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Abstract

We study the dimensions or degrees of freedom of farfield ipath that is observed in a
limited, source-free region of space. The multipath fields studied as solutions to the wave
equation in an infinite-dimensional vector space. We prove tiniversal upper bounds on the
truncation error of fixed and random multipath fields. A direensequence of the derived bounds
is that both fixed and random multipath fields have an effecfimite dimension. For circular
and spherical spatial regions, we show that this finite dsiwnis proportional to the radius and
area of the region, respectively. We use the Karhunen-L{€lEexpansion of random multipath
fields to quantify the notion of multipath richness. The npath richness is defined as the number
of significant eigenvalues in the KL expansion that achie3@% of the total multipath energy.
We prove a lower bound on the largest eigenvalue. This lowend quantifies, to some extent,
the well-known reduction of multipath richness with redugithe angular spread of multipath
angular power spectrum. We also provide a numerical algorito find multipath eigenvalues,

which unlike the Fredholm equation method, does not recgétecting quadrature points.
EDICS: SPC-CMOD, SSP-APPL, MSP-CMOD.
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*Parastoo Sadeghi is the contact author for this paper.
t Thushara Abhayapala and Rodney Kennedy are also associated wittatioeal ICT Australia (NICTA). Haley
Jones is now with the Department of Engineering, Faculty of Engineeridgrdormation Technology, The Australian

National University, Canberra ACT 0200, Australia.



LIST OFACRONYMS

2D Two-Dimensional

3D Three-Dimensional

APS Angular Power Spectrum

KL Karhunen-Loeve

MSE Mean Square Error

MMSE Minimum Mean Square Error
PDE Partial Differential Equation
SCF Spatial Correlation Function

. INTRODUCTION
A. Motivation and Background

Wireless communications uspaceas the physical medium for information transfer. The trans-
mitted signal is often received via multiple paths due to o#ith®, diffraction, and scattering by
objects in the wireless environment [1]. Using the spats&dezts of multipath is an increasingly
active thread of research in wireless communications agbbiprocessing [2]-[4]. This motivates
studying the fundamental physical limits that space impase the dynamics of multipath wave
propagation and wireless information transfer.

The primary aim of this paper is to find the intrinsic limits oretdimensions or degrees of
freedom for multipath fields when they are observed in, or mipo a source-free region of
space. This region of space is where multiple sensors may temtiily located to sample the
multipath field for signal processing or communication pwg® However, our aim is to find
universal bounds on multipath dimension without explcitbnsidering a specific sensor setup or
application and hence, to show that the coupling of multipato a spatial region is fundamentally
limited by a finite number of orthogonal basis sets or modes.

In this paper we also aim to define spatial multipath richng&b® predicted benefits of using
spatial multipath in multiple-sensor wireless communaa usually hinges on the imprecise

assumption ofrich multipath [5]-[7] or having a rich scattering environment. Howeveghr
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multipath needs to be mathematically quantified based on yim@ndics of the multipath field
random process and the wave equation. More specifically, ma@precisely quantify the effects
of multipath angular spread and spatial observation regionichness, regardless of sensor setup.
Earlier works, [8], [9] introduced a general theoreticalniework for studying the degrees of
freedom in spatial multipath fields, where it was proposed tthere is an essentially finite number
of multipath fields that can be distinctively coupled to a sediree region. In another approach,
[10] considered linear, circular, and spherical sensayageometries and established an analogy
between the degrees of freedom in the time-frequency doarainin the spatial-angular domain.
It was concluded that the spatial-angular dimensionatitiinearly related to the effective sensor

array aperture and the angular span of scatterers.

B. Approach

The analysis in this paper considers multipath fields asfiinetional solutions to the wave
equation [11]. This mathematical framework is similarly dise [8], [9], [12]. In this presentation,
the multipath field lies in a countable infinite-dimensionakkr vector space, where vectors consist
of functions. The advantage of the functional wave reprediemt is that 1) it is general enough
to be applied toany narrowband multipath environment, regardless of the nunobenature of
multipath sources, 2) it accommodates representation rafora multipath fields with a general
spatial correlation function (SCF) [13], and 3) it allows usdietermine the effective number of
dimensions (in the infinite-dimensional functional spate)} essentially contributes to the coupling
of multipath fields to a spatial region. In order not to obsdiwe approach, we present the main
results for a narrowband two-dimensional (2D) multipatifiédd environment. We will briefly
explain how our methodology extends to three-dimensio&B)) (fields. Unless explicitly stated,
the equations and results in the paper are written assunidngn@tipath fields.

The integral kernels for spatial channel response in [10] ranttipath field representations in
this paper are both derived from solutions to Maxwell edquregi As a result, the integral kernels in
[10] for circular and spherical antenna arrays are basedhaifas orthonormal expansions as in 2D
and 3D multipath fields in this paper, respectively. One diffiee is that [10] considersznomed-
out granularity for describing channel scattering, where thtalteffect of scattering is modeled

by the angular power span in the kernels. In this paper, esgadt is directly incorporated into
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the multipath field representation using a countable setrmdam coefficients. These coefficients
encode the field and characterize the statistical detailsgdilar power spectruh(APS). Another
difference is that [10] takes antenna polarization intooact and shows that using tri-polarized
arrays can result in a maximum two-fold increase in multipahannel dimensionality. In this
paper, we focus on uni-polarized representation of muhipahere a similar conclusion as in [10]
is expected by including polarization.

It is known that the Karhunen-Loeve (KL) expansion [14] of adam process allows a par-
simonious representation/truncation of the process inntiemum mean square error (MMSE)
sense. The KL expansion of a non-isotropic multipath field jpies the maximally parsimonious
and customized orthonormal expansion for that particuldd.fi€herefore, we propose to use
the KL expansion of random multipath fields to quantify thaghness. In the KL expansion
of multipath fields, the SCF eigenvalues and eigenfunctiomy pl central role. In particular,
the number of significant SCF eigenvalues defines multipatmess, since random multipath is
essentially generated by the corresponding significann&igetions and an uncorrelated random

sequence.

C. Contributions

The Dimension of Multipath Fields:In Section Ill, we prove two universal upper bounds on
the truncation error of multipath fields in their infinite-dingtonal presentation to a finite number
of orthogonal modes. The first upper bound considers fixed natittipelds and complements the
preliminary results in [8] by providing a mathematicallgoirous proof. The second upper bound
explicitly considers random multipath fields and upper bautite field truncation mean square
error (MSE). We show that for 2D multipath fields, the truncaijorean square) error upper bound
exponentially decays to zero, if the number of consideréaibgional modes is greater than a critical
number2N + 1. The critical valueN is directly related to the normalized radius of the 2D region
R /X andis given asV = [r Re /] ([-] is the integer ceiling function andlis the wavelength).
The results are noteworthy, as they show that the dimengipilfixed or random 2D multipath
fields is essentially limited by thediusand not by theareaof the 2D observation/coupling region.

The angular power spectrum quantifies the distribution of multipath power ftifferent incident angles.
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The dimensionality in 3D multipath fields is determined By + 1)? and hence, is related to the
areaand not thevolumeof the 3D region.

