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This paper introduces an efficient parameterization for the nearfield broadband beamforming
problem with a single parameter to focus the beamformer to a desired operating radius and another
set of parameters to control the actual broadband beampattern shape. The parameterization is based
on an orthogonal basis set of elementary beampatterns by which an arbitrary beampattern can be
constructed. A set of elementary beamformers are then designed for each elementary beampattern
and the desired beamformer is constructed by summing the elementary beamformers with frequency
and source-array distance dependent weights. An important consequence of our result is that the
beamformer can be factored into three levels of filtering:~i! beampattern independent elementary
beamformers;~ii ! beampattern shape dependent filters; and~iii ! radial focusing filters where a single
parameter can be adjusted to focus the array to a desired radial distance from the array origin. As
an illustration the method is applied to the problem of producing a practical array design that
achieves a frequency invariant beampattern over the frequency range of 1:10~which is suitable for
speech acquisition using a microphone array!, and with the array focused either to farfield or
nearfield where at the lowest frequency the radial distance to the source is only three wavelengths.
© 2000 Acoustical Society of America.@S0001-4966~00!03901-1#

PACS numbers: 43.60.Gk, 43.38.Si, 43.30.Wi@JCB#
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INTRODUCTION

Consider the problem of designing a microphone ar
for speech acquisition. Not only does the array requir
narrow main beam, but it should operate uniformly ove
large bandwidth and be able to cope with nearfield sour
While there has been a deal of progress in designing bro
band arrays, having them operate well in the nearfield
requires ratherad hoc solutions. In this paper, we wil
present a systematic way of designing nearfield broadb
sensor arrays. In particular, we will explicitly show how
parameterize the beamformer in order to focus the arra
practically any operating radius from the array origin usin
single parameter while maintaining a predetermined bro
band angular beampattern using another set of paramet

Most of the array processing literature assumes a farfi
source having only plane waves impinging on the sen
array. However, in many practical situations, such as mic
phone arrays in car environments,1 the source is well within
the nearfield. The use of farfield assumptions to design
beamformer in these situations may severely degrade
beampattern. In many cases the approximate distanc
which the farfield assumption begins to be valid isr
52L2/l, where r is the distance from an arbitrary arra
origin, L is the largest array dimension, andl is the operat-
ing wavelength.2 However, we will show in Sec. I C that thi
common rule-of-thumb for farfield approximation is not
necessary condition.

There appears to be little work in the literature
392 J. Acoust. Soc. Am. 107 (1), January 2000 1063-7834/2000
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nearfield beamforming. One method uses time delays
compensate for differing propagation delays due to spher
propagation.3 However, this ignores the variation of the ma
nitude with distance and angle and assumes a point sou
In another method,4 there was consideration initially fo
nearfield theoretical development but this was ignored in
actual array design. The few other related works we
aware of dealing with design of nearfield arrays can be fou
in the references.5–10

A novel methodology to obtain precise nearfield arr
designs has been recently developed.11 It is based on writing
the solution to the wave equation in terms of spherical h
monics and allowing a nearfield beampattern specificatio
be transformed to the farfield, and the subsequent use of
understood farfield theory, to design the nearfield bea
former. These nearfield–farfield transformations have b
used for many years in the radio antenna community
reconstructing farfield antenna patterns from nearfi
measurements,12 though these transformations are compu
tionally involved. The theory of nearfield–farfield transfo
mation was used to establish a computationally simple
sign procedure that numerically implements the nearfie
farfield transformation.13 Farfield broadband beamformin
has been considered14–16 and reviewed in Ref. 14.

In this paper, a new method of beamforming is propos
in which an arbitrary desired beampattern in both freque
and angle may be produced either in nearfield or farfield.
have used the wave equation based representation
beampatterns11 to identify the class of elementary beampa
392/107(1)/12/$17.00 © 2000 Acoustical Society of America
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Eq.
terns by which any arbitrary beampattern can be construc
These elementary beampatterns form an orthogonal basi
We use the concept of a theoretical continuous senso
design elementary beamformers for each elementary be
pattern. Then the desired beamformer is constructed by s
ming the elementary beamformers with frequency and ra
distance dependent weights. The proposed beamfor
structure has three major processing blocks:~i! a beampat-
tern independent filtering block consisting of elementa
beamformers;~ii ! a beampattern shape dependent filter
block; and~iii ! a radial focusing filter block, where a sing
parameter can be adjusted to focus the array to differen
dial distances from the array origin. Hence this design p
vides an efficient parametrization for adaptive beamform
where only the beampattern shape dependent filters a
radial distance dependent parameter need to be adapted

The paper is organized as follows: Section I introduc
the notion of elementary shape invariant beampatterns
building blocks of beampatterns. The design of a gene
broadband theoretical continuous sensor as a sum of ele
tary continuous sensors is discussed in Sec. II. Section
shows how to approximate the theoretical continuous se
by a practical discrete array of sensors. Guidelines for cho
ing the nonuniformly spaced sensor locations and the co
quence of spatial sampling are addressed in Sec. IV.
conclude with an example broadband beamformer, wh
can be focused to either nearfield or farfield, in Sec. V.

