
A Multiagent Planning Language

Michael Brenner
Institute for Computer Science

University of Freiburg, Germany
Georges-Koehler-Allee, Geb. 052

79110 Freiburg
brenner@informatik.uni-freiburg.de

Abstract

This paper discusses specific features of planning in mul-
tiagent domains and presents concepts for a multiagent ex-
tension of PDDL, the Multiagent Planning Language MAPL
(“maple”). MAPL uses non-boolean state variables and thus
allows to describe an agent’s ignorance of facts as well as a
simplified mutex concept. The time model of MAPL is based
on Simple Temporal Networks and allows both quantitavive
and qualitative use of time in plans, thereby subsuming the
plan semantics of both partial order plans and PDDL 2.1.

Introduction
In this paper we describe some properties specific to plan-
ning in multiagent systems and, resulting from these prop-
erties, propose a multiagent extension of PDDL, the Multia-
gent Planning Language MAPL (pronocunced “maple”). By
Multiagent Planning (MAP) we denote any kind of planning
in multiagent environments, meaning on the one hand that
the planning process can be distributed among several plan-
ning agents, but also that individual plans can (and possibly
must) take into account concurrent actions by several execut-
ing agents. We do not impose any relation among planning
and executing agents: one planner can plan for a group of
concurrent executers (this corresponds roughly to planning
with PDDL 2.1 but necessitates extensions allowing more
execution flexibility), several planners can devise one shared
plan (linear or not) or, in the general case, m planners plan
for n executing agents. In the specific, yet common case of
n agents, each having both planning and executing capabili-
ties we speak of autonomous agents. Note that we do neither
assume cooperativity nor competition among agents.

H3

��
��
��
��P

R01 F

H1

Loc0 Loc1
Loc2

Loc3

R12

R13

Figure 1: A multiagent planning problem

As a motivating example, fig. 1 shows a simple MAP
problem as it appears in the RoboCupRescue simulation (Ki-
tano et al. 1999). There are two autonomous agents: police

force P and fire brigade F . They have different capabilities:
P clears blocked roads, F extinguishes burning houses, both
can move on unblocked roads. Each action has a duration
which may vary because of specific execution parameters
(e.g. location distance, motion speed) and/or intrinsic un-
predictability. For this example, we assume a duration of 30
to 180 minutes for clear, 1 to 4 hours for extinguish, and 2
to 4 minutes for move. The speed and thus the duration of
move is controlled by each agent while the duration intervals
for clear and extinguish can only be estimated. The agents’
knowledge and goals are differing, too: P wants the roads
to be clear, but is unaware of the state of all roads except
R01. F wants all burning houses extinguished, knows that
H1 and H3 are burning, but also that it cannot reach H3
because road R13 is blocked.

Even in this trivial example we can make some general
observations about planning in MAS that will motivate the
concepts introduced in the rest of the paper.

(1) Concurrent acting is central to MAS (P can move to
Loc1 and start clearing R13 while F is extinguishing H1).
(2) Metric time is needed to realistically describe action du-
rations and their relations. (3) Synchronizing on actions of
unknown (at least to some agent) duration demands qualita-
tive use of time (e.g. “after P has cleared R13”). A specific
usage of qualitative time in MAP is (4) synchronization on
communicative acts, for example “after P has informed me
that R13 is now clear”.

While many recent planning formalisms allow some de-
gree of concurrency, most fail in providing either (2) or (3).
PDDL 2.1, for example, supports metric time but enforces
planners to assign exact time stamps and durations to all
events (Fox and Long 2002). In contrast, the concurrency
model of (2001) augments partial order plans with concur-
rency, thus allowing flexible, synchronized execution, but
makes no difference between plans that take seconds and
ones that take years. None of the planning models known to
us allows to synchronize on communicative acts.

To summarize, PDDL is, in its current form, inadequate
for representing MAP problems and their solutions, namely
because of the following missing features:

1. beliefs: if more than one agent is manipulating the world
(unlike assumed by classical planners) facts about it can-
not only be true or false, but also simply unknown to an
agent (e.g. P not knowing whether road R12 is clear or

1



not). Instead of using some kind of possible world seman-
tics, we propose to give up the propositional representa-
tion of facts in PDDL and move on to ternary or even
n-ary state variables.