Multipath Richness:In Section IV, we use the multipath KL expansion to quantifg tiotion
of multipath richness based on the number of significant SCEngajues. More specifically,
richness is defined as the number of SCF eigenvalues that eaptuleast 99% percent of the total
multipath energy. This definition provides multipath richsi@esults that are consistent with the
2[Q Re/ A]+1 definition in [12], where2 is the APS angular power spread. In [10], the channel
dimensionality using uni-polarized, 2D circular arrayssvshown to beA|Q?|, for R > 1, where
A =2R/\is the normalized array aperture ajfit] is the solid angular spread of scatterers. We also
prove a lower bound on the largest SCF eigenvalue. This lowendagjuantifies, to some extent,
the well-known qualitative effect of decreasing angulawgo spread of scatterers on decreasing
multipath richness. We also provide a systematic numeailggdrithm to find the SCF eigenvalues.
Unlike the quadrature-based solution to the Fredholm equidti5], [16], the proposed algorithm

does not require selecting quadrature points.

1. 2D MULTIPATH FIELD REPRESENTATION

Let = represent a vector in 2D spade?, and letr = ||z|| denote the Euclidean distance of
from the origin, which is the center of some region of inter&he unit vector in the direction
of non-zero vectoer is denotedz = z/||x|. Further, letp(x) € [0,27) represent the azimuth
angle of vectore. Then, we can writé = [cos ¢(x),sin o(x)]”, whereT denotes transpose. The

vectorx may also be represented in its polar form as

z = ([z], o(x)) = (r,¢).
Let F(x) denote a finite complex-valued narrowband multipath field iregian of interest
|z|| < R, for some finite rangeR, generated by sources and scattesxternalto that regior? In
particular, we assume that all sources exist outside soties®; > R. Then, F'(x) satisfies the

Helmholtz or reduced wave equation (in the region of int@rgd ]

AF(x) +k*F(x) =0, k22r/\ || <R, (1)

2More generally the region could be any shape. This paper considerdaciregions, because this is one of the
cases where rigorous analytic bounds are possible. How more gehepes can be treated in an analogous way is not

explicitly treated in this paper.
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where A is the Laplacian and\ is the wavelength. The time harmonic solution to the related
full wave equation is thenF(x,t) = F(x)e ™!, wherei = /-1, w = 2xf, and f is the
frequency [11]. Since (1) is a linear partial differentialuation (PDE), we see immediately that
valid multipath fields in a source-free region of interest emastrained to lie in a linear subspace
given by the nullspace of the operatbf = A + k21 (I is identity). That is, if;, and I, are any
two solutions of (1), then so i§ F} + (2 F» with ¢; and (; being scalars.

Two broad classes of representation of the solution to (1l)bei considered. The first class is
based on plane wave synthesis and is considered in SectidnThe second class is based on

orthogonal solutions to the wave equation and is consider&kction 1I-B.

A. Multiple Plane Wave Representation
A standard multipath model involves modeling every didtipath explicitly as a plane wave.
That is,

F(x) = Z ap ek, (2)

p
where the plane wave of indgx has complex amplitude, € C, the propagation direction is

denoted by the unit vectay, = (1,¢,), andz - y denotes the scalar product between vectors
x andy. We interpret representation (2) as encoding the field witlhwntable number of pairs
{ap,y,} enumerated by. Representations similar to (2) appear in array sensoakigiocessing
applications, such as in [17]. Typically, only a finite numbéplane waves are considered, although
distributed sources are considered in [18]-[20]. For eXxam]20] extended the classical Bello’s
work [21] and established the duality between continuowiabpdirection dispersion and spatial
selectivity. The spatial duality is analogous to the dudbigfween delay dispersion and frequency
selectivity or between Doppler frequency dispersion amktselectivity in wireless channels.

A ready generalization that subsumes (2) is the superpositi plane waves from all azimuth

directionsy as

27 ) R
F(z) = /0 a(ip) T d, 3)

wherey = (1, ¢) anda(yp) is the complex-valued gain of scatterers as a function ofthection

of arrival ¢.



B. Orthogonal Representation

A more general representation than (3), which implicitlguiged that any sources be in the
farfield, is now given. If we assume that the narrowband matkifield is generated by sources
outside some radiug, then for Ry — oo, we can use the Jacobi-Anger expansion [11, p. 67] to

represent the plane waves in (3) as

ekEY = N i Ty (kllz]]) ¢ ), @)

n=—oo

where J,,(-) is the Bessel function of the first kind of integer ordef22], [23]. By substituting

(4) into (3), we obtain

F()= Y i"on Ju(kllz]) @, |z <R < Ry, (5)

n=—oo

wherea,, € C is then'" Fourier series coefficient af() in (3) defined as

2
%—/awfmw, (6)
0
and
- 79 mn
alp)= D e W)

This shows the relationship between the angular distributiofarfield sources(-) in (3) and the
coefficients{«,, } of the general expression (5). In (5), we identify a courgad#t of orthonormal
basis functions over the 2D disc of siZeas

I (k||z]]) eme®

o, (x) £ " , neZ, |z <R (8)
(@) 2" et Je]
where
R
Tn(R) & / J2(kr)rdr. 9)
0
The orthonormality is verified
R rom 1 m=n
I ST @nlx) @5, (x)deprdr = : (10)

0 otherwise

We can rewrite (5) in its orthonormal expansion

F(x)= Y 2rJu(R)on ®n(z). (11)

n=—oo
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In comparison with (2) and (3), representation (11) encaoldedield with a countable set of Fourier
coefficients{an}nez. Moreover, the multipath field in (11) is represented as a mgs#tion of

a countable set of orthonormal basis functio[ran(oc)} whereas (2) lacks a parsimonious

nez’
property, since plane waves lack orthogonality.

The sequencéan}n cz in (5) and its statistical properties play a central rolehiis paper, as they
provide, through truncation, an efficient or parsimoniousapeeterization of general narrowband

multipath fields and allow studying their dimensionality @gdees of freedom.

C. Random Multipath Fields

Detailed information about scatterers that generate thiéipath field F'(x) is usually limited.
Therefore, it is reasonable to represent multipath figlegt) as a random process. Referring to
(3), the scattering gaia(-) is random and so is;, in (11). For mathematical tractability of the
analysis, we assume uncorrelated scattering, which méangtte random gaing(y) and a(y’)

at two distinct incident angles are uncorrelated from eatleroand the normalized APS is given

by

E{a(p)a*
P(go) é o { (90) (90>} , (12)
o Elalp)a*(p)}de
where £{-} and x denote expectation and complex conjugate, respectivedindJ(6), (12), the

uncorrelated scattering assumption, and following a fewerinediate steps we find that

27
eflof} = [ elato)a’ (o)} (13)
The normalized correlation between, and «,,, is defined as

s E{amar} /27r —i(m—n)
mn & 2 nd P Hm=n) g, 14
gl e{lanl) ~ Jo (p)e @ (14)

It is observed from (14) that,,—, is, in fact, the(m — n)th Fourier series coefficient of the
normalized APSP ().
Using (3), the normalized spatial correlation function (SGFnultipath fieldsF'(x,) and F'(x2)

at pointsz; andx, is defined as [13]