I. THEORY OF ELEMENTARY SHAPE INVARIANT
BEAMPATTERNS

A. Beampattern formulation

The nearfield–farfield transformation is obtained
solving the physical problem governed by the classical w
equation in the spherical coordinate system.11 Let r denote
radial distance, andf and u be the azimuth and elevatio
angles as shown in Fig. 1. Then a general valid beampa

FIG. 1. Spherical coordinate system.
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is constructed by combination of all possible modes of
form11

r 1/2Hn11/2
~1! ~kr !Pn

umu~cosu!ejmf, ~1!

where integersn>0 and m ~such thatumu<n! index the
modes,k52p f c21 is the wave number,f is the frequency of
the wave, andc is the speed of wave propagation. The fun
tions Pn

m(•) are associated Legendre functions a
Hn11/2

(1) (•) is the half-odd integer order Hankel function o
the first kind which is defined byHn11/2

(1) (•)5Jn11/2(•)
1 jYn11/2(•), whereJn11/2(•) and Yn11/2(•) are the half-
integer order Bessel functions of first and second kind,
spectively. A property we will rely on is that there is n
nonnegative integern and no real numberr .0 such that
Hn11/2

(1) (r )50. This result follows from the fact that there a
no common zeros for the functionsJn11/2(r ) andYn11/2(r )
~Ref. 17, p. 30!.

The modes Eq.~1! are associated with waves propaga
ing toward the origin~the half-odd integer order Hanke
functions of thesecondkind give the waves propagatin
away from the origin!. We assume that the propagatio
speedc is independent of frequency, implyingk is a constant
multiple of frequencyf. Consequently, throughout this pap
we will often refer to k as ‘‘frequency.’’ By combining
modes for all possiblen andm an arbitrary beampattern ca
be written as

br~u,f;k!5 (
n50

`

(
m52n

n

an
m~k!r 1/2Hn11/2

~1! ~kr!Pn
umu~cosu!ejmf,

~2!

where$an
m(k)% is a set of frequency dependent coefficien

By introducing frequency dependence to the coefficients,
can use Eq.~2! to represent an arbitrary beampattern spe
fication in both space~angle! and frequency. To complete th
beampattern transformation model, it can be shown11 that the
an

m(k) coefficients can be obtained from theanalysisequa-
tion:

an
m~k!5

~n1 1
2!

2pr 1/2Hn11/2
~1! ~kr !

~n2m!!

~n1m!!

3E
0

2pE
0

p

br~u,f;k!Pn
umu~cosu!e2 jmf sinu du df.

~3!

Since we can invert the representation Eq.~2! via Eq.~3! we
conclude that thean

m(k) uniquely represent an arbitrar
beampattern. Equations~2! and~3! form an orthogonal trans
form pair. This implies the following linearity property
which will be used later: if we have more than one beamp
tern at one fixed radius, then linearly adding them and tra
forming their sum to another radius is equivalent to the tra
formation of each beampattern separately to the sec
radius and then adding them together.

B. Elementary beampatterns

As we have seen in Eq.~2!, any physically realizable
beampattern can be constructed by combining modes of
393Abhayapala et al.: Nearfield broadband array
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~1!. Inversely, an arbitrary beampattern can be decompo
into modes by Eq.~3!. These modes in Eq.~1! are also valid
beampatterns. Let us denote these beampatterns by

En
m~r ,u,f;k!,Rn~r ,k!en

m~u,f!, ~4!

where

Rn~r ,k!,r 1/2Hn11/2
~1! ~kr ! ~5!

and

en
m~u,f!,Pn

umu~cosu!ejmf. ~6!

The quantityen
m(u,f) can be considered as an elementa

beam shape and the quantityRn(r ,k) is a complex function
parameterized by distancer and frequencyk. Therefore, the
shape of the beampattern Eq.~4! is invariant with frequency
as well as with distance. Hence we denote these beam
terns asElementary Shape Invariant Beampatterns~ESIB!.
These are elementary because any physically realiz
beampattern can be decomposed into a weighted sum
ESIBs:

br~u,f;k!5 (
n50

`

(
m52n

n

an
m~k!En

m~r ,u,f;k!, ~7!

wherean
m(k) are the decomposition coefficients. From th

point onward, we refer to Eq.~7! as themodal representation
of beampatterns. Some examples of the lower order elem
tary beam shapesen

m(u,f) for m50 ~which implies the
shape is invariant withf! are illustrated in Fig. 2 where th
magnitude ofen

0(u,f) is plotted againstu. The shapes in Fig
2 are the standard omni-directional, dipole, etc., pattern
is evident that the number oflobespresent is proportional to
the moden.

C. Radially invariant beampatterns

As a simple illustration of the modal representation E
~7!, we now introduce a novel class of beampatterns rela
to ESIBs which are radially invariant with respect to the
shape. A radially shape invariant beampatternbr(u,f;k) has
the following property: Forr A , r B.0, uP@0,p# and f
P@0,2p) there exists a complex constantC[C(r A ,r B) such
that

br A
~u,f;k!5Cbr B

~u,f;k!. ~8!