2. model of time: Not only quantitative (“duration is 30
minutes”), but also qualitative (“F moves to Loc3 after P
has cleared R13”) models of time are needed to represent
and coordinate multiple-agent behavior. To that end, we
propose to exchange PDDL’s time-point semantics with a
semantics of temporal relations among actions that can be
both quantitative or qualitative.

3. degrees of control: An agent may exploit another agents’
actions in her own plan (“F moves to L3 after P has
cleared R13”), but cannot (by removing them from her
plan) prevent them from happening. Even her own ac-
tions might be only partially controllable by the agent,
e.g. duration of move (controllable) and extinguish (un-
controllable). PDDL must allow to describe controllable
and uncontrollable events so that agents can exploit their
differing properties during planning.

4. plan synchronization: PDDL 2.1’s plan semantics forces
agents to attribute exact time points to all actions, thus
making synchronization of (partial) plans very hard (when
trivial merging is impossible). More importantly, for rea-
sons of flexibility and security it is often best to share
as little information as possible. To achieve such mini-
mum synchronization we suggest not only to change the
temporal model but to allow speech acts as synchronizing
(meta-)actions in a plan. E.g., all F needs to know about
P ’s plan is that at some point P will have cleared R13. F
can thus enter a speech act TOLD(P,F,R13=CLEAR) into
her own plan that has R13=CLEAR as effect and allows F
to plan on with that knowledge.

Our extension of PDDL will provide these features. Fig. 2
shows part of a MAPL description for the Rescue domain.
Fig. 3 shows a MAPL plan of agent F for the problem given
in Fig. 1

(:state-variables

(pos ?a - agent) - location

(connection ?p1 ?p2 - place) - road

(clear ?r - road) - boolean)

(:durative-action Move

:parameters (?a - agent ?dst - place)

:duration (:= ?duration (interval 2 4))

:condition

(at start (clear (connection (pos ?a) ?dst)))

:effect (and

(at start (:= (pos ?a) (connection (pos ?a) ?dst)))

(at end (:= (pos ?a) ?dst))))

Figure 2: Excerpt from a MAPL domain description

The remainder of the paper presents MAPL solutions to
these problems: first, we show how to describe beliefs con-
veniently as non-binary state variables. Then we present the
temporal model of MAPL and its representation of events
and actions. The concepts of control over and mutual exclu-
sivity among events are introduced in the following sections,

e_init

<

<

s:move(F,L3)

e_goal

s:ext(F,H1)

e:ext(F,H1)

s:ext(F,H3)

s:ext(F,H3)

[60,240]

< [60,240] [2,4]
<

e:move(F,L3)

<

told(P):blocked(R13)=clear

Figure 3: F’s plan including a reference speech act by P

preparing the ground for the definition of MAPL’s plan se-
mantics. Finally, we show how speech acts can provide syn-
chronization between plans of several agents.

Beliefs and other state variables
One main feature distinguishing MAPL from PDDL is the
use of non-propositional state variables: in MAP we must
dismiss the Closed-World Assumption (CWA) that every-
thing not known to be true is false – the truth value might
also be simply unknown to an agent. There are several pos-
sibilities to represent such belief states, for example sets of
possible states (possible worlds) could represent all possible
combinations of states for unknown facts. Another possibil-
ity is to represent each of the three possible states of a fact
(true, false, unknown) by a unique proposition and to assure
that exactly of one these propositions hold in any given state.
This is similar to the representation of negation proposed in
(Gazen and Knoblock 1997): explicit negation of a fact is
compiled away in a planning domain by introducing a spe-
cial proposition representing the negated fact and assuring in
the planning domain that only one of the two facts can hold
in a state.

However, we do not see any genuine merit in a proposi-
tional representation of states; the simplest way to represent
beliefs it to allow state variables to have more than just the
two values true and false. We will therefore not only al-
low ternary state variables (with values true, false and un-
known), but n-ary state variables, meaning that a state vari-
able v must be assigned exactly one of its n possible values
in any given state. Among others, Geffner(2000) uses the
same concept and gives an extended formal description and
justification.

For example, in our Rescue domain the state variable
(pos F) could have any of the values Loc0, Loc1,
Loc2, Loc3 or the new “default” value unknown that is
a possible value for each state variable. Our new CWA will
then be that every state variable the value of which is not
specified in a state (or cannot be deduced otherwise) is be-
lieved to be unknown.

