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Abstract

We study the dimensions or degrees of freedom of farfield multipath that is observed in a

limited, source-free region of space. The multipath fields are studied as solutions to the wave

equation in an infinite-dimensional vector space. We prove two universal upper bounds on the

truncation error of fixed and random multipath fields. A direct consequence of the derived bounds

is that both fixed and random multipath fields have an effective finite dimension. For circular

and spherical spatial regions, we show that this finite dimension is proportional to the radius and

area of the region, respectively. We use the Karhunen-Loeve(KL) expansion of random multipath

fields to quantify the notion of multipath richness. The multipath richness is defined as the number

of significant eigenvalues in the KL expansion that achieves99% of the total multipath energy.

We prove a lower bound on the largest eigenvalue. This lower bound quantifies, to some extent,

the well-known reduction of multipath richness with reducing the angular spread of multipath

angular power spectrum. We also provide a numerical algorithm to find multipath eigenvalues,

which unlike the Fredholm equation method, does not requireselecting quadrature points.
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L IST OF ACRONYMS

2D Two-Dimensional

3D Three-Dimensional

APS Angular Power Spectrum

KL Karhunen-Loeve

MSE Mean Square Error

MMSE Minimum Mean Square Error

PDE Partial Differential Equation

SCF Spatial Correlation Function

I. I NTRODUCTION

A. Motivation and Background

Wireless communications usespaceas the physical medium for information transfer. The trans-

mitted signal is often received via multiple paths due to reflection, diffraction, and scattering by

objects in the wireless environment [1]. Using the spatial aspects of multipath is an increasingly

active thread of research in wireless communications and signal processing [2]–[4]. This motivates

studying the fundamental physical limits that space imposes on the dynamics of multipath wave

propagation and wireless information transfer.

The primary aim of this paper is to find the intrinsic limits on the dimensions or degrees of

freedom for multipath fields when they are observed in, or coupled to a source-free region of

space. This region of space is where multiple sensors may be potentially located to sample the

multipath field for signal processing or communication purposes. However, our aim is to find

universal bounds on multipath dimension without explicitly considering a specific sensor setup or

application and hence, to show that the coupling of multipath into a spatial region is fundamentally

limited by a finite number of orthogonal basis sets or modes.

In this paper we also aim to define spatial multipath richness.The predicted benefits of using

spatial multipath in multiple-sensor wireless communications usually hinges on the imprecise

assumption ofrich multipath [5]–[7] or having a rich scattering environment. However, rich



3

multipath needs to be mathematically quantified based on the dynamics of the multipath field

random process and the wave equation. More specifically, we aim to precisely quantify the effects

of multipath angular spread and spatial observation regionon richness, regardless of sensor setup.

Earlier works, [8], [9] introduced a general theoretical framework for studying the degrees of

freedom in spatial multipath fields, where it was proposed that there is an essentially finite number

of multipath fields that can be distinctively coupled to a source-free region. In another approach,

[10] considered linear, circular, and spherical sensor array geometries and established an analogy

between the degrees of freedom in the time-frequency domainand in the spatial-angular domain.

It was concluded that the spatial-angular dimensionality is linearly related to the effective sensor

array aperture and the angular span of scatterers.

B. Approach

The analysis in this paper considers multipath fields as thefunctional solutions to the wave

equation [11]. This mathematical framework is similarly used in [8], [9], [12]. In this presentation,

the multipath field lies in a countable infinite-dimensional linear vector space, where vectors consist

of functions. The advantage of the functional wave representation is that 1) it is general enough

to be applied toany narrowband multipath environment, regardless of the number or nature of

multipath sources, 2) it accommodates representation of random multipath fields with a general

spatial correlation function (SCF) [13], and 3) it allows us todetermine the effective number of

dimensions (in the infinite-dimensional functional space) that essentially contributes to the coupling

of multipath fields to a spatial region. In order not to obscurethe approach, we present the main

results for a narrowband two-dimensional (2D) multipath farfield environment. We will briefly

explain how our methodology extends to three-dimensional (3D) fields. Unless explicitly stated,

the equations and results in the paper are written assuming 2D multipath fields.

The integral kernels for spatial channel response in [10] andmultipath field representations in

this paper are both derived from solutions to Maxwell equations. As a result, the integral kernels in

[10] for circular and spherical antenna arrays are based on similar orthonormal expansions as in 2D

and 3D multipath fields in this paper, respectively. One difference is that [10] considers azoomed-

out granularity for describing channel scattering, where the total effect of scattering is modeled

by the angular power span in the kernels. In this paper, scattering is directly incorporated into
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the multipath field representation using a countable set of random coefficients. These coefficients

encode the field and characterize the statistical details of angular power spectrum1 (APS). Another

difference is that [10] takes antenna polarization into account and shows that using tri-polarized

arrays can result in a maximum two-fold increase in multipath channel dimensionality. In this

paper, we focus on uni-polarized representation of multipath, where a similar conclusion as in [10]

is expected by including polarization.

It is known that the Karhunen-Loeve (KL) expansion [14] of a random process allows a par-

simonious representation/truncation of the process in theminimum mean square error (MMSE)

sense. The KL expansion of a non-isotropic multipath field provides the maximally parsimonious

and customized orthonormal expansion for that particular field. Therefore, we propose to use

the KL expansion of random multipath fields to quantify their richness. In the KL expansion

of multipath fields, the SCF eigenvalues and eigenfunctions play a central role. In particular,

the number of significant SCF eigenvalues defines multipath richness, since random multipath is

essentially generated by the corresponding significant eigenfunctions and an uncorrelated random

sequence.

C. Contributions

The Dimension of Multipath Fields:In Section III, we prove two universal upper bounds on

the truncation error of multipath fields in their infinite-dimensional presentation to a finite number

of orthogonal modes. The first upper bound considers fixed multipath fields and complements the

preliminary results in [8] by providing a mathematically rigorous proof. The second upper bound

explicitly considers random multipath fields and upper bounds the field truncation mean square

error (MSE). We show that for 2D multipath fields, the truncation(mean square) error upper bound

exponentially decays to zero, if the number of considered orthogonal modes is greater than a critical

number2N + 1. The critical valueN is directly related to the normalized radius of the 2D region

R / λ and is given asN , ⌈π R e / λ⌉ (⌈·⌉ is the integer ceiling function andλ is the wavelength).

The results are noteworthy, as they show that the dimensionality in fixed or random 2D multipath

fields is essentially limited by theradiusand not by theareaof the 2D observation/coupling region.

1The angular power spectrum quantifies the distribution of multipath power from different incident angles.
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The dimensionality in 3D multipath fields is determined by(N + 1)2 and hence, is related to the

area and not thevolumeof the 3D region.

Multipath Richness:In Section IV, we use the multipath KL expansion to quantify the notion

of multipath richness based on the number of significant SCF eigenvalues. More specifically,

richness is defined as the number of SCF eigenvalues that captures at least 99% percent of the total

multipath energy. This definition provides multipath richness results that are consistent with the

2⌈ΩR e/ λ⌉+1 definition in [12], whereΩ is the APS angular power spread. In [10], the channel

dimensionality using uni-polarized, 2D circular arrays was shown to beA|Ω|, for R ≫ 1, where

A = 2R/λ is the normalized array aperture and|Ω| is the solid angular spread of scatterers. We also

prove a lower bound on the largest SCF eigenvalue. This lower bound quantifies, to some extent,

the well-known qualitative effect of decreasing angular power spread of scatterers on decreasing

multipath richness. We also provide a systematic numericalalgorithm to find the SCF eigenvalues.

Unlike the quadrature-based solution to the Fredholm equation [15], [16], the proposed algorithm

does not require selecting quadrature points.

II. 2D M ULTIPATH FIELD REPRESENTATION

Let x represent a vector in 2D space,R2, and letr = ‖x‖ denote the Euclidean distance ofx

from the origin, which is the center of some region of interest. The unit vector in the direction

of non-zero vectorx is denotedx̂ , x/‖x‖. Further, letϕ(x) ∈ [0, 2π) represent the azimuth

angle of vectorx. Then, we can writêx = [cos ϕ(x), sinϕ(x)]T , whereT denotes transpose. The

vectorx may also be represented in its polar form as

x ≡ (‖x‖, ϕ(x)) ≡ (r, ϕ).