One such class of beampatterns can be found excludin
but a single indexn in Eq. ~7! as

br~u,f;k! invariant5Rn~r ,k! (
m52n

n

an
m~k!en

m~u,f!, ~9!

where, in Eq. ~8!, the complex scaling factorC
5Rn(r A ,k)/Rn(r B ,k). Here, the shape of the beampattern
fixed with respect to radiusr but its amplitude and phase a
scaled with the distance from the array origin. However, t
variation of phase and amplitude is same for all angles.
beampattern class Eq.~9! covers only a subset of all possib
arbitrary beampatterns Eq.~7!. An example of a beampatter
of the form Eq.~9! is illustrated in Fig. 3. All radially invari-
ant beam shapes of the form Eq.~9! need two-dimensiona
arrays@wherean

m(k)50 for mÞ0 in Eq. ~9!# except trivial
394 J. Acoust. Soc. Am., Vol. 107, No. 1, January 2000
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beam shapes such as omni-directional, dipole, etc.
The standard farfield design techniques can be applie

beampatterns such as Eq.~9! with the resulting beamforme
automatically inheriting the radial invariance property if th
farfield pattern is accurately realized. Note that the rule-
thumb for farfield approximation2 is not applicable for radial
invariant beampatterns. For an arbitrary beampattern, the
curacy of this rule depends on the relative combination
ESIBs in Eq.~7!.

A possible application of radially invariant beampatter
is in the microphone array design with a mixed nearfie
farfield problem,10 where the array needs to focus to
nearfield source~the talker! but to attenuate farfield interfer
ence ~reverberation!. Keeping the same shape in bo
nearfield and farfield could be a useful solution to such
problem.

Radially invariant beampatterns are only one of the p
sible applications of ESIBs. In the remainder of this pap
we will illustrate how ESIBs can be used to develop theo
for more general broadband beamforming.

II. BROADBAND CONTINUOUS SENSOR DESIGN

A. Elementary continuous sensors

In previous sections we developed a new method
decomposing a given beampattern into elementary shap
variant beampatterns~ESIBs!. We will now address the en
gineering problem of physically realizing these ESIBs us
an array of sensors. We begin with the concept ofcontinuous
sensor, in order that an exact relationship between ESI
and aperture illumination can be developed. The illuminat
function of the continuous sensor will then be approxima
by a discrete sensor array to permit practical implementat

In order to be able to completely describe results
different array configurations we introduce the notati
r(x,y,z;k) for the broadband aperture illumination or th
response of the aperture at a point~x,y,z! and for a frequency
k. The response of a continuous sensor to planar waves~i.e.,
those generated by a farfield point source! impinging from an
angle~u,f! is then

b`~u,v,w;k!

5E
2`

` E
2`

` E
2`

`

r~x,y,z;k!ejk~ux1vy1wz! dx dy dz, ~10!

where (u,v,w)5(sinu cosf,sinu sinf,cosu), uP@0,p# and
fP@0,2p#. Equation~10! is the standard three-dimension
Fourier transform relating the farfield beampattern to ap
ture illumination for a frequencyk. The three-dimensiona
inverse Fourier transform corresponding to Eq.~10! is given
by

r~x,y,z;k!5S k

2p D 3E E E b`~u,v,w;k!

3e2 jk~ux1vy1wz! du dv dw, ~11!

where the three-dimensional integration is over the u
sphere.
394Abhayapala et al.: Nearfield broadband array
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FIG. 2. Magnitude of few lower order elementary bea
shapesen

m(u,f) @given by Eq.~6!# for m50 plotted
against the angleu. Note that these shapes are the sta
dard omni directional, dipole, etc. patterns.
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In order to establish an exact relationship between
ESIBs Eq. ~4! and the aperture illumination functio
r(x,y,z;k), we write an arbitrary farfield beampattern in th
modal representation Eq.~7! as

b`~u,v,w;k!5 (
n50

`

(
m52n

n

an
m~k!En

m~`,u,v,w;k!, ~12!

where $an
m(k):nPZ1, mPZ, umu<n and kPR1% are

the decomposition coefficients andEn
m(`,u,v,w;k)

, limr→` En
m(r ,u,v,w;k) is the farfield beampattern given i

Eq. ~4! but expressed in the~u,v,w! coordinates. Substituting
395 J. Acoust. Soc. Am., Vol. 107, No. 1, January 2000
eEq. ~12! into Eq.~11! and rearranging, we obtain the desire
relationship as

r~x,y,z;k!5 (
n50

`

(
m52n

n

an
m~k!Rn~`,k!%n

m~x,y,z;k!, ~13!

where

%~x,y,z;k!,S k

2p D 3E E E en
m~u,v,w!