Note that a compilation approach similar to the one of
(Gazen and Knoblock 1997) is still possible: every n-ary
state variable can be compiled down to a set of propositions
that must be ensured to be mutually exclusive. This en-
surance is implicit in the definition of n-ary state variables
and thus gives domain designers a natural way to describe
important invariants of a domain, for example that an object

2



can only be at one location at a time or may have only shape
or color.

Definition 1 A planning domain is a tuple D =
(T,O, V, type) where T is a set of types, O a finite set of ob-
jects, V the set of state variables. type : O∪V → T assigns
a type to each object and state variable. dom : V → P(O)
with dom(v) := {o ∈ O|type(o) = type(v)} ∪ {unknown}
gives the possible values for state variable v. A state vari-
able assignment is a pair (v,o) ∈ V ×dom(v), also written
(v=o).

Temporal model
Quantitative models of time are necessary to describe ex-
act temporal relations between actions of differing dura-
tion. Level 3 of PDDL 2.1 provides a simple, yet expres-
sive means to model durative actions. However, the time-
point semantics for plans proposed in (Fox and Long 2002)
is overly restrictive. In forcing planners to assign exact time
points to every action in a plan it takes away the execution
flexibility offered by plan semantics based on action order.
Sequential, Graphplan-like ordered, or partially ordered plan
semantics can easily deal with action durations that are un-
known (in general or to a specific agent) because they offer
qualitative notions of time like “after” or “before”. MAPL
is an approach to take the best of both worlds and combine
quantitative and qualitative models of time. The key idea
is to give up the time-point semantics for plans and go back
to ordering constraints among events, but to make these con-
straints more flexible than those of total or even partial-order
planning. Precisely, the temporal component of a MAPL
plan corresponds to a Simple Temporal Network (Dechter
et al. 1991) the constraints of which are intervals describ-
ing the temporal relation among events (instantaneous state
changes). Note that in lieu of the term action we use the
more neutral event here to reflect that state changes are not
necessarily actively brought about by an agent but can also
be observations of “natural” changes in the environment.

Definition 2 An event1 e is defined by two sets of state
variable assignments: its preconditions pre(e) and its ef-
fects eff (e). For assignments (v = o) in the preconditions
[effects] of an event we will also write (v==o) [(v :=o)].

Relating events by ordering (i.e. temporal) constraints is
central to partial-order planning (but is also implicit in clas-
sical time-step based planning). To allow for a quantitative
model of time, we will extend each constraint with an inter-
val expressing the possible variation in two events’ temporal
distance.

Definition 3 A temporal constraint c = (e1, e2, I) asso-
ciates events e1, e2 with an interval I over the real num-

1In this paper we assume ground events and actions. Instantia-
tion of actions schemas (Fig. 4) includes instantiation of the state
variable schemas (like pos(?a)) as well. When a state variable
is used functionally, i.e. it represents its value in a given state
(like (pos ?a) in (connection (pos(?a) ?p)), instan-
tiation implies creation of ground actions for every possible value
o∈ dom(v). There, v is replaced by o and (v == o) is added to
the preconditions.

(:durative-action Move_F_Loc2[Loc1_R12]

:parameters (?a - agent ?dst - place)

:duration (:= ?duration (interval 2 4))

:condition (and

(at start (== (pos F) Loc1))

(at start (== (connection Loc1 Loc1) R12))

(at start (clear R12))

:effect (and (at start (:= (pos ?a) R12))

(at end (:= (pos ?a) Loc2))))

Figure 4: Instantiated Move action

bers, describing the values allowed for the temporal dis-
tance between the occurrence times te1 and te2 of the events:
(e1, e2, I) is satisfied iff te2 − te1 ∈I . I can be open, closed
or semi-open.

Using intervals, we can express that the duration of an ac-
tion is undetermined that an agent is ignorant of it. The main
advantage of the interval constraints, however, is that we can
express quantitative relations in a quantitative manner: “ex

occurs after ey” is expressed by the constraint (ex, ey, R+);
“ex occurs at the same time as ey” by (ex, ey, [0, 0]). To give
qualitative descriptions of concrete, quantitative constraints
we will use the abbreviation (e1≺e2)∈C for the expression
∀I. (e1, e2, I)∈C → I ⊆R

+, i.e. e1 occurs sometime be-
fore e2. (e1 � e2)∈C is defined similarly for sub-intervals
of R

+
0 .