_ E{F(x2) F* (1)}
p(CCQ,CCl) 5{F(:E1)F*(m1)} ) (15)
027r 027r g{a(gp)a*(d)} k2T o=ih Ty’ god. )
O27T 027T S{G(Qp)a*(go’)} etk @1y g—ik ©,.y dtpd(p"
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Since we assume uncorrelated scatterifie(p)a*(¢’)} in (16) is only non-zero forp = ¢'.
Therefore, the double integrals in (16) reduce to singlegnatis and upon using the APS definition

in (12), p(a2, 1) is simplified to

2
p(x2, @1) = p(ay — @1) = / P(p)e'* @2 do, (17)
0

Equation (17) shows that due to the uncorrelated scatteasgnaption, the SCF is only a function
of the spatial separation between points ¢ x;) and therefore, is spatially stationary. Using the

Jacobi-Anger expansion (4) for the plane waves in (17) gield

plas—an) = 3 i " Im(klwa) e )Y T it T (fas]) ) (18)
= Z "N Im (k|| — 21]|) €72 (29)

where the second equality is written using the summatioorém for Bessel functions [24, pp.
930-931]. In (19),||z2 — ]| is the distance between vectats andz; and o, is the angle of
the vector that connects; to x,. The SCF in (17)-(19) will be used later in Section I1I-B and
Section IV to find the dimensionality and richness of randomtipath fields, respectively.

Before concluding this section, we reiterate that the agsiom of spatially uncorrelated scat-
tering, originally used in [21] for uncorrelated scattgrim delay dispersion domain, enables a
mathematically tractable analysis. However, the assumif spatially uncorrelated scattering may
be violated in practical situations, where electromagnitys reflect non-specularly off scatterers
and the received amplitudes and phases of paths with siamlgles of arrivals become correlated.
Recently, [25] proposed a physical model to representalpatiorrelated scattering, which requires
a two-dimensional Fourier expansion of the scattering AP&y). It is shown that a scattering
correlation with Gaussian density and the standard deviaif 2 degrees has modest and mostly
negligible effects on the SCF, whereas for a randomly geaérangular correlation, the difference
cannot be neglected. The actual effect of correlated stajten the dimensionality of multipath
fields is still unknown. Our conjecture is that it could onlyduee the dimensionality and not
increase it. Hence, the results of this paper may serve apper bbound on the available degrees
of freedom. Quantifying the effects of correlated scatigion multipath dimensionality is an open

problem.
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[11. DIMENSIONALITY OF MULTIPATH FIELDS

Multipath fields are usually observed in a limited region iragp and, as such, the degree to
which one can determine the effects of the multipath fieldss éimited. In the following sections,
we will see that one needs to consider explicitly the regiorspace when considering concepts
such as dimension and richness.

In Section 11I-B, the multipath field”'(x) was represented by a countable, but infinite sum of
orthogonal modega,, ®,(x)} in (11). In this section, we define the dimensionality of npath
by the number or cardinality of effective modes that esaéiptbuild the field. To this end, we

define thetruncatedfield Fiy(x) by selecting the firseN + 1 indexed coefficients of'(x)

N
Fy(@) 2 > /2170 (R)an®a(x). (20)
n=—N

As will be shown in the following sections, although al| coefficients in the synthesis of multipath
field in (11) have the same variance (refer to (13)), it is plsible to accurately truncate the field
with a carefully chosen truncation lengtN,. Equivalently, the truncated field in (20) is synthesized
as if the Fourier coefficients,, were zero forin| > N. The question is how to choos€ so that
the truncated field represents the actual fiélde) within a given region and with a prescribed
accuracy.

Our approach consists of two parts. In Section IlI-A, we find ppar bound on the normalized
truncation error of the multipath field as a function of thentation length/N. This is carried
out for an arbitrary multipath (subject to satisfying cdmais discussed in Section Il), without
explicitly considering its random nature. Hence, the fieldhssumed to be deterministic. From
the truncation error upper bound in Section IlI-A we conclubat the effective dimensionality
of multipath is directly related to the radius of the 2D regido which the field is coupled.
Then in Section IlI-B, we find a universal upper bound on the néimed MSE of multipath field
truncation, which takes multipath randomness into accdbansidering the truncation MSE upper
bound consistently predicts the same dimensionality fodoan multipath fields as in Section IlI-
A. This is expected, because the absolute upper bound in 8dtti&é applies for any multipath.
However, the MSE upper bound bears a more physical significhecause 1) it takes the stochastic
random scattering into account by computing the averagw amd 2) it signifies the normalized

energyof truncation error, which is more physically meaningfuhththe absolute error. Moreover,
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considering truncation MSE of random multipath fields pavesihy for the MMSE KL expansion
of multipath in Section IV and for investigating the dimensatity of random fields with a limited

angle of arrival and quantifying multipath richness.

A. Arbitrary, Deterministic Multipath Fields

Using (11) and (20), we define the normalized field truncatiooresf the multipath field over

im e g [ [ e >

where, assuming farfield sourcés — oo, ||a|| is finite and defined to be

a 2D disk of radiusRk

ol 2 [ late)lap < ox. @)

Based on (22) and referring to (3), the field intengify(x)| is also upper bounded bju||. The
normalization in (21) provides a relative error satisfyjmgperties of: i) scale invariance, that the
relative error is the same fdr(xz) and~F'(x) for complex scalary # 0; and ii) unit plane wave
invariance, that normalization leaves a unit amplituden@lavave unchanged.

We now elaborate on the normalized truncation error in (Bliwio steps. First, we show that
the two fieldsF(x) and Fy(x) are essentially indistinguishable at any pdjat]| < R, provided
that N is appropriately chosen according [te||. More specifically, we show that the normalized

field residual
|F(x) — Fy(z)|

— 0
[[all

in an exponential manner faN > [ex|x|/A], [-] being the integer ceiling function. This is
formally expressed in Theorem 1. Then, it is shown that the ydegaproperty of truncation
error carries over to a 2D disk of size. In particular, the truncation error in (21) exponentially
approaches zero faNg > [emR/\].

Now, consider the integrand in (21) which is written usiBy (

F - F
(e & 1@ I il 3 Pen )|
all ~la]l B
Z lovn| [ (k)]
HH‘bN
S k)] =2 [Ta(kr)], (23)

[n|>N n>N
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where the second inequality follows from (6) and (Z2),,| < ||a||) and the last equality follows
from J_,(kr) = (—1)"Jn(kr). From (23) it is evident that the behavior of the truncatioroer
depends on the properties of Bessel functiohgkr)| for sufficiently largen. We use the following

bound for the Bessel functiofy,,(u)| [26, p. 362]

)] <

= onp)”

z2=20 (24)

to upper bound (23) as

(k)"
-

2"n,

Cv(@) <23 [ alkr)| <2

n>N n>N
The following theorem shows quantitatively that, for a fixedby taking the truncation deptl

(25)

large enough, we can makg/(x) as small as desired.

Theorem1 (Relative Truncation Error Bound of the Multipath Field: A multipath fieldF'(x)
generated by farfield sources, having representafibl), can be truncated ton| < N terms as
in (20), where the normalized truncation error is upper bounded as

Flx) - FN(m)‘ < neiA (26)

(n(x) = |

lall

provided that the truncation length is chosen as
N = [er|z||/\] + A. (27)

In the abovej ~ 0.16127 and A € Z*.0J

Theorem 1 states that the relative truncation error is no rtfwae 16.1% oncéV equals the
critical threshold e w||x|| /A], and thereafter decreases at least exponentially to ze¥oiasreases.
See Appendix | for the proof.