3e2 jk~ux1vy1wz! du dv dw, ~14!
395Abhayapala et al.: Nearfield broadband array
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andRn(`,k), limr→`Rn(r ,k). Using the results of Ref. 17
~p. 198! and Eq.~5! we have

Rn~`,k!5 lim
r→`

r 1/2Hn11/2
~1! ~kr !5~2 j !n11A 2

pk
ej ~k2k0!,

~15!

wherek0 is an arbitrary chosen nominal frequency. We c
consider%n

m(x,y,z;k) as the elementary aperture illumin
tion functions. We can make following comments:

~1! An arbitrary farfield beampattern can be represented
Eq. ~12!. That means it can be decomposed in to ES
using Eq.~3! by calculating the coefficientsan

m(k).
~2! Equation~14! could be used to find the elementary a

erture illumination%n
m(x,y,z;k) for eachen

m(u,f). Note
that these elementary aperture functions are indepen
of the specific beampattern and they can be calcula
beforehand in a practical situation.

~3! The coefficientsan
m(k) have two interpretations:~i! they

decompose the beampatterns Eq.~12! into a weighted
sum of ESIBs, and~ii ! they construct the aperture illu
mination Eq.~13! as a weighted sum of elementary a
erture illumination functions.

B. Nearfield equivalence

In Sec. II A we introduced a technique to obtain a co
tinuous aperture illumination functionr(x,y,z;k) for a
broadband farfield beampattern using ESIBs. In this sect
we generalize this result for broadband beampatterns at
radial distance from the array origin using the nearfiel
farfield transformation technique.11

Theorem 1. Let b(u,f;k) be an arbitrary broadband beam
pattern specification. Then the aperture illumination, r (r )

3(x,y,z;k) of a continuous sensor which realizes this bea
pattern at a radius r from the sensor origin is given by

FIG. 3. An example of a shape invariant beampattern given by Eq.~9!: N
54, a4

450.05,a4
350, a4

050.35,a4
150, a4

057.0, anda4
2m5a4

m .
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r~r !~x,y,z;k!5 (
n50

`

(
m52n

n

an
m~k!

@Rn~`,k!#2

Rn~r ,k!
%n

m~x,y,z;k!,

~16!

where the elementary aperture illumination functions E
(14) %n

m(x,y,z;k) and the complex functions Rn(•,k) [see
Eq. (5)] are independent of the given beampattern a
an

m(k) are the modal coefficients which give rise to t
beampattern b(u,f;k) in the farfield.

The proof is given in the Appendix. The theorem provide
method to achieve a desired beampattern response at
radiusr from the array origin by a single parameterr adjust-
ment of the continuous sensorr (r )(x,y,z;k).

C. One-dimensional sensor

The broadband array theory developed in the previ
section is sufficiently general to capture quite arbitrary thr
dimensional sensor geometries. In an attempt to bring
result into focus and provide a more concrete presentatio
the ideas we examine a linear sensor aligned with thez axis.
Specifically, we derive a closed form expression for the
ementary aperture functions in the one-dimensional case
this case, the beampattern is rotationally symmetric with
spect tof, and a farfield beampattern can be expressed
b`(u;k)5b`(u,f;k).

By symmetry, the only nonzero components of the re
resentation Eq.~12! are those for whichm50. Thus we ob-
tain

b`~u;k!5 (
n50

`

an~k!Rn~`,k!Pn
0~cosu!, ~17!

and

r~r !~z,k!5 (
n50

`

an~k!
@Rn~`,k!#2

Rn~r ,k!
%n

0~z;k!, ~18!

wherean(k),an
0(k) and %n

0(z;k) are the elementary aper
ture functions andr (r )(z,k) is the aperture illumination
which will realize the desired response at a radiusr from the
array origin. By evaluating the integral in Eq.~14! for this
case, we obtain a closed form expression for the elemen
aperture functions for a linear sensor aligned with thez axis
as:

%n
0~z;k!5

k

2p E
21

1

Pn~w!e2 jkwz dw ~19!

5
k

A2p
~2 j !n

Jn11/2~kz!

Akz
, ~20!

wherePn(•) is the Legendre function of ordern. Thus we
have an exact expression for elementary aperture functi
although they are infinite in length. In the following sectio
we show how to discretize and truncate the continuous a
ture functions derived.
396Abhayapala et al.: Nearfield broadband array
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III. BROADBAND DISCRETE ARRAY DESIGN

A. Background

We will now show how to exploit the above ideas f
broadband array design. An array is a finite set of identi
discrete, omni-directional broadband sensors arranged
regular geometry. We will only consider one-dimension
sensor arrays, although the results can be generalized to
and three dimensions. We consider a double sided a
aligned to thez axis. There are few techniques discussed
the literature18,19 for discretization of a continuous senso
we closely follow the procedure given in Ref. 14.

B. Approximation

An array of sensors can only approximate the conti
ous aperture distribution described by Eq.~18!. In our for-
mulation this reduces to a numerical approximation of
following integral representation, which gives the output f
quency response of the ideal continuous sensor for an a
trary signal, having the frequency responseS(z,k), imping-
ing on the array at positionz:

Y~k!5E
2`

`

r~r !~z,k!S~z,k!dz. ~21!