Let F (x) denote a finite complex-valued narrowband multipath field in a region of interest

‖x‖ 6 R, for some finite rangeR, generated by sources and scatterersexternalto that region.2 In

particular, we assume that all sources exist outside some radius Rs > R. Then,F (x) satisfies the

Helmholtz or reduced wave equation (in the region of interest) [11]

△F (x) + k2F (x) = 0, k , 2π/λ, ‖x‖ 6 R, (1)

2More generally the region could be any shape. This paper considers circular regions, because this is one of the

cases where rigorous analytic bounds are possible. How more general shapes can be treated in an analogous way is not

explicitly treated in this paper.
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where△ is the Laplacian andλ is the wavelength. The time harmonic solution to the related

full wave equation is thenF (x, t) = F (x) e−iωt, where i =
√
−1, ω = 2πf , and f is the

frequency [11]. Since (1) is a linear partial differential equation (PDE), we see immediately that

valid multipath fields in a source-free region of interest areconstrained to lie in a linear subspace

given by the nullspace of the operatorM , △+ k2I (I is identity). That is, ifF1 andF2 are any

two solutions of (1), then so isζ1F1 + ζ2F2 with ζ1 andζ2 being scalars.

Two broad classes of representation of the solution to (1) will be considered. The first class is

based on plane wave synthesis and is considered in Section II-A. The second class is based on

orthogonal solutions to the wave equation and is consideredin Section II-B.

A. Multiple Plane Wave Representation

A standard multipath model involves modeling every distinct path explicitly as a plane wave.

That is,

F (x) =
∑

p

ap eikx·byp , (2)

where the plane wave of indexp has complex amplitudeap ∈ C, the propagation direction is

denoted by the unit vector̂yp ≡ (1, ϕp), and x · y denotes the scalar product between vectors

x and y. We interpret representation (2) as encoding the field with a countable number of pairs

{ap, ŷp} enumerated byp. Representations similar to (2) appear in array sensor signal processing

applications, such as in [17]. Typically, only a finite numberof plane waves are considered, although

distributed sources are considered in [18]–[20]. For example, [20] extended the classical Bello’s

work [21] and established the duality between continuous spatial direction dispersion and spatial

selectivity. The spatial duality is analogous to the dualitybetween delay dispersion and frequency

selectivity or between Doppler frequency dispersion and time selectivity in wireless channels.

A ready generalization that subsumes (2) is the superposition of plane waves from all azimuth

directionsϕ as

F (x) =

∫ 2π

0
a(ϕ) eikx·by dϕ, (3)

whereŷ ≡ (1, ϕ) anda(ϕ) is the complex-valued gain of scatterers as a function of thedirection

of arrival ϕ.
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B. Orthogonal Representation

A more general representation than (3), which implicitly required that any sources be in the

farfield, is now given. If we assume that the narrowband multipath field is generated by sources

outside some radiusRs, then forRs → ∞, we can use the Jacobi-Anger expansion [11, p. 67] to

represent the plane waves in (3) as

eikx·by =
∞∑

n=−∞

in Jn

(
k‖x‖

)
ein(ϕ(x)−ϕ), (4)

whereJn(·) is the Bessel function of the first kind of integer ordern [22], [23]. By substituting

(4) into (3), we obtain

F (x) =
∞∑

n=−∞

in αn Jn

(
k‖x‖

)
einϕ(x), ‖x‖ 6 R < Rs, (5)

whereαn ∈ C is thenth Fourier series coefficient ofa(ϕ) in (3) defined as

αn =

∫ 2π

0
a(ϕ) e−inϕ dϕ, (6)

and

a(ϕ) =
∞∑

n=−∞

αn

2π
einϕ. (7)

This shows the relationship between the angular distribution of farfield sourcesa(·) in (3) and the

coefficients{αn} of the general expression (5). In (5), we identify a countable set of orthonormal

basis functions over the 2D disc of sizeR as

Φn(x) , in
Jn

(
k‖x‖

)
√

Jn(R)

einϕ(x)

√
2π

, n ∈ Z, ‖x‖ 6 R. (8)

where

Jn(R) ,

∫ R

0
J2

n(kr)rdr. (9)

The orthonormality is verified

∫ R
0

∫ 2π
0 Φn(x)Φ∗

m(x)dϕrdr =






1 m = n

0 otherwise
. (10)

We can rewrite (5) in its orthonormal expansion

F (x) =

∞∑

n=−∞

√
2πJn(R)αn Φn(x). (11)
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In comparison with (2) and (3), representation (11) encodesthe field with a countable set of Fourier

coefficients
{
αn

}
n∈Z

. Moreover, the multipath field in (11) is represented as a superposition of

a countable set of orthonormal basis functions
{
Φn(x)

}
n∈Z

, whereas (2) lacks a parsimonious

property, since plane waves lack orthogonality.

The sequence
{
αn

}
n∈Z

in (5) and its statistical properties play a central role in this paper, as they

provide, through truncation, an efficient or parsimonious parameterization of general narrowband

multipath fields and allow studying their dimensionality or degrees of freedom.

C. Random Multipath Fields

Detailed information about scatterers that generate the multipath field F (x) is usually limited.

Therefore, it is reasonable to represent multipath fieldF (x) as a random process. Referring to

(3), the scattering gaina(·) is random and so isαn in (11). For mathematical tractability of the

analysis, we assume uncorrelated scattering, which means that the random gainsa(ϕ) anda(ϕ′)

at two distinct incident angles are uncorrelated from each other and the normalized APS is given

by

P (ϕ) ,
E {a(ϕ) a∗(ϕ)}

∫ 2π
0 E {a(ϕ) a∗(ϕ)} dϕ

, (12)

whereE{·} and ∗ denote expectation and complex conjugate, respectively. Using (6), (12), the

uncorrelated scattering assumption, and following a few intermediate steps we find that

E
{
|αn|2

}
=

∫ 2π

0
E
{
a(ϕ)a∗(ϕ)

}
dϕ. (13)

The normalized correlation betweenαn andαm is defined as

γm−n ,
E {αm α∗

n}
E
{
|αn|2

} =

∫ 2π

0
P (ϕ) e−i (m−n) ϕ dϕ. (14)

It is observed from (14) thatγm−n is, in fact, the(m − n)th Fourier series coefficient of the

normalized APS,P (ϕ).

Using (3), the normalized spatial correlation function (SCF)of multipath fieldsF (x1) andF (x2)

at pointsx1 andx2 is defined as [13]

ρ(x2, x1) =
E {F (x2)F

∗(x1)}
E {F (x1)F ∗(x1)}

(15)

=

∫ 2π
0

∫ 2π
0 E

{
a(ϕ)a∗(ϕ′)

}
eik x2.by e−ik x1. by′

dϕdϕ′

∫ 2π
0

∫ 2π
0 E

{
a(ϕ)a∗(ϕ′)

}
eik x1.by e−ik x1. by′

dϕdϕ′
. (16)
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Since we assume uncorrelated scattering,E
{
a(ϕ)a∗(ϕ′)

}
in (16) is only non-zero forϕ = ϕ′.

Therefore, the double integrals in (16) reduce to single integrals and upon using the APS definition

in (12), ρ(x2, x1) is simplified to

ρ(x2, x1) = ρ(x2 − x1) =

∫ 2π

0
P (ϕ)eik (x2−x1).by dϕ. (17)

Equation (17) shows that due to the uncorrelated scattering assumption, the SCF is only a function

of the spatial separation between points (x2 − x1) and therefore, is spatially stationary. Using the

Jacobi-Anger expansion (4) for the plane waves in (17) yields

ρ(x2 − x1) =
∞∑

m=−∞

i−mJm(k‖x1‖) e−imϕ(x1)
∞∑

n=−∞

inγn−m Jn(k‖x2‖) einϕ(x2) (18)

=
∞∑

m=−∞

imγmJm(k‖x2 − x1‖) e−imϕ21 , (19)

where the second equality is written using the summation theorem for Bessel functions [24, pp.

