
Chapter 1

Coherent Broadband DOA Estimation

Using Modal Space Processing

1.1 Introduction

The problem of estimation of direction of arrival (DOA) of coherent broadband sources has

applications in wireless communication systems, especially systems with smart antennas [1].

DOA estimation and adaptive beamforming are the main issues in smart antenna systems.

However, in a complex multipath environment, received signal from different directions

may be correlated, which prevents the application of narrowband DOA estimation tech-

niques to estimate DOA of broadband sources. This chapter introduce a novel coherent

broadband DOA estimation technique based on modal decomposition of wavefields.

Wang and Kaveh [2] introduced the use of focusing matrices for the purpose of Coherent

Signal Subspace (CSS) processing for DOA estimation of farfield wideband sources. In this

method, the wideband array data are first decomposed into several narrowband compo-

nents. The focusing matrices are used for the alignment of the signal subspaces of narrow-

band components within the bandwidth of the signals, followed by the averaging of nar-

rowband array data covariance matrices into a single covariance matrix. Then, any signal

subspace direction finding procedure, such as MUSIC [3] or its variants, maximum likeli-

hood (ML), or minimum variance (MV), can be applied to this averaged covariance matrix
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to obtain the desired parameter estimates. The design of focusing matrices in CSS method

requires preliminary estimates of the direction of arrivals. Further, this method is applica-

ble to only a pair of sources. In later years, the CSS technique was further developed and

refined [4], [5] to account for multiple sources but the problem of prior information about

the DOA still remained. In this chapter, we use modal decomposition of wavefields to propose

novel focusing matrices that do not require preliminary DOA estimates and are completely

independent of the signal environment.

The spatial resampling method is a technique that does not require preliminary knowl-

edge of DOA in order to localize wideband sources. It was first introduced by Krolik and

Swinger [6] and is motivated by treating the output of a discrete array as being the result of

spatially sampling a continuous linear array. The same concept is also known as an interpo-

lated array approach used in [7]. Krolik and Swingler [6] used digital interpolation methods

to resample the array data. The spatial resampling method requires more than one resam-

pling matrix to be constructed for different field of view or sectors. An alternative technique

is suggested in this chapter using modal decomposition of wavefields. Under this technique

a set of resampling matrices has been proposed which is same for the full field of view of

the array data, unlike in the case of [7].

The application of modal decomposition of wavefields enables to gain insights into the

structure of focusing and spatial resampling matrices. It can be observed that the computa-

tional complexity of CSS and spatial resampling methods can be reduced by combining the

focusing matrices and spatial resampling matrices to form modal covariance matrices. Use

of modal decomposition of wavefields in any array signal processing application is termed

as Modal Space Processing as it converts measured array data into modal space. The modal

space can be viewed as a vector space with a predefined orthogonal basis set which are the

natural basis set for wavefields.
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1.2 System Model

Let us consider a double sided linear array of 2Q + 1 sensors, located at distances xq, q =

−Q, · · · ,−1, 0, 1, · · · , Q from the array origin, which receives signals from V sources in space.

Let Θ = [θ1, θ2, . . . , θv, . . . , θV ], be a vector containing bearings of each source with reference

to the array axis where θv is the direction of the vth source. We assume that the source signal

and the noise are confined in a bandwidth of k ∈ [kl, ku], where kl and ku are lower and up-

per band edges respectively. We use wavenumber k = 2πf/c where f is the frequency in Hz

and c is the speed of wave propagation, to represent frequency in this chapter. The signal

received at each sensor is Discrete Fourier Transformed (DFT) into M distinct frequency bins

within the design bandwidth. The array output in the mth frequency bin can be represented

as:

z(km) =
V∑

v=1

a(θv; km)sv(km) + n(km), (1.1)

where, sv(·) is the signal received from the vth source at the origin, n(·) is the uncorrelated

noise data and

a(θ; k) = [e−ikx−Q cos θ, . . . , e−ikxQ cos θ]′ (1.2)

where [·]′ denotes the transpose operator and i =
√−1. We write (1.1) in matrix form as

z(km) = A(Θ; km)s(km) + n(km), (1.3)

for m = 1, . . . , M where

A(Θ; k) = [a(θ1; k), . . . , a(θV ; k)], (1.4)

and

s(k) = [s1(k), . . . , sV (k)]′. (1.5)

The objective of any DOA technique is to determine the direction of arrival (DOA) Θ

from the observed data z(km), m = 1, . . . , M .
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Most DOA techniques use correlation matrix of the received data in their DOA algo-

rithms. The correlation matrix of the observed data in the mth frequency bin is defined

as

Rz(km) , E
{
z(km)z(km)H

}
, (1.6)

where [·]H denotes conjugate transpose operation and E{·} is the expectation operator. Sub-

stituting (1.3) in (1.6), we have

Rz(km) =A(Θ; km)Rs(km)AH(Θ; km) (1.7)

+ E
{
n(km)n(km)H

}

where

Rs(km) , E{ s(km)s(km)H} , (1.8)

is the source correlation matrix. Here, we assume that the source signals and noise are

uncorrelated.

