
Extending PDDL for Hierarchical Planning and Topological Abstraction

Adi Botea and Martin Müller and Jonathan Schaeffer
Department of Computing Science, University of Alberta

Edmonton, Alberta, Canada T6G 2E8
{adib,mmueller,jonathan}@cs.ualberta.ca

Abstract

Despite major progress in AI planning over the last few
years, many interesting domains remain challenging for cur-
rent planners. Topological abstraction can reduce planning
complexity in several domains, decomposing a problem into
a two-level hierarchy. This paper presents LAP, a planning
model based on topological abstraction. In formalizing LAP
as a generic planning framework, the support of a planning
language more expressive than PDDL can be very important.
We discuss how an extended version of PDDL can be part
of our planning framework, by providing support for hierar-
chical planning and topological abstraction. We demonstrate
our ideas in Sokoban and path-finding, two domains where
topological abstraction is useful.

Introduction
AI planning has recently achieved significant progress in
both theoretical and practical aspects. The last few years
have seen major advances in the performance of planning
systems, in part stimulated by the planning competitions
held as part of the AIPS series of conferences (McDermott
2000; Bacchus 2001; Fox & Long 2002). However, many
hard domains still remain a great challenge for the current
capabilities of planning systems.

Abstraction is a natural approach to simplify planning in
complex problems. For instance, humans often create ab-
stract plans that they try to follow during their search. In this
paper we present topological abstraction, a technique for re-
ducing planning complexity in hard domains. Based on this
abstraction model, we also discuss extending the PDDL lan-
guage so that it supports hierarchical planning and abstrac-
tion. In exploring how PDDL can be extended, the mean-
ing of “abstraction” can be more general than our topologi-
cal approach. Topological abstraction is only one of a gen-
eral class of hierarchical relationships that PDDL may not
be able to express well.

Our abstraction approach reformulates the state represen-
tation, grouping related low-level features in local clusters.
The clustering aims to catch local relationships inside clus-
ters and keep cluster interactions as low as possible. In ef-
fect, the initial problem is decomposed into a two-level hi-
erarchy of sub-problems, each being much simpler than the
initial one. At the local level, each cluster has associated
a local problem that solves the local constraints. There is

also a global planning problem where clusters are treated
as black-boxes and local state features are hidden away. The
reason why we call this topological abstraction is that an im-
portant class of applications of which the approach is suit-
able have a spatial structure such as a grid. In such a domain,
we group atomic grid squares into abstract clusters such as
rooms in a building.

Motivation
Many interesting domains are hard to deal with when no ab-
straction is present. Examples of such domains are Sokoban
and path-finding. In these domains, a hierarchical problem
decomposition based on topological clustering can lead to
significantly better performance. Our preliminary work us-
ing these domains as a testbed has already shown an impres-
sive potential of the topological abstraction.

Sokoban is a puzzle with many similarities to a robotics
application. In this domain, a man in a maze has to push
stones from their initial positions to designated destinations
called goal squares (see Section 3 for a detailed descrip-
tion of the rules). Both the AI planning and the single-agent
search communities agree that this is a hard domain. The
game is difficult for a computer for several reasons includ-
ing deadlocks (positions from which no goal state can be
reached), the large branching factor (can be over 100 – if we
consider as moves all the stone pushes in the man reachable
area), and long optimal solutions (can be over 600 moves).
Another problem is that all known lower-bound heuristic es-
timators for the solution length are either of low quality, or
expensive to compute.

Humans, who solve Sokoban puzzles much easier than
state-of-the-art AI applications, abstract the maze into rooms
and tunnels and use this high-level representation to create
abstract plans. Following the humans’ example, an AI appli-
cation can cluster atomic squares into more abstract features
such as rooms connected by tunnels, reducing the complex-
ity of the hard initial problem. In effect, a large number of
atomic squares is replaced by a few abstract, more meaning-
ful features such as rooms and tunnels.

In the domain of path-finding, an agent on a map has to
find a (shortest) path from its current position to a destina-
tion position. The map topology can have many forms, such
as a battlefield, the interior of a building, etc. The problem
is important in commercial computer games, robot planning,

1



military applications, etc. The efficiency of the path-finding
algorithms is often crucial, as they have to produce solutions
in real-time and use limited resources. The classical solv-
ing strategy represents the maze as a grid of atomic cells
and uses a search algorithm such as A* on that graph. An
action is to move to an adjacent cell that is not part of an
obstacle. The representation of states in the search space
greatly influences the efficiency of the search. A fine gran-
ularity of the map leads to a large search space, requiring
serious time (and possibly space) resources. A much more
efficient problem representation is to abstract the map into
connected clusters such as rooms, large obstacle-free areas,
bridges, etc. As in Sokoban, the abstract map representation
is a small graph of connected clusters, with a much reduced
search space.

