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Abstract

Spherical harmonic decomposition of wavefields is not omyaative problem in acoustic signal processing
but also a useful tool in a plethora of applications such asb@Bmforming, direction of arrival estimation, and
spatial sound recording. This paper presents a novel atragtgre consisting of a set of parallel circular arrays of
sensors to decompose a wavefield into spherical harmonip@oents. The new structure presented here provides an
alternative design to the traditional spherical microghamrays with increased flexibility on sensor locations. \& u
the underlying structure of the wave propagation togethigh the properties of the associated Legendre functions
and the spherical Bessel functions to develop a systempgimach to place circular arrays and construct a hybrid
array. As an illustration, we design a fifth order sphericatnmonic decomposition array usirfiy microphones to
operate over a frequency band of an octave and compare itansfpherical array. We use computer simulations to
show the performance of the array in a beamforming example.
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Spherical harmonic analysis of wavefields

using multiple circular sensor arrays

|. INTRODUCTION

Spherical harmonic analysis of three dimensional wavefigdda useful tool in designing signal processing
algorithms for beamforming [1]-[4], source localizatids}{[7], acoustic scene analysis [8], [9], spatial soundfiel
recordings [10], [11], and spatial soundfield reproduc{ib?|-[14]. The harmonic analysis technique can be used
to decompose an observed wavefield into spherical harmanmigponents by sampling the field using an array
of sensors. Whilst spherical microphone arrays [10], [I153], [16] have been shown to be a natural choice for
spherical harmonic decomposition, there are a number dfaliions and constraints which restrict their usefulness.
Specifically, the sensor positions of spherical arrays neeaeet a strict orthonormality condition resulting in ltedl
flexibility of array geometry. The spherical arrays alsofsufrom numerical ill conditioning at some frequencies.
This paper provides a non-spherical microphone array tstreicwith increased flexibility, for allowable sensor
locations in order to perform spherical harmonic decontmosiof wavefields. The proposed array design in this
paper can not only be used in acoustic applications but alggher areas such as wireless communications.

The spherical microphone arrays are mainly based on two qumafiions, theopen-spheravhere microphones
are arranged on free field [10] and thard-spherewhere microphones are arranged around a rigid sphere [11].
The open-sphere configuration with a single sphere suffemsenical ill conditioning at certain frequencies due
to zeros of the spherical Bessel functions involved [15]isTproblem can be overcome by having concentric
spheres [10], [17], [18], a combination of rigid and openesels [19], [20] and/or measurement of radial velocity
[15]. Additionally, the rigid-sphere configuration inclesl scattering from the sphere which can avoid numerical ill
conditioning that is associated with open-sphere conftgquwaHowever, for low frequencies, a large hard-sphere
is needed to obtain harmonic coefficients, which may not tsiralele in practice. In both configurations and their
variants, the symmetry of the sphere has been used in degitiné spherical harmonic decomposition algorithms.
Specifically, the orthonormality property of the sphericatmonics is approximated by placing microphones on the
surface of a sphere. Thus, the microphone placement on tierespeeds to satisfy the orthonormality constraint
which reduces flexibility of the array geometry. There arenbar of recent works [16], [18] which provide optimal
and flexible placement of microphones on the sphere. Howeplerical geometry is still an integral part of these
designs. A comprehensive analysis of open and rigid spddesicay configurations is given in [15], which also
includes the effects of finite order, finite number of micropas, inaccuracies in the positioning of microphones,
spatial aliasing, and measurement noise.

There are large number of recent papers on the applicatibrspleerical microphone arrays as included in
[21]-[26].
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In [27], Meyer and Elko proposed a method to extract sphehaamonic coefficients using a circular array of
microphones on the x-y plane and a microphone at the oridirs Was a novel use of circular arrays as a typical
use would be to decompose a soundfield into cylindrical harosathat are suited for height invariant 2D soundfield
analysis. Although, Meyer’s work gives some flexibility inrgrolling the vertical spatial response, fundamentally
a 2D array on the x-y plane is not sufficient to determine althef spherical harmonic coefficients for 3D fields.
In this work, we extend from [27], to investigate the spharibarmonic decomposition of 3D soundfields and
propose a systematic way to build a 3D flexible array strectihe proposed structure consists of a set of circular
arrays placed on planes parallel to the x-y plane. The addgibility and robustness in the structure arise from a
careful study of the underlying wave propagation theorgcsfjcally in using properties of the associated Legendre
functions and spherical Bessel functions. A study of theeulyithg physics helps us to analyse the contributions
from each spherical harmonic mode from different planes spatial locations of the array. These new insights
guide us to place sensors more appropriately and extraetisphharmonic coefficients whilst avoiding numerical
ill-conditioning. The spherical arrays suffer numeridaconditioning, when sensors are placed in locations where
the target spherical harmonic has very little energy. Haxew our design, we not only systematically avoid these
ill conditions but also provide more flexibility in placingssors.