With such constraints we do not need definite time points
any more: all that is important to describe a plan is the re-
lations among the actions and events. As usual in partial-
order planning, the initial state can be represented by a spe-
cial event e0 such that constraints with e0 can be seen as
absolute times. However, in MAP, there may be a different
initial event for every agent. To be able to synchronize on
absolute times if necessary, we can (but need not) assume a
common clock. It is modeled as a special event etr, the tem-
poral reference point, also called the Big Bang event because
it lies before all other events and is thus the point where time
starts. All agents know etr and thus can describe absolute
times as constraints with etr.

Definition 4 A durative action is a tuple a =
(es, ee, I, einv) where es, ee are events (called the start and
end event), I ⊆R

+ is an interval representing the temporal
constraint (es, ee, I) of the form es � ee, and einv is an
event with eff (e)= ∅, called the invariant event. An instan-
taneous action is a durative action a = (e, e, [0, 0], einv)
where pre(einv) = eff (einv) = ∅. For a set of actions Act,
EAct denotes the set of start and events of actions in Act.

It is clear that when only using instantaneous actions and
constraints of the form (ex, ey, R+) between them, we come
back to partial-order plans. On the other hand, when using
durative actions with constraints of the form (ex, ey, [d, d]),
i.e. exact durations and delays, we will create PDDL 2.1
plans. Thus, MAPL subsumes both partial-order and PDDL
plans.

Before describing the semantics of MAPL plans we will
introduce two more concepts describing events: the first,

3



control, allowing planners to distinguish between endoge-
nous and exogenous events, the second, mutual exclusive-
ness (or, relatedly, read-write locks) describing events that
must not occur concurrently.

Control
There are two kinds of durative actions: those in which du-
ration is controlled by the executing agent (e.g. reading a
book) and those in which the environments determines the
duration (e.g. boiling water). In the former case, the agent
(or its corresponding planner) can choose the delay from
start to end event, in the latter case the end event may hap-
pen at any time during the interval given by the constraint.
For any set of actions Acta of an agent a we assume there is
a control function ca : EAct → {a, env} describing whether
the agent or the environment controls the occurrence time of
an event. As agents can normally decide at least the start
time of an action we assume that ca(e) = a for start events
es.

When multiple planners communicate and share parts of
their plans, a planner has to store for each event in a plan
the executing agent controlling the event. As each plan-
ner will plan for at least one agent, the control concept is
a natural way to model which events the planner can in-
fluence and how. Durations of actions where both start
and end events are controlled by the planner (i.e. execut-
ing agents associated with the planner) can be manipulated
in the limits of the constraining interval. Actions in which
only the start event is controlled by the planner can at least
be added or removed from the plan at will. Actions and
events not under control of the planner cannot simply be
removed from the plan; that would be self-deception be-
cause removal would not prevent their occurence. Their
occurence must be taken into account during planning and
plans should be valid for every possible duration in the lim-
its of the constraining interval. (Similar, but more sophis-
ticated concepts are developed in (Vidal and Fargier 1999;
Tsamardinos et al. 2002).)

Mutex events and variable locks
Concurrency is a key notion in MAS. In Multiagent Plan-
ning it appears at two levels: as concurrent actions in a plan
(or distributed over several plans by different agents) and as
concurrent planning. Both levels are closely related: con-
currency conflicts at the plan level must be detected and re-
solved during planning. For the plan level we define:

Definition 5 Two events are mutually exclusive (mutex) if
one affects a state variable assignment that the other relies
on or affects, too. mutex(e1, e2) :⇔

(∃(v :=o)∈eff (e1) ∃(v,o′)∈pre(e2) ∪ eff (e2)) ∨
(∃(v :=o)∈eff (e2) ∃(v,o′)∈pre(e1) ∪ eff (e1))
This definition corresponds to mutex concepts in single-

agent Planning, e.g. in PDDL 2.1 or Graphplan(Blum and
Furst 1997). From a Distributed Systems point of view, how-
ever, the mutex definition describes a read-write lock on the
state variable v that will prevent concurrent access to the
same resource v because this may lead to indeterminate val-
ues of v. Interestingly, the correspondence between mutual

exclusive events and locks on state variable is more visible
in a formalism like MAPL that, by the use of non-boolean
state variables, seems to be a step closer to “imperative”
distributed programming than the more declarative style of
STRIPS and PDDL in which the state variable concept is
hidden behind the Closed World Assumption and ADD/DEL
effects instead of state variable updates.

In the next section, we will use the mutex definition to de-
scribe non-interference in concurrent plans. In another paper
we introduce the related concept of state variable responsi-
bility among agents to solve lock/mutex conflicts during dis-
tributed planning (Brenner 2003).