To the best of our knowledge, in some commercial games
the search space is abstracted by human experts, who de-
fine the abstract clusters by hand. Our contribution is an
automated abstraction method, especially useful when hu-
man expertise is expensive or not available. For instance, a
bomb can destroy a bridge, changing the landscape dynam-
ically and invalidating the previous abstract representation.
Also, the user of a game may be allowed to define new map
configurations, which have to be abstracted from scratch.

In standard planning domains such as Logistics, topolog-
ical abstraction of the real world is part of the domain defi-
nition. In Logistics, several packages have to be transported
from their initial location to various destinations. A Logis-
tics problem has a map of cities connected by airline routes.
Transportation inside cities can be done by truck (there is
one truck in each city). Cities are abstracted, being treated
as black boxes. Inside a city, a truck can go from any point to
any destination at no cost. However, in the real world, trans-
portation within a city is a subproblem that can involve con-
siderable costs. In this context, removing human expertise
and automatically obtaining abstracted models of the real
world is an important research problem.

The Planning Language Support
Topological abstraction is appropriate for several application
domains. Our goal is to build a general planning framework
where topological abstraction is automatically performed for
different planning domains. In such a framework, the ro-
bustness of the planning language used to describe the do-
main and problem instances is very important. Many parts
of our abstraction framework could more easily be expressed
when using a more general planning language. The lan-
guage support for hierarchical planning in general should
deal with representing the abstraction levels, and modeling
relationships and communication across the levels. The lan-
guage support for abstraction should cover several issues,
such as problem reformulation, automatic abstraction, adap-
tive abstraction, and a hybrid problem representation. In this
paper, hybrid representation refers to using both low-level
features (for the part of the problem representation space
not abstracted yet) and abstract features (for the already ab-
stracted part of the space) to represent a problem state. In our
framework, problem reformulation means to replace a low-
level domain and problem representation by an equivalent

abstract representation, which is easier to solve. We want to
represent the abstracted problem explicitly, as an indepen-
dent planning problem written in a language such as PDDL.
This allows solving the abstract problem with no interaction
with the initial low-level formulation. Another advantage
of representing abstraction as part of the PDDL formulation
is that, at one moment, we can use a hybrid state represen-
tation, using both low-level and abstract features for state
description. When planning is done repeatedly in a fixed
environment, an adaptive abstraction, which is performed
as the system learns more about the environment, is also
valuable. For instance, in a path-finding problem the map
is initially represented at the low-level. An adaptive abstrac-
tion algorithm builds the clusters gradually, as the planning
agent discovers more and more parts of the map. Before
the abstraction is completed, the planning is done using a
state representation composed of both atomic squares (for
the unexplored parts of the map) and abstract clusters (for
the explored parts of the map).

Adaptive abstraction can naturally be related to planning
with uncertainty. We can consider that the part of the prob-
lem not abstracted yet is in a sense unknown to the plan-
ner. Using abstraction this way also required the domain
description (or, more generally, the planning and plan exe-
cution framework) to handle uncertainty. PDDL currently
doesn’t do this, and topological abstraction can’t handle this
without a treatment of uncertainty. Even if this is an interest-
ing topic, in this paper we don’t focus on how an extended
PDDL can be used to better handle uncertainty. We keep
our discussion limited to hierarchical planning and abstrac-
tion issues.

The rest of the paper is structured as follows: In the next
section we review the related work. In the third section
we highlight our abstraction framework and briefly describe
how we applied it to Sokoban and path-finding. We point
out some features that can easier be addressed using a more
robust planning language. In the fourth section we discuss
extending PDDL to support hierarchical planning and topo-
logical abstraction. The last section presents our conclusion.