In Section I, we outline the theory of spherical harmoni@lssis of soundfields. We inspect the underlying
structure of the received signal on a circular aperturegalgmarallel to the x-y plane in Section Ill. In Section 1V,
we use the insight gained from the underlying structure tippse a hybrid array structure consisting of parallel
circular arrays and sensors on the z-axis. We show the arcayability of operating over a frequency band of an
octave in Section V and also provide guidelines on how torektthe bandwidth for several octaves. Finally, we

present simulations of a fifth order hybrid array to verifg throposed theory and design.

Il. SOUNDFIELD ANALYSIS
A. Spherical harmonic expansion
Consider a pointr, 8, ¢) within a source free regiof?, where(r, 6, ¢) are the spherical coordinates with respect
to an origin located withirf2. The soundfield at a poir(t-, 0, ¢) € Q due to some sources outside @fcan be
expressed in terms of a spherical harmonic expansion [10] as

Sr0,6:k) => > (k)jn(kr)Yom (0, ¢) (1)

n=0m=—n
wherem andn (> 0) are integersev.,., (k) are the spherical harmonic coefficients of the soundfiele; 27 f/c
is the wavenumberf is the frequency is the speed of sound, (-) are the spherical Bessel functions of orader

and

n n — |m|)! )
Yom (0, ¢) = \/2 4: ! En n :mB!anl(COS g)eim? (2)

are the spherical harmonics of ordeand degreen, which are defined in terms of the associated Legendre fumsti

P, m|(-) and the exponential functions. Knowing the soundfield ovegles on a radius, harmonic coefficients
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Fig. 1. Magnitude of the normalized associate Legendretfans P,,,,,(cos¢) in dB whenn + |m| is even for

(n, [m[) = {(0,0); (2,0); (1,1); (2,2); (3,1); (3,3)}.

can be calculated using

nm (k) = ﬁ /0 " /0 i S(r,0,¢; k)Y, (0, ¢) sin 0d0dep ©)

providedj, (kr) # 0. For convenience, we express (1) as

S(r,0, k) Z Z U (k) i (k) Py (08 0) By () 4)

n=0m=-—n

whereE,,(¢) £ (1/v27)e'™? is the normalized exponential function and

2n —|— 1 [(n—|m|)!
n\ml (cos 0) 2 (n+ [m])! n\ml(cose) (5)

is the normalized associated Legendre function. The fanst&,,(¢) and P, (cos ) form orthonormal basis
sets in azimuthp € [0,27) and elevatiord € [0, x|, respectively. The first few normalized associated Legendr
functions are illustrated in Figs. 1 and 2. In this paper, we (#) intuitively to illustrate and design a new array

structure to decompose a soundfield into spherical harmmmgponents.

B. Truncation

Representation (4) has an infinite number of terms. Howavercan truncate this series expansion to a finite

number within a given region of interest due to the propsrtiethe Bessel functions (see Fig. 3) and the fact that
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Fig. 2: Magnitude of the normalized associate Legendretiong P,,,, (cosf) in dB whenn + |m| is odd for

(TL, |m|) = {(17 O)a (27 1); (37 O)a (37 2)}

the soundfield has to be bounded within a spatial region wakources are outside [28]. L&t be the radius of
the spherical region of interest, then the soundfield in#de sphere can be represented by (4) with summation
overn truncated to

N = [e'kR/2] (6)

terms [29] with error in truncation equal to less th@r{%. Another common rule of thumb for truncation [30, p.
150] of (4) is to useN = [kR]. Note that truncation is directly related to the sphericak&l functiory, (-) that

has a negligible£ 0) magnitude for arguments that are less than the onder

C. Soundfield Coefficients

Since we are interested in the soundfield that is restriated finite region, then the resulting coefficients of
interest are only from the firgtV + 1) terms. In this case, we can observe from (4) that there aaedb{N + 1)?
coefficients to be determined, which are shown in Table 1 fdeon = 0... N and degreen = —n...n.

The soundfield coefficients,,,,,(k) can be estimated by sampling the space using an array ofrseSgherical
microphone arrays approximate the analysis equation (3 bym of samples of signal taken over the spherical
surface to perform this task [10]. However, there are knowitdtions of spherical arrays [15] such as the strict

orthogonality condition and inflexibility with the sensoeametry. In this paper we develop an alternative array
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m\\n 0 1 2 N
N aNN
2 Q22
1 a1l a21
m =0 | ago ai10 a0 anNo
-1 Qi(—1) | Q2(-1)
-2 Q2(-2)
-N AN(-N)

TABLE [: Soundfield coefficients arranged with orderand degreen. For anth order spherical harmonic system

there are(IV + 1)? coefficients to be determined.

n

Amplitude of j (kr) [dB]

-10

-15

-25

-30

Increasing n

Fig. 3: Magnitude of the spherical Bessel functioipgkr) of ordern = 0,1,2,3,4, and5 in dB showing the

characteristics as a function of the argument.

structure to estimate the soundfield coefficients.