Now, we turn back to the definition of the normalized truncatewror (21) over a disk of radius
R. We note thaty (x) in (25) only depends on= ||z|| < R. From Theorem 1 we conclude that for
a fixedr, (i is a decreasing function of > [enr/\]. Therefore, we choos¥r = [em R/A|+A,
so that the truncation error at the outer edge of disc is bedras(y, (r = R) < ne 2. Since
Ng = [enr/)] for everyr < R, {ny < ne > for everyr < R. As aresult,Ng = [er R/\] + A
guarantees v (R) < ne~® over the entire region. This is summarized in the followingotiary

to Theorem 1.
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Corollary 1.1 (Truncation of Multipath Fields in a 2D Region)A multipath fieldF'(x) may

be truncated taFx () as in (20) in the region| x| < R wheneverNg equals (or exceeds)
Ng & [em R/A], (28)

with a normalized truncation error given in (21) that is exeotially decaying to zero fav > Ng.

Theorem 1 complements the preliminary results in [8] by e quantifying how the nor-
malized truncation errofy in (26) exponentially decreases as a function of exces<ation
length A, and by providing a more rigorous and detailed mathematiedl/ation of the bound in
Appendix |. More specifically, in [8] the normalized truneatierror(y was bounded as

2 p(N, [Jz[hN*

. ‘ 7 29
(N(i13>< (N_|_1)7r 1—P(N7H:B||) ( )
where
_ e/
PN, le]) = T =

and N > me||z||/\ — 1. Equation (29) does not explicitly elaborate on how(x) behaves for
N = Jen||z||/A]+A. Quantifying the truncation err@iy () in the form of (26) is one contribution
of this paper. Corollary 1.1 is an another contribution @ freper, compared to [8], which explicitly

defines and upper bounds the normalized truncation errora@® disk of radius R.

Example:Fig. 1 compares the predicted relative truncation error donmheorem 1 with multi-
path simulation results. We have synthesized a large nuofti#D multipath fields according to the
plane wave model (2) and computed and plotted the worst edetive erromax|,<r{(n(x)} in
(23) over the circular regiofiz|| < 1 A (A is the wavelength). The parameter is the truncation depth
N. Note that in the context of an antenna array for commurdgoati this region is not so small
since, for example, it would accommodate a linear array aitéranas or 13 antennas in a diamond
configuration at\ /2 spacing. Fig. 1 summarizes the results of 50 trials, each afsfiebmposed
of P € {1,2,5,10, 50, 100, 200, 500, 1000} numbers of plane waves. The complex amplitudg,
of each plane wave was randomly selected from a uniffirmh] amplitude distribution, uniform
[0,27) phase distribution, and uniforii), 27r) direction of propagationp,. It is evident that for
all fields, the relative error decreases faster than expw@igntvith increasingN. In this figure

we have also plotted the bound (26). According to Theorem 1(28Y for a 2D region of size
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|z|| < 1A the truncation error exponentially decaysNf = Np + A = [ne] + A > 9. Itis
evident that the relative error bound is quite conservatind the actual relative error is of the
order of1% at Nz = 9 (in comparison to our bound of approximately 16.1%). The looexponent
does, however, well model the slope of the relative erroiNatz Ni. The fact that the slope is
greater at higher truncation lengths can be inferred in tio®fpgiven in Appendix | (see (68b)),
but has not been reflected in Theorem 1 to simplify its statemidrgse experiments and similar
experiments for regions of different sizes verify that oa@ dound the relative errendependent
of the multipath fieldwhere the boundiepends only on the size of the regidrherefore, it is
essentially impossible to distinguish between fields withtieely few paths and ones with 1000 or
more paths (including diffuse multipath) for this size myi This example quantitatively confirms

the well-known limitation that array aperture (size) impe®n resolving multipath fields.

B. Random Multipath Fields

In this section, we prove a universal bound on the truncatioar of random multipath fields
in the MSE sense. Since the multipath field is a random process;owgpute the normalized
truncation MSE over a 2D disc with radidg, when the field in (11) is truncated to its firaV +1
terms in (20). This is defined as

e T E{|F (@) - Fn(@)|*} dgrdr
fOR O%E{‘F(a:)‘z}dgérdr
Since Theorem 1 and Corollary 1.1 already showed that muitipatncation to2N + 1 terms

en(R) (31)

is possible forany deterministic field, we expect that considering truncatio®BVprovides a
consistent conclusion about the choiceNdf However, the MSE truncation error defined in (31) is
physically more meaningful than (21), because it evaluditesrormalized average energy of error.
As will be seen in Theorem 2, the truncation MSE upper boundydeeaen faster than (26) with
excess truncation length and hence, strengthens the physical significance of thetseSw use
(11), (20), the orthonormality of basis functiofes,(x) in (10), and the definition of7,,(R) in (9)

to write the MSE in (31) as

_ fOR D jn|>N S{Ian|2}J3(kr)r dT.

S, | an]*y T2 (kr)r dr (32)

gN(R)
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Fig. 1. Simulation results for the maximum relative erronx ), <r{¢{~(x)} versus the truncation orde¥ for a
circular 2D region||z|| < 1 A, for a large number of randomly generated 2D multipath fields. Everyalae is marked
with a cross. The stars define the analytic bound of (26)Noe Nr + A = [wre| + A > 9, which is independent of

the multipath field.

From (13) it is observed that the expectatlﬁ{\\anjz} is independent of index, which yields

z (R) - fOR Z|n\>N Jg(k'r)r dr B fORz\nbN Jg(k’?”)?“ dr
" a fORZJg(kr)rdr B (1/2)R? ’

———
1

where the summation in the denominator is equal to 1 accgritithe summation theorem for

(33)

Bessel functions [24, pp. 930-931]. To find an upper bound 38),(we use the same bound for
the Bessel functions given in (24). The following theoremvmtes a universal upper bound for

the MSE in (33).

Theorem2 (Universal MSE Upper Bound for Truncation of 2D Random Multipath Fiek):
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A random multipath field?'(x) generated by farfield sources, having representaibh), can be
truncated to|n| < N terms as in(20), with the normalized truncation MSE given (83) upper
bounded as

g]\7(‘R) <o 672A7 (34)

provided thatlV is chosen asV = [erR/A] + A and A € Z". In (34), ¢ = 0.0093.00

The proof is provided in Appendix Il. We note that in the detiwa of multipath truncation MSE
in (31)-(34), we did not assume anything about the multi@@¥ p(x2 — 1) or equivalently the
APS P(¢) in (17). Therefore, (34) is a universal bound on multipatm¢ation MSE, regardless
of multipath scattering spatial correlation. Therefore nmatter howrandomthe scatter is, the field
can be truncated tdN + 1 terms in (20) with an exponentially decaying MSE given in (34)
other words2N + 1 is an upper bound on the effective richness of random muitifialds in the
MSE sense.

So far, we have observed that the truncation of multipath fieédsilts in an exponentially
decaying error both in the absolute and MSE sense for the dtiomc depthN > [erR/\]
(Theorems 1 and 2), where the actual number of terms in (2@®pesent the field i8N + 1. As
was observed in Fig. 1, the above truncation length is quitsewative. We are now in a position

to provide the following definition for the dimension of mpiith fields.