930-931]. In (19),‖x2 − x1‖ is the distance between vectorsx2 andx1 andϕ21 is the angle of

the vector that connectsx1 to x2. The SCF in (17)-(19) will be used later in Section III-B and

Section IV to find the dimensionality and richness of random multipath fields, respectively.

Before concluding this section, we reiterate that the assumption of spatially uncorrelated scat-

tering, originally used in [21] for uncorrelated scattering in delay dispersion domain, enables a

mathematically tractable analysis. However, the assumption of spatially uncorrelated scattering may

be violated in practical situations, where electromagnetic rays reflect non-specularly off scatterers

and the received amplitudes and phases of paths with similarangles of arrivals become correlated.

Recently, [25] proposed a physical model to represent spatially correlated scattering, which requires

a two-dimensional Fourier expansion of the scattering APS,P (ϕ). It is shown that a scattering

correlation with Gaussian density and the standard deviation of 2 degrees has modest and mostly

negligible effects on the SCF, whereas for a randomly generated angular correlation, the difference

cannot be neglected. The actual effect of correlated scattering on the dimensionality of multipath

fields is still unknown. Our conjecture is that it could only reduce the dimensionality and not

increase it. Hence, the results of this paper may serve as an upper bound on the available degrees

of freedom. Quantifying the effects of correlated scattering on multipath dimensionality is an open

problem.
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III. D IMENSIONALITY OF MULTIPATH FIELDS

Multipath fields are usually observed in a limited region in space and, as such, the degree to

which one can determine the effects of the multipath field is also limited. In the following sections,

we will see that one needs to consider explicitly the region in space when considering concepts

such as dimension and richness.

In Section II-B, the multipath fieldF (x) was represented by a countable, but infinite sum of

orthogonal modes
{
αn Φn(x)

}
in (11). In this section, we define the dimensionality of multipath

by the number or cardinality of effective modes that essentially build the field. To this end, we

define thetruncatedfield FN (x) by selecting the first2N + 1 indexed coefficients ofF (x)

FN (x) ,

N∑

n=−N

√
2πJn(R)αnΦn(x). (20)

As will be shown in the following sections, although allαn coefficients in the synthesis of multipath

field in (11) have the same variance (refer to (13)), it is stillpossible to accurately truncate the field

with a carefully chosen truncation length,N . Equivalently, the truncated field in (20) is synthesized

as if the Fourier coefficientsαn were zero for|n| > N . The question is how to chooseN so that

the truncated field represents the actual fieldF (x) within a given region and with a prescribed

accuracy.

Our approach consists of two parts. In Section III-A, we find an upper bound on the normalized

truncation error of the multipath field as a function of the truncation lengthN . This is carried

out for an arbitrary multipath (subject to satisfying conditions discussed in Section II), without

explicitly considering its random nature. Hence, the field isassumed to be deterministic. From

the truncation error upper bound in Section III-A we concludethat the effective dimensionality

of multipath is directly related to the radius of the 2D region, to which the field is coupled.

Then in Section III-B, we find a universal upper bound on the normalized MSE of multipath field

truncation, which takes multipath randomness into account. Considering the truncation MSE upper

bound consistently predicts the same dimensionality for random multipath fields as in Section III-

A. This is expected, because the absolute upper bound in Section III-A applies for any multipath.

However, the MSE upper bound bears a more physical significance, because 1) it takes the stochastic

random scattering into account by computing the average error and 2) it signifies the normalized

energyof truncation error, which is more physically meaningful than the absolute error. Moreover,
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considering truncation MSE of random multipath fields paves the way for the MMSE KL expansion

of multipath in Section IV and for investigating the dimensionality of random fields with a limited

angle of arrival and quantifying multipath richness.

A. Arbitrary, Deterministic Multipath Fields

Using (11) and (20), we define the normalized field truncation error of the multipath field over

a 2D disk of radiusR

εN (R) ,
1

πR2

∫ R

0

∫ 2π

0

∣∣F (x) − FN (x)
∣∣

‖a‖ dϕrdr, (21)

where, assuming farfield sourcesRs → ∞, ‖a‖ is finite and defined to be

‖a‖ ,

∫ 2π

0
|a(ϕ)| dϕ < ∞. (22)

Based on (22) and referring to (3), the field intensity|F (x)| is also upper bounded by‖a‖. The

normalization in (21) provides a relative error satisfyingproperties of: i) scale invariance, that the

relative error is the same forF (x) andγF (x) for complex scalarγ 6= 0; and ii) unit plane wave

invariance, that normalization leaves a unit amplitude plane wave unchanged.

We now elaborate on the normalized truncation error in (21) in two steps. First, we show that

the two fieldsF (x) andFN (x) are essentially indistinguishable at any point‖x‖ 6 R, provided

that N is appropriately chosen according to‖x‖. More specifically, we show that the normalized

field residual ∣∣F (x) − FN (x)
∣∣

‖a‖ → 0

in an exponential manner forN > ⌈e π‖x‖/λ⌉, ⌈·⌉ being the integer ceiling function. This is

formally expressed in Theorem 1. Then, it is shown that the decaying property of truncation

error carries over to a 2D disk of sizeR. In particular, the truncation error in (21) exponentially

approaches zero forNR > ⌈e πR/λ⌉.

Now, consider the integrand in (21), which is written using (5)

ζN (x) ,

∣∣F (x) − FN (x)
∣∣

‖a‖ =
1

‖a‖
∣∣∣

∑

|n|>N

inαn Jn

(
k‖x‖

)
einϕ(x)

∣∣∣

6
1

‖a‖
∑

|n|>N

|αn| |Jn(kr)|

6
∑

|n|>N

|Jn(kr)| = 2
∑

n>N

|Jn(kr)|, (23)
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where the second inequality follows from (6) and (22)
(
|αn| 6 ‖a‖

)
and the last equality follows

from J−n(kr) = (−1)nJn(kr). From (23) it is evident that the behavior of the truncation error

depends on the properties of Bessel functions|Jn(kr)| for sufficiently largen. We use the following

bound for the Bessel function|Jn(u)| [26, p. 362]

|Jn(u)| 6
(u)n

2nn!
, z > 0 (24)

to upper bound (23) as

ζN (x) 6 2
∑

n>N

|Jn(kr)| 6 2
∑

n>N

(kr)n

2nn!
. (25)

The following theorem shows quantitatively that, for a fixedx, by taking the truncation depthN

large enough, we can makeζN (x) as small as desired.

Theorem1 (Relative Truncation Error Bound of the Multipath Field): A multipath fieldF (x)

generated by farfield sources, having representation(11), can be truncated to|n| 6 N terms as

in (20), where the normalized truncation error is upper bounded as

ζN (x) ,

∣∣F (x) − FN (x)
∣∣

‖a‖ 6 η e−∆, (26)

provided that the truncation length is chosen as

N = ⌈e π‖x‖/λ⌉ + ∆. (27)

In the above,η ≈ 0.16127 and ∆ ∈ Z+.�

Theorem 1 states that the relative truncation error is no morethan 16.1% onceN equals the

critical threshold⌈e π‖x‖/λ⌉, and thereafter decreases at least exponentially to zero asN increases.

See Appendix I for the proof.

Now, we turn back to the definition of the normalized truncation error (21) over a disk of radius

R. We note thatζN (x) in (25) only depends onr = ‖x‖ 6 R. From Theorem 1 we conclude that for

a fixedr, ζN is a decreasing function ofN > ⌈e πr/λ⌉. Therefore, we chooseNR = ⌈e π R/λ⌉+∆,

so that the truncation error at the outer edge of disc is bounded asζNR
(r = R) 6 η e−∆. Since

NR > ⌈e πr/λ⌉ for everyr 6 R, ζN 6 η e−∆ for everyr 6 R. As a result,NR = ⌈e π R/λ⌉+ ∆

guaranteesεN (R) < η e−∆ over the entire region. This is summarized in the following corollary

to Theorem 1.
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Corollary 1.1 (Truncation of Multipath Fields in a 2D Region):A multipath fieldF (x) may

be truncated toFN (x) as in (20) in the region‖x‖ 6 R wheneverNR equals (or exceeds)

NR , ⌈e π R/λ⌉, (28)

with a normalized truncation error given in (21) that is exponentially decaying to zero forN > NR.