We use the well-known Trapezoidal integration method
used in Ref. 14 to approximate Eq.~21! by

Ỹ~k!5 (
i 52L

L

gir
~r !~zi ,k!S~zi ,k!, ~22!

where $zi% i 52L
L is a set of 2L11 discrete sensor location

andgi is a spatial weighting term which is used to accou
for the ~possibly! nonuniformly spaced sensor locations. T
role of gi is better understood at the end of Sec. IV, wheregi

is expressed in terms of sensor locations. The above app
mation introduces two kind of errors:~i! the physical array is
finite in extent and thus an infinite length integral has be
replaced by a finite length summation;~ii ! two spatially con-
tinuous functionsr (r )(z,k) andS(z,k) are replaced by thei
corresponding spatially discrete counterparts and hence t
is a possibility of spatial aliasing and quantization errors.

C. Beamformer structure

We can considerr (r )(zi ,k) in Eq. ~22! as the frequency
response of a filter attached to the sensor at pointzi . By
combining Eqs.~18! and ~22! we write,

Ỹ~k!5 (
i 52L

L

giS~zi ,k! (
n50

`

an~k!Gn~r ,k!Fn
0~zi ,k!,

~23!

where

Fn
m~zi ,k!,

A2p

k
%n

m~zi ;k!, ~24!

Gn~r ,k!,
k

A2p

@Rn~`,k!#2

Rn~r ,k!
. ~25!
397 J. Acoust. Soc. Am., Vol. 107, No. 1, January 2000
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The filtersFn
0(zi ,k) depend on the elementary beam shap

and the position of the sensors. Using Eqs.~20! and~24!, we
get

Fn
0~zi ,k!5~2 j !n

Jn11/2~kzi !

Akzi

, ~26!

whereJn11/2(•) is the half-odd integer order Bessel functio
We will call Fn

m(zi ,k) theelementary filters~consistent with
same terminology of ESIBs and elementary aperture fu
tions!. As in the case of ESIBs, these elementary filters
same for all beamformers, thus they may be useful in de
oping an effective parameterization for adaptation of bea
patterns. Figure 4 illustrates the magnitude of the freque
response of the elementary filters of the first six modes v
sus the product of wave numberk and the distancez to the
associated sensor. We now demonstrate an important r
regarding the elementary filters as a consequence of Eq.~26!.
Note that in Eq.~26!, Fn

0(zi ,k) is a symmetric function of
spatial variablezi and of the frequency variablek. Thus,
these elementary filters have adilation property:

Theorem 2. All elementary filter responses Fn
0(zi ,k) of the

same mode n at different sensor locations zi are identical up
to a frequency dilation. That is

Fn
0~zi ,k!5Fn

0S z0 ,
zi

z0
kD , ~27!

where z0 is a reference sensor location.

The proof is given in the Appendix. With the output of th
double-sided one-dimensional broadband array as define
Eq. ~23! and the dilation property of the elementary filte
Eq. ~41!, we are led to a block diagram as shown in Fig.

Regarding the beamformer structure we can make
lowing comments:

~1! The proposed general beamformer has three levels
filtering associated with it. The first level consists of e
ementary beamformers, which are shown inside
dashed-line boxes in Fig. 5. Each of the element
beamformers consists of elementary filters of the sa
mode which are connected to different sensors but
related by the dilation property. As a consequence,
have a set of unique beamformers for each and ev
moden. In other words, the elementary beamformer
moden produces the ESIB of the moden. Further, the
elementary beamformers are independent of the requ
beampattern specifications.

~2! The characteristic coefficientsan(k) form the second
level of filtering. Since thean(k) determine the shape o
the beampattern, we call themBeam Shape Filters.

~3! The final set of filtersGn(r ,k) are independent of senso
locations but dependent on the operating radiusr and the
mode, and can be simplified using Eqs.~5!, and~15!, and
~25!,

Gn~r,k!5
~21!n11

p3/2 A2

r

ej 2~k2k0!

Hn11/2
~1! ~kr !

, ~28!

wherek0 is an arbitrary chosen nominal frequency. B
adjusting the parameterr in Gn(r ,k), the beamformer
397Abhayapala et al.: Nearfield broadband array
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m(z,k) for m50, plotted against the product of wav
numberk and the distancez to the associated sensor.
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can be focused to a particular operating radiusr either in
nearfield or farfield. To highlight this important proper
we call the filtersGn(r ,k) Radial Focusing Filters.

~4! In Sec. I B we showed that an arbitrary beampattern
be decomposed into a weighted sum of ESIBs, where
weights are the characteristic coefficientsan(k). Since
each elementary beamformer produces an ESIB, an a
trary beamformer can be implemented by adding th
together with the decomposition coefficientsan(k) of
the required beampattern and the focusing filt
Gn(r ,k). Because of these properties, our design
398 J. Acoust. Soc. Am., Vol. 107, No. 1, January 2000
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readily convertible to adaptive implementations, whe
only the beam shape filters and radial focusing filte
need to be adapted.

