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Abstract

Spherical harmonic decomposition of wavefields is not only an active problem in acoustic signal processing

but also a useful tool in a plethora of applications such as 3Dbeamforming, direction of arrival estimation, and

spatial sound recording. This paper presents a novel array structure consisting of a set of parallel circular arrays of

sensors to decompose a wavefield into spherical harmonic components. The new structure presented here provides an

alternative design to the traditional spherical microphone arrays with increased flexibility on sensor locations. We use

the underlying structure of the wave propagation together with the properties of the associated Legendre functions

and the spherical Bessel functions to develop a systematic approach to place circular arrays and construct a hybrid

array. As an illustration, we design a fifth order spherical harmonic decomposition array using57 microphones to

operate over a frequency band of an octave and compare it witha spherical array. We use computer simulations to

show the performance of the array in a beamforming example.
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Spherical harmonic analysis of wavefields

using multiple circular sensor arrays

I. I NTRODUCTION

Spherical harmonic analysis of three dimensional wavefields is a useful tool in designing signal processing

algorithms for beamforming [1]–[4], source localization [5]–[7], acoustic scene analysis [8], [9], spatial soundfield

recordings [10], [11], and spatial soundfield reproduction[12]–[14]. The harmonic analysis technique can be used

to decompose an observed wavefield into spherical harmonic components by sampling the field using an array

of sensors. Whilst spherical microphone arrays [10], [11],[15], [16] have been shown to be a natural choice for

spherical harmonic decomposition, there are a number of limitations and constraints which restrict their usefulness.

Specifically, the sensor positions of spherical arrays needto meet a strict orthonormality condition resulting in limited

flexibility of array geometry. The spherical arrays also suffer from numerical ill conditioning at some frequencies.

This paper provides a non-spherical microphone array structure, with increased flexibility, for allowable sensor

locations in order to perform spherical harmonic decomposition of wavefields. The proposed array design in this

paper can not only be used in acoustic applications but also in other areas such as wireless communications.

The spherical microphone arrays are mainly based on two configurations, theopen-spherewhere microphones

are arranged on free field [10] and thehard-spherewhere microphones are arranged around a rigid sphere [11].

The open-sphere configuration with a single sphere suffers numerical ill conditioning at certain frequencies due

to zeros of the spherical Bessel functions involved [15]. This problem can be overcome by having concentric

spheres [10], [17], [18], a combination of rigid and open spheres [19], [20] and/or measurement of radial velocity

[15]. Additionally, the rigid-sphere configuration includes scattering from the sphere which can avoid numerical ill

conditioning that is associated with open-sphere configuration. However, for low frequencies, a large hard-sphere

is needed to obtain harmonic coefficients, which may not be desirable in practice. In both configurations and their

variants, the symmetry of the sphere has been used in designing the spherical harmonic decomposition algorithms.

Specifically, the orthonormality property of the sphericalharmonics is approximated by placing microphones on the

surface of a sphere. Thus, the microphone placement on the sphere needs to satisfy the orthonormality constraint

which reduces flexibility of the array geometry. There are number of recent works [16], [18] which provide optimal

and flexible placement of microphones on the sphere. However, spherical geometry is still an integral part of these

designs. A comprehensive analysis of open and rigid spherical array configurations is given in [15], which also

includes the effects of finite order, finite number of microphones, inaccuracies in the positioning of microphones,

spatial aliasing, and measurement noise.

There are large number of recent papers on the applications of spherical microphone arrays as included in

[21]–[26].
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In [27], Meyer and Elko proposed a method to extract spherical harmonic coefficients using a circular array of

microphones on the x-y plane and a microphone at the origin. This was a novel use of circular arrays as a typical

use would be to decompose a soundfield into cylindrical harmonics that are suited for height invariant 2D soundfield

analysis. Although, Meyer’s work gives some flexibility in controlling the vertical spatial response, fundamentally

a 2D array on the x-y plane is not sufficient to determine all ofthe spherical harmonic coefficients for 3D fields.

In this work, we extend from [27], to investigate the spherical harmonic decomposition of 3D soundfields and

propose a systematic way to build a 3D flexible array structure. The proposed structure consists of a set of circular

arrays placed on planes parallel to the x-y plane. The added flexibility and robustness in the structure arise from a

careful study of the underlying wave propagation theory, specifically in using properties of the associated Legendre

functions and spherical Bessel functions. A study of the underlying physics helps us to analyse the contributions

from each spherical harmonic mode from different planes andspatial locations of the array. These new insights

guide us to place sensors more appropriately and extract spherical harmonic coefficients whilst avoiding numerical

ill-conditioning. The spherical arrays suffer numerical ill conditioning, when sensors are placed in locations where

the target spherical harmonic has very little energy. However, in our design, we not only systematically avoid these

ill conditions but also provide more flexibility in placing sensors.

In Section II, we outline the theory of spherical harmonic analysis of soundfields. We inspect the underlying

structure of the received signal on a circular aperture placed parallel to the x-y plane in Section III. In Section IV,

we use the insight gained from the underlying structure to propose a hybrid array structure consisting of parallel

circular arrays and sensors on the z-axis. We show the array’s capability of operating over a frequency band of an

octave in Section V and also provide guidelines on how to extend the bandwidth for several octaves. Finally, we

present simulations of a fifth order hybrid array to verify the proposed theory and design.

