg. (5)] are independent of the given beampattern and
¢ U ' /// 2 'I[ -
g1y~ “‘ \\\ ///'I'iz,\\\ " “ “ TN ”, /I///,, = ap'(k) are the modal coefficients which give rise to the
E \ :l ‘ ‘ \ \R“\ I// beampattern bd, ¢;k) in the farfield
%-15“. \\ \\\\ ,IIh ' ’ I;',,lll ’I’7 The proof is given in the Appendix. The theorem provides a
b o \\ \\\\\\'l “ "’ ”I S method to achieve a desired beampattern response at any
Y : \‘"’0 R radiusr from the array origin by a single parameteadijust-
el \\\\ "' I””I I ‘ '»:::,5.. ment of the continuous senspf)(x,y,z;k).
" h»”ll ;

\\‘ \\\‘“.’
% The broadband array theory developed in the previous

ELEVATION (degrees) 00 AZMUTH (degrees) section is sufficiently general to capture quite arbitrary three-
dimensional sensor geometries. In an attempt to bring the
FIG. 34. An exargple ofoa shape ilnvariagt beampatte[?n giVﬁn by BN result into focus and provide a more concrete presentation of
=4 @;=0.05,03=0, @;=0.35,0,=0, a;=7.0, anda, "= az’. the ideas we examine a linear sensor aligned withzthxis.
a _ Specifically, we derive a closed form expression for the el-
andR,(%,k)=lim,_..Ry(r k). Using the results of Ref. 17 ementary aperture functions in the one-dimensional case. In

(p. 198 and Eq.(5) we have this case, the beampattern is rotationally symmetric with re-
spect to¢, and a farfield beampattern can be expressed as
Rn(o0,K) = lim rY2HY (kr)= (= )"y el ko b..(6;k)=Db..(8,$:K).
r—e By symmetry, the only nonzero components of the rep-

(19 resentation Eq(12) are those for whictm=0. Thus we ob-
wherekg is an arbitrary chosen nominal frequency. We cantain
considero|'(x,y,z;k) as the elementary aperture illumina-
tion functions. We can make following comments:

oo

b..(6;K)= 2, an(K)Ry(2¢,K)P{(cOSH), (17
(1) An arbitrary farfield beampattern can be represented by n=
Eqg. (12). That means it can be decomposed in to ESIBs
using Eq.(3) by calculating the coefficienta'(k).
(2) Equation(14) could be used to find the elementary ap- o 2
erture illuminationo|'(x,y,z;k) for eache; (0, ¢). Note p(zk)=> (k)[R“(oo’k)] 0%(z:k) (18)
that these elementary aperture functions are independent = Ra(r,k) =m

of the specific beampattern and they can be calculated 0

beforehand in a practical situation. where a (k)2 a2(k) and Qn(z_; k) are the eIemgntar_y aper-
(3) The coefficientsx™(k) have two interpretationgi) they ~ ture functions andp"(z,k) is the aperture illumination

decompose the beampatterns Etp) into a weighted Which will realize the desired response at a radifiom the

sum of ESIBs, andii) they construct the aperture illu- @rray origin. By evaluating the integral in E(L4) for this

mination Eq.(13) as a weighted sum of elementary ap- Case, we obtain a closed form expression for the elementary
erture illumination functions. aperture functions for a linear sensor aligned with teis

as:
B. Nearfield equivalence L
In Sec. Il A we introduced a technique to obtain a con-  €n(z:K)= ZJllpn(W)e”kWZdW (19

tinuous aperture illumination functiom(x,y,z;k) for a
broadband farfield beampattern using ESIBs. In this section,

we generalize this result for broadband beampatterns at any — K (_j)n‘]n+1/2(kz) , (20)
radial distance from the array origin using the nearfield— N Jkz

farfield transformation technique.
whereP,(-) is the Legendre function of order. Thus we