Definition 1 (Universal Bound on the Dimension of 2D Random Multipath FielyisFor a cir-

cular region in space given bjz| < R, the effective dimension of a 2D multipath field is given
by

D® £ 2[enr R/N] + 1~ [17.019 R/\] + 1. (35)

Here, we summarize a few observations based on the abovetidefini

« The dimension,D3y increases with théinear sizeof the regionR/\ (in wavelengths), not
with the area of the region.

« The dimension increases with the precision required. Dimeng35) actually specifies a
threshold effectvhere the truncation error is small (in the sense of Theoreragdl2 and

Corollary 1.1) and is decreasing with an exponential rate.
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« It is sufficient to use onlyD7 of the a,, in (11) to effectively encode any field within a

distanceR of the origin.

In the following two subsections we interpret the finite disienality of multipath fields in the

context of spatial sampling and multiple antenna commiitiossystems.

C. Spatial Sampling

If an actual multipath field?'(x) can be expressed exactly in the form (20) for saWethen
we refer to the multipath field as beimgode-limited Hence we have an exact sampling theory
analogous to the sampling theory of time harmonic functidimat is,2/N + 1 appropriately chosen
sampling points in space are sufficient to completely deteemi(x) in the 2D region.

For a general fieldF'(x) restricted to the regiofiz| < R, our theory implies that'(x) is
essentiallymode-limited within||z|| < R and, thereby, is well represented by a limited number of
spatial samples (equal to the dimension). The point to be risatiat a sufficiently regular multipath
field® has arintrinsic spatial forgetting which gives it a natural parsimonioysresentation in terms

of the lower order terms in the expansion (11).

D. Numbers of Receiver Antennas

We can interpret the finite dimensionality of multipath fieldstlie context of multiple antenna
communication systems. Consid@rantennas in a regiofiz|| < R at distinct locationse,, xo,
..., g that are sampling a multipath fielti(z) for communication purposes, such as multiple-
input multiple-output (MIMO) systems [3], [4]. SincE(x) is well-modeled byFy (x) with D
terms given in (35), we can regard up @— D3> of the antennas as superfluous — that is, any
number of antennas in the regi@i|| < R beyond the dimension of the regidR}y, provide little
or no additional information, depending on how wisely théeanas are spacedhis guides how
densely we can usefully populate space with antennas. Fall spatial regionsD7 is small and
the asymptotic analysis and predictions about MIMO capaeithancements should be cautiously
interpreted.

3Sufficiently regular in the sense of this paper means the multipath field isajedeby discrete or distributed farfield
sources. The generalization to nearfield sources requires a maredrefigument which is beyond the scope of this

paper, but nonetheless the general conclusion remains.
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E. Extension to 3D Multipath Fields

After studying the dimensionality of 2D multipath fields, we anterested to find how the results
are extended to the 3D case. For this purpose one needs tidewotie 3D equivalent of the 2D
Helmholtz equation in (1) for a spherical region of radiig\ wavelengths, ot|z| < R. The
solution to 3D Helmholtz equation is more mathematicallyolwed than (5) and is given by

—4«21 e Zamym . ||| < R, (36)

m=—n

whereq] € C are constants independent of position, and

() 2| a2 37)

are the spherical Bessel functions, and

yr(@) & \/ S EZ; :ZB Pl (cos ) ¢ (38)

are the spherical harmonic functions, which are expresse@rins of the associated Legendre
polynomials P! (cos #). In (38), 6 is the elevation angle angd is the azimuth angle, as before.
The 3D field in (36) is encoded with the countable éef*}, which are 3D counterparts af,,

in (5). Also, Y™ and Y/ are orthogonal forn # p or n # ¢. It was shown in [27] that the first
summation in (36) can be truncated Adterms as

—47TZZ gn (Kl Z alt Y (@ (39)

m=—n

where forN = [t Re /A\] + A and the normalized absolute truncation error is bounded as

en(z) < Z(2n+1>\jn(k||mu)! (40a)
n>N
/\
<3 (I s

wherev =~ 0.67848 andI'(-) is the Gamma function. The proof is structurally similar te groof

of Theorem 1 and hinges on the asymptotically decaying behafispherical Bessel functions in

(40a) and (40b). More details about characterization of diipath fields can be found in [27].
We note that by truncating'(x) to NV terms in (39), the number of significaf."} coefficients

s (N + 1)%. Hence, we can assert:
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Definition 2 (Dimensionality of 3D Multipath Fieldg: For a spherical region in space given

by ||z|| < R, the maximum dimensionality of well-modeled 3D multipashdiven by
DP 2 (Jew R/N] +1)° ~ 72.923 (R/\). (41)

In summary,D% given in (41)boundsthe spatial dimensionality of 3D multipath and increases
quadratically withR/\, not with the volume of the region. For the sphere, the dinueradity
scales with the surface area. It is sufficient to use dnfy of o) in (36) to effectively encode

any field within a distance? of the origin.

IV. KARHUNEN-LOEVE EXPANSION OF RANDOM MULTIPATH FIELDS: MULTIPATH RICHNESS

In Section Ill, we found an upper bound on the MSE of multipathdfigincation error when
the field is represented by the natural choice of orthonorraalsbin (11). We showed that the
essential dimensionality of 2D multipath, which is obserie a disk with radiusk, is2N +1 =
2[mr Re/ ] + 1, regardless of stochastic scattering characteristicxeSatcurate truncation of
multipath to2N + 1 terms applies for any (and every) multipath far-fieldy + 1 serves as an
upper bound for multipath dimensionality. But, da&¥ + 1 truly predict the dimensionality of a
random multipath field with a specific spatial correlation fiime (SCF)? Of particular interest is
the case where multipath power has a limited angular ranige.denerally known that a limited
angle of arrival makes the multipath process correlatedremde, reduces its degrees of freedom.
However, quantification of the relation between angular powege and multipath dimensionality,
which is based on the general wave propagation and stoctsstitering theory, deserves further
investigation.

The treatment of multipath fields using the orthonormal bas{d 1) is insufficient for analyzing
the effects of limited angular power range on multipath disienality. In faCt’{O‘"}nez that
encode multipath in (11) are correlated random variabkesledined in (12)-(19). While multipath
truncation to2 N + 1 terms in Section Il is universally applicable to any multipéield, regardless

of correlation in{an} a customized model should allow thptimal maximally parsimonious

nez’
representation of a particular field with a given SCF. With a fitehication length, the truncation
error will be minimum when the multipath field is truncated is optimal representation, or the

MMSE truncation. Alternatively, with a fixed truncation errdine optimal modeling of multipath
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allows the minimum truncation length. For 2D fields with a lieai angular power range, multipath
dimensionality will be often much less than the predickéd + 1.

In this section, we first define the optimal representation nfloan multipath fields and then,
use it to quantify the notion of multipath richness. The KammrLoeve (KL) expansion is a
widely-used signal processing model for the optimal regmégtion of stochastic processes in time
domain. The KL expansion takes away the redundant corralafia random process and allows
its representation with the minimum number of uncorrelatzds [14]. Here, we apply the KL
expansion for the representation of stochastic multipatidiign spatial domain. The objective is
to find the maximally parsimonious truncation of a random figlde) and the effects of limited
angular power range on multipath dimensionality. The KL ntiodeof multipath is a novel means
of defining multipath richness that complements and confirregipus approaches in [10], [12].