II. SOUNDFIELD ANALYSIS

A. Spherical harmonic expansion

Consider a point(r, θ, φ) within a source free regionΩ, where(r, θ, φ) are the spherical coordinates with respect

to an origin located withinΩ. The soundfield at a point(r, θ, φ) ∈ Ω due to some sources outside ofΩ can be

expressed in terms of a spherical harmonic expansion [10] as

S(r, θ, φ; k) =

∞
∑

n=0

n
∑

m=−n

αnm(k)jn(kr)Ynm(θ, φ) (1)

wherem andn (≥ 0) are integers,αnm(k) are the spherical harmonic coefficients of the soundfield,k = 2πf/c

is the wavenumber,f is the frequency,c is the speed of sound,jn(·) are the spherical Bessel functions of ordern,

and

Ynm(θ, φ) =

√

2n + 1

4π

(n − |m|)!
(n + |m|)!Pn|m|(cos θ)eimφ (2)

are the spherical harmonics of ordern and degreem, which are defined in terms of the associated Legendre functions

Pn|m|(·) and the exponential functions. Knowing the soundfield over angles on a radiusr, harmonic coefficients
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Fig. 1: Magnitude of the normalized associate Legendre functions Pn|m|(cos θ) in dB whenn + |m| is even for

(n, |m|) = {(0, 0); (2, 0); (1, 1); (2, 2); (3, 1); (3, 3)}.

can be calculated using

αnm(k) =
1

jn(kr)

∫ 2π

0

∫ π

0

S(r, θ, φ; k)Y ∗
nm(θ, φ) sin θdθdφ (3)

providedjn(kr) 6= 0. For convenience, we express (1) as

S(r, θ, φ; k) =

∞
∑

n=0

n
∑

m=−n

αnm(k)jn(kr)Pn|m|(cos θ)Em(φ) (4)

whereEm(φ) , (1/
√

2π)eimφ is the normalized exponential function and

Pn|m|(cos θ) ,

√

2n + 1

2

√

(n − |m|)!
(n + |m|)!Pn|m|(cos θ) (5)

is the normalized associated Legendre function. The functions Em(φ) andPn|m|(cos θ) form orthonormal basis

sets in azimuthφ ∈ [0, 2π) and elevationθ ∈ [0, π], respectively. The first few normalized associated Legendre

functions are illustrated in Figs. 1 and 2. In this paper, we use (4) intuitively to illustrate and design a new array

structure to decompose a soundfield into spherical harmoniccomponents.

B. Truncation

Representation (4) has an infinite number of terms. However,we can truncate this series expansion to a finite

number within a given region of interest due to the properties of the Bessel functions (see Fig. 3) and the fact that
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Fig. 2: Magnitude of the normalized associate Legendre functions Pn|m|(cos θ) in dB whenn + |m| is odd for

(n, |m|) = {(1, 0); (2, 1); (3, 0); (3, 2)}.

the soundfield has to be bounded within a spatial region whereall sources are outside [28]. LetR be the radius of

the spherical region of interest, then the soundfield insidethis sphere can be represented by (4) with summation

over n truncated to

N = ⌈e1kR/2⌉ (6)

terms [29] with error in truncation equal to less than67%. Another common rule of thumb for truncation [30, p.

150] of (4) is to useN = ⌈kR⌉. Note that truncation is directly related to the spherical Bessel functionjn(·) that

has a negligible (≈ 0) magnitude for arguments that are less than the ordern.

C. Soundfield Coefficients

Since we are interested in the soundfield that is restricted to a finite region, then the resulting coefficients of

interest are only from the first(N +1) terms. In this case, we can observe from (4) that there are total of (N +1)2

coefficients to be determined, which are shown in Table 1 for order n = 0 . . .N and degreem = −n . . . n.

The soundfield coefficientsαnm(k) can be estimated by sampling the space using an array of sensors. Spherical

microphone arrays approximate the analysis equation (3) bya sum of samples of signal taken over the spherical

surface to perform this task [10]. However, there are known limitations of spherical arrays [15] such as the strict

orthogonality condition and inflexibility with the sensor geometry. In this paper we develop an alternative array
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m�n 0 1 2 . . . N

N αNN

...

2 α22

...

1 α11 α21

m = 0 α00 α10 α20 . . . αN0

−1 α1(−1) α2(−1)

−2 α2(−2)

...
...

...

−N αN(−N)

TABLE I: Soundfield coefficients arranged with ordern and degreem. For anth order spherical harmonic system

there are(N + 1)2 coefficients to be determined.
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Fig. 3: Magnitude of the spherical Bessel functionsjn(kr) of order n = 0, 1, 2, 3, 4, and 5 in dB showing the

characteristics as a function of the argument.

structure to estimate the soundfield coefficients.

III. C IRCULAR APERTURE

In this section, we investigate the soundfield on circles that are parallel to the x-y plane.
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A. Azimuth Harmonics

Let S(rq, θq, φ; k) be the the soundfield on a circle given byθ = θq andr = rq.