Theorem 1 Let b( 6, ¢;k) be an arbitrary broadband beam- have an exact expression for elementary aperture functions,
pattern specification. Then the aperture illuminatigsf” although they are infinite in length. In the following section,
X(x,Y,z;k) of a continuous sensor which realizes this beam-we show how to discretize and truncate the continuous aper-
pattern at a radius r from the sensor origin is given by ture functions derived.
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I1l. BROADBAND DISCRETE ARRAY DESIGN The filtersF2(z; ,k) depend on the elementary beam shapes
and the position of the sensors. Using E@) and(24), we

get
We will now show how to exploit the above ideas for

broadband array design. An array is a finite set of identical, 0 o Insu2AKZ)
discrete, omni-directional broadband sensors arranged in a Fn(Zi,K)=(=]) ~kz (26)
regular geometry. We will only consider one-dimensional 4
sensor arrays, although the results can be generalized to twghereJ, ., ;,,(-) is the half-odd integer order Bessel function.
and three dimensions. We consider a double sided arragwe will call F{'(z ,k) the elementary filtergconsistent with
aligned to thez axis. There are few techniques discussed insame terminology of ESIBs and elementary aperture func-
the literaturé®®® for discretization of a continuous sensor; tions). As in the case of ESIBs, these elementary filters are
we closely follow the procedure given in Ref. 14. same for all beamformers, thus they may be useful in devel-
oping an effective parameterization for adaptation of beam-
patterns. Figure 4 illustrates the magnitude of the frequency
B. Approximation response of the elementary filters of the first six modes ver-
An array of sensors can only approximate the continuSus the product of wave numbkrand the distance to the
ous aperture distribution described by E@8). In our for- ~ @ssociated sensor. We now demonstrate an important result
mulation this reduces to a numerical approximation of the'®garding the elementary filters as a consequence diZeg.
following integral representation, which gives the output fre-Note that in Eq.(26), Fi(z; k) is a symmetric function of
quency response of the ideal continuous sensor for an arbfPatial variablez; and of the frequency variable. Thus,
trary signal, having the frequency resporge,k), imping- ~ these elementary filters haveddation property

A. Background

ing on the array at position Theorem 2 All elementary filter responsesigz; k) of the
w same mode n at different sensor locatioparz identical up
Y(k)=f p(z,k)S(z,k)dz. (21)  to a frequency dilation. That is
We use the well-known Trapezoidal integration method as 0, ,k)=F2<zo,—'k), (27)
used in Ref. 14 to approximate E@1) by 0

where z is a reference sensor location

L
Y(k) i:E_L 9ip" (21, K)S(z k), 22 The proof is given in the Appendix. With the output of the

h L . tof 2+1 discret locati double-sided one-dimensional broadband array as defined in
where{z};____is a set o ISCrete Sensor 10calions g4, (23) and the dilation property of the elementary filters

andg; is a s_patlal welghtmg term which is used to aCCOuntEq. (41), we are led to a block diagram as shown in Fig. 5.
for the(p(_)ssmm nonuniformly spaced sensor locations. The Regarding the beamformer structure we can make fol-
role of g; is better understood at the end of Sec. IV, whgre lowing comments:

is expressed in terms of sensor locations. The above approxi-
mation introduces two kind of erroré) the physical array is (1) The proposed general beamformer has three levels of
finite in extent and thus an infinite length integral has been filtering associated with it. The first level consists of el-

replaced by a finite length summatidii;) two spatially con- ementary beamformers, which are shown inside the
tinuous functiong(”(z,k) andS(z,k) are replaced by their dashed-line boxes in Fig. 5. Each of the elementary
corresponding spatially discrete counterparts and hence there beamformers consists of elementary filters of the same
is a possibility of spatial aliasing and quantization errors. mode which are connected to different sensors but are

related by the dilation property. As a consequence, we
have a set of uniqgue beamformers for each and every
C. Beamformer structure moden. In other words, the elementary beamformer of
moden produces the ESIB of the mode Further, the
elementary beamformers are independent of the required
beampattern specifications.
(2) The characteristic coefficienta,(k) form the second
- level of filtering. Since they,(k) determine the shape of
Y(k):_ZL 9iS(z k) ZO an(K)Gn(r, K)FQ(Z k), the beampattern, we call theBeam Shape Filters
- " (23) (3) The final set of filtersG,(r,k) are independent of sensor
locations but dependent on the operating radiaed the