1.3 Focusing Matrices for Coherent Wideband Processing

In this section, we briefly outline the focusing method. The first step following the frequency

decomposition of the array data vector is to align or focus the signal space at all frequency

bins into a common one at a reference frequency by focusing matrices T (km) that satisfy

T (km)A(Θ; km) = A(Θ; k0), m = 1, . . . , M, (1.9)

where k0 ∈ [kl, ku] is some reference frequency and A(Θ; k) is the direction matrix defined

by (1.4). Applying the M focusing matrices to the respective array data vectors (1.3) gives
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the following focused array data vector,

T (km)z(km) =A(Θ; k0)s(km) + T (km)n(km),

m = 1, . . . ,M.

Then the focused and frequency averaged data covariance matrix can be defined by

R ,
M∑

m=1

E{T (km)z(km)(T (km)z(km))H} (1.10)

=
M∑

m=1

T (km) E{z(km)zH(km)}T H(km).

We use (1.6), (1.7) and (1.9) to get

R = A(Θ; k0)RsA
H(Θ; k0) + Rnoise (1.11)

where

Rs ,
M∑

m=1

Rs(km), (1.12)

and the transformed noise covariance matrix

Rnoise ,
M∑

m=1

T (km) E{n(km)nH(km)}T H(km). (1.13)

The focused data covariance matrix (1.11) is now in a form in which almost any narrowband

direction finding procedure may be applied. Here, we apply the minimum-variance (MV)

method of spatial spectral estimation [8] to the frequency averaged data covariance matrix

R.

Several methods of forming focusing matrices have been suggested in the literature. The

focusing methods of [2, 4, 5, 9] require preliminary DOA estimates in order to construct the

focusing matrices. This constitutes a severe disadvantage in practical applications since it

leads to biased DOA estimates. In Section 1.5, we show how to design focusing matrices
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without preliminary DOA estimates, using modal decomposition of wavefields.

1.4 Spatial Resampling Method

Spatial resampling is another method [6] used to focus the wideband array data to a single

frequency so that existing narrowband techniques may be used to estimate the DOA. The

basic idea of spatial sampling is outlined below.

Suppose we have a separate uniform array with half wavelength spacing for each fre-

quency bin with the same effective array aperture in terms of wavelength. Thus for M

frequencies, there are M arrays and the sensor separation of the mth array is λm/2 where

λm = 2π/km. If each array has 2Q + 1 sensors, then the aperture length is the same for all

frequencies in terms of corresponding wavelength. Then the mth array steering vector for

farfield sources is given by

a(θ; km) =

[eiπQ cos θ, · · · , eiπ cos θ, 1, e−iπ cos θ, . . . , e−iπQ cos θ]

= a(θ), m = 1, . . . , M.

That is the steering vectors of all arrays are equal and hence from (1.4) the DOA matrices of

all arrays are the same:

A(m)(Θ; km) = A(Θ), m = 1, . . . , M, (1.14)

where A(m)(Θ; k) is the DOA matrix of the mth subarray. Hence if we have M arrays for

each frequency bin with the same aperture, then their covariance matrices can be averaged

over frequency without losing DOA information. The average covariance matrix can then

be used with existing narrowband DOA techniques to estimate DOA angles.

However, it is not actually practical to have a separate array for each frequency. This

problem can be overcome by having a single array and using the received array data to
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form the array data for M virtual arrays by interpolation/extrapolation of the received array

data. This is tantamount to constructing a continuous sensor using the received array data

and resampling it. There are several methods reported in the literature. In [7] the field

of view of the array is divided into several sectors, and a different interpolation matrix is

calculated for each sector using a least squares fit.

1.5 Modal Decomposition

At the physical level, sensor array signal processing is characterized by the classical wave

equation. The general solution to the wave equation can be decomposed into modes which

are orthogonal basis functions of the spatial coordinates. These modes exhibit interesting

mathematical properties and form a useful basis set to analyze and synthesize an arbitrary

wavefield, a response of an array of sensors, or a spatial aperture. Modes of a 2 and 3

dimensional wavefield are called cylindrical and spherical harmonics respectively. In this

section, we show how to decompose any wavefield due to farfield sources.