Plans
Definition 6 A multiagent plan is a tuple P = (A,E,C, c)
where A is a set of agents, E a set of events, C a set of
temporal constraints over E, and c : E → A is the con-
trol function assigning to each event an agent controlling its
execution.

We can now start to describe when a plan is valid, i.e.
executable. We will split this definition into two aspects:
temporal validity, meaning that there are no inconsistencies
among temporal constraints in the plan, and logical consis-
tency, meaning that no actions do logically interfere or are
disabled when they shall be executed in the plan.

To simplify the next definitions we assume the set C of
temporal constraints to be always complete, i.e. ∀e1, e2 ∈
E∃I. (e1, e2, I)∈C. This is no restriction because we can
assume C to contain the trivial constraints (e, e, [0, 0]) for
all events e∈E and (e1, e2, (−∞,∞)) for unrelated events
e1 
= e2.

Definition 7 A set of temporal constraints C is consistent if
¬∃e1, e2, . . . , en.(e1≺e2)∈C ∧ (e2≺e3)∈C ∧ · · · ∧ (en≺
e1)∈C. A multiagent plan P = (A,E,C, c) is temporally
consistent if C is consistent.

This is a reformulation of the consistency condition for
Simple Temporal Networks (STNs) (Dechter et al. 1991) as
(E,C) is in fact an STN2. Using the Floyd-Warshall algo-
rithm (Cormen et al. 1992), consistency of an STN can be
checked in O(n3). In planning, new events and constraints
are repeatedly added to a plan while consistenty must be
kept. To check this, we have developed an incremental vari-
ant of the algorithm (omitted from this paper) that checks for
consistency violations caused by a constraint newly entered
into the plan. This algorithm is in O(n2) (for every addition
of a constraint).

Definition 8 A multiagent plan P = (A,E,C, c) is logi-
cally valid if the following conditions hold:

1. No mutex events e′, e′′∈E can occur simultaneously:
∀e′, e′′∈E.mutex(e′, e′′) → (e′≺e′′)∈C ∨ (e′′≺e′)∈C

For any assignment (v == o) in the precondition of any
event e∈E there is a safe achieving event e′∈E:

2We are aware that STN consistency is not adequate for plans
with uncontrollable action durations. We are working to integrate
the concept of dynamic controllability into our framework (Vidal
and Fargier 1999).

4



2. (e′≺e)∈C ∧ (v :=o)∈eff (e) (achieving event)

3. ∀e′′ ∈ E ∀(v := o′) ∈ eff (e′′). o′ 
= o → (e′′ ≺ e′) ∈
C ∨ (e≺e′′)∈C (safety)

Conditions 2 and 3 define plans as valid if there are no
open conditions and no unsafe links, an approach well-
known from partial order planning(Nguyen and Kambham-
pati 2001; Weld 1994). Condition 1 (similarly used in
GraphPlan(Blum and Furst 1997)) describes threats caused
by conflicting effects that do not necessarily cause unsafe
links. This happens especially when events violate invari-
ants of durative actions.

Definition 9 A planning problem for an agent a is a tuple
Proba = (Act, ca, e0, e∞) where Act is a set of actions, ca

is the control function for Act, and e0, e∞ are special events
describing the initial and goal conditions.

We will now define when a plan solves a problem. We do
not need to and cannot use happening sequences like PDDL
2.1 because of MAPL’s plans being partially ordered. In-
stead we will reduce the question to a check for temporal
and logical validity of a new plan that is obtained as a com-
biniation of the problem with the solution plan.

Definition 10 A multiagent plan P =(A,E,C, c) is valid if
it is both temporally consistent and logically valid. A plan
P is a solution to a problem Proba = (Act, ca, e0, e∞) of
agent a if the following conditions are satisfied

1. c is consistent with ca: ca(e)=x → c(e)=x and
∀(es, ee, I, einv) ∈ Act.

[c(ee)=a → ∀(es, ee, I
′) ∈ C. I ′ ⊆ I] ∧

[c(ee)=env → ∀(es, ee, I
′) ∈ C. I ′ = I]

2. ∀(es, ee, I, einv) ∈ Act.
es ∈ E → (ee∈E ∧ einv ∈E) ∧
(es≺einv)∈C ∧ (einv ≺ee)∈C

3. for C ′ = C ∪ ⋃
e∈E{(e0, e, R

+), (e, e∞, R+)}
P ′ = (A,E ∪ {e0, e∞}, C ′, c) is valid.