~5! Finally, we will give some remarks about the gene
beamforming structure for two- and three-dimension
arrays. We can generalize the one-dimensional be
forming structure Eq.~23! for higher dimensions:

Ỹ~k!5(
i

giS~xi ,k! (
n50

`

Gn~r ,k! (
m52n

n

an
m~k!Fn

m~xi ,k!,

~29!
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FIG. 5. Block diagram of a general one-dimensional broadband beamformer described by Eq.~23! whereFn
0(z,k) is the elementary filters,Gn(r ,k) is the

radial focusing filters, andan(k) are the beam shape filters.
in
th
,
e

ia
e

n
m
e

m-
his
isi-

th

in
wherei is an integer and the sensors are placed at po
$xi% in the three-dimensional space. Let us assume
an

m(k)50 for n.N, whereN is a positive integer. Then
there will beN(N12) elementary beamformers whos
outputs are connected to the shape filtersan

m(k). Com-
pared with the one-dimensional beamformer~Fig. 5!,
there are additional summing points before the rad
focusing filtersGn(r ,k) which add the outputs from th
(2n11) shape filtersan

m(k) of the same moden but
different m values.

D. Frequency invariant beamforming

We now consider the design of frequency invaria
beamformers as a special case of the general beamfor
theory developed above. This method generalizes the pr
399 J. Acoust. Soc. Am., Vol. 107, No. 1, January 2000
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ous work.14 The response of a frequency invariant bea
former is constant over an arbitrary design bandwidth. T
type of beamformer is particularly useful for speech acqu
tion with microphone arrays.

An arbitrary beampattern over an arbitrary bandwid
can be expressed~in the farfield! by Eq.~17!. It can be easily
seen from Eq.~17! that if there is a sequence$bn% of mode
dependent constants such that

an~k!5
bn

Rn~`,k!
, ~30!

for a range of frequencieskP@kl ,ku#,(0,̀ ), then the
beampattern is frequency invariant overkP@kl ,ku#. This
simplifies the general beamformer structure in Fig. 5, and
particular the productGn(r ,k)an(k) appearing in Eq.~23!
can be simplified using Eqs.~25!, ~30!, and~15!:
399Abhayapala et al.: Nearfield broadband array
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Gn~r ,k!an~k!55
bn

k

A2p
for farfield asr→`

bn

~2 j !n11

p
Ak

r

ej ~k2k0!

Hn11/2
~1! ~kr !

for nearfield at radiusr .

~31!

Here, to determinebn , we need only to calculatean(k) for
some nominal frequencyk0P@kl ,ku# and then use Eq.~30!.

IV. CHOICE OF SENSOR LOCATIONS

As an engineering problem, it is desirable to minimi
the number of sensors required while maintaining accept
performance. The major factor determining the minimu
number of sensors possible isspatial aliasing. It is well
known from the array literature20 that a sensor spacing o
l/25p/k is needed to avoid spatial aliasing for a narro
band array operating at frequencyk. For a broadband array
the upper limit of the design band frequencyku must be used
to avoid spatial aliasing in all frequencies, which sugge
that a uniformly spaced array withp/ku spacings is needed
However, such an array will give a smaller effective apert
for lower frequencies and larger aperture for a high frequ
cies which is undesirable. We will now show how to ove
come this problem.

It has been shown,13 by using the Parseval relation th
the lower order modes~ESIBs! are the significant ones tha
give the broad beampattern features, whereas the highe
der modes give the finer detail. We assert that sensible be
pattern specifications should involve only the lower ord
modes. Hence, for most practical beampatterns, the cha
teristic coefficientsan(k) are zero for largern ~typically n
.15 or so!. Let us assumean(k)50 for n.N, and thus we
need to consider only ESIBs up to the modeN and the cor-
responding elementary filters.

We observe from Fig. 4 that the all elementary filte
tend to have the characteristics of a bandpass filter ex
n50 mode filter which has low-pass characteristics. Due
the dilation property of the elementary filters~see Theorem
2!, the bandwidth and the cutoff frequencies of element
filters are scaled with the location of the sensor to which th
are connected. Therefore, as we move away from the ori
sensors become relatively inactive at higher frequenc
This means that the sensor spacings can be increased ac
ing to the highest frequency for which that sensor is eff
tively active. Consequently we can minimize the number
sensors as well as avoid the spatial aliasing.

For a given sensor location, the effective cutoff fr
quency of these filters increases as moden increases. Letan

be the product of the upper cutoff frequencykc,n of the mode
n filter and the distancez to the associated sensor from th
origin ~i.e., an5kc,nz!, wherekc,n is defined as the first zer
crossing point above the pass band.~Note that these elemen
tary filters are not ideal band pass filters and other definiti
for cutoff frequencies such as half-power point can be us!
Table I lists thean of the first 16 elementary filters. Clearl
the upper cutoff frequencies of elementary filters are rela
400 J. Acoust. Soc. Am., Vol. 107, No. 1, January 2000
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by kc,1,kc,2,¯,kc,N . Therefore to make a sensor inactiv
for a given frequencyk, it is sufficient to havekc,N,k.