We use (4) to write

S(rq, θq, φ; k) =

N
∑

n=0

n
∑

m=−n

αnm(k)jn(krq)Pn|m|(cos θq)Em(φ) (7)

whereN = ⌈ke1rq/2⌉ is from the natural truncation property (see Section II-B).We multiply (7) byE−m(φ) and

integrate with respect toφ over [0, 2π) to get

am(rq, θq, k) =

N
∑

n=|m|

αnm(k)jn(krq)Pn|m|(cos θq) (8)

where

am(rq, θq, k) ,

∫ 2π

0

S(rq, θq, φ; k)E−m(φ)dφ. (9)

Note that the right hand side of (8) is a weighted sum of soundfield coefficientsαnm(k) for a givenm along a

row in Table 1.

The equation (8) can also be evaluated form = −N, . . . , N , where the truncation numberN is dependent on

the radiusrq of the circle. Also, for a given circle(rq, θq), contribution from some of the spherical harmonic

components could be zero if eitherjn(krq) = 0 or Pn|m|(cos θq) = 0. This is clear from Figures 1 and 2, which

plot the magnitude of the normalized associated Legendre functionsPn|m|(cos θ) in dBs. Hence, we have to be

careful while using (8) for coefficient calculations. That leads us to the the main contribution of this paper, which

is to show how to extract spherical harmonic coefficientsαnm(k) by exploiting (8) from a number of carefully

placed circles on different(rq, θq) using the properties of the spherical Bessel functions (Fig. 3) and the associated

Legendre functions.

B. Sampling of circles

Until now we have assumed that the soundfield is known at all points on a given circular aperture. In practice, we

can not obtain the soundfield at every point on these circles.In this section, we show how to only use samples of

the soundfield on these circles, which enable us to provide design guidelines in order to build practical microphone

arrays.

Consider a circular aperture at(rq, θq). To evaluate the integral in (8), we replace the integral with a summation

because in practice only a finite number of samples ofS(rq, θq, φ; k) can be obtained. Recall that due to natural

truncation (see Section II-B), at a radius ofrq the field is limited toNq = ⌈kerq/2⌉ orders. Thus, the maximum mode

m involved isNq and,S(rq, θq, φ; k) is mode limited toNq, i.e., it contains terms withejmφ with m = −Nq, . . . , Nq.

According to Shannon’s sampling theorem for periodic functions,S(rq, θq, φ; k) can be reconstructed by its samples

over [0, 2π] with at least(2Nq + 1) samples. Hence, we approximate the integral in (9) by a summation:

am(rq , θq, k) ≈ 2π

Vq

Vq
∑

v=1

S(rq, θq, φv; k)E−m(φv), (10)
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whereVq ≥ (2Nq + 1) are the number of sampling points1 on the circle(rq, θq).

C. Uninspired Least Squares

Suppose that our goal is to design anN th order microphone array, then we need to estimate(N + 1)2 spherical

harmonic coefficients. To calculate these coefficients, letthere beQ ≥ (N + 1) circles of microphones located on

planes given by(rq, θq), q = 1, . . . , Q. Now, for a particular value ofm, we write (8) for all the applicable circles,

and obtain a set of simultaneous equations given by

Jmαm = am, for m = −N, . . . , N (11)

where

Jm =















j|m|(kr1)P|m||m|(cos θ1) · · · jN (kr1)PN |m|(cos θ1)

...
. . .

...

j|m|(krQ)P|m||m|(cos θQ) · · · jN (krQ)PN |m|(cos θQ)















, (12)

αm = [α|m|m, α(|m|+1)m, . . . , αNm]T , andam = [a1m, . . . , aQm]T .

The harmonic coefficientsαm can be calculated by solving the system of linear equations described by (11)

for eachm. Since there will be noise in any measurement, it is necessary to solve (11) in the least squares sense

by setting up an over determined system, i.e., number of active circles2 being greater thanN − |m|. If (rq, θq),

q = 1, . . . , Q are chosen such thatJm has a valid Moore-Penrose inverseJ
+
m, thenαm can be calculated for each

m by solving (11) in the least squares sense as

αm = J
+
mam. (13)

However, if we choose(rq, θq) arbitrarily there could be a number of singularities in (12). In Section IV, we

sample the 3D space by circlesto avoid these ill conditions, where we exploit the underlying structure of the wave

propagation rather than relying on the ability of the least squares. That is, we propose a set of rules, and guidelines

to place circles in 3D space to avoid singularities.

D. Insight into harmonic structure

Firstly, by inspecting (8) for specific values of(rq , φq) andm,

we find that for a single sensor at the origin, i.e(rq, φq) = (0, 0), the only available mode ism = 0. Hence, we

can obtainα00(k) from a single measurement at the origin by

α00(k) = a0(0, θ, k)/P0|0|(cos θ) =
√

2a0(0, θ, k),

1Note that we can use non-uniform samples on the circles as long as the separation between any two samples are less than the maximum

separation required for the Shannon sampling theorem.

2There are specific harmonic components present on these circles.
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Fig. 4: An example circular array structure for third order spherical harmonic decomposition.

sinceP0|0|(cos θ) = 1/
√

2.

Secondly, whenθ = π/2, Pn|m|(cos(π/2)) = 0 if n+ |m| is odd. This can be seen from Fig. 2, which depicts the

normalized associated Legendre functions up to order 3 for odd n + |m| values. Note that from Fig. 1, forn + |m|
even values, the normalized associated Legendre functionshave local maxima atθ = π/2. Thus, the corresponding

harmonic component do not greatly attenuate at or aroundθ = π/2.