In words these conditions can be described as follows:
(1) the plans uses actions controlled by the agent in the

way they are specified in the problem: the agent controlling
an event is the same in the problem and in the plan; only
actions in which the planner can control start and end event
can be tightened during planning (complete control).

(2) durative actions and their invariants are used as ex-
pected: for each action appearing in a plan, its start, end,
and invariant event must all appear in the plan as well as
constraints describing their appearance in the natural order:
es ≺ einv ≺ ee. Note that no “pseudo” time points must
be associated with invariants but that it suffices to have con-
straints forcing them to hold anytime between the start and
end events.

(3) executing the plan in the initial state reaches the goals.
Though looking simple, this last condition is the most im-
portant: when initial and goal events are added to the plan
with constraints describing that the initial event (goal event)
happens before (after) all others in the plan, then temporal
and logical validity of the resulting plan signifies that the
plan solves the problem.

Note that the solution plan is not required to contain only
actions from Act: a plan can solve an agent’s problem even
if it contains not a single action of that agent!

Speech acts as synchronizing events between
plans

An agent using a fact in his plan need not know how, why
or by whom it has been achieved. In temporally uncertain
domains the agent must even plan not knowing when ex-
actly the fact will become true. To enable planning under
these different kinds of ignorance, we will allow agents to
use different kinds of possibly virtual reference events in
their plans. As the same event may appear in plans of dif-
ferent agents this provides an implicit coordination among
those plans while still allowing the knowledge about causal
or temporal links of the event with others to vary largely
from agent to agent.

A basic reference event that we will only briefly men-
tion here is etr, the temporal reference point lying before
all other events. All agents know etr and thus can describe
absolute times as constraints with etr.

For MAP it is most important that agents can coordinate
and exchange knowledge about the domain and their plans.
This can be done with communicative events (i.e. speech
acts). For now, we propose only the simple communica-
tive act of the form TELLv,o with pre(TELLv,o) = {(v, o)}
and eff (TELLv,o) = ∅ and its counterpart TOLDv,o with
pre(TOLDv,o) = ∅ and eff (TOLDv,o) = {(v, o)}.

By entering new information into the current plan with
TOLD agents can use it like any effects of other events: as
preconditions of new actions and as temporal reference in
constraints. It is the latter use that is especially helpful:
the TOLD event provides automatic synchronization with an-
other agents plan. E.g. fig. 3 shows how the fire brigade
synchronizes on the police clearing a road without knowing
when or how this is done. Only the minimum of information
necessary for coordinated action is communicated. This is
important both for privacy reasons and to keep individual
knowledge bases conveniently small.

Having communication explicitly anchored in the plan
has several advantages. First and foremost, “being told
something” is one of the simplest means for modeling “ob-
servations” of world changes not brought about by an agent
himself. This way, we do not need complex semantics for
information gathering or conditional plan execution.

For the speaking agent, the communicative act represents
a commitment to inform the other of a specific fact during
execution. It is not enough, for example, that a police agent
promises to clear a road during planning, but that also the
fire agent somehow has to be informed during execution that
this promise has been realized. Anchoring the speech act in
the plan thus is a “physical” representation of the link be-
tween the commitment made during planning and its fulfill-
ment during execution.

During distributed planning this means, on the other hand,
that plans synchronized by speech acts also commit the
agents to coordinate changes to their plans. If, for exam-
ple, the police agent decides at some point during planning

5



that he must revise his decision to clear R13, the TELL event
will remind him to inform the fire brigade of this change.
The speech act can thus represent a distributed backtracking
point, a concept similarly used in Distributed CSP solving
(Yokoo and Hirayama 2000).

The basics for a distributed planning algorithm using
speech acts both to exchange missing information and to
synchronize are presented in (Brenner 2003).

Conclusion and future work
We have presented basic concepts for the Multiagent Plan-
ning Language MAPL, an extension of PDDL that supports
planning for and by Multiagent Systems. MAPL’s temporal
model can be used to describe exact, quantitative temporal
relations as well as flexible, quantitative ones. It might there-
fore be useful not only for multiagent scenarios but for every
domain where execution flexibility is important after plan-
ning has been completed. MAPL’s use of non-boolean state
variables makes it easier for domain designers to describe
basic invariants like “an object can have only one location
at a time”. It also sheds some light on the relation between
mutually exclusive actions in Planning and similar concept
in Distributed Computing like read-write locks on variables.