IIl. CIRCULAR APERTURE

In this section, we investigate the soundfield on circles &na parallel to the x-y plane.
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A. Azimuth Harmonics

Let S(rq, 04, ¢; k) be the the soundfield on a circle given by= 6, andr = r,,.

We use (4) to write
N n

S(rg,00,0:k) =Y > (k) jn (k1) Prjim) (08 0g) B () (7

n=0m=-—n
where N = [ke'r,/2] is from the natural truncation property (see Section 11\Bg multiply (7) by E_,,,(¢) and

integrate with respect to over [0, 27) to get

N
am(rq,bq, k) = Z O‘nm(k)jn(qu)Pn\m|(Cos 0q) 8
n=|m|
where ,
am(rq,t?q,k) é S(Tqa9q7¢; k)E,m(d))dd) (9)

0
Note that the right hand side of (8) is a weighted sum of soetwifioefficientsx,,,,, (k) for a givenm along a

row in Table 1.

The equation (8) can also be evaluated for= —N, ..., N, where the truncation numbéy¥ is dependent on
the radiusr, of the circle. Also, for a given circlgr,,d,), contribution from some of the spherical harmonic
components could be zero if eithgf(kry) = 0 or Py, (cosd,) = 0. This is clear from Figures 1 and 2, which
plot the magnitude of the normalized associated LegendretiinsP,,,,,|(cos #) in dBs. Hence, we have to be
careful while using (8) for coefficient calculations. Thaatls us to the the main contribution of this paper, which
is to show how to extract spherical harmonic coefficients, (k) by exploiting (8) from a number of carefully
placed circles on differert,, 6,) using the properties of the spherical Bessel functions. &ignd the associated

Legendre functions.

B. Sampling of circles

Until now we have assumed that the soundfield is known at @litp@n a given circular aperture. In practice, we
can not obtain the soundfield at every point on these cirtihethis section, we show how to only use samples of
the soundfield on these circles, which enable us to providgydeguidelines in order to build practical microphone
arrays.

Consider a circular aperture @t,, 6,). To evaluate the integral in (8), we replace the integrahwitsummation
because in practice only a finite number of samples$'©f,, 6,, ¢; k) can be obtained. Recall that due to natural
truncation (see Section II-B), at a radiusrgfthe field is limited toN, = [ker,/2] orders. Thus, the maximum mode
m involved isN, and,S(r, 64, ¢; k) is mode limited taV,, i.e., it contains terms with'™¢ with m = —N,, ..., N,.
According to Shannon’s sampling theorem for periodic fior, S(r,, 6,, ¢; k) can be reconstructed by its samples

over [0, 27 with at least(2N, + 1) samples. Hence, we approximate the integral in (9) by a suioma

V.
27T
am(rg, 00, k) % 37 D S(ra,0g, Sui k) Em(@0), (10)
9 y=1
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whereV, > (2N, + 1) are the number of sampling poihtsn the circle(r, 6,).

C. Uninspired Least Squares

Suppose that our goal is to design Aith order microphone array, then we need to estinjater 1)? spherical
harmonic coefficients. To calculate these coefficientstHete be@ > (N + 1) circles of microphones located on
planes given byr,,6,), ¢ = 1,...,Q. Now, for a particular value ofiz, we write (8) for all the applicable circles,

and obtain a set of simultaneous equations given by

Jmy = @, form=—-N,...,N (12)
where
j|m‘(/€T1)P‘m|‘m|(COS 91) jN(krl)PN|m\(COS 91)
j|m‘(k7’Q)'P‘mHm|(COS 9@) jN(k’I’Q)'PN|m‘(COS 9@)
oy = [a\m|ma O‘(|m\+1)ma ceey aNm]Ta andam = [alm7 ) an]T

The harmonic coefficientsy,, can be calculated by solving the system of linear equati@seribed by (11)
for eachm. Since there will be noise in any measurement, it is necgdsasolve (11) in the least squares sense
by setting up an over determined system, i.e., number ofeaciicleg being greater thawv — |m|. If (r,,6,),
g=1,...,Q are chosen such that,, has a valid Moore-Penrose inverse;, thenea,,, can be calculated for each

m by solving (11) in the least squares sense as
o = J . (13)

However, if we choosédr,,6,) arbitrarily there could be a number of singularities in (1B) Section IV, we
sample the 3D space by circlés avoid these ill conditions, where we exploit the undewystructure of the wave
propagation rather than relying on the ability of the lea@gtases. That is, we propose a set of rules, and guidelines

to place circles in 3D space to avoid singularities.

D. Insight into harmonic structure

Firstly, by inspecting (8) for specific values ¢f;, ¢,) andm,
we find that for a single sensor at the origin, (g, ¢,) = (0,0), the only available mode is: = 0. Hence, we

can obtainago (k) from a single measurement at the origin by

aoo(k) = ao(0,6, k) /Pojo(cos ) = v2an (0,0, k),

INote that we can use non-uniform samples on the circles ap dsnthe separation between any two samples are less thanattieum
separation required for the Shannon sampling theorem.