Related Work
Abstraction is a frequently used technique to reduce problem
complexity in AI planning. Automatically abstracting plan-
ning domains has been explored by Knoblock (Knoblock
1994). His approach builds a hierarchy of abstractions by
dropping literals from the problem definition at the previ-
ous abstraction level. Bacchus and Yang define a theoreti-
cal probabilistic framework to analyze the search complex-
ity in hierarchical models (Bacchus & Yang 1994). They
also use some concepts of that model to improve Knoblock’s
abstraction algorithm. In this work, the abstraction consists
of problem relaxation. In our approach, abstraction means
to reformulate a problem into an equivalent hierarchical rep-
resentation. The abstract problem is solved independently
from the initial problem formulation.

Long et al. use generic types and active preconditions
to reformulate and abstract planning problems (Long, Fox,
& Hamdi 2002). As a result of the reformulation, sub-
problems of the initial problem are identified and solved by

2



using specialized solvers. Our approach has similarities with
this work. Both formalisms try to cope with domain-specific
features at the local level, keeping the global problem as
generic as possible. The difference is that we reformulate
problems as a result of topological abstraction, whereas in
the cited work reformulation is obtained by identifying var-
ious generic types of behavior and objects such as mobile
objects.

Using topological abstraction to speed-up planning in
a reinforcement learning framework has been proposed in
(Precup, Sutton, & Singh 1997). In this work, the authors
define macro actions as offset-casual policies. In such a pol-
icy, the probability of an atomic action depends not only on
the current state, but also on the previous states and atomic
actions of the policy. Learning macro actions in a grid robot
planning domain induces a topological abstraction of the
problem space.

Previous experiments showed that planning in a low-
level Sokoban formulation was too hard for state-of-the-art
generic planners (McDermott 1997; Junghanns & Schaef-
fer 1999). Culberson performed a theoretical analysis of
Sokoban, showing that this domain is PSPACE-complete
(Culberson 1997). The state-of-the-art Sokoban solvers
are Junghanns’ Rolling Stone (Junghanns 1999; Junghanns
& Schaeffer 2001) and deep green, developed inside the
Japanese Sokoban community (Junghanns 1999). These ap-
plications can find solutions for two thirds of the standard
90-problem test suite 1.

Local Abstraction in Planning
In this section we present an overview of our abstraction
model, called LAP (Local Abstraction in Planning). We
also show how the model can be applied to domains such as
Sokoban and path-finding. We use the model and these do-
mains as a basis to motivate the need for a PDDL extension
supporting hierarchical planning and abstraction. Thus, im-
plementation details and analysis of experimental results are
not our focus here. We rather consider issues such as hier-
archical planning, automatic clustering, adaptive clustering,
and hybrid state representation.

The Model Overview
LAP is a planning model based on a topological abstrac-
tion of the state representation. A clustering of the problem
representation space is used to group related low-level fea-
tures. The goal of the clustering process is to group together
related atomic pieces and keep cluster interactions low. The
abstraction allows us to decompose the initial problem into a
hierarchy of sub-problems in a divide-and-conquer manner.
For each cluster we define a local problem, which solves the
local constraints of that cluster. The global problem uses an
abstract problem description, where global states are charac-
terized by states of abstract features. Each feature is a cluster
that represents several atomic elements of the space.

At the global level, our abstraction approach leads to a
much more compact state representation. For instance, a

1The test suite is available at http://xsokoban.lcs.
mit.edu/xsokoban.html.

room in a robot planning domain is an abstract feature en-
coding many low-level objects such as atomic-size squares.
Since one cluster is a complex feature representing several
atomic features, cluster states can have many possible val-
ues. It is therefore natural to represent the global abstract
states as tuples of cluster values. Using this representation,
our abstraction model can be defined as a special case of
the Simplified Action Structures (SAS) model (Bäckström
& Klein 1991; Bäckström & Nebel 1995). In a SAS model,
the global state space is a cross product of sub-spaces de-
scribing states of the problem features. Actions have as-
sociated three types of feature sets: precondition sets, ef-
fect sets, and prevail sets. The precondition set identifies
the features used to check the action preconditions, the ef-
fect set contains the features whose states are changed by
the considered action, and the prevail set contains the fea-
tures whose values are preserved after the action has been
applied. Below we point out the properties that differentiate
our model from other existing SAS structures. First, in the
LAP formalism, an abstract action changes either one state
component or two components, leaving the rest of the tuple
unchanged. In other words, the planning agent is only al-
lowed to do local processing inside a cluster or perform an
action affecting two clusters. Second, a transition between
two clusters is possible only if the two clusters are neigh-
bors. Third, when checking the preconditions of an operator,
the only preconditions that matter are the values of the com-
ponents that are changed by the action effect. For instance,
in the Sokoban domain, when transferring a stone between
two adjacent rooms A and B, the local stone configuration
of other rooms is not relevant.