We have defined temporal and logical validity of MAPL
plans as well as what it means to solve a specified planning
problem. As, in contrast to PDDL 2.1, MAPL plans are par-
tially ordered we cannot and do not need to define happening
sequences or induced simple plans for MAPL plans. This
also avoids associating invariants with “pseudo” time points.

In another paper (Brenner 2003), we present the first sin-
gle agent and distributed planning algorithms for MAPL do-
mains. These algorithms are as preliminary as the definition
of MAPL’s syntax and semantics. Exciting future work is
possible now: we are currently working on a parser and a
small domain suite to test both the expressivity of the lan-
guage and the powers and limits of our algorithms.

MAP has been a topic of interest in AI for quite some
time. However, not much work has been published, neither
in the field of Multiagent Systems (MAS) nor in Planning;
furthermore, what has been published is mostly stand-alone
work that has not led to a steady development in MAP re-
search. In our view, this is due to an unfavorable separation
of the (single-agent) planning phase and the (multi-agent)
coordination and execution phase, resulting in AI Planning
researchers concentrating mostly on the former and MAS
researchers almost exclusively dealing with the latter. This
separation is only possible with strong assumptions that nar-
row the generality of the proposed approaches, for example
the assumption in MAS research that the actual planning of
each agent can either be handled by classical single-agent
planning methods or is eased by a given hierarchical task
decomposition. The AI planning community, on the other
hand, has only recently fully acknowledged the need for so-
phisticated models of concurrent plan execution (earlier ex-
ceptions include most notably work by M. Ghallab(Ghallab
and Laruelle 1994)). MAPL is an attempt to show possible
extensions of PDDL 2.1’s representation in a way that al-
lows flexible execution after and easy coordination during
the planning process. We hope that our representation will

allow to conveniently describe largely differing MAP do-
mains for which researchers can propose and cross-evaluate
very different algorithmic approaches, thus promoting the
field of Multiagent Planning.

References
Avrim Blum and Merrick L. Furst. Fast planning through
planning graph analysis. Artificial Intelligence, 90(1-2),
1997.
Craig Boutilier and Ronen Brafman. Partial order planning
with concurrent interacting actions. Journal of Artificial
Intelligence Research, 2001.
Michael Brenner. Multiagent planning with partially or-
dered temporal plans. In Proc. IJCAI, 2003.
T. Cormen, C. Leiserson, and R. Rivest. Introduction to
Algorithms. MIT Press, 1992.
Rina Dechter, Itay Meiri, and Judea Pearl. Temporal con-
straint networks. Artificial Intelligence, 49, 1991.
Maria Fox and Derek Long. PDDL 2.1: an Extension to
PDDL for Expressing Temporal Planning Domains, 2002.
B. Gazen and C. Knoblock. Combining the expressiveness
of UCPOP with the efficiency of Graphplan. In Proc. ECP
’97, 1997.
H. Geffner. Functional STRIPS: a more flexible language
for planning and problem solving. In Jack Minker, editor,
Logic-Based Artificial Intelligence. Kluwer, 2000.
M. Ghallab and H. Laruelle. Representation and control in
IxTeT, a temporal planner. In Proc. of AIPS ’94, 1994.
H. Kitano, S. Tadokoro, I. Noda, H. Matsubara, T. Taka-
hashi, A. Shinjoh, and S. Shimada. RoboCupRescue:
Search and rescue in large-scale disasters as a domain for
autonomous agents research. In Proc. 1999 IEEE Intl.
Conf. on Systems, Man and Cybernetics, 1999.
XuanLong Nguyen and Subbarao Kambhampati. Reviving
partial order planning. In Proc. IJCAI ’01, 2001.
Ioannis Tsamardinos, Thierry Vidal, and Martha Pollack.
CTP: A new constraint-based formalism for conditional,
temporal planning. Constraints Journal, 2002.
Thierry Vidal and Hélène Fargier. Handling contingency
in temporal constraint networks. Journal of Experimental
and Theoretical Artificial Intelligence, 11, 1999.
Daniel Weld. An introduction to least commitment plan-
ning. AI Magazine, 15(4), 1994.
Makoto Yokoo and Katsutoshi Hirayama. Algorithms for
distributed constraint satisfaction: a review. Autonomous
Agents and Multi-Agent Systems, 3(2), 2000.

6