2There are specific harmonic components present on thedescirc

November 16, 2009 DRAFT



SUBMISSION TO IEEE TRAN. AUDIO, SPEECH & LANGUAGE PROCESSBY NOVEMBER 16, 2009 8

z

X

Fig. 4: An example circular array structure for third ordpherical harmonic decomposition.

sincePojo|(cos ) = 1/V/2.

Secondly, whe = /2, P, (cos(m/2)) = 0 if n4-|m|is odd. This can be seen from Fig. 2, which depicts the
normalized associated Legendre functions up to order 3ddmo+ |m| values. Note that from Fig. 1, fot + |m|
even values, the normalized associated Legendre fundtiaveslocal maxima & = /2. Thus, the corresponding
harmonic component do not greatly attenuate at or aréuadr/2.

Thirdly, whené = 0, or =, the normalized associated Legendre functions have theepso

=0, if m#0,
Prjm|(cos{0,7}) = Ppjm(£1)
#0, if m=0.
Therefore, for points a# = 0 and, i.e., on the z-axis, the soundfield only contains the coreptsifromm = 0
spherical harmonics.

These are some of the useful properties that we can obseme(B) using the characteristics of the spherical
Bessel functions (Fig. 3), and the normalized associateghare functions (Figures 1 and 2). In the next section,
we use these properties to construct a 3D array structurestimating spherical harmonic coefficients of spatial

soundfields.
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N | Total number of coefficients n + |m| even | n + |m| odd
0 1 1 0

1 4 3 1

2 9 6 3

3 16 10 6

4 25 15 10

5 36 21 15

N (N +1)2 (N+1)2(N+2) N(]\;+1)

TABLE II: List of number of coefficients fom + |m| even and odd for a giveiVth order spherical harmonic

system.

IV. HYBRID ARRAY OF CIRCLES

In section I1I-D, we showed that the soundfield coefficiemts, (k), whenn+ |m| is odd, have zero contribution
to the field on the x-y plane, whereas all coefficients,,(k), whenn + |m| is even, always have non zero
contributions to the soundfield on the x-y plane. For the oéshe paper, we refet,,,, (k) with n + |m| even and
odd aseven coefficientand odd coefficientsrespectively. Table Il lists the number of even and odd faehts in
a given system with harmonic coeffcients up to thi¢h order. It is clear that for a given ordé¥, there are more
even coefficients than odd coefficients. In the following sadtion, we give guidelines on how to place a set of

circles on the x-y plane to calculate all even coefficientdathe required ordelN.

A. Circles on the x-y plane: Even coefficients

Ouir first circle on the x-y plane is a circle of zero radius,,isensor at the origin, to estimatgy. For a Nth
order system, we place anoth®&i/2 (when N is even) or(N + 1)/2 (when N is odd) circles on the x-y plane.
Based on the properties of the Bessel functions, we choe@seattii of these circles as

2 4 N
—k—o,k—o,...,k—o, fOI’q—l,, (14)

wherek, is a carefully chosen frequentyithin the desired frequency band, i.,, € [k, k.|, wherek, and k,,

T'q

are the lower and upper frequency band limits, respectively

With this choice, the soundfield at a frequericyn a circle of radius, is order limited (see (6)) to

[Nel(k/ko)] if ¢ = N/2 or (N +1)/2,
Ny (k) = (15)
[2qe'(k/k,)] otherwise

This property limits the higher order components of the sifietd present at a particular radiug Also, the lower
order components are guaranteed to be present due to thee dfaiadii in (14) which avoids the Bessel zeros. In

Section V, we show how (14) is useful for operation of the yaiwaer a broadband of frequencies.

3We choosek, such that the array can work over a frequency band of an actsigediscuss broadband operation of the array in Section V.
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When we evaluate (8) for the circles on the x-y plane, we gett afsa simultaneous system of equations similar
to (11) as

JSal =a,,, form=-N,....N (16)
where
Fiml BT1) Pl im[(0)  Fjmi+2(BT1) Pmi+2)im((0) -+ N (kr1)Pnjm(0)
J5, = : : : (17)
Tl BTN )P m [ (0)  Fjm+2 (BN )P(mi+2)m|(0) -+ N (krN)Pnjm) (0)
o, = [Qmfms Q(|m|+2)m> - - - ,anm]’, (18)
and
am = [am (11, 7/2, k), am (12, 7/2, k), ..., am(rg, /2, k)]T (19)

The last column of (17), and the last term of (18) are for aeystvhen bothNV and |m/| are either even or odd
integers. OtherwiselV in the corresponding terms should be replaced\by- 1.

Suppose the highest ordar of the system is odd, then the matt¥,, (17) becomes close to a lower triangular
matrix, this is due to the choice of radij given by (14). The constraint in (14) forces the higher offumonic
contributions on smaller radii circles to be negligible uShthe magnitude of elements in each row of (17) rapidly
goes to zero after the diagonal element. Along with the cairgtin (14), we also know th&®,,,,, (0) # 0 in (17).
Both of these conditions ensure that there is at least one@anelement in each row of (17), thereby making (17)
always non singular unlike (12). Also, if the number of a&xlis equal to the number of unknown even coefficients,
then we can solve (16) exactly

al, = (J%) lan (20)

where(J¢) " is the inverse of/¢,.