Thirdly, whenθ = 0, or π, the normalized associated Legendre functions have the property,

Pn|m|(cos{0, π}) = Pn|m|(±1)















= 0, if m 6= 0,

6= 0, if m = 0.

Therefore, for points atθ = 0 andπ, i.e., on the z-axis, the soundfield only contains the components fromm = 0

spherical harmonics.

These are some of the useful properties that we can observe from (8) using the characteristics of the spherical

Bessel functions (Fig. 3), and the normalized associated Legendre functions (Figures 1 and 2). In the next section,

we use these properties to construct a 3D array structure forestimating spherical harmonic coefficients of spatial

soundfields.
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N Total number of coefficients n + |m| even n + |m| odd

0 1 1 0

1 4 3 1

2 9 6 3

3 16 10 6

4 25 15 10

5 36 21 15

N (N + 1)2
(N+1)(N+2)

2
N(N+1)

2

TABLE II: List of number of coefficients forn + |m| even and odd for a givenN th order spherical harmonic

system.

IV. H YBRID ARRAY OF CIRCLES

In section III-D, we showed that the soundfield coefficientsαnm(k), whenn+ |m| is odd, have zero contribution

to the field on the x-y plane, whereas all coefficientsαnm(k), when n + |m| is even, always have non zero

contributions to the soundfield on the x-y plane. For the restof the paper, we referαnm(k) with n + |m| even and

odd aseven coefficientsandodd coefficients, respectively. Table II lists the number of even and odd coefficients in

a given system with harmonic coeffcients up to theN th order. It is clear that for a given orderN , there are more

even coefficients than odd coefficients. In the following subsection, we give guidelines on how to place a set of

circles on the x-y plane to calculate all even coefficients upto the required orderN .

A. Circles on the x-y plane: Even coefficients

Our first circle on the x-y plane is a circle of zero radius, i.e., a sensor at the origin, to estimateα00. For aN th

order system, we place anotherN/2 (whenN is even) or(N + 1)/2 (whenN is odd) circles on the x-y plane.

Based on the properties of the Bessel functions, we choose the radii of these circles as

rq =
2

ko

,
4

ko

, . . . ,
N

ko

, for q = 1, . . ., (14)

whereko is a carefully chosen frequency3 within the desired frequency band, i.e.,ko ∈ [kℓ, ku], wherekℓ andku

are the lower and upper frequency band limits, respectively.

With this choice, the soundfield at a frequencyk on a circle of radiusrq is order limited (see (6)) to

Nq(k) =















⌈Ne1(k/ko)⌉ if q = N/2 or (N + 1)/2,

⌈2qe1(k/ko)⌉ otherwise.

(15)

This property limits the higher order components of the soundfield present at a particular radiusrq. Also, the lower

order components are guaranteed to be present due to the choice of radii in (14) which avoids the Bessel zeros. In

Section V, we show how (14) is useful for operation of the array over a broadband of frequencies.

3We chooseko such that the array can work over a frequency band of an octave. We discuss broadband operation of the array in Section V.
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When we evaluate (8) for the circles on the x-y plane, we get a set of a simultaneous system of equations similar

to (11) as

J
e
mα

e
m = am, for m = −N, . . . , N (16)

where

J
e
m =















j|m|(kr1)P|m||m|(0) j|m|+2(kr1)P(|m|+2)|m|(0) · · · jN (kr1)PN |m|(0)

...
. . .

...

j|m|(krN )P|m||m|(0) j|m|+2(krN )P(|m|+2)|m|(0) · · · jN (krN )PN |m|(0)















, (17)

α
e
m = [α|m|m, α(|m|+2)m, . . . , αNm]T , (18)

and

am = [am(r1, π/2, k), am(r2, π/2, k), . . . , am(rQ, π/2, k)]T . (19)

The last column of (17), and the last term of (18) are for a system when bothN and |m| are either even or odd

integers. Otherwise,N in the corresponding terms should be replaced byN − 1.

Suppose the highest orderN of the system is odd, then the matrixJe
m (17) becomes close to a lower triangular

matrix, this is due to the choice of radiirq given by (14). The constraint in (14) forces the higher orderharmonic

contributions on smaller radii circles to be negligible. Thus, the magnitude of elements in each row of (17) rapidly

goes to zero after the diagonal element. Along with the constraint in (14), we also know thatPn|m|(0) 6= 0 in (17).

Both of these conditions ensure that there is at least one nonzero element in each row of (17), thereby making (17)

always non singular unlike (12). Also, if the number of circles is equal to the number of unknown even coefficients,

then we can solve (16) exactly

α
e
m = (Je

m)
−1

am (20)

where(Je
m)

−1 is the inverse ofJe
m.

For the case whenN is odd andm = N , (11) reduces to a single equation with one unknownαNN . However,

if we use this equation alone to calculateαNN , there may be errors involved as there could be some contribution

from α(N+2)N .

To improve the accuracy of the calculation, we can include anadditional circle after the last circle and include

the next higher order even coefficient in the equation (whichwe can discard once calculated).