In the antenna literature, these modes have been used to synthesize antenna shapes [10,

11], to represent electromagnetic fields radiated by circular antennas [12], and to compute

antenna couplings [13]. Recently, they have been used for nearfield broadband design [14,

15], directional soundfield recording [16] and reproduction [17], spatial wireless channel

characterization [18, 19] and capacity calculation of MIMO channels [20].

1.5.1 Linear Arrays

The term e−ikx cos θ represents the phase delay of a signal received at a point located distance

x from the origin for a signal from the direction θ. This term is an integral part of any array

processing algorithm. Here, we separate the distance dependency and angle dependency

into two terms. This separation is very useful in any algorithm as it effectively separate the

sensor geometry from the signal direction.
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Using Jacobi-Anger expansion [21], we write

e−ikx cos θ =
∞∑

n=0

in(2n + 1)jn(kx) Pn(cos θ), (1.15)

where n is a non-negative integer to index modes, jn(·) is the spherical Bessel function and

Pn(·) is the Legendre function. We have the following comments on this expansion:

1. The series expansion (1.15) gives an insight into the spatial wavefield along a linear

array.

2. Equation (1.15) can be viewed as a Fourier series type expansion of a function where

Pn(cos θ), n = 0, . . . ,∞ are the orthogonal basis set.

3. Observe that in each term of the series, the arrival angle θ dependency is separated

out from the sensor location x and the frequency k. Therefore we may use the above

expansion to write the array DOA matrix A(Θ; k) as a product of two matrices, one

depending on DOA angles and the other depending on frequency and sensor locations.

4. However, you may have noticed that the expansion (1.15) has an infinite number of

terms. Thus, the usefulness of (1.15) depends on the number of significant terms need

to be used in any numerical evaluation.

1.5.2 Modal Truncation

For a finite aperture array with finite bandwidth signal environment, the series (1.15) can be

safely truncated by finite number of terms (say N ) without generating significant modelling

errors. We show this below. Figure 1.1 shows plots of a few spherical Bessel functions

jn(·) against its argument. We can observe from Figure 1.1 that for a given kx, the function

jn(kx) → 0 as n becomes large. This observation is supported by the following asymptotic

form [22]

jn(kx) ≈ (kx)n

1 · 3 · 5 . . . (2n + 1)
for kx ¿ n. (1.16)
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Therefore, we can notice that the factor (2n + 1)jn(kxq) in (1.15) decays as n grows larger

beyond n = kxq. Suppose that the minimum frequency of the signal band is kl. Then we

can truncate (1.15) to N terms if N > klxQ, where xQ is the distance to the Qth sensor (the

maximum array dimension). It is difficult to derive an analytical expression for N , but a

convenient rule of thumb [23] is N ∼ 2klxQ. More recent work [18] shows that the series

(1.15) can be truncated by N = dkex/2e terms with negligible error.

1.6 Modal Space Processing

In this section, we use the modal decomposition developed in the previous section to (i)

design focusing matrices, (ii) spatial resampling matrices, and (iii) introduce a novel modal

space processing DOA technique.

1.6.1 Focusing Matrices

We use modal analysis techniques to propose novel focusing matrices which do not require

preliminary DOA estimates and are completely independent of the signal environment.

Here we only consider a linear (possibly nonuniform) array but it may be generalized to

arbitrary array configurations.

We substitute the first N + 1 terms of (1.15) into (1.2) and thus write the array steering

vector for farfield sources as

a(θ; k) = J(k)




P0(cos θ)

...

PN(cos θ)




, (1.17)
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where

J(k) = (1.18)



i0(2 · 0 + 1)j0kx−Q . . . iN(2N + 1)jNkx−Q

... . . . ...

i0(2 · 0 + 1)j0kxQ . . . iN(2N + 1)jNkxQ




.

We use (1.17) in (1.4) to write the array DOA matrix for farfield signal environment as

A(Θ; k) = J(k)P (Θ), (1.19)

where the (N + 1)× V matrix

P (Θ) =




P0(cos θ1) . . . P0(cos θV )

... . . . ...

PN(cos θ1) . . . PN(cos θV )




. (1.20)

The (2Q + 1) × (N + 1) matrix J(k) depends on the frequency k and the sensor locations

and is independent of the DOA of the signals. Suppose (2Q + 1) > (N + 1) and J(k) has full

rank N + 1 if the sensor locations are chosen appropriately. With this assumption and using

(1.19), we can propose a set of focusing matrices T (km) given by

T (km) =J(k0)
[
JH(km)J(km)

]−1
JH(km)

m = 1, . . . ,M (1.21)

which satisfies the focusing requirement (1.9); recall that k0 is the reference frequency.