Based on the KL theory, the optimal expansion of a randomipattt field F'(x) in the region

|z| < R may be written as
+oo
F(x) =Y /A B Un(w), (42)
n=0

where 3, is a sequence of uncorrelated (white) random variables wiihvariance, and\,, > 0
and ¥, (x) are then!” eigenvalue and eigenfunction of the SCF, respectively. Thanithe 2D

case
R 27
/ / plas — 1) W (1)1 dipy = Ay U (1), (43)
0 0

wherep(x, — x1) was given in (18) and:; = (1, ¢1).

The major difference between the orthogonal represengtbrihe random multipath field in
(11) and in (42) is that the coefficients, (11), regarded as random variables, may be correlated
with covariance coefficients given in (14), whereas all datien is taken away froms3, in
(42). Moreover, the orthonormal functions,(x) in the KL expansion (42) are customized for
a particular multipath field with a given SCF, whereas the adedsem, orthonormal functions
¢, (x) in the expansion (11) are universally applicable for anytipath field. While the universal
expansion of the 2D field in (11) predicts a universal dimemality of 2N +1, a specific multipath
richness is predictable using the KL expansion. If we asstirag(42) is arranged in descending
order of eigenvalues, then the truncation of multipath filds) to 2N + 1 terms in (42) results

in the MMSE [14] that is already upper bounded by the MSE in Thmo2efor N > [erR/\].
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For isotropic scattering, with the APS given (y) = 1/27, ¢ € [0,27), 7o = 1, and
Yo, = 0 for n # 0, the coefficients{an}nEZ in (11) are already uncorrelated. Therefoig,(x)
in (8) is then'™ SCF eigenfunction and,, = 277, (R) is its corresponding eigenvalue. In other
words, the truncation MSE bound in Theorem 2 is tight for anrggmt multipath field, asserting
it as the richest type of scattering.

For other types of scattering and according to (42), the rarrob effective terms that generates
the field is directly related to the eigenvalue spread of SCFréfbee, we study the characteristic
of SCF eigenvalues. In Section IV-A, we define multipath riclsniegzsed on SCF eigenvalues and
also prove a lower bound on the maximum eigenvalug(ef, —x;). In Section IV-B, we provide a
systematic numerical method to calculate SCF eigenvaluetioBdV-C presents numerical results

and compares the defined multipath richness in Section IV-A ibse provided in [12].

A. Multipath Richness

We first review some of the important properties of SCF eigemsl The integral operatot

with kernelp(x2 — 1)

R 27
Afé/o /0 p(x2 — x1) f(x1)r1dride: (44)

is symmetric, self-adjoint and compact [15]. Consequerttig set of non-zero eigenvalues of
p(x2 — 1) has either a finite cardinality or, if there are infinitely mangesvalues, their limit is
zero [15, p. 191]. We now show that the sum of all the eigereslof the kernep(xs — ;) is
finite and equal tar R?, which is also equal to the total normalized multipath epénga 2D disk
of radius R. From [28, pp 117-118], it is known that the sum of eigenvalisesqual to the trace

of kernel
R 21
Z An = / / plxy — x)ridride; = TR, (45)
- o Jo

sincep(x; — x1) = p(0) = 1 according to (12) and (17).
Now we are in a position to define multipath richness from theratteristics of SCF eigenvalues.
In defining multipath richness, we use the fact that the tatah ®f eigenvalues in (42) is finite

and propose the notion of significant eigenvalues.

Definition 3 (Multipath Richnesg: Suppose that in the KL expansion of multipath fiélt)

given by(42) the eigenvalues are indexed in descending order (includindfiple eigenvalues).
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The field is said to have richnegd when the following normalized eigenvalue residual is less

than 0.01.

Am
Zg”‘i < 0.01. (46)

In other words, multipath richness is defined toMewhen at least 99% of the multipath energy

is contained in the firsi/ eigenvalues.

Now, we wish to study the properties of eigenvalues for rpatti fields with a limited angular
spread in the APS. To this end, we assume the APS,) in (12), to be uniformly distributed in
the azimuth angular interva € [-Q, Q), where(2 is a fraction ofr. We denote this fraction by

= /7 (7 > 1). In short, we refer to the directional APS &5 () = 1/29.

The following theorem proves a lower bound on the largestreiglee of the SCF. It is noted
that, according to (45), the sum of eigenvalues is fixed fovargdisk radiusk. Therefore, a lower
bound on the largest eigenvalue upper bounds the sum of memgatigenvalues. Hence, according

to Definition 3, a larger lower bound on the maximum eigenvaheans reduced multipath richness.

Theorem3 (A Lower Bound on the Largest Eigenvalue of the Spatial Correlation Furant):
The largest eigenvalue of the spatial correlation function(17) in a 2D disk of sizeR with a
uniformly directional APSP () in the rangey € [-Q,Q), whereQ = = /7, 7 > 1, is lower
bounded by

Amax = {27T Z Im(R SlnC (mQ — qﬂ)} (47)

The proof is provided in Appendix Ill. It may be verified that togver bound on the maximum
eigenvalue increases with decreasing the APS r&hgghis, in turn, results in a smaller multipath
eigenvalue spread. Therefore, (47) quantifies, to some extentvell-known qualitative relation-
ship between eigenvalue spread and multipath richnesstiBqud?7) is useful in most situations,
where closed-form expressions for multipath SCF eigengatieenot exist.

Before concluding this section, we review a standard uppant on the largest eigenvalue. For

the 2D case, the upper bound is written as [15, p. 86]
1/2

R R 2 21
Amax = |[p(z2 — 1)]| < {/ / / / (@2 — @1)|*dprdparidriradra| ,  (48)
0 0 0 0
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which, by using the definition of(xs — «1) in (18), is simplified to

Amax < 27 \/Z TIn(R) > Tn(R)Yn—ml>- (49)

In Section IV-C, the numerical comparison of the largest SQEmialue with the lower and upper

bounds shows that the derived lower bound in (47) is quitesecto the actual largest eigenvalue.

B. A Systematic Numerical Method for Eigenvalue Calculation

Numerical calculation of SCF eigenvalues is often inevaalblecause closed-form expressions
for SCF eigenvalues may not exist. More specifically, one néedsimerically solve (43), which
is also known as the Fredholm equation [15, p. 209]. A knowhrii&gie to solve equations similar
to (43) is to accurately approximate the integrals on thehahd side by a sum, and transform the
problem to a finite-dimension, matrix-based eigenequatid) pp. 782-785]. For this purpose, a
set of P quadrature points and quadrature weights are requiredfficisatly samplethe integral.
Suppose that th¢ quadrature point and quadrature weight are denoted,®ndw,, respectively.

Then, at each point,, (43) is approximated as
P-1
Z wpp(@q — @p) U (xp) = A Un (). (50)
p=0

The computational complexity of simultaneously solviRgequations of the form (50) i©®(P3)
[16, p. 783]. Hence, a clever choice of quadrature points waidhts is required to optimally
sample the region of interest. As can be seen from (43), thidves selection of? points in a 2D
circular region (or 3D spherical region for 3D multipathprFa large region radiu®, populating
the area (or volume) with enough quadrature points becomasgmatic (as a rule of thumb,
points at the outer edges of the region should be sampledthdtiseparation of around/2).