For the case whelV is odd andm = N, (11) reduces to a single equation with one unknawpy. However,
if we use this equation alone to calculatg y, there may be errors involved as there could be some cotitnibu
from a(n42)n-

To improve the accuracy of the calculation, we can include@ditional circle after the last circle and include
the next higher order even coefficient in the equation (whwehcan discard once calculated).

Lastly, whenm = 0, we can modify (8) as

N
ao(rn, /2, k) — aoo(k)jo(krn)Pojo (0) = Z no (k) jin (krg)Pnio) (0) (21)

n=1

sinceago (k) is known from the sensor at the origin. Now we can modify (1&)aadingly. Alternatively, we can

include the sensor at the origin as a circle in (16). Then tis¢ fow of (17) would bg1/v/2, 0, 0, ...].
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B. Sampling on z-axis

In the previous section, we showed how to calculate evenficmgfts from circles on the x-y plane. In this
section, we use another property of the associated Legémacgons, i.e., all the points on the z-axis only contain
m = 0 coefficients, i.e,P,,|(£1) = 0 for m # 0. Therefore, by placing sensors on the z-axis, we can estimat
the coefficientsy,,q, forn =1,3,5,---. Note thata,,q, forn =0,2,4,--- could be estimated from circles on the
x-y plane (see Section IV-A).

For a Nth order system/{ odd), we place sensors on the z-axis at
rzq:kiforq:Lz,...,N. (22)

Similar to (14), the above constraint limits the presenchigher order harmonics in the signal received at sensors
closer to the origin.

For a sensor afr;,,0), we can write (8) as

ao(r2¢,0,k) = XN: no (k) jn(kr2q)Ppjoj(cos 0). (23)
n=0
Using (5) and [31, p. 688], we obtdin
Prap(cos0) = 1/ 2P0 (1)
e (24)

Sincea,,o for even orders can be calculated from the procedure in @et¥-A, using (24), we write (23) as

N N
S ol T ) = ol 0.8) S0 ooy o k). (25)

n=1, oddn n=0, evenn
By evaluating (25) for sensors é&t,,,0) for ¢ =1,2,..., N, we have the following system of equations
J5°a$ = af - J5%af, (26)
where

jl(kT‘zl)\/3/2) jB(kTZI)\/7/2) jN(szl) (2N+1)/2)
Ji(krzn)/3/2)  js(kran)\/T/2) -+ n(kren) /(2N +1)/2)
jo(szl)\/l/Q) jg(kT‘zl)\/5/2) jN_l(kT‘zl)\/(2N—1)/2)
T = s ; , (28)
Jo(kran)\/1/2) ja(kran)\/5/2) -+ jn(kran)/ (2N —1)/2)

048 - [a107a307"'7aN0]T7 (29)

“Note that for a sensor dtzg, ), P,jo|(cos ™) = Ppjo|(—1) = (=1)™.
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N | Total number Number Number Number from
of coefficients | from x-y plane | from z-axis | parallel planes

0 1 1 0 0

1 4 1 0

2 9 1 2

3 16 10 2 4

4 25 15 2 8

5 36 21 3 12

N (N +1)2 w 4or MHL NT2 or N22*1

TABLE llI;: This table lists the number of coefficients thatnche calculated from (i) circles on the x-y plane, (ii)

sensors on the z-axis, and (iii) from parallel planes to theptane.

a%) = [GO(Tzla 07 k)a aO(TZQa 07 k)a ey aO(TZNa 07 k)]Ta (30)

and

a8 = [ao, @20, - - - ,Oé(N—l)o]T- (31)
Equation (26) can be solved in the least squares sense tm obta
al = J% ad — JE°T JE%ad (32)

where J%°" is the Moore-Penrose inverse df°.

C. Circles on parallel planes: Estimating odd coefficients

So far we have shown how to estimate even spherical harménoics the x-y plane and odd harmonics with
m = 0 from the sensors on the z-axis. To reiterate, faV# order system, we have estimated + 1)(N + 2)/2
even coefficients from the x-y plane, aig/2 (evenN) or (N + 1)/2 coefficients from the z-axis (see Table IlI).
Now, we are left withN2/2 (for evenN) or (N? —1)/2 (for odd N) coefficients to be calculated, which we do
using circles placed parallel to the x-y plane.

It is clear from Table Il that we need to have one or more palralrcles for second and higher order systems.
We carefully check the patterns of the normalized assotiefendre functions to determine possible valuegfgr
such that the contribution of odd harmonics is sufficient and-zero. Figure 5 depictB,,,,(cos #) for n + |m|
odd when (a)» — |m| =1 and (b)n — |m| = 3. It is evident from these plots that there are clear pattdepending
on the difference betweemand|m|. Based on these figures, one can choose suitable valukgs tf place circles
to calculate the remaining odd harmonics. Suggested rahgaloes for6,, are given in the Table IV, which
guarantee existence of harmonic contributions of unknoeefficients at these circles.