The major advantage of the focusing matrices (1.21) over the existing methods is that

these matrices do not need preliminary DOA estimates and accurately focus signal arrivals

from all directions. Also note that these matrices are fixed for a given array geometry and

frequency band of interest. Thus they can be calculated in advance in time critical applica-
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tions such as smart antennas to save computational time..

1.6.2 Spatial Resampling Matrices

In this section, we show how to use the modal decomposition to find a transformation matrix

to calculate array data for M virtual arrays for the spatial resampling method described in

Section 1.4. Sensor locations for the real array can be arbitrary on a line, i.e., there is no

requirement for it to be a uniformly spaced array. From (1.19) the real array DOA matrix in

the mth frequency bin is given by

A(Θ; km) = J(km)P (Θ), (1.22)

and the DOA matrix of the mth virtual array at frequency km would be

A(m)(Θ; km) = J (m)(km)P (Θ), (1.23)

where from (1.18) with kmxq = qπ,

J (m)(km) =



i0(2 · 0 + 1)j0(−πQ) . . . iN(2N + 1)jN(−πQ)

... . . . ...

i0(2 · 0 + 1)j0(πQ) . . . iN(2N + 1)jN(πQ)




= J , m = 1, . . . , M

which is a constant matrix, independent of m and km. Therefore we can write

A(m)(Θ; km) = JP (Θ),

= A(Θ) m = 1, . . . ,M,

(1.24)
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which is same for all frequency bins. We need to design the set of spatial resampling matrices

T (km), m = 1, . . . , M such that

A(m)(Θ; km) = T (km)A(Θ; km), m = 1, . . . , M. (1.25)

By substituting (1.22) and (1.24) into (1.25 and using the pseudo inverse of J(km) we obtain

the least-square solution

T (km) = J [JH(km)J(km)]−1JH(km), m = 1, . . . , M. (1.26)

These spatial resampling matrices (they act as focusing matrices) can be used to align the

array data in different frequency bins, so that narrowband DOA techniques can be applied.

Similar to the focusing matrices (1.21), these spatial resampling matrices (1.26), do not re-

quire preliminary DOA estimation and depend only on the array geometry and the fre-

quency. Also they are independent of the angle of arrival and fixed for full field of view.

1.7 Modal Space Algorithm

Observe that the proposed focusing matrices (1.21) and the spatial re-sampling matrices

(1.26) have a common (generalized inverse) matrix factor

G(km) , [JH(km)J(km)]−1JH(km), m = 1, . . . ,M, (1.27)

and only differ by the frequency independent factors J0(k0) and J . Also note that from

(1.19),

G(km)A(Θ; k) = P (Θ), m = 1, . . . , M, (1.28)

i.e., G(km) transforms the array DOA matrix into a frequency invariant DOA matrix. There-

fore we can use G(km) instead of T (km) to align the broadband array data to form a fre-

quency averaged covariance matrix. Intuitively, one can say that the matrices G(km) trans-

12



form the 2Q + 1 array data vector z(km) into a N + 1 modal data vector in modal space. Now

we can estimate the frequency averaged modal covariance matrix as

R̂ =
M∑

m=1

G(km) z(km)zH(km) GH(km) (1.29)

and the MV spectral estimate

Ẑ(θ) =
1



P0(cos θ)

...

PN(cos θ)




R̂
−1

[
P0(cos θ), . . . PN(cos θ)

]
. (1.30)

Comments:

1. This method (one can refer it as the Modal Space Processing (MSP) method) involves

less computation compared to the other two methods since the modal space has less

dimensions (N + 1) than the signal subspace (2Q + 1).

2. As for the other two methods, the modal space method does not require preliminary

DOA estimates.

3. One can consider the modal space method as a superset of focusing matrices and spa-

tial resampling methods.

4. Given the frequency averaged modal covariance matrix (1.29), any other narrowband

DOA technique such as MUSIC or its variants, maximum likelihood (ML) can be used.

5. This method can be extend to find the range and angle of nearfield sources by using

the modal expansion of a spherical wavefront [21]. Readers are referred to [15] for

detail.
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1.8 Simulation

In this section, the simulation results have been presented in order to demonstrate the ef-

fectiveness of modal space processing (MSP) method. A linear array of 19 nonuniformly

spaced sensors has been used for MSP technique. The use of nonuniformly spaced sensor

array for broadband application has been discussed in [14]. The sensor spacing is kept uni-

form while performing the simulation of examples that follow the algorithms suggested in

past literature [2, 4]. These simulations are presented in this section for comparison of re-

sults. The source signal and the noise are stationary zero-mean white Gaussian processes.