In this section, we define an alternative approach for the migalesolution of SCF eigenvalues,
which is based on the equivalence of representations ofpathtfield 7'(x) in (11) and (42). The
main advantage of the proposed algorithm over the aforéoresdt quadrature-based numerical

technique is that it does not try to explicitly solve (43)daas such, the selection of quadrature



24

points is avoided. To see this, we combine (11) and (42) toewri

+oo
Fx)= Y 2rJu(R)on®s(z) (51)

oo
n=0

It is evident from (51) that the change of orthonormal basienf®,,(x) to ¥, (x) whitensthe
weighted random sequencg2rJ,,(R)a, to obtain the uncorrelated random sequerCcg, s,

with variance \,,. Let the covariance matrix of the seque 7 JIn(R)a, be denoted byl®

with elements at then'™ row andn’ column given by&{+/27Tm(R)cum.\/21Tn(R)oj} =

270/ I (R) T (R)Ym—n-. From [29], we know that the diagonalization of the covaraneatrixT’
QrQ? =p (52)

transforms correlated random variabI@@ijR)an into uncorrelated random variablgé\,, 3.,
where Q is the eigenmatrix of’, D is the diagonal eigenvalue matrix with thé” diagonal
element equal td,,,, and superscript{ denotes Hermitian transpose. In Section 1ll, we concluded
that the first2N + 1 terms of \/27.7,(R)«,, adequately represent the field. We summarize the

above discussion in the following algorithm to numericallytain SCF eigenvalues,,.

Algorithm 1 - Systematic Numerical Calculation oA,,:

1) Based on Theorem 1 and Theorem 2, truncate the random seqyéied,,(R)a, in (51)

with truncation lengthV > [er RA], to obtain the random vector

2) Using (14), form the covariance matrix for the random vectordefined asT'on.1 =

T

E{vvily,
3) The eigenvalues of the covariance matfixy,; give the first2V + 1 eigenvalues of the

SCFp(xy — x1).

C. Eigenvalue Analysis
First, we present the lower bound, upper bound, and numergsallts for the SCF largest
eigenvalue for a set of directional scatterers. The resuoétshown in Fig. 2. The parameter is the

APS rangef?, which varies fromQ /7 = 1/20 (highly directional) to2/7 = 1 (isotropic). The
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Fig. 2. The largest eigenvalue of the spatial correlation function as @idunof APS range?. The eigenvalues are
computed on a disk of radiuR = 1 \. The lower bound is computed using (47) in Theorem 3. The upperdaun
computed using (49). Also in the figure, the largest eigenvalue is caldutateerically using Algorithm 1 in Section
IV-B. The results show that the lower bound is very close to the actuaheagiee and that multipath richness reduces

with reducingf2. (Also see Table 1.)

eigenvalues are computed on a disk with radiis- 1 A. The lower bound is computed using (47)
in Theorem 3. The upper bound is computed using (49). Also iffithee, the largest eigenvalue
is calculated numerically using Algorithm 1, which was désed in Section IV-B. It is clear from

this figure that the proposed lower bound on the largest eajeavis much closer to the actual
eigenvalue than the upper bound and provides very good &stinof the largest SCF eigenvalue.
As the APS rangé€) becomes smaller, the largest eigenvalue increases andgathltichness is

reduced. Multipath richness for some typical valuesoin this figure are calculated according
to Definition 3 and given in Table I. The results quantitativenfirm the qualitative speculations
that reducing multipath angular power spread would makeidie more spatially correlated and

reduce itsrichness
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TABLE |

DIMENSION OR RICHNESS OF MULTIPATH FIELDS STUDIED INFIG. 2-3,WHICH IS CALCULATED USING DEFINITION

3 AND ITS COMPARISON WITH(53) [12].

APS rangeQ?/m | 0.05 | 0.25 | 0.5 | 0.75 | 1

Definition 3 3 6 9 12 | 15

2[ 28] 41 3 7 | 11| 15 | 19

Next, we present the numerical analysis of eigenvalueshi@et different APS’s with angular
spread?/7m = 0.05,0.5, and 1. The eigenvalues are computed on a disk of dize- 1 A using
Algorithm 1 in Section IV-B. The results are shown in Fig. 3. Frdnistfigure it is clear that
the eigenvalue spread decreases with decreasing the AP8 ®antable | shows the predicted
dimension or richness of multipath fields in Fig. 3 accordind#dinition 3, where the eigenvalue
residual falls below 0.01 of the totalR%. For comparison, we have also presented the predicted
dimension of directional multipath fields in [12]. It was aeglin [12] that the dimension of spatial
multipath fields with a restricted angle of arrival betweer2, 2) in a 2D region of sizeR is

equal to

(53)

OM' +1, M = {QeR]

A
Compared to (35), the above dimension takes the restricR%l range? into account. From Table
| it is observed that the calculated richness using DefiniBas either identical to or below the

predicted dimension in (53).

V. CONCLUSIONS

The degree to which multipath fields are resolvable in spacertipon the size of space where
the field is coupled to. For 2D spatial regions of radiRiswe proved that the number of effective
multipath modes is limited b N + 1, where N = [reR/\]|. For 3D spatial regions of radiug,
the number of effective multipath modes is limited @0y +1)2. We also defined random multipath
richness based on the number of SCF eigenvalues in the KL siqathat captures 99% of the
multipath energy. We showed that multipath richness is uppended by2N + 1 in the MMSE

sense and the bound is achieved for isotropic multipath. Byipg a lower bound on the largest
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Fig. 3. Numerical eigenvalue analysis for three different APS’s withrémge2 /7 = 0.05,0.5, and 1. The eigenvalues
are computed on a disk of radiug = 1 A using Algorithm 1 in Section IV-B. The eigenvalue spread decreases with

decreasind?.

SCF eigenvalue, we quantitatively verified the well-knownutn of multipath richness with

reducing the APS angular range.

APPENDIX |

PROOF OFTHEOREM 1

Proof: For reference, (25) is repeated by defining = ||| /\ and hencekr = 27 /\||z| =

2z

n

(@) <2 122 <2 ) 55 2 2Ru(2). (54)

n>N n>N
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Therefore, we find an upper bound dtw (z), which is expanded by changing the summation

variable as
2" N 2"
Ry(z) = WZN i exp(z) — nZ:O ) (55a)
2N+ = (N4,
:(N+1)!<Z(N—|—1+n)!z)' (55b)

n=0
Note that for integer > 0 each term in the summation in (55b) is upper bounded as

(N+1)! zZ \"
Niital® S <N+2> ' (56)

Hence, for integefV > 0 satisfying N > z — 2, we can use the sum of geometric series to upper

bound Ry (%) in (55b) as

ZN+1

(N +1)!