Lastly, whenm = 0, we can modify (8) as

a0(rn, π/2, k) − α00(k)j0(krn)P0|0|(0) =
N

∑

n=1

αn0(k)jn(krq)Pn|0|(0) (21)

sinceα00(k) is known from the sensor at the origin. Now we can modify (16) accordingly. Alternatively, we can

include the sensor at the origin as a circle in (16). Then the first row of (17) would be[1/
√

2, 0, 0, . . .].
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B. Sampling on z-axis

In the previous section, we showed how to calculate even coefficients from circles on the x-y plane. In this

section, we use another property of the associated Legendrefunctions, i.e., all the points on the z-axis only contain

m = 0 coefficients, i.e,Pn|m|(±1) = 0 for m 6= 0. Therefore, by placing sensors on the z-axis, we can estimate

the coefficientsαn0, for n = 1, 3, 5, · · · . Note thatαn0, for n = 0, 2, 4, · · · could be estimated from circles on the

x-y plane (see Section IV-A).

For aN th order system (N odd), we place sensors on the z-axis at

rzq =
q

ko

for q = 1, 2, . . . , N. (22)

Similar to (14), the above constraint limits the presence ofhigher order harmonics in the signal received at sensors

closer to the origin.

For a sensor at(rzq, 0), we can write (8) as

a0(rzq, 0, k) =

N
∑

n=0

αn0(k)jn(krzq)Pn|0|(cos 0). (23)

Using (5) and [31, p. 688], we obtain4

Pn|0|(cos 0) =

√

2n + 1

2
Pn|0|(1)

=

√

2n + 1

2
. (24)

Sinceαn0 for even orders can be calculated from the procedure in Section IV-A, using (24), we write (23) as

N
∑

n=1, odd n

αn0(k)

√

2n + 1

2
jn(krzq) = a0(rzq, 0, k) −

N
∑

n=0, evenn

αn0(k)

√

2n + 1

2
jn(krzq). (25)

By evaluating (25) for sensors at(rzq, 0) for q = 1, 2, . . . , N , we have the following system of equations

J
z,o
0 α

o
0 = a

z
0 − J

z,e
0 α

e
0, (26)

where

J
z,o
0 =















j1(krz1)
√

3/2) j3(krz1)
√

7/2) · · · jN (krz1)
√

(2N + 1)/2)

...
. . .

...

j1(krzN)
√

3/2) j3(krzN )
√

7/2) · · · jN (krzN )
√

(2N + 1)/2)















, (27)

J
z,e
0 =















j0(krz1)
√

1/2) j2(krz1)
√

5/2) · · · jN−1(krz1)
√

(2N − 1)/2)

...
. . .

...

j0(krzN )
√

1/2) j2(krzN )
√

5/2) · · · jN (krzN )
√

(2N − 1)/2)















, (28)

α
o
0 = [α10, α30, . . . , αN0]

T , (29)

4Note that for a sensor at(rzq, π), Pn|0|(cos π) = Pn|0|(−1) = (−1)n.
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N Total number Number Number Number from

of coefficients from x-y plane from z-axis parallel planes

0 1 1 0 0

1 4 3 1 0

2 9 6 1 2

3 16 10 2 4

4 25 15 2 8

5 36 21 3 12

N (N + 1)2
(N+1)(N+2)

2
N
2

or N+1
2

N2

2
or N2−1

2

TABLE III: This table lists the number of coefficients that can be calculated from (i) circles on the x-y plane, (ii)

sensors on the z-axis, and (iii) from parallel planes to the x-y plane.

a
z
0 = [a0(rz1, 0, k), a0(rz2, 0, k), . . . , a0(rzN , 0, k)]T , (30)

and

α
e
0 = [α00, α20, . . . , α(N−1)0]

T . (31)

Equation (26) can be solved in the least squares sense to obtain

α
o
0 = J

z,o
0

+
a

z
0 − J

z,o
0

+
J

z,e
0 α

e
0 (32)

whereJ
z,o
0

+ is the Moore-Penrose inverse ofJ
z,o
0 .

C. Circles on parallel planes: Estimating odd coefficients

So far we have shown how to estimate even spherical harmonicsfrom the x-y plane and odd harmonics with

m = 0 from the sensors on the z-axis. To reiterate, for aN th order system, we have estimated(N + 1)(N + 2)/2

even coefficients from the x-y plane, andN/2 (evenN ) or (N + 1)/2 coefficients from the z-axis (see Table III).

Now, we are left withN2/2 (for evenN ) or (N2 − 1)/2 (for odd N ) coefficients to be calculated, which we do

using circles placed parallel to the x-y plane.

It is clear from Table III that we need to have one or more parallel circles for second and higher order systems.

We carefully check the patterns of the normalized associateLegendre functions to determine possible values forθoq,

such that the contribution of odd harmonics is sufficient andnon-zero. Figure 5 depictsPn|m|(cos θ) for n + |m|
odd when (a)n−|m| = 1 and (b)n−|m| = 3. It is evident from these plots that there are clear patternsdepending

on the difference betweenn and|m|. Based on these figures, one can choose suitable values ofθoq to place circles

to calculate the remaining odd harmonics. Suggested range of values for θoq are given in the Table IV, which

guarantee existence of harmonic contributions of unknown coefficients at these circles.

After choosingθoq, we need appropriate values forroq to limit the higher order harmonic contribution on a given
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Fig. 5: Magnitude of the normalized associate Legendre functionsPn|m|(cos θ) in dB (a) whenn − |m| = 1 and

(b) whenn − |m| = 3.
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n − |m| Range ofθoq (n, |m|)

1 50◦ − 65◦ and115◦ − 130◦ (2, 1), (3, 2),

(4, 3), (5, 4), . . .