Theorem 1 complements the preliminary results in [8] by explicitly quantifying how the nor-

malized truncation errorζN in (26) exponentially decreases as a function of excess truncation

length∆, and by providing a more rigorous and detailed mathematicalderivation of the bound in

Appendix I. More specifically, in [8] the normalized truncation errorζN was bounded as

ζN (x) 6

√
2

(N + 1)π
.
ρ(N, ‖x‖)N+1

1 − ρ(N, ‖x‖) , (29)

where

ρ(N, ‖x‖) =
πe‖x‖/λ

N + 1
, (30)

and N > πe‖x‖/λ − 1. Equation (29) does not explicitly elaborate on howζN (x) behaves for

N = ⌈e π‖x‖/λ⌉+∆. Quantifying the truncation errorζN (x) in the form of (26) is one contribution

of this paper. Corollary 1.1 is an another contribution of this paper, compared to [8], which explicitly

defines and upper bounds the normalized truncation error overa 2D disk of radius R.

Example:Fig. 1 compares the predicted relative truncation error bound in Theorem 1 with multi-

path simulation results. We have synthesized a large numberof 2D multipath fields according to the

plane wave model (2) and computed and plotted the worst case relative errormax‖x‖6R{ζN (x)} in

(23) over the circular region‖x‖ 6 1 λ (λ is the wavelength). The parameter is the truncation depth

N . Note that in the context of an antenna array for communications, this region is not so small

since, for example, it would accommodate a linear array of 5 antennas or 13 antennas in a diamond

configuration atλ/2 spacing. Fig. 1 summarizes the results of 50 trials, each of fields composed

of P ∈ {1, 2, 5, 10, 50, 100, 200, 500, 1000} numbers of plane waves. The complex amplitude,ap,

of each plane wave was randomly selected from a uniform[0, 1] amplitude distribution, uniform

[0, 2π) phase distribution, and uniform[0, 2π) direction of propagationϕp. It is evident that for

all fields, the relative error decreases faster than exponentially with increasingN . In this figure

we have also plotted the bound (26). According to Theorem 1 and(28), for a 2D region of size
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‖x‖ 6 1 λ the truncation error exponentially decays ifN = NR + ∆ = ⌈π e⌉ + ∆ > 9. It is

evident that the relative error bound is quite conservativeand the actual relative error is of the

order of1% at NR = 9 (in comparison to our bound of approximately 16.1%). The bound exponent

does, however, well model the slope of the relative error atN ≅ NR. The fact that the slope is

greater at higher truncation lengths can be inferred in the proof given in Appendix I (see (68b)),

but has not been reflected in Theorem 1 to simplify its statement. These experiments and similar

experiments for regions of different sizes verify that one can bound the relative errorindependent

of the multipath fieldwhere the bounddepends only on the size of the region. Therefore, it is

essentially impossible to distinguish between fields with relatively few paths and ones with 1000 or

more paths (including diffuse multipath) for this size region. This example quantitatively confirms

the well-known limitation that array aperture (size) imposes on resolving multipath fields.

B. Random Multipath Fields

In this section, we prove a universal bound on the truncationerror of random multipath fields

in the MSE sense. Since the multipath field is a random process, wecompute the normalized

truncation MSE over a 2D disc with radiusR, when the field in (11) is truncated to its first2N +1

terms in (20). This is defined as

εN (R) =

∫ R
0

∫ 2π
0 E

{∣∣F (x) − FN (x)
∣∣2} dφ r dr

∫ R
0

∫ 2π
0 E

{∣∣F (x)
∣∣2} dφ r dr

. (31)

Since Theorem 1 and Corollary 1.1 already showed that multipath truncation to2N + 1 terms

is possible forany deterministic field, we expect that considering truncation MSE provides a

consistent conclusion about the choice ofN . However, the MSE truncation error defined in (31) is

physically more meaningful than (21), because it evaluatesthe normalized average energy of error.

As will be seen in Theorem 2, the truncation MSE upper bound decays even faster than (26) with

excess truncation length∆ and hence, strengthens the physical significance of the results. We use

(11), (20), the orthonormality of basis functionsΦn(x) in (10), and the definition ofJn(R) in (9)

to write the MSE in (31) as

εN (R) =

∫ R
0

∑
|n|>N E{

∣∣αn

∣∣2}J2
n(kr)r dr

∫ R
0

∑
n E{

∣∣αn

∣∣2}J2
n(kr)r dr

. (32)
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Fig. 1. Simulation results for the maximum relative errormax‖x‖6R{ζN (x)} versus the truncation orderN for a

circular 2D region,‖x‖ 6 1 λ, for a large number of randomly generated 2D multipath fields. Every trial value is marked

with a cross. The stars define the analytic bound of (26) forN = NR + ∆ = ⌈π e⌉ + ∆ > 9, which is independent of

the multipath field.

From (13) it is observed that the expectationE{
∣∣αn

∣∣2} is independent of indexn, which yields

εN (R) =

∫ R
0

∑
|n|>N J2

n(kr)r dr
∫ R
0

∑

n

J2
n(kr)

︸ ︷︷ ︸
1

r dr
=

∫ R
0

∑
|n|>N J2

n(kr)r dr

(1/2)R2
, (33)

where the summation in the denominator is equal to 1 according to the summation theorem for

Bessel functions [24, pp. 930-931]. To find an upper bound for (33), we use the same bound for

the Bessel functions given in (24). The following theorem provides a universal upper bound for

the MSE in (33).

Theorem2 (Universal MSE Upper Bound for Truncation of 2D Random Multipath Fields):
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A random multipath fieldF (x) generated by farfield sources, having representation(11), can be

truncated to|n| 6 N terms as in(20), with the normalized truncation MSE given in(33) upper

bounded as

εN (R) 6 σ e−2∆, (34)

provided thatN is chosen asN = ⌈eπR/λ⌉ + ∆ and ∆ ∈ Z+. In (34), σ = 0.0093.�

The proof is provided in Appendix II. We note that in the derivation of multipath truncation MSE

in (31)-(34), we did not assume anything about the multipathSCFρ(x2 −x1) or equivalently the

APS P (φ) in (17). Therefore, (34) is a universal bound on multipath truncation MSE, regardless

of multipath scattering spatial correlation. Therefore, nomatter howrandomthe scatter is, the field

can be truncated to2N + 1 terms in (20) with an exponentially decaying MSE given in (34). In

other words,2N + 1 is an upper bound on the effective richness of random multipath fields in the

MSE sense.

So far, we have observed that the truncation of multipath fieldsresults in an exponentially

decaying error both in the absolute and MSE sense for the truncation depthN > ⌈eπR/λ⌉

(Theorems 1 and 2), where the actual number of terms in (20) to represent the field is2N +1. As

was observed in Fig. 1, the above truncation length is quite conservative. We are now in a position

to provide the following definition for the dimension of multipath fields.

Definition 1 (Universal Bound on the Dimension of 2D Random Multipath Fields): For a cir-

cular region in space given by‖x‖ 6 R, the effective dimension of a 2D multipath field is given

by

D2D

R , 2⌈e π R/λ⌉ + 1 ≈ ⌈17.079 R/λ⌉ + 1. (35)

Here, we summarize a few observations based on the above definition.

• The dimension,D2D

R increases with thelinear sizeof the regionR/λ (in wavelengths), not

with the area of the region.

• The dimension increases with the precision required. Dimension (35) actually specifies a

threshold effectwhere the truncation error is small (in the sense of Theorems 1and 2 and

Corollary 1.1) and is decreasing with an exponential rate.
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• It is sufficient to use onlyD2D

R of the αn in (11) to effectively encode any field within a

distanceR of the origin.