After choosingdy,, we need appropriate values fay, to limit the higher order harmonic contribution on a given
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n—|m| | Range 0ffog | (o m))
1 50° — 65° and 115° — 130° (2,1), (3,2),
(4,3), (5,4), ...
3 20° — 635°, 68° — 72°, (4,1),(5,2),...
108° — 112° and 145° — 160°
5 720 — 83°, 45° — 50°, (6,1), (7,2),
11° — 21° , 97° — 108°, (8,3),...
130° — 135°, and159° — 169°

TABLE IV: Possible values fob,, to place parallel circles to calculate the odd harmonic fadehts form # 0.

circle. Thus, we chooSe
n
Toq = —
ko’

(33)
wheren is the maximum harmonic order targeted to be extracted filmancircle andk, is the same as for (14)
and (22).

Since we use the methods in Sections IV-A and IV-B to caleutaten andn = 0 coefficients, respectively, we

can write (8) as

N N
Z Anm (k) jn (kTOq)Pnlm\ (cos ooq) = am(roq, boq; k) — Z Qnm (k)jn(kTOq)Pnlm\ (cos ooq) (34)
odg:yrn\‘m| everéi‘;nim\

form = —N,..., N andm # 0. By evaluating (34) foly = 1,2, ... we obtain

J°al =a, —J%,at,, (35)
where
Jiml+1(kr01) P(imi+1)|m| (€08 0o1)  Gjm|+3(kT01)P(jm|+3)jm| (€08 Oo1) -+ jN(kTo1)P(n—1)|m|(cos bo1)
J° =
Jim|+1(E70Q) P(m|+1)m| (€08 00@)  Jjm|+3(kT0Q)P(jm|+3)jm|(cosboq) -+ FN(kTo@)P(N—1)|m|(c0s boq)
(36)
Jim| (k701) Plmjm| (€08 001)  Jim|+2(kT01) P(jm|+2)|m| (€08 bo1) - jn(kro1)Pn|m|(cos bor)
i, -
Jim| (k70Q) Plm|jm| (€08 00q)  Fim|+2(kT0Q) P(jm|+2)|m| (€08 boq) -+ jn(kroq)Pnm|(cos o)
(37)
A, = [+ 1)ms C(m|+3)ms - - - CUN—1ym) " s (38)
Oéfn = [a(‘mnm, Q(|m|+2)m> - -+ aNm]T, and
am = [am(rola 9011 k)7 am('f'()Q, 9021 k)7 ceey am(TOQ7 90Q7 k)]T (39)

5This is a guide only. The exact design values of radii can berat the suggested quantities.
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It can be seen that for a second order systain=( 2), only 2 coefficients &2, anda,_1)) need to be determined
from this method. An appropriately placed circle is suffitiéo calculate these two coefficients. For both of these
coefficientsn — |m| = 1. Hence, from Table 1Vf,; can be selected. Since the maximunis 2, ro; = 2/k, is the
appropriate radial distance to the circle.

Whereas, for a fifth order systeni(= 5), there arel2 odd coefficients to be estimated from parallel circles.
There are two sets of — |m| values that are involved: (i) — |m| = 1 and (ii) n — |m| = 3. Thus, we can choose
0o and by, according to Table IV. Since the maxima ferinvolved are4 and5, we can choose,; = 4/k, and
ro2 = 5/k,, respectively.

In this section, we have provided guidelines on how to esBrapherical harmonic coefficients by multiple circular
sensor arrays placed on and parallel to the x-y plane, arsbsenn the z-axis. However, we have commented little
on the array performance over a desired band of frequericigbe next section, we will show that by suitably

settingk,, we can make the array operate for a range of frequenciesaovectave.

V. BROADBAND PERFORMANCE

The spherical harmonic decomposition method proposedigmghper is reliant on constructing matricds,
J*°, andJ° by appropriately placing circular arrays on and paralleht® x-y plane. We call these matricBessel
matrices The performance of the system is dependent on the nonfammgature of the Bessel matrices. Until now,
we chosed, andr, such that Bessel matrices are closer to lower triangularicestand thus are non singular.
However, these matrices are also dependent on the opefetigency.

In the following subsection, we choose the design paramigtesuch that the design can work over a band of
an octave. In subsection V-B, we show how to extend the awayadrk over several octaves by using the nested

array concept.

A. Design over an octave

Let [k, 2k(] be the desired frequency band of an octave. Recall that iprdous sections, we chose different
radii 7, to place circles which were in terms of a paramétgrThe challenge is to choodg € [k, 2k¢] such that
we can preserve the desirable properties of the Besselaesitover the frequency bark,, 2k,]. That is for any
k € [ke, 2ky], each of the Bessel matrix is non singular and closer to arlosangular matrix. In other words, we
need to consider a range of values, for which the sphericsd@dunction of a given order has sufficient amplitude
greater than the noise threshold, but the the subsequeeaticaplhBessel functions do not.