3 20◦ − 635◦, 68◦ − 72◦, (4, 1), (5, 2), . . .

108◦ − 112◦ and145◦ − 160◦

5 72◦ − 83◦, 45◦ − 50◦, (6, 1), (7, 2),

11◦ − 21◦ , 97◦ − 108◦, (8, 3), . . .

130◦ − 135◦, and159◦ − 169◦

TABLE IV: Possible values forθoq to place parallel circles to calculate the odd harmonic coefficients form 6= 0.

circle. Thus, we choose5

roq =
n

ko

, (33)

wheren is the maximum harmonic order targeted to be extracted from the circle andko is the same as for (14)

and (22).

Since we use the methods in Sections IV-A and IV-B to calculate even andm = 0 coefficients, respectively, we

can write (8) as

N
∑

n=|m|
odd n + |m|

αnm(k)jn(kroq)Pn|m|(cos θoq) = am(roq, θoq, k) −
N

∑

n=|m|
evenn + |m|

αnm(k)jn(kroq)Pn|m|(cos θoq) (34)

for m = −N, . . . , N andm 6= 0. By evaluating (34) forq = 1, 2, . . . we obtain

J
o
mα

o
m = am − Ĵ

e
mα

e
m, (35)

where

J
o
m =















j|m|+1(kro1)P(|m|+1)|m|(cos θo1) j|m|+3(kro1)P(|m|+3)|m|(cos θo1) · · · jN (kro1)P(N−1)|m|(cos θo1)

...
. . .

...

j|m|+1(kroQ)P(|m|+1)|m|(cos θoQ) j|m|+3(kroQ)P(|m|+3)|m|(cos θoQ) · · · jN (kroQ)P(N−1)|m|(cos θoQ)















,

(36)

Ĵ
e
m =















j|m|(kro1)P|m||m|(cos θo1) j|m|+2(kro1)P(|m|+2)|m|(cos θo1) · · · jN (kro1)PN |m|(cos θo1)

...
. . .

...

j|m|(kroQ)P|m||m|(cos θoQ) j|m|+2(kroQ)P(|m|+2)|m|(cos θoQ) · · · jN (kroQ)PN |m|(cos θoQ)















,

(37)

α
o
m = [α(|m|+1)m, α(|m|+3)m, . . . , α(N−1)m]T , (38)

α
e
m = [α(|m|)m, α(|m|+2)m, . . . , αNm]T , and

am = [am(ro1, θo1, k), am(ro2, θo2, k), . . . , am(roQ, θoQ, k)]T . (39)

5This is a guide only. The exact design values of radii can be around the suggested quantities.

November 16, 2009 DRAFT



SUBMISSION TO IEEE TRAN. AUDIO, SPEECH & LANGUAGE PROCESSING, NOVEMBER 16, 2009 15

It can be seen that for a second order system (N = 2), only 2 coefficients (α21, andα2(−1)) need to be determined

from this method. An appropriately placed circle is sufficient to calculate these two coefficients. For both of these

coefficientsn− |m| = 1. Hence, from Table IV,θo1 can be selected. Since the maximumn is 2, ro1 = 2/ko is the

appropriate radial distance to the circle.

Whereas, for a fifth order system (N = 5), there are12 odd coefficients to be estimated from parallel circles.

There are two sets ofn− |m| values that are involved: (i)n− |m| = 1 and (ii) n− |m| = 3. Thus, we can choose

θo1 andθo2 according to Table IV. Since the maxima forn involved are4 and5, we can choosero1 = 4/ko and

ro2 = 5/ko, respectively.

In this section, we have provided guidelines on how to estimate spherical harmonic coefficients by multiple circular

sensor arrays placed on and parallel to the x-y plane, and sensors on the z-axis. However, we have commented little

on the array performance over a desired band of frequencies.In the next section, we will show that by suitably

settingko, we can make the array operate for a range of frequencies overan octave.

V. BROADBAND PERFORMANCE

The spherical harmonic decomposition method proposed in this paper is reliant on constructing matricesJ
e,

J
z,o, andJ

o by appropriately placing circular arrays on and parallel tothe x-y plane. We call these matricesBessel

matrices. The performance of the system is dependent on the non-singular nature of the Bessel matrices. Until now,

we choseθq and rq such that Bessel matrices are closer to lower triangular matrices and thus are non singular.

However, these matrices are also dependent on the operatingfrequency.

In the following subsection, we choose the design parameterko such that the design can work over a band of

an octave. In subsection V-B, we show how to extend the array to work over several octaves by using the nested

array concept.

A. Design over an octave

Let [kℓ, 2kℓ] be the desired frequency band of an octave. Recall that in theprevious sections, we chose different

radii rq to place circles which were in terms of a parameterko. The challenge is to chooseko ∈ [kℓ, 2kℓ] such that

we can preserve the desirable properties of the Bessel matrices over the frequency band[kℓ, 2kℓ]. That is for any

k ∈ [kℓ, 2kℓ], each of the Bessel matrix is non singular and closer to a lower triangular matrix. In other words, we

need to consider a range of values, for which the spherical Bessel function of a given order has sufficient amplitude

greater than the noise threshold, but the the subsequent spherical Bessel functions do not.