We can considep("(z ,k) in Eq. (22) as the frequency
response of a filter attached to the sensor at pgintBy
combining Eqs(18) and(22) we write,

L )

where mode, and can be simplified using E¢S), and(15), and
2 (25,
Fi(z uk)éTQnm(Zi 1K), (24) ()t 2 el2kko)
Gy(r,k)= iy THD (kr)’ (28)
[R (oo k)]2 ) ] n+1/2 )
= 0 .
G (r,k)2 no _ (25) wherek, is an arbitrary chosen nominal frequency. By
V2 Ra(r.k) adjusting the parameterin G,(r,k), the beamformer

397  J. Acoust. Soc. Am., Vol. 107, No. 1, January 2000 Abhayapala et al.: Nearfield broadband array =~ 397



3

RESPONSE ()
' .

Al

—af

AR

k-

MUY | TR

Q -15 -10 -5
ke

(a) mode: m =0,n =0

ol

3

g : Pl 1 ] &
AR R AT
§ Nl N /\ N és ! FIG. 4. Magnitude response of elementary filters
i | A Y A | Y - FM(z,k) for m=0, plotted against the product of wave
numberk and the distance to the associated sensor.
(c) mode: m =0,n =2
g g-ol
: :
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can be focused to a particular operating radiegher in readily convertible to adaptive implementations, where
nearfield or farfield. To highlight this important property only the beam shape filters and radial focusing filters
we call the filtersG,(r,k) Radial Focusing Filters need to be adapted.
(4) In Sec. I B we showed that an arbitrary beampattern cans) Finally, we will give some remarks about the general

be decomposed into a weighted sum of ESIBs, where the  peamforming structure for two- and three-dimensional
weights are the characteristic coefficientg(k). Since _arrays. We can generalize the one-dimensional beam-
each elementary beamformer produces an ESIB, an arbi- forming structure Eq(23) for higher dimensions:

trary beamformer can be implemented by adding them

% n
together with the decomposition coefficientg(k) of (1 — oy m m,
the required beampattern and the focusing filters Y& iEgIS(x,,k)ngo G”(r’k)m;n an (K)Fn (i, k),
G,(r,k). Because of these properties, our design is (29
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FIG. 5. Block diagram of a general one-dimensional broadband beamformer described (B)%)EA#JereFﬁ(z,k) is the elementary filter$G,(r,k) is the
radial focusing filters, and,(k) are the beam shape filters.

wherei is an integer and the sensors are placed at pointsus work!* The response of a frequency invariant beam-
{xi} in the three-dimensional space. Let us assume thdbrmer is constant over an arbitrary design bandwidth. This
a;'(k)=0 forn>N, whereN is a positive integer. Then, type of beamformer is particularly useful for speech acquisi-
there will beN(N+2) elementary beamformers whose tion with microphone arrays.
outputs are connected to the shape filtef§k). Com- An arbitrary beampattern over an arbitrary bandwidth
pared with the one-dimensional beamforni&ig. 5), can be expressdih the farfield by Eq.(17). It can be easily
there are additional summing points before the radiakeen from Eq(17) that if there is a sequendgs,,} of mode
focusing filtersG,(r,k) which add the outputs from the dependent constants such that
(2n+1) shape filtersap'(k) of the same mode but B
different m values. ap(k)==—+, (30
R (,K)

for a range of frequencie& e[k ,k,]JC(0,2), then the
beampattern is frequency invariant ovlee [k, ,k,]. This

We now consider the design of frequency invariantsimplifies the general beamformer structure in Fig. 5, and in
beamformers as a special case of the general beamformingarticular the producG,(r,k)a,(k) appearing in Eq(23)
theory developed above. This method generalizes the prevean be simplified using Eq$25), (30), and(15):

D. Frequency invariant beamforming
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r K TABLE |. Upper cutoff frequencies of the first 16 elementary filters as a
B for farfield asr — o« product of sensor locationand cutoff frequenck. , .
N2
. Mode (n) an=K; nz
Go(rKan(k)=¢ (="t [k etk S 0 3,142
B - :