We can now give complete guidelines for choosing d
crete sensor locations. Here we consider a double-sided a
and begin with a sensor located at the array origin. Initia
to avoid spatial aliasing we need a sampling distance
dku

5lu/25p/ku . As long as the cutoff frequencyki of the
sensor located atzi ~which is equal to the cutoff frequenc
kc,N of the highest mode elementary filter attached to t
sensor! is greater than the upper design frequencyku , we
need to maintain the above sampling distance. In this cen
portion of the array, the cutoff frequency of thei th sensor
from either side of the origin is given by

ki5
aN

u i up
ku for 0,u i u<Q,

whereQ is the number of uniformly spaced sensors in o
side of the array. As we move further away from the orig
i.e., asi grows,ki decreases and will become less thanku .
The number of uniformly spaced sensorsQ required to sat-
isfy this constraint is given by

Q5 daN

p e, ~32!

where d•e is the ceiling function. At this point, we can in
crease the sampling distance, just to avoid spatial aliasin
kQ . Since the cutoff frequencykQ11 of the (Q11)th sensor
is less than that ofQth sensor, the sampling distance can
further reduced for the next location. This process can
continued until the cutoff frequency of the last sensor b
comes less than the lower design frequencykl . The result of
this is that the location of thei th sensor relative to the origin
is given by

zi5H ip

ku
for u i u<Q

Qp

ku
S 11

p

aN
D u i u2Q

for Q,u i u<L,

~33!

TABLE I. Upper cutoff frequencies of the first 16 elementary filters as
product of sensor locationz and cutoff frequencykc,n .

Mode ~n! an5kc,nz

0 3.142
1 4.493
2 5.763
3 6.988
4 8.183
5 9.356
6 10.51
7 11.05
8 12.79
9 13.91

10 15.03
11 16.14
12 17.25
13 18.35
14 19.44
15 20.54
400Abhayapala et al.: Nearfield broadband array
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where L is the total number of sensors in one side of t
array. Using the fact that the cutoff frequency of the la
sensor has to be less than or equal to the lower design
quencykl , the number of minimum sensors per one s
required to implement a broadband array over the des
band is

L5Q1 b logS aNku

Qpkl
D

logS 11
p

aN
D c, ~34!

where b•c is the floor function. Note that we need a total
2L11 sensors altogether to have double-sided array.

In order to complete the guidelines for a practical re
ization of the beamformer given by Eq.~22!, we now con-
sider the spatial weighting termgi introduced in Eq.~22!.
Recall that the Trapezoidal rule has been used to appr
mate the integral in Eq.~21! by the summation in Eq.~22!,
hence the spatial weighting termgi is given by ~possibly!
nonuniform sensor locations Eq.~33! as

gi5H 1
2~zi 112zi 21! if u i u,L

1
2~zL2zL21! if u i u5L

. ~35!

Note that any other integral approximation method can
used instead of Trapezoidal rule and the spatial weigh
term gi needs to be derived appropriately.

V. DESIGN EXAMPLE

We will now consider an example of broadband bea
forming design using the techniques introduced above.

Suppose we wish to design a one-dimensional mic
phone array for operations in the air at sea level soc
5345 ms21. Suppose the desired design frequency rang
300–3000 Hz, which is suitable for speech applications.
us limit the maximum modes indexN to be 15 as suggeste
in Sec. IV; thus we assume all beampatterns of our inte
can be approximately decomposed to 16 ESIBs. Now we
determine the sensor locations and 16 elementary filt
which are independent of the desired response once the
sign band and the number of modes are decided. From T
I, the product of cutoff frequencykc,n and the sensor locatio
z of the highest~15th! mode elementary filter isaN520.54.
Next the sensors are placed according to Eq.~33! and it is
found from Eq.~34! that the total number of sensors requir
is 41 and the length of the double-sided array is 4.9 m. T
sensor locations are given in Table II and the frequency
sponse of the elementary filters are given by Eq.~26!.

Now we consider an example beampattern which is fo
beamformer having a constant Chebyshev 25-dB beam
tern ~shown in Fig. 6! over the frequency range 300–300
Hz. The example chosen is a frequency invariant beam
tern, although we stress that our design method is not
stricted to frequency invariant beamformers. The freque
responses of the combined filtersGN(r ,k)an(k) are given by
Eq. ~31!. For this case, the beampattern is characterized
the coefficientsbn and we have calculated them forn
50,1,... ,15 using Eqs.~38! and ~3!.
401 J. Acoust. Soc. Am., Vol. 107, No. 1, January 2000
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For the sake of efficient implementation, all the filte
are collapsed into one filter per each sensor. This is poss
since the proposed beamformer structure~Fig. 5! consists of
linear combinations of various filters.

The resulting beamformer is focused at the farfield
setting the parameterr 5100l l in the focusing filter
Gn(r ,k). The response of the beamformer to a farfie
source is given in Fig. 7~b!, which is close to the desired
response. The response of the same farfield focused be
former to a nearfield source at a radius 3l l is given Fig. 7~a!.

FIG. 6. Desired beamformer response used in the example in Sec. V: 2
Chebyshev beampattern over 300–3000 Hz.