In this paper, we chooseko = kℓe
1/2, which approximately satisfies our requirements. This is illustrated by

calculating values ofjn(z) for z = 2n/e1 and z = 4n/e1, as tabulated in Table V. In the Bessel matrices, the

argument of the spherical Bessel function iskrq. We have placed circles such thatrq = n/ko, wheren is the order

of interest. Then, we havekrq = n(k/k0). By choosingko = kℓe
1/2 gives uskrq = 2nk/(kℓe

1). Hence, for the

lower and upper end of the octave, this argument is given by2n/e1 and4n/e1, respectively. These are the values
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n 2n/e1 jn(2n/e1) jn+1(2n/e1) 4n/e1 jn(4n/e1) jn+1(4n/e1)

1 0.7358 0.2322 0.0347 1.4715 0.3922 0.1233

2 1.4715 0.1233 0.0269 2.9430 0.2957 0.1466

3 2.2073 0.0776 0.0200 4.4146 0.2413 0.1542

4 2.943 0.0529 0.0151 5.8861 0.1994 0.1539

5 3.6788 0.0378 0.0115 7.3576 0.1628 0.1481

TABLE V: Values of the spherical Bessel functionsjn(z) and jn+1(z) for z = 2n/e1 and z = 4n/e1 which

correspond to the lower and upper end of the design frequencyband.

as tabulated in Table V forn = 1, 2, . . . , 5. In Section VI, we simulate our design to show its performance over an

octave.

Note that the above explanation is true for any chosen octaveregardless of the value ofkℓ. However, the physical

array has different dimensions for different octave bands since we place circles according torq = n/ko = 2n/(kℓe
1).

B. Nested array

To extend the design for few octaves, we can always design a new array structure for each octave and cascade

them together. Due to our choice of radiirq , we can reuse some of the circular arrays with additional sensors for

upper octaves. As an example, for a5th order system, we place circles on the x-y plane at2/ko, 4/ko, and5/ko,

according to (14). When we extend the array for the next octave, we can reuse the circle at2/ko as the second

circle of the new array. So the idea is to reuse existing circles for lower frequency bands in higher octaves resulting

in a nested array. The concept of nested arrays are not new andhave been used in literature for broadband linear

arrays [32].

VI. D ESIGN EXAMPLE

We now consider an example of the spherical harmonic extraction array outlined in this paper. Specifically, we

design a5th order system capable of operating over a frequency band ofan octave[kℓ, 2kℓ].

We first place three circles on the x-y plane atr1 = 2/ko, r2 = 4/ko, andr3 = 5/ko according to (14) with7,

11, and13 sensors6, whereko = kℓ exp(1)/2. Using (22), five sensors are placed on the z-axis at1/ko, 2/ko, 3/ko,

4/ko, and5/ko from the origin. Finally, we position three additional circular arrays at(2/ko, π/3), (4/ko, π/3),

and (5/ko, π/6) in accordance with (33) and Table IV. The number of sensors onthese parallel circles are3, 11

and7, respectively. Thus, we use a total of 57 sensors for the fifthorder spherical harmonic extraction array. This

is not a unique design as we could have chosen a different set of parameters within the same guidelines.

Our chosen frequency band (an octave) for the simulation is3000 Hz to6000 Hz, however the array design and the

results are independent of the frequency band and hold for any octave. For the chosen octave,kℓ = 2πfℓ/c = 55.44,

6We use two additional sensors than minimum required according to sampling theorem.
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Fig. 6: Estimated harmonic coefficientα55 for a plane wave sweeping over entire 3D space: (a) Theoretical pattern

(b) at f = 3000 Hz, SNR= 40 dB, (c) atf = 4500 Hz, SNR= 40 dB, and (d) atf = 6000 Hz, SNR= 40 dB.

where we assume the speed of soundc = 340 m/s. Unless stated otherwise, we apply a40 dB signal to noise ratio

(SNR) at each sensor, where the noise is additive white Gaussian (AWGN).

To verify the design objectives, the array was used to estimate all 36 spherical harmonic coefficientsαnm(k)

from soundfields created by a plane wave sweeping over the entire 3D space. This was performed for all frequencies

within the desired octave. The real and imaginary parts ofαnm(k) were plotted against the azimuth and elevation

of the sweeping plane wave for the lower, mid, and upper ends of the frequency band. As an overview, from the

36 coefficients, we only showα55(k) andα53(k) in Figs. 6 and 7, respectively. It is also seen that at the lower and

upper ends of the band, the harmonic patterns get distorted compared to the theoretical value. All the coefficients

estimated from the circles on the x-y plane (i.e., even coefficients) also maintain their shape for the whole band.

There are a few higher order odd coefficients which tend to getdistorted towards the edge of the band. The distortion

at the lower end of the band is due to the signal power of the harmonic component being lower as compared to
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Fig. 7: Estimated harmonic coefficientα53 for a plane wave sweeping over entire 3D space: (a) Theoretical pattern

(b) at f = 3000 Hz, SNR= 40 dB, (c) atf = 4500 Hz, SNR= 40 dB, and (d) atf = 6000 Hz, SNR= 40 dB

the noise power, whereas the distortion at the upper end of the band is due to contributions from the higher order

harmonic coefficients (greater than5).