In this paper, we choosk, = kee!/2, which approximately satisfies our requirements. This lissitated by
calculating values ofj,,(z) for = = 2n/e! andz = 4n/e!, as tabulated in Table V. In the Bessel matrices, the
argument of the spherical Bessel functiorkis. We have placed circles such thgt= n/k,, wheren is the order
of interest. Then, we haver, = n(k/ko). By choosingk, = kee'/2 gives uskr, = 2nk/(kse'). Hence, for the

lower and upper end of the octave, this argument is giveg/ie! and4n/e!, respectively. These are the values
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n | 2n/el | jn(2n/e!) | jny1(2n/el) || 4n/el | jn(4n/el) | jnyi(4n/el)
1] 07358 | 0.2322 0.0347 14715 | 0.3922 0.1233
2 | 14715 | 0.1233 0.0269 2.9430 | 0.2957 0.1466
3 | 22073 | 0.0776 0.0200 4.4146 | 0.2413 0.1542
4| 2943 | 0.0529 0.0151 5.8861 |  0.1994 0.1539
5 | 3.6788 | 0.0378 0.0115 7.3576 |  0.1628 0.1481

TABLE V: Values of the spherical Bessel functioris(z) and j,.1(z) for z = 2n/e! and z = 4n/e! which

correspond to the lower and upper end of the design frequieaicy.

as tabulated in Table V far = 1,2,...,5. In Section VI, we simulate our design to show its perforneaacer an
octave.
Note that the above explanation is true for any chosen octyerdless of the value &f. However, the physical

array has different dimensions for different octave bamatseswe place circles accordingtg = n/k, = 2n/(keel).

B. Nested array

To extend the design for few octaves, we can always desigwaangy structure for each octave and cascade
them together. Due to our choice of radjj, we can reuse some of the circular arrays with additionad@enfor
upper octaves. As an example, fob# order system, we place circles on the x-y plané/at,, 4/k,, and5/k,,
according to (14). When we extend the array for the next ectaxe can reuse the circle 2fk, as the second
circle of the new array. So the idea is to reuse existingesrébr lower frequency bands in higher octaves resulting
in a nested array. The concept of nested arrays are not newausdbeen used in literature for broadband linear

arrays [32].

VI. DESIGNEXAMPLE

We now consider an example of the spherical harmonic exbraetrray outlined in this paper. Specifically, we
design a5th order system capable of operating over a frequency barah afctave k,, 2k].

We first place three circles on the x-y planerat= 2/k,, ro = 4/k,, andrs = 5/k, according to (14) with,
11, and13 sensor wherek, = ks exp(1)/2. Using (22), five sensors are placed on the z-axis/at, 2/k,, 3/k,,
4/k,, and5/k, from the origin. Finally, we position three additional citar arrays at2/k,,7/3), (4/k.,7/3),
and (5/k,,7/6) in accordance with (33) and Table IV. The number of sensorthese parallel circles arg 11
and7, respectively. Thus, we use a total of 57 sensors for the diftler spherical harmonic extraction array. This
is not a unique design as we could have chosen a differentf strameters within the same guidelines.

Our chosen frequency band (an octave) for the simulati8a(8 Hz to 6000 Hz, however the array design and the

results are independent of the frequency band and hold fooetave. For the chosen octave,= 27 fy/c = 55.44,

SWe use two additional sensors than minimum required aacgrti sampling theorem.
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Fig. 6: Estimated harmonic coefficieats for a plane wave sweeping over entire 3D space: (a) Theatqtattern
(b) at f = 3000 Hz, SNR= 40 dB, (c) atf = 4500 Hz, SNR= 40 dB, and (d) atf = 6000 Hz, SNR= 40 dB.

where we assume the speed of sound 340 m/s. Unless stated otherwise, we apply0adB signal to noise ratio
(SNR) at each sensor, where the noise is additive white GausaAWGN).

To verify the design objectives, the array was used to estiralh 36 spherical harmonic coefficients,,,, (k)
from soundfields created by a plane wave sweeping over tlire &D space. This was performed for all frequencies
within the desired octave. The real and imaginary parte.of, (k) were plotted against the azimuth and elevation
of the sweeping plane wave for the lower, mid, and upper efdseofrequency band. As an overview, from the
36 coefficients, we only showss (k) andass(k) in Figs. 6 and 7, respectively. It is also seen that at the l@mel
upper ends of the band, the harmonic patterns get distocegbared to the theoretical value. All the coefficients
estimated from the circles on the x-y plane (i.e., even aueffts) also maintain their shape for the whole band.
There are a few higher order odd coefficients which tend talgtdrted towards the edge of the band. The distortion

at the lower end of the band is due to the signal power of thenbaic component being lower as compared to
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(b) at f = 3000 Hz, SNR= 40 dB, (c) atf = 4500 Hz, SNR= 40 dB, and (d) atf = 6000 Hz, SNR= 40 dB

the noise power, whereas the distortion at the upper endeobaimd is due to contributions from the higher order
harmonic coefficients (greater than
To accurately quantify the performance of the array, we éefiMean Squared Erro(MSE) measure as
Zp |0 (K)p — i (k) p?
Ep |otnm (k)p?