In the following two subsections we interpret the finite dimensionality of multipath fields in the

context of spatial sampling and multiple antenna communication systems.

C. Spatial Sampling

If an actual multipath fieldF (x) can be expressed exactly in the form (20) for someN , then

we refer to the multipath field as beingmode-limited. Hence we have an exact sampling theory

analogous to the sampling theory of time harmonic functions. That is,2N +1 appropriately chosen

sampling points in space are sufficient to completely determine F (x) in the 2D region.

For a general fieldF (x) restricted to the region‖x‖ 6 R, our theory implies thatF (x) is

essentiallymode-limited within‖x‖ 6 R and, thereby, is well represented by a limited number of

spatial samples (equal to the dimension). The point to be madeis that a sufficiently regular multipath

field3 has anintrinsic spatial forgetting which gives it a natural parsimonious representation in terms

of the lower order terms in the expansion (11).

D. Numbers of Receiver Antennas

We can interpret the finite dimensionality of multipath fields in the context of multiple antenna

communication systems. ConsiderQ antennas in a region‖x‖ 6 R at distinct locationsx1, x2,

. . . , xQ that are sampling a multipath fieldF (x) for communication purposes, such as multiple-

input multiple-output (MIMO) systems [3], [4]. SinceF (x) is well-modeled byFN (x) with D2D

R

terms given in (35), we can regard up toQ − D2D

R of the antennas as superfluous – that is, any

number of antennas in the region‖x‖ 6 R beyond the dimension of the region,D2D

R , provide little

or no additional information, depending on how wisely the antennas are spaced.This guides how

densely we can usefully populate space with antennas. For small spatial regionsD2D

R is small and

the asymptotic analysis and predictions about MIMO capacity enhancements should be cautiously

interpreted.

3Sufficiently regular in the sense of this paper means the multipath field is generated by discrete or distributed farfield

sources. The generalization to nearfield sources requires a more refined argument which is beyond the scope of this

paper, but nonetheless the general conclusion remains.
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E. Extension to 3D Multipath Fields

After studying the dimensionality of 2D multipath fields, we are interested to find how the results

are extended to the 3D case. For this purpose one needs to consider the 3D equivalent of the 2D

Helmholtz equation in (1) for a spherical region of radiusR/λ wavelengths, or‖x‖ 6 R. The

solution to 3D Helmholtz equation is more mathematically involved than (5) and is given by

F (x) = 4π
∞∑

n=0

in jn

(
k‖x‖

) n∑

m=−n

αm
n Y m

n (x̂), ‖x‖ 6 R, (36)

whereαm
n ∈ C are constants independent of position, and

jn(z) ,

√
π

2z
Jn+1/2(z) (37)

are the spherical Bessel functions, and

Y m
n (x̂) ,

√
2n + 1

4π

(n − |m|)!
(n + |m|)! P |m|

n (cos θ) eimϕ (38)

are the spherical harmonic functions, which are expressed in terms of the associated Legendre

polynomialsPm
n (cos θ). In (38), θ is the elevation angle andϕ is the azimuth angle, as before.

The 3D field in (36) is encoded with the countable set{αm
n }, which are 3D counterparts ofαn

in (5). Also, Y m
n andY p

q are orthogonal form 6= p or n 6= q. It was shown in [27] that the first

summation in (36) can be truncated toN terms as

FN (x) = 4π
N∑

n=0

in jn

(
k‖x‖

) n∑

m=−n

αm
n Y m

n (x̂), (39)

where forN = ⌈π R e / λ⌉ + ∆ and the normalized absolute truncation error is bounded as

εN (x) 6
∑

n>N

(2n + 1)
∣∣jn

(
k‖x‖

)∣∣ (40a)

≤
√

π
∑

n>N

(
π‖x‖/λ

)n

Γ(n + 1/2)
6 υ e−∆, (40b)

whereυ ≈ 0.67848 andΓ(·) is the Gamma function. The proof is structurally similar to the proof

of Theorem 1 and hinges on the asymptotically decaying behavior of spherical Bessel functions in

(40a) and (40b). More details about characterization of 3D multipath fields can be found in [27].

We note that by truncatingF (x) to N terms in (39), the number of significant{αm
n } coefficients

is (N + 1)2. Hence, we can assert:
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Definition 2 (Dimensionality of 3D Multipath Fields): For a spherical region in space given

by ‖x‖ 6 R, the maximum dimensionality of well-modeled 3D multipath is given by

D3D

R ,
(
⌈e π R/λ⌉ + 1

)2 ≈ 72.923 (R/λ)2. (41)

In summary,D3D

R given in (41)boundsthe spatial dimensionality of 3D multipath and increases

quadratically withR/λ, not with the volume of the region. For the sphere, the dimensionality

scales with the surface area. It is sufficient to use onlyD3D

R of αm
n in (36) to effectively encode

any field within a distanceR of the origin.

IV. K ARHUNEN-LOEVE EXPANSION OFRANDOM MULTIPATH FIELDS: MULTIPATH RICHNESS

In Section III, we found an upper bound on the MSE of multipath field truncation error when

the field is represented by the natural choice of orthonormal basis in (11). We showed that the

essential dimensionality of 2D multipath, which is observed in a disk with radiusR, is 2N + 1 =

2⌈π R e / λ⌉ + 1, regardless of stochastic scattering characteristics. Since accurate truncation of

multipath to2N + 1 terms applies for any (and every) multipath far-field,2N + 1 serves as an

upper bound for multipath dimensionality. But, does2N + 1 truly predict the dimensionality of a

random multipath field with a specific spatial correlation function (SCF)? Of particular interest is

the case where multipath power has a limited angular range. It is generally known that a limited

angle of arrival makes the multipath process correlated andhence, reduces its degrees of freedom.

However, quantification of the relation between angular power range and multipath dimensionality,

which is based on the general wave propagation and stochastic scattering theory, deserves further

investigation.

The treatment of multipath fields using the orthonormal basis in (11) is insufficient for analyzing

the effects of limited angular power range on multipath dimensionality. In fact,
{
αn

}
n∈Z

that

encode multipath in (11) are correlated random variables, as defined in (12)-(19). While multipath

truncation to2N +1 terms in Section III is universally applicable to any multipath field, regardless

of correlation in
{
αn

}
n∈Z

, a customized model should allow theoptimal, maximally parsimonious

representation of a particular field with a given SCF. With a fixedtruncation length, the truncation

error will be minimum when the multipath field is truncated in its optimal representation, or the

MMSE truncation. Alternatively, with a fixed truncation error, the optimal modeling of multipath
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allows the minimum truncation length. For 2D fields with a limited angular power range, multipath

dimensionality will be often much less than the predicted2N + 1.

In this section, we first define the optimal representation of random multipath fields and then,

use it to quantify the notion of multipath richness. The Karhunen-Loeve (KL) expansion is a

widely-used signal processing model for the optimal representation of stochastic processes in time

domain. The KL expansion takes away the redundant correlation of a random process and allows

its representation with the minimum number of uncorrelatedterms [14]. Here, we apply the KL

expansion for the representation of stochastic multipath fields in spatial domain. The objective is

to find the maximally parsimonious truncation of a random fieldF (x) and the effects of limited

angular power range on multipath dimensionality. The KL modeling of multipath is a novel means

of defining multipath richness that complements and confirms previous approaches in [10], [12].

Based on the KL theory, the optimal expansion of a random multipath fieldF (x) in the region

‖x‖ 6 R may be written as

F (x) =
+∞∑

n=0

√
λn βn Ψn(x), (42)

whereβn is a sequence of uncorrelated (white) random variables withunit variance, andλn > 0

andΨn(x) are thenth eigenvalue and eigenfunction of the SCF, respectively. That is, in the 2D

case
∫ R

0

∫ 2π

0
ρ(x2 − x1)Ψn(x1)r1dr1dϕ1 = λnΨn(x2), (43)

whereρ(x2 − x1) was given in (18) andx1 ≡ (r1, ϕ1).