To accurately quantify the performance of the array, we define aMean Squared Error(MSE) measure as

MSEnm(k) =

√

∑

p |αe
nm(k)p − αnm(k)p|2
∑

p |αnm(k)p|2
(40)

where αe
nm(k)p and αnm(k)p are the extracted and the theoretical spherical harmonic coefficients from thep

soundfield (in the example above, a plane wave soundfield fromthepth direction), respectively. The MSE measure

of the designed hybrid circular array was calculated for allcoefficients over plane wave soundfields originating from

800 different directions in 3D space and at frequency intervalsof 25 Hz spanning the bandwidth of[3000, 6000] Hz.

The results are depicted in Fig. 8a, where the(n, m)th spherical harmonic coefficient corresponds to the coefficient
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numbern2 + n + m + 1 on the x-axis7.

For comparison, we designed a fifth order open spherical sensor array with 49 sensors using the guidelines given

in [10], [17]. The number of sensors needs to be a square number in order to preserve the orthogonality condition.

We use [33] to find the locations of sensors on the sphere and the corresponding weightings to approximate

the integration in the orthonormality condition. It is impossible to find a suitable radius for the spherical array

to extract all harmonics over an octave. We used a sphere withradius of 4 cm, which corresponds tokℓr =

2π× 3000× 0.04/340 = 2.22. Note from Fig. 3, the correspondingkr range[2.22, 4.44] for the desired octave has

a Bessel zero of the zeroth order.

As for the hybrid circular array, the MSE measure (40) for the49 sensor spherical array is shown in Fig. 8b.

In terms of MSE, both designs have comparable performance for all coefficients except(0, 0) coefficient over the

desired frequency band. The spherical array could not be used to estimate(0, 0) coefficient at some frequencies

due to a Bessel zero.

The advantage of the hybrid circular array is in the flexibility in choosing sensor locations. The fifth order hybrid

circular array design given in this section is not the only solution. There are other sets of radii and elevation angles

that one can choose from. Additionally, the azimuth angle separation between sensors on the circular arrays does

not have to be uniformly spaced. Also, a small perturbation to geometric parameters of the hybrid circular array

does not have a significant difference to the performance, whereas small perturbations to a spherical array destroys

the orthogonality condition.

Finally, to illustrate an application of the fifth order hybrid circular array, we use the harmonic components to

construct a beamformer. Once a soundfield/wavefield is decomposed into spherical harmonics, it is straight forward

to form beams in 3D. There are a number of references available in the literature [1], [3], [34], [35], which

use spherical harmonic decomposition (also termed as modaldecomposition) for beamformer design. A farfield

beamformer pointing to the direction(θ̂0, φ̂0) can be realized by a weighted addition of the spherical harmonic

components of the wavefield [11], [35] as

y(k) =

∞
∑

n=0

n
∑

m=−n

αnm(k)
(

i−n/(2n + 1)
)

Pn|m|(cos θ̂0)Em(φ̂0). (41)

We use (41) to form a farfield beamformer in the look directionof (θ0, φ0) ≡ (90◦, 90◦). The response of the

hybrid circular array is depicted in Fig. VI at (a)f = 3000 Hz, (b) f = 4500 Hz, and (c)f = 6000 Hz, where the

SNR at each sensor is40 dB. The beamformer maintains its look direction over the entire octave, however there

is some degradation of the pattern at the two ends with respect to sidelobe levels. To show the performance of the

beamformer over different SNRs, in Figure 10 we plot the response of the beamformer as a function of azimuth

angleφ at different SNR levels for a plane wave impinging from a fixedelevation angleθ = 90◦ at 6000 Hz.

7i.e., MSE ofα5(−3) is given by the pointn2 + n + m + 1 = 52 + 5 − 3 + 1 = 28 on the x-axis.
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VII. C ONCLUSION

In this paper, we have developed a hybrid array structure to decompose a wavefield into spherical harmonic

components. The structure consists of (i) a set of concentric circular arrays on the x-y plane to calculate spherical

harmonic coefficientsαnm whenn + |m| is even, (ii) a set of individual sensors on z-axis to calculate coefficients

αn0 when m = 0, and (iii) another set of circular arrays placed parallel tothe x-y plane to calculate remaining

αnm whenn + |m| is odd. The structure provides an alternative to the traditional spherical microphone arrays to

decompose a wavefield into the spherical harmonics. The design can work for a given frequency band of an octave

and can be extended to operate over several octaves using thenested array concept. At a lower end of the design

band, the performance of the array may degrade due to noise effects, while at higher frequencies presence of higher

order harmonics may cause performance reduction. An extra addition of a circular array than the suggested design

can improve the performance at both ends of the design frequency band. We have demonstrated the application

of the method in a farfield broadband beamformer example overthe design octave, whose response is robust to a

range of sensor noise levels.
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Fig. 8: The Mean Square Error (MSE) performance measure (40)of the 5th order (a) hybrid circular array (b)

spherical array. The soundfields were from plane waves originating from800 different directions in 3D space and

at frequency intervals of25 Hz spanning the bandwidth of[3000, 6000] Hz. The coefficient numbern2 +n+m+1

on the x-axis represents(n, m) harmonic coefficient.
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Fig. 9: Response of the fifth order beamformer design in Section VI at (a) f = 3000, (b) f = 4500, and (c)

f = 6000 Hz for SNR= 40 dB with look direction(90◦, 90◦).November 16, 2009 DRAFT
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Fig. 10: Response of the fifth order beamformer at SNR =40 dB, 20 dB, and10 dB, f = 6000 Hz, and the look

direction(90◦, 90◦).
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