At the global level, we use abstract planning actions called
macro-actions. Checking the preconditions of a macro-
action uses cluster states rather than states of atomic fea-
tures. The effects of a macro-action also change cluster
states. The model does not guarantee the solution optimal-
ity. If for each action of an optimal abstract solution we
compute an optimal sequence of atomic moves, the result-
ing low-level solution is not guaranteed to be optimal.

LAP in Sokoban
Sokoban is a single player game created in Japan in the
early 1980s. Figure 1 shows an example of a Sokoban prob-
lem. The puzzle consists of a maze which has two types
of squares: inaccessible wall squares and accessible interior
squares. Several stones are initially placed on some of the
interior squares. There is also a man that can walk around
by moving from his current position to any adjacent free in-
terior position. A free position is an interior square that is
not occupied by either a stone or the man. If there is a stone
next to the man and the position behind the stone is free,
then the man can push the stone to that free square. The
man moves forward to the initial position of the stone. The
goal of the puzzle is to push all the stones to some specific
marked interior positions called goal squares.

The game is difficult for a computer for several reasons
including deadlocks, the large branching factor, and long op-
timal solutions. Also, all known lower-bound heuristic esti-
mators are either of low quality, or expensive to compute.

3



Figure 1: Problem #1 in the standard 90 problem Sokoban
test suite. The six goal squares are the marked ones at the
right end of the maze.

A simple planning representation of Sokoban can be ob-
tained by translating all the low-level properties of the game
into a planning language such as PDDL. For instance, a one-
square push becomes one planning action. We call this plain
Sokoban. This simple representation leads to very poor re-
sults, as it does not allow for an efficient handling of the
long-range properties of the game. The domain formulation
can be significantly improved by applying the LAP model
to plain Sokoban. We call the new abstracted formulation
abstract Sokoban. In abstract Sokoban, the clustering pro-
duces a decomposition of the maze into rooms and tunnels.
Rooms and tunnels become clusters in the abstract represen-
tation. If there are k clusters extracted from the maze, the
abstract description of a state is a tuple of integer values

s = (s1, s2, ..., sk)

where si represents the internal state of cluster i. The inter-
nal state of a cluster is a complete description of the stone
configuration and, in the case of rooms, the area reachable
by the man inside that room. The abstract planning actions
are: (a) to re-arrange stones inside a room, so that the man
can walk between two designated entrances and (b) to trans-
fer a stone between two rooms, or between a room and a
tunnel. In case (a) we have unary operators, as they only
change the status of one cluster. In case (b) we have binary
operators, as they change the status of two adjacent clusters.

Figure 2 illustrates how our abstraction model works in
Sokoban. At the global level, a search problem is trans-
formed into a graph (Ri, Tj), where the nodes Ri repre-
sent rooms and the edges Tj represent tunnels. In effect,
the global problem has a much smaller search space. Be-
sides the global planning problem, we also obtain several
local search problems, one for each room. Local problems
check the action preconditions for the global planning prob-
lem. For instance, if the abstract action is to transfer a stone
from room A to room B, we have to check that the local
stone configurations allow this macro-action. Tunnels are so
simple that the associated local problems are trivial.

State of the art in solving Sokoban is about 60 out of
90 problems solved by Rolling Stone and deep green. Our
system, called Power Plan, has solved 25 problems so far.

We consider our preliminary results very encouraging, as
they show a great reduction of the problem complexity. For
comparison, we could not solve any problem from the stan-
dard test-suite by using a non-abstracted representation of
Sokoban. Using a partial abstraction (i.e., only tunnels were
abstracted), we solved only one problem. We believe that
we can further improve our performance in Sokoban in the
future. The limitations are on the lack of domain-specific
knowledge of Power Plan, not on the abstraction approach.

LAP in Path-Finding
In path-finding, an agent on a map has to find a (shortest)
path from his current position to a destination position. The
map topology can have many forms, such as a battlefield, the
interior of a building, etc. The problem is important in com-
puter games, robot planning, military applications, etc. The
classical solving strategy is based on single agent search. In
this approach, the map is represented as a grid of atomic
cells, and a search algorithm such as A* is used to search
for the solution. An action is to move to an adjacent cell, if
the destination cell is not an obstacle (Yap 2002).