The major difference between the orthogonal representations of the random multipath field in

(11) and in (42) is that the coefficientsαn (11), regarded as random variables, may be correlated

with covariance coefficients given in (14), whereas all correlation is taken away fromβn in

(42). Moreover, the orthonormal functionsΨn(x) in the KL expansion (42) are customized for

a particular multipath field with a given SCF, whereas the closed-form, orthonormal functions

Φn(x) in the expansion (11) are universally applicable for any multipath field. While the universal

expansion of the 2D field in (11) predicts a universal dimensionality of 2N +1, a specific multipath

richness is predictable using the KL expansion. If we assumethat (42) is arranged in descending

order of eigenvalues, then the truncation of multipath fieldF (x) to 2N + 1 terms in (42) results

in the MMSE [14] that is already upper bounded by the MSE in Theorem 2 for N > ⌈eπR/λ⌉.
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For isotropic scattering, with the APS given byP (ϕ) = 1/2π, ϕ ∈ [0, 2π), γ0 = 1, and

γn = 0 for n 6= 0, the coefficients
{
αn

}
n∈Z

in (11) are already uncorrelated. Therefore,Φn(x1)

in (8) is thenth SCF eigenfunction andλn = 2πJn(R) is its corresponding eigenvalue. In other

words, the truncation MSE bound in Theorem 2 is tight for an isotropic multipath field, asserting

it as the richest type of scattering.

For other types of scattering and according to (42), the number of effective terms that generates

the field is directly related to the eigenvalue spread of SCF. Therefore, we study the characteristic

of SCF eigenvalues. In Section IV-A, we define multipath richness based on SCF eigenvalues and

also prove a lower bound on the maximum eigenvalue ofρ(x2−x1). In Section IV-B, we provide a

systematic numerical method to calculate SCF eigenvalues. Section IV-C presents numerical results

and compares the defined multipath richness in Section IV-A with those provided in [12].

A. Multipath Richness

We first review some of the important properties of SCF eigenvalues. The integral operatorA

with kernelρ(x2 − x1)

Af ,

∫ R

0

∫ 2π

0
ρ(x2 − x1) f(x1)r1dr1dϕ1 (44)

is symmetric, self-adjoint and compact [15]. Consequently, the set of non-zero eigenvalues of

ρ(x2 − x1) has either a finite cardinality or, if there are infinitely many eigenvalues, their limit is

zero [15, p. 191]. We now show that the sum of all the eigenvalues of the kernelρ(x2 − x1) is

finite and equal toπR2, which is also equal to the total normalized multipath energy in a 2D disk

of radiusR. From [28, pp 117-118], it is known that the sum of eigenvaluesis equal to the trace

of kernel
∑

n

λn =

∫ R

0

∫ 2π

0
ρ(x1 − x1)r1dr1dϕ1 = πR2, (45)

sinceρ(x1 − x1) = ρ(0) = 1 according to (12) and (17).

Now we are in a position to define multipath richness from the characteristics of SCF eigenvalues.

In defining multipath richness, we use the fact that the total sum of eigenvalues in (42) is finite

and propose the notion of significant eigenvalues.

Definition 3 (Multipath Richness): Suppose that in the KL expansion of multipath fieldF (x)

given by(42) the eigenvalues are indexed in descending order (includingmultiple eigenvalues).
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The field is said to have richnessM when the following normalized eigenvalue residual is less

than 0.01.
∑

m>M λm∑
m λm

< 0.01. (46)

In other words, multipath richness is defined to beM when at least 99% of the multipath energy

is contained in the firstM eigenvalues.

Now, we wish to study the properties of eigenvalues for multipath fields with a limited angular

spread in the APS. To this end, we assume the APS,P (ϕ) in (12), to be uniformly distributed in

the azimuth angular intervalϕ ∈ [−Ω, Ω), whereΩ is a fraction ofπ. We denote this fraction by

Ω = π/τ (τ > 1). In short, we refer to the directional APS asPΩ(ϕ) = 1/2Ω.

The following theorem proves a lower bound on the largest eigenvalue of the SCF. It is noted

that, according to (45), the sum of eigenvalues is fixed for a given disk radiusR. Therefore, a lower

bound on the largest eigenvalue upper bounds the sum of remaining eigenvalues. Hence, according

to Definition 3, a larger lower bound on the maximum eigenvaluemeans reduced multipath richness.

Theorem3 (A Lower Bound on the Largest Eigenvalue of the Spatial Correlation Function):

The largest eigenvalue of the spatial correlation function in (17) in a 2D disk of sizeR with a

uniformly directional APSPΩ(ϕ) in the rangeϕ ∈ [−Ω, Ω), whereΩ = π/τ , τ > 1, is lower

bounded by

λmax > max
q∈Z

{
2π

∑

m

Jm(R) sinc2(mΩ − qπ)
}

. (47)

�

The proof is provided in Appendix III. It may be verified that thelower bound on the maximum

eigenvalue increases with decreasing the APS rangeΩ. This, in turn, results in a smaller multipath

eigenvalue spread. Therefore, (47) quantifies, to some extent, the well-known qualitative relation-

ship between eigenvalue spread and multipath richness. Equation (47) is useful in most situations,

where closed-form expressions for multipath SCF eigenvalues do not exist.

Before concluding this section, we review a standard upper bound on the largest eigenvalue. For

the 2D case, the upper bound is written as [15, p. 86]

λmax = ‖ρ(x2 − x1)‖ 6

[∫ R

0

∫ R

0

∫ 2π

0

∫ 2π

0

∣∣ρ(x2 − x1)
∣∣2dϕ1dϕ2r1dr1r2dr2

]1/2

, (48)
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which, by using the definition ofρ(x2 − x1) in (18), is simplified to

λmax 6 2π

√∑

m

Jm(R)
∑

n

Jn(R)|γn−m|2. (49)

In Section IV-C, the numerical comparison of the largest SCF eigenvalue with the lower and upper

bounds shows that the derived lower bound in (47) is quite close to the actual largest eigenvalue.

B. A Systematic Numerical Method for Eigenvalue Calculation

Numerical calculation of SCF eigenvalues is often inevitable, because closed-form expressions

for SCF eigenvalues may not exist. More specifically, one needsto numerically solve (43), which

is also known as the Fredholm equation [15, p. 209]. A known technique to solve equations similar

to (43) is to accurately approximate the integrals on the left hand side by a sum, and transform the

problem to a finite-dimension, matrix-based eigenequation [16, pp. 782-785]. For this purpose, a

set ofP quadrature points and quadrature weights are required to sufficiently samplethe integral.

Suppose that theqth quadrature point and quadrature weight are denoted byxq andwq, respectively.

Then, at each pointxq, (43) is approximated as

P−1∑

p=0

wpρ(xq − xp)Ψn(xp) = λnΨn(xq). (50)

The computational complexity of simultaneously solvingP equations of the form (50) isO(P 3)

[16, p. 783]. Hence, a clever choice of quadrature points andweights is required to optimally

sample the region of interest. As can be seen from (43), this involves selection ofP points in a 2D

circular region (or 3D spherical region for 3D multipath). For a large region radiusR, populating

the area (or volume) with enough quadrature points becomes problematic (as a rule of thumb,

points at the outer edges of the region should be sampled withthe separation of aroundλ/2).

In this section, we define an alternative approach for the numerical solution of SCF eigenvalues,

which is based on the equivalence of representations of multipath fieldF (x) in (11) and (42). The

main advantage of the proposed algorithm over the aforementioned quadrature-based numerical

technique is that it does not try to explicitly solve (43), and as such, the selection of quadrature
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points is avoided. To see this, we combine (11) and (42) to write

F (x) =
+∞∑

n=−∞

√
2πJn(R)αnΦn(x) (51)

=
+∞∑

n=0

√
λnβnΨn(x).