"ow rHE k) 1 4.493

, . 2 5.763

\ for nearfield at radius. 3 6.988

Here, to determings,,, we need only to calculate, (k) for 4 8.183
some nominal frequendy, €[ k| ,k,] and then use Eq30). Z 1?)'2?6
7 11.05
8 12.79
9 13.91
IV. CHOICE OF SENSOR LOCATIONS 10 1503
. : o . L 11 16.14
As an engineering problem, it is desirable to minimize 12 17.95
the number of sensors required while maintaining acceptable 13 18.35
performance. The major factor determining the minimum 14 19.44
number of sensors possible $patial aliasing It is well 15 20.54

known from the array literatuf@ that a sensor spacing of
N2=m/k is needed to avoid spatial aliasing for a narrow-
band array operating at frequenkyFor a broadband array, by k. <k ,<---<K. . Therefore to make a sensor inactive
the upper limit of the design band frequerigymust be used  for a given frequency, it is sufficient to havek, y<k.

to avoid spatial aliasing in all frequencies, which suggests  We can now give complete guidelines for choosing dis-
that a uniformly spaced array with/k, spacings is needed. crete sensor locations. Here we consider a double-sided array
However, such an array will give a smaller effective apertureand begin with a sensor located at the array origin. Initially,
for lower frequencies and larger aperture for a high frequento avoid spatial aliasing we need a sampling distance of
cies which is undesirable. We will now show how to over- dy,=\u/2=m/k,. As long as the cutoff frequendy; of the

come this problem. . _ sensor located a; (which is equal to the cutoff frequency
It has been showt, by using the Parseval relation that of the highest mode elementary filter attached to that
the lower order mode¢ESIBs are the significant ones that sensoy is greater than the upper design frequetkgy we
give the broad beampattern features, whereas the higher zed to maintain the above sampling distance. In this central
der modes give the finer detail. We assert that sensible beamyrtion of the array, the cutoff frequency of then sensor
pattern specifications should involve only the lower orderfom either side of the origin is given by
modes. Hence, for most practical beampatterns, the charac-
teristic coefficientsa,(k) are zero for largen (typically n ay
>15 or s9. Let us assume,(k)=0 for n>N, and thus we ki:m
need to consider only ESIBs up to the mddend the cor-
responding elementary filters. whereQ is the number of uniformly spaced sensors in one
We observe from Fig. 4 that the all elementary filtersside of the array. As we move further away from the origin,
tend to have the characteristics of a bandpass filter excep€:, asi grows,k; decreases and will become less thgn
n=0 mode filter which has low-pass characteristics. Due tol he humber of uniformly spaced sens@sequired to sat-
the dilation property of the elementary filtefsee Theorem isfy this constraint is given by
2), the bandwidth and the cutoff frequencies of elementary a
filters are scaled with the location of the sensor to which they Q:[_NL (32)
are connected. Therefore, as we move away from the origin, ™

sensors become relatively inaqtive at higher frequenciegm1ereH is the ceiling function. At this point, we can in-
This means that the sensor spacings can be increased accofkace the sampling distance, just to avoid spatial aliasing at

i_ng to thg highest frequency for Which .th{?lt sensor is effeckQ_ Since the cutoff frequendgg, ; of the (Q+1)th sensor
tively active. Consequently we can minimize the number Ofig"jegg than that oDth sensor, the sampling distance can be
SENsors as vyell as avoid lthe s.patlalhalla?;ng.. &t further reduced for the next location. This process can be
For af %lvenf_Tensc_)r ocation, the z ective cutolt fre- .,niinued until the cutoff frequency of the last sensor be-
quency of these filters increases as modacreases. Lefl,  ;omeg |ess than the lower design frequekicyThe result of

be the product of the upper cutoff frequericy, of the mode  ypiq i that the location of thith sensor relative to the origin
n filter and the distance to the associated sensor from the