where o, (k), and a,,,,(k), are the extracted and the theoretical spherical harmorgfficients from thep

MSEm (k) = (40)

soundfield (in the example above, a plane wave soundfield fh@mpth direction), respectively. The MSE measure
of the designed hybrid circular array was calculated focaéfficients over plane wave soundfields originating from
800 different directions in 3D space and at frequency intere&f&5 Hz spanning the bandwidth ¢3000, 6000] Hz.

The results are depicted in Fig. 8a, where them)th spherical harmonic coefficient corresponds to the caeffic
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numbern? +n +m + 1 on the x-axis.

For comparison, we designed a fifth order open sphericabsemgay with 49 sensors using the guidelines given
in [10], [17]. The number of sensors needs to be a square nuimtoeder to preserve the orthogonality condition.
We use [33] to find the locations of sensors on the sphere amdcahresponding weightings to approximate
the integration in the orthonormality condition. It is ingsible to find a suitable radius for the spherical array
to extract all harmonics over an octave. We used a sphere raitlus of4 cm, which corresponds té,r =
27 x 3000 x 0.04/340 = 2.22. Note from Fig. 3, the correspondirkg range[2.22, 4.44] for the desired octave has
a Bessel zero of the zeroth order.

As for the hybrid circular array, the MSE measure (40) for #8esensor spherical array is shown in Fig. 8b.
In terms of MSE, both designs have comparable performancalifeoefficients excepf0, 0) coefficient over the
desired frequency band. The spherical array could not bd tsestimate(0,0) coefficient at some frequencies
due to a Bessel zero.

The advantage of the hybrid circular array is in the flexipiin choosing sensor locations. The fifth order hybrid
circular array design given in this section is not the onliggon. There are other sets of radii and elevation angles
that one can choose from. Additionally, the azimuth angfeasstion between sensors on the circular arrays does
not have to be uniformly spaced. Also, a small perturbat@migéometric parameters of the hybrid circular array
does not have a significant difference to the performancereas small perturbations to a spherical array destroys
the orthogonality condition.

Finally, to illustrate an application of the fifth order hydrwcircular array, we use the harmonic components to
construct a beamformer. Once a soundfield/wavefield is dposed into spherical harmonics, it is straight forward
to form beams in 3D. There are a number of references availabkhe literature [1], [3], [34], [35], which
use spherical harmonic decomposition (also termed as naetimposition) for beamformer design. A farfield
beamformer pointing to the directio(n%, éo) can be realized by a weighted addition of the spherical hartno

components of the wavefield [11], [35] as

y() =3 D" anm(®k)(i7/(20 4 1)) Pajmy (€05 00) B (J0)- (41)

n=0m=—n
We use (41) to form a farfield beamformer in the look direct@n(6y, o) = (90°,90°). The response of the
hybrid circular array is depicted in Fig. VI at (&)= 3000 Hz, (b) f = 4500 Hz, and (c)f = 6000 Hz, where the
SNR at each sensor i) dB. The beamformer maintains its look direction over thdrendctave, however there
is some degradation of the pattern at the two ends with ré$pesidelobe levels. To show the performance of the
beamformer over different SNRs, in Figure 10 we plot the oasp of the beamformer as a function of azimuth

angle¢ at different SNR levels for a plane wave impinging from a fixadvation angle = 90° at 6000 Hz.

"i.e., MSE ofar(_3) is given by the pointh? + n+m + 1 =52+ 5 — 34 1 = 28 on the x-axis.
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VIl. CONCLUSION

In this paper, we have developed a hybrid array structureetmhipose a wavefield into spherical harmonic
components. The structure consists of (i) a set of conaeaitular arrays on the x-y plane to calculate spherical
harmonic coefficientsy,,,, whenn + |m/| is even, (ii) a set of individual sensors on z-axis to calmutzefficients
ano Whenm = 0, and (iii) another set of circular arrays placed parallethte x-y plane to calculate remaining
anm Whenn + |m| is odd. The structure provides an alternative to the trawkti spherical microphone arrays to
decompose a wavefield into the spherical harmonics. Theesin work for a given frequency band of an octave
and can be extended to operate over several octaves usimgshed array concept. At a lower end of the design
band, the performance of the array may degrade due to ndesgtssfwhile at higher frequencies presence of higher
order harmonics may cause performance reduction. An egttdi@n of a circular array than the suggested design
can improve the performance at both ends of the design freyueand. We have demonstrated the application
of the method in a farfield broadband beamformer example theedesign octave, whose response is robust to a

range of sensor noise levels.
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