It is evident from (51) that the change of orthonormal basis from Φn(x) to Ψn(x) whitensthe

weighted random sequence
√

2πJn(R)αn to obtain the uncorrelated random sequence
√

λnβn

with varianceλn. Let the covariance matrix of the sequence
√

2πJn(R)αn be denoted byΓ

with elements at themth row and nth column given byE
{√

2πJm(R)αm.
√

2πJn(R)α∗
n

}
=

2π
√

Jm(R)Jn(R)γm−n. From [29], we know that the diagonalization of the covariance matrixΓ

QΓQH = D (52)

transforms correlated random variables
√

2πJn(R)αn into uncorrelated random variables
√

λnβn,

where Q is the eigenmatrix ofΓ, D is the diagonal eigenvalue matrix with thenth diagonal

element equal toλn, and superscriptH denotes Hermitian transpose. In Section III, we concluded

that the first2N + 1 terms of
√

2πJn(R)αn adequately represent the field. We summarize the

above discussion in the following algorithm to numericallyobtain SCF eigenvalues,λn.

Algorithm 1 - Systematic Numerical Calculation ofλn:

1) Based on Theorem 1 and Theorem 2, truncate the random sequence
√

2πJn(R)αn in (51)

with truncation lengthN > ⌈eπRλ⌉, to obtain the random vector

v =

[
√

2πJ−N (R)α−N · · ·
√

2πJN (R)αN

]T

.

2) Using (14), form the covariance matrix for the random vectorv defined asΓ2N+1 =

E{vvH}.

3) The eigenvalues of the covariance matrixΓ2N+1 give the first2N + 1 eigenvalues of the

SCFρ(x2 − x1).

C. Eigenvalue Analysis

First, we present the lower bound, upper bound, and numericalresults for the SCF largest

eigenvalue for a set of directional scatterers. The results are shown in Fig. 2. The parameter is the

APS rangeΩ, which varies fromΩ/π = 1/20 (highly directional) toΩ/π = 1 (isotropic). The
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Fig. 2. The largest eigenvalue of the spatial correlation function as a function of APS rangeΩ. The eigenvalues are

computed on a disk of radiusR = 1 λ. The lower bound is computed using (47) in Theorem 3. The upper bound is

computed using (49). Also in the figure, the largest eigenvalue is calculated numerically using Algorithm 1 in Section

IV-B. The results show that the lower bound is very close to the actual eigenvalue and that multipath richness reduces

with reducingΩ. (Also see Table I.)

eigenvalues are computed on a disk with radiusR = 1λ. The lower bound is computed using (47)

in Theorem 3. The upper bound is computed using (49). Also in thefigure, the largest eigenvalue

is calculated numerically using Algorithm 1, which was described in Section IV-B. It is clear from

this figure that the proposed lower bound on the largest eigenvalue is much closer to the actual

eigenvalue than the upper bound and provides very good estimates of the largest SCF eigenvalue.

As the APS rangeΩ becomes smaller, the largest eigenvalue increases and multipath richness is

reduced. Multipath richness for some typical values ofΩ in this figure are calculated according

to Definition 3 and given in Table I. The results quantitativelyconfirm the qualitative speculations

that reducing multipath angular power spread would make thefield more spatially correlated and

reduce itsrichness.
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TABLE I

DIMENSION OR RICHNESS OF MULTIPATH FIELDS STUDIED INFIG. 2-3, WHICH IS CALCULATED USING DEFINITION

3 AND ITS COMPARISON WITH(53) [12].

APS rangeΩ/π 0.05 0.25 0.5 0.75 1

Definition 3 3 6 9 12 15

2
�

Ω e R

λ

�
+ 1 3 7 11 15 19

Next, we present the numerical analysis of eigenvalues for three different APS’s with angular

spreadΩ/π = 0.05, 0.5, and 1. The eigenvalues are computed on a disk of sizeR = 1λ using

Algorithm 1 in Section IV-B. The results are shown in Fig. 3. From this figure it is clear that

the eigenvalue spread decreases with decreasing the APS range Ω. Table I shows the predicted

dimension or richness of multipath fields in Fig. 3 according toDefinition 3, where the eigenvalue

residual falls below 0.01 of the totalπR2. For comparison, we have also presented the predicted

dimension of directional multipath fields in [12]. It was argued in [12] that the dimension of spatial

multipath fields with a restricted angle of arrival between[−Ω, Ω) in a 2D region of sizeR is

equal to

2M ′ + 1, M ′ =
⌈Ω eR

λ

⌉
. (53)

Compared to (35), the above dimension takes the restricted APS rangeΩ into account. From Table

I it is observed that the calculated richness using Definition3 is either identical to or below the

predicted dimension in (53).

V. CONCLUSIONS

The degree to which multipath fields are resolvable in space depends on the size of space where

the field is coupled to. For 2D spatial regions of radiusR, we proved that the number of effective

multipath modes is limited by2N + 1, whereN = ⌈πeR/λ⌉. For 3D spatial regions of radiusR,

the number of effective multipath modes is limited by(N +1)2. We also defined random multipath

richness based on the number of SCF eigenvalues in the KL expansion that captures 99% of the

multipath energy. We showed that multipath richness is upper bounded by2N + 1 in the MMSE

sense and the bound is achieved for isotropic multipath. By proving a lower bound on the largest
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Fig. 3. Numerical eigenvalue analysis for three different APS’s with therangeΩ/π = 0.05, 0.5, and 1. The eigenvalues

are computed on a disk of radiusR = 1 λ using Algorithm 1 in Section IV-B. The eigenvalue spread decreases with

decreasingΩ.

SCF eigenvalue, we quantitatively verified the well-known reduction of multipath richness with

reducing the APS angular range.

APPENDIX I

PROOF OFTHEOREM 1

Proof: For reference, (25) is repeated by definingz , π‖x‖/λ and hence,kr = 2π/λ‖x‖ =

2z

ζN (x) 6 2
∑

n>N

|Jn(2z)| 6 2
∑

n>N

zn

n!
, 2 RN (z). (54)
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Therefore, we find an upper bound onRN (z), which is expanded by changing the summation

variable as

RN (z) =
∑

n>N

zn

n!
= exp(z) −

N∑

n=0

zn

n!
(55a)

=
zN+1

(N + 1)!

( ∞∑

n=0

(N + 1)!

(N + 1 + n)!
zn

)
. (55b)

Note that for integern > 0 each term in the summation in (55b) is upper bounded as

(N + 1)!

(N + 1 + n)!
zn 6

( z

N + 2

)n
. (56)

Hence, for integerN > 0 satisfyingN > z − 2, we can use the sum of geometric series to upper

boundRN (z) in (55b) as

RN (z) 6
zN+1

(N + 1)!

( N + 2

N + 2 − z

)
. (57)

Now, we use the Stirling lower bound,n! >
√

2πn nn e−n, to write

zN+1

(N + 1)!
6

1√
2π(N + 1)

( e z

N + 1

)N+1
. (58)

Now, using the following exponential inequality

( e z

N + 1

)N+1
=

(
1 +

e z − N − 1

N + 1

)(N+1)
6 eez−N−1, (59)

we obtain the following upper bound onRN (z)

RN (z) 6
eez−N−1

√
2π(N + 1)

( N + 2

N + 2 − z

)
. (60)

To contain the exponential in (60), for a givenz, consider selectingN(z) = ⌈ez⌉. Then,

e z 6 N(z) < e z + 1, (61)

from which it can be shown

( N(z) + 2

N(z) + 2 − z

)
6

e

e − 1
= 1.58197... (62a)

exp(e z − N(z) − 1) 6 1/e = 0.36787... . (62b)

Using (62a) and (62b) in (60) yields

RN(z)(z) 6
1

(e − 1)
√

2π(N(z) + 1)
=

0.23217...√
N(z) + 1

. (63)
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Fig. 4. The remainderRN (z) in (55a) with N = N(z) ≡ ⌈e z⌉. The stepped curve is the bound given by (63) and

the uniform bound corresponds to (64).