k, for 0<|i|<Q,

S . . . is given by
origin (i.e., a,=K¢ ,z), wherek, , is defined as the first zero
crossing point above the pass bafidote that these elemen- i _
tary filters are not ideal band pass filters and other definitions k_u for [i[<Q
for cutoff frequencies such as half-power point can be gsed.  z= lil-0 (33
Table | lists thea, of the first 16 elementary filters. Clearly Qm 14— for Q<|i|=L
the upper cutoff frequencies of elementary filters are related Ky ay '
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whereL is the total number of sensors in one side of theTABLE Il. Locations z; of the ith sensor of the example double-sided

array. Using the fact that the cutoff frequency of the |astiymmetric array in Sec. \given in terms of the upper design wavelength

sensor has to be less than or equal to the lower design fre=_

quencyk;, the number of minimum sensors per one side [ zi I\,
required to implement a broadband array over the design o 00
band is 1 05
2 1.0

log ank,y 3 15

Qk 4 2.0

L=Q+ , (34 5 25

™ 6 3.0

log| 1+ a_N 7 35

8 4.0

where| -] is the floor function. Note that we need a total of 9 4.6
2L +1 sensors altogether to have double-sided array. ﬁ 2'3
In order to complete the guidelines for a practical real- 12 71
ization of the beamformer given by E(R2), we now con- 13 8.2
sider the spatial weighting term, introduced in Eq.(22). 14 9.5
Recall that the Trapezoidal rule has been used to approxi- 15 10.9
mate the integral in Eq21) by the summation in Eq(22), ig 1421'2
hence the spatial weighting termgy is given by (possibly 18 16.7
nonuniform sensor locations E(3) as 19 19.3
20 22.3

(ziy1—z-1) if fi[<L

gi= €5

Wz —z ) ff li[=L .

Note that any other integral approximation method can be  For the sake of efficient implementation, all the filters
used instead of Trapezoidal rule and the spatial weightingre collapsed into one filter per each sensor. This is possible,

term g; needs to be derived appropriately. since the proposed beamformer structiffigy. 5 consists of
linear combinations of various filters.
V. DESIGN EXAMPLE The resulting beamformer is focused at the farfield by

. . setting the parameter=100\, in the focusing filter
We will now consider an example of broadband IOe""m'Gn(r,k). The response of the beamformer to a farfield

forming design using the techniques introduced above. source is given in Fig. (), which is close to the desired

Suppose we wish to design a one-dimensional miCrozaq,onse The response of the same farfield focused beam-

phone a[rlay for operations .in the gir at sea level cso former to a nearfield source at a radius; 3 given Fig. 7a).
=345ms . Suppose the desired design frequency range is

300-3000 Hz, which is suitable for speech applications. Let
us limit the maximum modes indeX to be 15 as suggested
in Sec. 1IV; thus we assume all beampatterns of our interes
can be approximately decomposed to 16 ESIBs. Now we car
determine the sensor locations and 16 elementary filters
which are independent of the desired response once the d¢ o,
sign band and the number of modes are decided. From Tabl R
I, the product of cutoff frequendy, ,, and the sensor location -0
z of the highest(15th) mode elementary filter iay=20.54. '
Next the sensors are placed according to B8) and it is
found from Eq.(34) that the total number of sensors required
is 41 and the length of the double-sided array is 4.9 m. Theg :
sensor locations are given in Table Il and the frequency re-g-wwij'“
sponse of the elementary filters are given by &). @
Now we consider an example beampattern which is fora %y
beamformer having a constant Chebyshev 25-dB beampat ‘
tern (shown in Fig. 6 over the frequency range 300—3000
Hz. The example chosen is a frequency invariant beampat
tern, although we stress that our design method is not re:
stricted to frequency invariant beamformers. The frequency
responses of the combined filteg(r,k) a,(K) are given by 0

od

N (dB)

T
04

TTE

D D

Eq. (31). For this case, the beampattern is characterized by ANGLE (degrees) FREQUENCY (2
the coefficientsg, and we have calculated them for g 6. pesired beamformer response used in the example in Sec. V: 25-dB

=0,1,...,15 using Eq¥38) and (3). Chebyshev beampattern over 300—3000 Hz.
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=100\, in the focusing filterG,(r, k)] beamformer(see Fig. 5 with 25-dB Chebyshev beampattern to

(a)
FIG. 7. Response of the farfield focusday settingr

(a) a nearfield source at a radiua

performance.