( N+2 ) (57)

<
Ry (2) < N+2—=z

Now, we use the Stirling lower bound, > /27nn™e™", to write

N+1 N+1
z < 1 ( ez ) (58)
(N +1)! 2r(N +1) \N +1
Now, using the following exponential inequality
ez \N+l1 ez— N —1\(N+1) _N-1
— < ez
<N+1> ( TN ) S ’ (59)
we obtain the following upper bound aRy (z)
eez—N—l N +2
R < . 60
n(2) «/27T(N—|-1)(N+2_Z> (60)
To contain the exponential in (60), for a givenconsider selectingV(z) = [ez]. Then,
ez < N(z)<ez + 1, (61)
from which it can be shown
N(z)+2 e
< =1
(N(z) +2— z) Te—1 158197 (622)
exp(ez — N(z) —1) < 1/e =0.36787... . (62b)
Using (62a) and (62b) in (60) yields
1 0.23217...
Ry()(2) (63)

SN 1) NG T
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Fig. 4. The remaindeRx(z) in (55a) with N = N(z) = [ez]. The stepped curve is the bound given by (63) and

the uniform bound corresponds to (64).

SelectingN (z) = [ez] implies thatRy.(z) in (63) is piecewise function of with local maxima
atz € {1/e,2/e,3/e,...}, whereN(z) steps up to the next integer value. By searching over these

local maxima we can use the exact expression (55a) to obtamfarm tight bound:
Ry (:)(2) < max Ry(N/e) = Ra(2/e)
2 2 2
= exp (E) - (1 o4 ?) = 0.080635... (64)

which improves on (63) wheiV(z) < 7. Fig.4 displays the truncation error bounds k(=)
given in (63) and (64) as a function efand usingN = [ez |.

When N > N(z), which we refer to as theritical regime we infer from (64) thatRy(z) <
0.080635.... Therefore,(y(x) < 0.16127 that establishes (26) fah = 0.

Now, we show thatR (=), for a fixed z, exponentially decreases A5 increases provided that

N > z — 2. First, we note that for a positive fixed Ry(z) in (55a) is decreasing wittv. Using
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(55b) we write the ratiadRya(z)/Rn(z) for A >0 as

[e'e) N+A+1)! n
Ryia(z)  ZNTAHL (N + 1) =0 (157+A+1+)n)!z (65)

= [~ N+l oo (NFLI

Rn(2) (N+A+D! 2 > n=0 (]\(f+1+)7z)!z
We observe that foA > 0
(N+A+1)! 1 (66)
(N+A+1+n) (N+A+2)---(N+A+1+n)

!

1 _ (N +1)! ‘ (67)

<
(N+2)---(N+1+n) (N+1+n)
Therefore, each term in the summation in numerator in (65)maller than each term in the

summation in the denominator and hence, the ratio is less Ihahich yields

Ryia(2) N
Ry(z) T (N+2)(N+3)---(N+A+1) (68a)
S ( ; )A - = : (68b)
N +2 ol a=(N+2)/

Therefore, wheneveN > z — 2, we havea > 1 and the remaindeR A (z) decreases exponen-
tially as A increases. In the critical regimé&y > [ez], this impliesa > e and the exponential
decrease is at least as fasteap(—A) by (68b). Therefore, the truncation error upper bound for

N+ A = Jez| + A is written as
(naa(®) < 2Ryia(z) < 2Ry(2)e ™2 < 0.16127¢ 2 (69)

It is also easily verified that for all positive values ofsatisfying

K-1
e

K
<z< —=N=lez|=K, KEeN,
e

the inequalityN > z — 2 is automatically satisfied and the assumptions throughaupthof are

valid. [ |

APPENDIXII

PROOF OFTHEOREM 2

Proof. The proof of Theorem 2 is similar to the proof of Theorem 1. Réfgrto (33) and

using (24), we first find an upper bound for the summation in thegimal

+oo 2n

+oo
v & Y BEI< Y o (70)

n=N+1 n=N-+1
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wherez £ r||z||/\. Using a similar procedure as in (55a)-(56), we obtain

Sy(e) < AL (71)
N(z) < 5 71
(N+1)N21 - (Nj—72)2

for N +2 > z. Now using the same steps as (58)-(59), the following bosnderived

g ( )< e2(ez7N71) 1 (72)

N z AN 22
If we chooseez < N = [ez]| < ez + 1, we obtain
0.0249
< .

We can further examine the bound S (z) given in (71) at critical points of the ceiling function

(z = k/e, k € N) to obtain a universal upper bound
Sn(z) < 0.004649, (74)

by choosingz = 1/e in (71). Similar to the steps in (65)-(68b), it is possible twow that for
A >0, N = [ez], andN + 2 > z, the following ratio holds

Snia(z) _ an

———- e 7. 75
Sn () (75)
Based on (74), it is possible to show that the truncation MSE38)
B fOR 25N (z) rdr
=0 "7 <0 .
en(R) /2 2 < 0.009298 (76)

Moreover, if we chooséVr = [em R/A| + A, so thatSy(z) at the outer edge of disc is bounded
asSy(z) < 0.004649 22, from (75) we conclude thafy (z) < 0.004649 e 22 for everyr < R.

Thereforegn(R) < 0.009298¢ 24, which completes the proof. [ ]

APPENDIXIII

PrROOF OFTHEOREM 3

Proof. Before proceeding, we remember that according to the maximigenvalue property

[15, p. 198] and by the definition of the operator norm [15] foe kernelA = p(x2 — x1)
Amax = [| 4] = (Ag,9), Vg:llg] =1, (77)

it is possible to find a lower bound on the maximum eigenvaluarbitrarily choosing any function

¢ with the only condition being thdlg|| = 1. In the following, we will obtain a close lower bound
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for Amax by proper choice ofy. Let the functiong(x) in the region||z|| < R andx = (r, ) be

expanded as

o(x) = i b, Jp(kr) eP? 78)

oo VIp(R \/27r
where |g|| = 1 requires tha) b,|> = 1. We write the inner productAg, g) = w using (44),

the definition ofp(xy — 1) in (18), and the definition of in (78), which yields

=2 Z \/ jm(R) bm Z V jn(R) b: Yn—m- (79)

Now, we use the definition of,,_,, in (14) for a directional APSP(¢) to write

r [ . 2
:Q/_lembmem\ de. (80)

The orthonormal basis functions for the limited rangé, Q) = [—x /7,7 /7) are{e™/v20Q} .

We expand the exponentials in (80) in terms of the new basistifons

1q7'§0

Zsmq Vo (81)

where¢,, , £ V2Qsine(m — gr). Replacing (81) into (80) and changing the summation order

zmcp _

yields the following expression

2
(82)

-5 [T

where 3, is defined as

By 2> /T (R) bimmg. (83)
Now, using the orthonormality of the basis functions in (8& write
T
=520 (84)
q
Since all the terms in the summation are non-negative, theriproducty is greater than every

42 including its maximums?2,, . £ max,{62}. That is,; > To find the closest lower bound

maX

on u, we first use Cauchy’s inequality to upper bound each tégnin (83)

= | VT B bn| < (X Tn(RIE,) (1), (®5)

where the upper bound is achieved when

= Cq\/m m,q (86)
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andc, is a constant that is chosen
1
cq = (87)
VEw In(R)ER

to normalize the functiom in (78) in the region|z|| < R. Therefore, by choosing,, , according

to (86) each terni? is maximized as32 = >°, Jm(R)&2, .- And by definition,

e = max{ g} = max y | T (R)E (88)

Finally, by combining (77), the definition of,, ,, and (88) the following lower bound on the

maximum eigenvalue is derived

> >l = sine? (m€) — :
Pmax = 1 = Bhax m(?x {271’%: JIm(R) sinc”(mS2 qw)} (89)
|
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