SelectingN(z) = ⌈ez⌉ implies thatRN(z)(z) in (63) is piecewise function ofz with local maxima

at z ∈ {1/e, 2/e, 3/e, . . .}, whereN(z) steps up to the next integer value. By searching over these

local maxima we can use the exact expression (55a) to obtain auniform tight bound:

RN(z)(z) 6 max
N

RN (N/e) = R2(2/e)

= exp
(2

e

)
−

(
1 +

2

e
+

2

e2

)
= 0.080635... (64)

which improves on (63) whenN(z) ≤ 7. Fig. 4 displays the truncation error bounds forRN (z)

given in (63) and (64) as a function ofz and usingN = ⌈e z ⌉.

When N > N(z), which we refer to as thecritical regime, we infer from (64) thatRN (z) ≤

0.080635.... Therefore,ζN (x) ≤ 0.16127 that establishes (26) for∆ = 0.

Now, we show thatRN (z), for a fixedz, exponentially decreases asN increases provided that

N > z − 2. First, we note that for a positive fixedz, RN (z) in (55a) is decreasing withN . Using
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(55b) we write the ratioRN+∆(z)/RN (z) for ∆ > 0 as

RN+∆(z)

RN (z)
=

zN+∆+1

(N + ∆ + 1)!

(N + 1)!

zN+1

∑∞
n=0

(N+∆+1)!
(N+∆+1+n)!z

n

∑∞
n=0

(N+1)!
(N+1+n)!z

n
. (65)

We observe that for∆ > 0

(N + ∆ + 1)!

(N + ∆ + 1 + n)!
=

1

(N + ∆ + 2) · · · (N + ∆ + 1 + n)
(66)

6
1

(N + 2) · · · (N + 1 + n)
=

(N + 1)!

(N + 1 + n)!
. (67)

Therefore, each term in the summation in numerator in (65) is smaller than each term in the

summation in the denominator and hence, the ratio is less than 1, which yields

RN+∆(z)

RN (z)
6

z∆

(N + 2)(N + 3) · · · (N + ∆ + 1)
(68a)

6
( z

N + 2

)∆
=

1

α∆

∣∣∣∣
α=(N+2)/z

. (68b)

Therefore, wheneverN > z − 2, we haveα > 1 and the remainderRN+∆(z) decreases exponen-

tially as ∆ increases. In the critical regime,N > ⌈ez⌉, this impliesα > e and the exponential

decrease is at least as fast asexp(−∆) by (68b). Therefore, the truncation error upper bound for

N + ∆ = ⌈ez⌉ + ∆ is written as

ζN+∆(x) 6 2 RN+∆(z) 6 2 RN (z) e−∆ 6 0.16127e−∆ (69)

It is also easily verified that for all positive values ofz satisfying

K − 1

e
< z 6

K

e
⇒ N = ⌈ e z ⌉ = K, K ∈ N,

the inequalityN > z − 2 is automatically satisfied and the assumptions throughout the proof are

valid.

APPENDIX II

PROOF OFTHEOREM 2

Proof: The proof of Theorem 2 is similar to the proof of Theorem 1. Referring to (33) and

using (24), we first find an upper bound for the summation in the integral

SN (z) ,

+∞∑

n=N+1

J2
n(2z) 6

+∞∑

n=N+1

z 2n

(n!) 2
, (70)
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wherez , π‖x‖/λ. Using a similar procedure as in (55a)-(56), we obtain

SN (z) 6
z 2(N+1)

((N + 1)!)2
1

1 − z2

(N+2)2

(71)

for N + 2 > z. Now using the same steps as (58)-(59), the following bound is derived

SN (z) 6
e 2(e z−N−1)

2π(N + 1)

1

1 − z2

(N+2)2

. (72)

If we chooseez 6 N = ⌈ez⌉ < ez + 1, we obtain

SN (z) 6
0.0249

(N + 1)
. (73)

We can further examine the bound onSN (z) given in (71) at critical points of the ceiling function

(z = k/e, k ∈ N) to obtain a universal upper bound

SN (z) 6 0.004649, (74)

by choosingz = 1/e in (71). Similar to the steps in (65)-(68b), it is possible to show that for

∆ > 0, N = ⌈ez⌉, andN + 2 > z, the following ratio holds

SN+∆(z)

SN (z)
6 e−2∆. (75)

Based on (74), it is possible to show that the truncation MSE in(33)

εN (R) =

∫ R
0 2SN (z) r dr

1/2 R2
6 0.009298. (76)

Moreover, if we chooseNR = ⌈e π R/λ⌉+ ∆, so thatSN (z) at the outer edge of disc is bounded

asSN (z) 6 0.004649 e−2∆, from (75) we conclude thatSN (z) 6 0.004649 e−2∆ for everyr 6 R.

Therefore,εN (R) 6 0.009298e−2∆, which completes the proof.

APPENDIX III

PROOF OFTHEOREM 3

Proof: Before proceeding, we remember that according to the maximum eigenvalue property

[15, p. 198] and by the definition of the operator norm [15] for the kernelA = ρ(x2 − x1)

λmax = ‖A‖ > 〈Ag, g〉, ∀g : ‖g‖ = 1, (77)

it is possible to find a lower bound on the maximum eigenvalue byarbitrarily choosing any function

g with the only condition being that‖g‖ = 1. In the following, we will obtain a close lower bound
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for λmax by proper choice ofg. Let the functiong(x) in the region‖x‖ 6 R andx ≡ (r, ϕ) be

expanded as

g(x) =
∞∑

p=−∞

ipbp
Jp(kr)√
Jp(R)

eipϕ

√
2π

, (78)

where‖g‖ = 1 requires that
∑

p |bp|2 = 1. We write the inner product〈Ag, g〉 , µ using (44),

the definition ofρ(x2 − x1) in (18), and the definition ofg in (78), which yields

µ = 2π
∑

m

√
Jm(R) bm

∑

n

√
Jn(R) b∗n γn−m. (79)

Now, we use the definition ofγn−m in (14) for a directional APSPΩ(ϕ) to write

µ =
π

Ω

∫ Ω

−Ω

∣∣∣
∑

m

√
Jm(R) bm eimϕ

∣∣∣
2
dϕ. (80)

The orthonormal basis functions for the limited range[−Ω, Ω) = [−π/τ , π/τ) are
{
einτϕ/

√
2Ω

}
n∈Z

.

We expand the exponentials in (80) in terms of the new basis functions

eimϕ =
∑

q

ξm,q
eiqτϕ

√
2Ω

, (81)

whereξm,q ,
√

2Ω sinc(mΩ − qπ). Replacing (81) into (80) and changing the summation order

yields the following expression

µ =
π

Ω

∫ Ω

−Ω

∣∣∣
∑

q

βq
eiqτϕ

√
2Ω

∣∣∣
2
dϕ, (82)

whereβq is defined as

βq ,
∑

m

√
Jm(R) bmξm,q. (83)

Now, using the orthonormality of the basis functions in (82)we write

µ =
π

Ω

∑

q

β2
q (84)

Since all the terms in the summation are non-negative, the inner productµ is greater than every

β2
q including its maximumβ2

max , maxq{β2
q}. That is,µ > β2

max. To find the closest lower bound

on µ, we first use Cauchy’s inequality to upper bound each termβ2
q in (83)

β2
q =

∣∣∣
∑

m

√
Jm(R) bmξm,q

∣∣∣
2

6
( ∑

m

Jm(R)ξ2
m,q

)( ∑

m

b2
m

)
, (85)

where the upper bound is achieved when

bm,q = cq

√
Jm(R)ξm,q, (86)
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andcq is a constant that is chosen

cq =
1√∑

m Jm(R)ξ2
m,q

(87)

to normalize the functiong in (78) in the region‖x‖ 6 R. Therefore, by choosingbm,q according

to (86) each termβ2
q is maximized asβ2

q =
∑

m Jm(R)ξ2
m,q. And by definition,

β2
max , max

q
{β2

q} = max
q

∑

m

Jm(R)ξ2
m,q. (88)

Finally, by combining (77), the definition ofξm,q, and (88) the following lower bound on the

maximum eigenvalue is derived

µmax > µ > β2
max = max

q

{
2π

∑

m

Jm(R) sinc2(mΩ − qπ)
}

. (89)
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