3 (b) a farfield source at 10Q . This figure demonstrates that the farfield design is inadequate for the desired nearfield

It is evident from this figure that the farfield design is inad-is close to the desired response with neglible variation in the
equate for the desired nearfield performance. Next we focusiain beam and slight ripples in the side lobes. We conclude

the same beamformer to the nearfield by simply adjusting théhat the approximation involved in discretizing and truncat-

ing the continuous sensor was sufficiently accurate. For com-

beamformer is simulated in the nearfield and we observe apleteness, we find the response of nearfield focused beam-

improved response in Fig.(&. The focused array response former to a farfield source and show this in FigbB

variabler in the focusing filteiG,(r,k) to 3\,. The resulting

FREQUENCY (Hz)
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FIG. 8. Response of the nearfield focugbyl settingr =3\, in the focusing filterG,(r,k)] beamformer(see Fig. % with 25-dB Chebyshev beampattern to

(a) a nearfield source at a radiug,3 (b) a farfield source at 10Q.
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The similar appearance of Figs(ay and 8b) can be
explained by our previous wotk on radial reciprocity,

frequency response of two elementary filters of the same
moden and associated with sensorszg# 0 andz; , respec-

which established the asymptotic equivalence of two transtively. Then from Eq.(26),

formation problems:(i) determining the nearfield perfor-
mance of a farfield beampattern specification, éinddeter-

mining the equivalent farfield beampattern corresponding to

a nearfield beampattern specification. We can view Figs. 8
and qa) as the result of problem&) and (ii), respectively,

with beampattern specification given in Fig. 6 for both cases.

Fo(z k):(_j)anLZ(kzi)
n 1 \/E

Z
Jni12| K—29
Z

. 0
=(=)"
VI. CONCLUSIONS K Zi
A new method of general broadband beamforming cov- Z
ering farfield and nearfield operations has been proposed in 7
this paper. The efficient parameterization afforded by th.is =Fﬂ( Zo,_lk), (AB)
technique enables the beamformer to be focused to a desired Z

radial distance using a single parameter and the shape of th&..-1, is a dilation in the frequency domain.
beampattern can be controlled by another set of parameters.

These properties make it potentially useful for adaptivelY- Grenier, “A microphone array for car environments,” Speech Com-

beamformer design.

APPENDIX

Proof of Theorem 1 Let b..(6,¢;k)=b(0, ¢;k) be the
beampattern specification in the farfield and de}(e,qb;k)

=b(6,¢;k) be a separate design with the same beampattern

shape but at radius, (nearfield from the sensor origin.
Then we use Eqg2) and(4) to write,

b.(6.41K)=2 X af(kR(=,K)€(6, ), (AD)

a,(0.6100=2 2 BrIR(1 A, K)€T(6,¢). (A2)

Note that the two sets of coefficientg)'(k) and B;'(k)

uniquely represent two different beampatteras(6, ¢;k)

andb, (6, ¢;k) in (r,0,¢;k) space. We will equate EqeA1)

and (A2) and observe that EqAl) is the beampatterib,

evaluated at =« and Eq.(A2) is the beampattera, evalu-
ated atr=r,. Hence «a;'(k) and g'(k) are related by
a(K)R(2,k) = B(K)Ry(r oK) and thus

Rn(0,k)

Rn(ra.k)
since Ry(r a,K)=r¥2H, . 12(kra) #0. Using the nearfield—
farfield transformation, the farfield equivalentelpA is given

by

Br(k)= an(K), (A3)

(0,4K)=2 X BRKR(>K)e(0,4). (Ad)

From Eq.(13) the aperture illumination function correspond-
ing to this farfield pattern is

o n
Y,z =2 2 IR K)eR(xy, Z;K).
(A5)
Finally, by substituting Eq(A3) into Eq.(A5) completes the
proof.
Proof of Theorem 2 Let F2(zy,k) and F2(z k) be the
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