TABLE II. Locations zi of the i th sensor of the example double-side
symmetric array in Sec. V~given in terms of the upper design waveleng
lu!.

i zi /lu

0 0.0
1 0.5
2 1.0
3 1.5
4 2.0
5 2.5
6 3.0
7 3.5
8 4.0
9 4.6

10 5.4
11 6.2
12 7.1
13 8.2
14 9.5
15 10.9
16 12.6
17 14.5
18 16.7
19 19.3
20 22.3
401Abhayapala et al.: Nearfield broadband array
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FIG. 7. Response of the farfield focused@by settingr 5100l l in the focusing filterGn(r ,k)# beamformer~see Fig. 5! with 25-dB Chebyshev beampattern t
~a! a nearfield source at a radius 3l l , ~b! a farfield source at 100l l . This figure demonstrates that the farfield design is inadequate for the desired ne
performance.
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It is evident from this figure that the farfield design is ina
equate for the desired nearfield performance. Next we fo
the same beamformer to the nearfield by simply adjusting
variabler in the focusing filterGn(r ,k) to 3l l . The resulting
beamformer is simulated in the nearfield and we observe
improved response in Fig. 8~a!. The focused array respons
402 J. Acoust. Soc. Am., Vol. 107, No. 1, January 2000
us
e

n

is close to the desired response with neglible variation in
main beam and slight ripples in the side lobes. We concl
that the approximation involved in discretizing and trunc
ing the continuous sensor was sufficiently accurate. For c
pleteness, we find the response of nearfield focused be
former to a farfield source and show this in Fig. 8~b!.
o
FIG. 8. Response of the nearfield focused@by settingr 53l l in the focusing filterGn(r ,k)# beamformer~see Fig. 5! with 25-dB Chebyshev beampattern t
~a! a nearfield source at a radius 3l l , ~b! a farfield source at 100l l .
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The similar appearance of Figs. 7~a! and 8~b! can be
explained by our previous work13 on radial reciprocity,
which established the asymptotic equivalence of two tra
formation problems:~i! determining the nearfield perfor
mance of a farfield beampattern specification, and~ii ! deter-
mining the equivalent farfield beampattern corresponding
a nearfield beampattern specification. We can view Figs.~b!
and 7~a! as the result of problems~i! and ~ii !, respectively,
with beampattern specification given in Fig. 6 for both cas

VI. CONCLUSIONS

A new method of general broadband beamforming c
ering farfield and nearfield operations has been propose
this paper. The efficient parameterization afforded by t
technique enables the beamformer to be focused to a de
radial distance using a single parameter and the shape o
beampattern can be controlled by another set of parame
These properties make it potentially useful for adapt
beamformer design.

APPENDIX

Proof of Theorem 1: Let b`(u,f;k)5b(u,f;k) be the
beampattern specification in the farfield and letar A

(u,f;k)
5b(u,f;k) be a separate design with the same beampat
shape but at radiusr A ~nearfield! from the sensor origin.
Then we use Eqs.~2! and ~4! to write,

b`~u,f;k!5 (
n50

`

(
m52n

n

an
m~k!Rn~`,k!en

m~u,f!, ~A1!

ar A
~u,f;k!5 (

n50

`

(
m52n

n

bn
m~k!Rn~r A ,k!en

m~u,f!. ~A2!

Note that the two sets of coefficientsan
m(k) and bn

m(k)
uniquely represent two different beampatterns,ar(u,f;k)
andbr(u,f;k) in (r ,u,f;k) space. We will equate Eqs.~A1!
and ~A2! and observe that Eq.~A1! is the beampatternbr

evaluated atr 5` and Eq.~A2! is the beampatternar evalu-
ated at r 5r A . Hence an

m(k) and bn
m(k) are related by

an
m(k)Rn(`,k)5bn

m(k)Rn(r A ,k) and thus

bn
m~k!5

Rn~`,k!

Rn~r A ,k!
an

m~k!, ~A3!

since Rn(r A ,k)5r A
1/2Hn11/2(krA)Þ0. Using the nearfield–

farfield transformation, the farfield equivalent toar A
is given

by

a`~u,f;k!5 (
n50

`

(
m52n

n

bn
m~k!Rn~`,k!en

m~u,f!. ~A4!

From Eq.~13! the aperture illumination function correspon
ing to this farfield pattern is

r~x,y,z;k!5 (
n50

`

(
m52n

n

bn
m~k!Rn~`,k!%n

m~x,y,z;k!.

~A5!

Finally, by substituting Eq.~A3! into Eq.~A5! completes the
proof.
Proof of Theorem 2: Let Fn

0(z0 ,k) and Fn
0(zi ,k) be the
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frequency response of two elementary filters of the sa
moden and associated with sensors atz0Þ0 andzi , respec-
tively. Then from Eq.~26!,

Fn
0~zi ,k!5~2 j !n

Jn11/2~kzi !

Akzi

5~2 j !n

Jn11/2S k
zi

z0

z0D
Ak

zi

z0

z0

5Fn
0S z0 ,

zi

z0

kD , ~A6!

which is a dilation in the frequency domain.
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