Noise at each sensor is independent of the other. Signal received at each sensor is Dis-

crete Fourier Transformed to get 33 uniformly spaced narrow-band frequency bins within

the desired bandwidth. For each trial, 64 independent snapshots are generated for every

frequency bins. The frequency averaged modal covariance matrix is calculated using the

relation (1.29). The sources are then localized by using Minimum Variance (MV) direction

finding procedure (1.30) as implemented for narrow-band source localization.

1.8.1 A group of two sources

The signal environment consists of two completely correlated sources at angles Θ = [38◦ 43◦].

Let s1(t) be the source at 38◦, and the source at 43◦ is a delayed version of s1(t) and is given

by s2(t) = s1(t−to) with to = 0.125s or equivalently in frequency domain s2(f) = s1(f)e−jfto .

Here, s1(f) is the Fourier Transformed signal of s1(t). The signal-to-noise ratio is 10dB. The

two signals s1(t) and s2(t) can be viewed as mutipath signals from a single source.

The signals used lie within a bandwidth of 40Hz with midband frequency at 100Hz. This

gives a lower band edge (fl = 80Hz) to upper band edge (fu = 120Hz) ratio of 2 : 3. All

the signal parameters are kept identical to those described in [2]. The signals are captured

by a linear array of 19 sources. Fig. 1.3 shows the spectral estimate obtained using MSP.

The vertical lines indicate the correct direction of arrival of the sources. For comparison,

the results obtained using the method described in [2] has shown in Fig. 1.2. A preliminary

angle estimate of 40.4◦ has been necessary to correctly estimate the direction of arrivals using
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the later technique whereas no prior knowledge of angles is required for MSP technique.

The graphs reveal that both processes localize the sources with fine accuracy. However, a

focusing angle of 53◦ in the case of [2] will result in Fig. 1.4 which cannot resolve the true

direction of arrivals.

1.8.2 Three groups of five sources

The number of sources are now increased to five with bearings Θ = [53◦ 58◦ 98◦ 103◦ 145◦].

Complete correlation exists between first and second source. A frequency band of f =

[80 : 120]Hz is used to compare the results with those obtained using the focusing matrix

proposed in [4] . Fifteen independent trials were carried out that showed similar results.

Fig. 1.6 shows one realization obtained by using MSP with MV spectral estimate. Here

the number of modes used is N=15. Reducing the value of N degrades the performance of

the procedure while increasing its value produces no appreciable improvement. The num-

ber of sensors is 19 and are nonuniformly spaced. All the sources are clearly detected with-

out any prior knowledge of source environment. These results can be compared with Fig. 1.5

that shows the spatial spectrum of multigroup sources using the technique described in [4].

However, prior knowledge of source directions is required by this technique and prelimi-

nary angle estimates used for this example is β = [53◦ 55◦ 59◦ 96.7◦ 100.5◦ 104.3◦ 144◦].

The above simulation is performed for wider band of frequency of bandwidth [300 :

3000]Hz, and the results show that MSP produces better results (Fig 1.7) as compared to the

technique proposed in [4] (Fig 1.8). A total number of 45 sensors and 55 frequency bins are

used in the simulation.

1.9 Conclusion

In this chapter, Modal Signal Processing (MSP) is introduced as a tool to solve coherent

broadband source localization problem. MSP direction of arrival estimation techniques do

not require any preliminary knowledge of DOA angles nor the number of sources.
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Figure 1.1: spherical Bessel functions of order n = 0, 5, 10, 15, and 20.
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Figure 1.2: The estimated spatial spectrum of the correlated sources using the algorithm
of [2].
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Figure 1.3: The estimated spatial spectrum of the correlated sources using Modal Space
Processing (MSP) method.
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Figure 1.4: The estimated spatial spectrum of the correlated sources using prior angle esti-
mation of 53◦.
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Figure 1.5: The estimated spatial spectrum of the Multigroup sources using algorithm of [4]
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Figure 1.6: The estimated spatial spectrum of the Multigroup sources using Modal Space
Processing (MSP) method.
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Figure 1.7: The estimated spatial spectrum of the Multigroup sources using Modal Space
Processing for a wider frequency band [300 : 3000]Hz. )
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Figure 1.8: The estimated spatial spectrum of the Multigroup sources using algorithm of [4]
for a wider frequency band [300 : 3000]Hz.
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