Our abstraction model groups atomic cells into abstract
clusters, reducing the size of the search space dramatically.
Actions become moving between two entrances of a clus-
ter (crossing a cluster), rather than moving from one cell to
the next. In our experiments, we split the maze into equal-
size boxes which become abstract clusters. For example, a
100 × 100 map can be decomposed into 100 10 × 10 boxes
(clusters). For each edge common to two adjacent clusters,
we identify entrances for communication between clusters.
An entrance is an obstacle-free part of the edge bounded by
two obstacles. For each entrance, we define one transition
point at the middle of that entrance. No points other than the
transition points can be used for moving from one cluster to
another.

We can identify a global problem and several local prob-
lems, one for each cluster. Processing performed inside
a cluster is part of the local problem associated to that
cluster. For each pair of transition points on the border
of the same cluster, we compute an optimal path between
them that is contained in that cluster. Since in path-finding
different problem instances use a fixed map but different
(start, target) node pairs, this pre-processing phase is per-
formed once and re-used for many problem instances. For
n ∈ {start, target}, we also compute optimal paths from
n to the transition points located on the border of the cluster
that contains n.

At the global level, we define the abstract search graph,
whose nodes are start, target, and the transition points.
Optimal paths between the nodes become weighted edges.
The abstract graph can easily be updated for different prob-
lem instances, as we only have to update information about
start and/or target. Since the map if fixed, the rest of the
abstract graph is fixed too. Searching in the abstract graph is
the global problem. In Figure 3 we illustrate this abstraction
process on a 20 × 20 map.

We compared our method with A* performed at the
atomic level. Our first results show a great reduction in the
search effort. Searching in the abstract graph expands one

4



Figure 2: A Sokoban problem (#6 of the test suite) is decomposed into several abstract sub-problems. There is one global
problem as well as one local problem for each room. Rooms and tunnels are denoted by R and T , respectively.

Figure 3: A 20 × 20 map is decomposed into 4 abstract clusters. The obstacles on the map are represented by ‘@’. A search
space having 280 non-obstacle squares is replaced by a small abstract graph having 9 nodes (not including start and target).
The abstract search space is shown on the right side of the picture.

order of magnitude less nodes than searching at the atomic
level. The length of the solution computed with our method
is very close to the optimal value. When parameters such
as the maze size or the obstacle rate are varied, the average
increase of the solution length (as compared to the optimal
value) is consistently under 1%. These results are especially
valuable as, in path-finding, the speed of the search algo-
rithm is often crucial, while the solution optimality condi-
tion can be relaxed. For instance, in a commercial computer
game, most of the CPU cycles are allocated to other game
modules such as the graphics engine. In addition, solutions
don’t have to be optimal. Sub-optimal solutions that look
realistic will do, too.

We plan to extend our work in path-finding in many direc-
tions, including natural clustering, adaptive abstraction and
hybrid map representation. As we show in the next section,

when exploring these directions in a generic planning frame-
work, the support of the planning language can be very im-
portant. Even if our technique for maze clustering turned out
to be quite efficient, we still want to explore how to discover
more natural clusters such as rooms inside a building. Natu-
ral clusters can lead to simpler local problems. For instance,
if the cluster does not contain any obstacle square, then op-
timal paths between entrances are computed instantly, re-
ducing the pre-processing costs. In a path-finding problem,
parts of the map can be unknown for the planning agent. For
instance, this is the case when the map is so large that it does
not fit into the computer’s memory. In this case, the feature
clusters can be built dynamically, as the planning agent dis-
covers more and more parts of the map. When the map is
partially abstracted, the search can be performed in a space
representation containing both abstract local clusters (for the

5



already explored parts of the map) and atomic-size squares
(for the unknown parts of the map).

Extending PDDL
In this section we discuss in more detail how a more power-
ful version of PDDL would be beneficial for using abstrac-
tion and hierarchies in AI planning. To better express our
vision, we use Sokoban and path-finding as case-study do-
mains.

Since topological abstraction is useful in several domains,
we plan to extend our work in the direction of develop-
ing a generic planning framework based on this type of ab-
straction. A significant part of this generic framework can
be provided by a more general planning language. As we
have pointed out before, the language support that we need
mainly refers to hierarchical planning and topological ab-
straction. The support for hierarchical planning should al-
low us to express an abstracted problem as a sum of sub-
problems having different abstraction levels. The support
for abstraction includes modeling the relation between low-
level and abstract features, automatic abstraction, adaptive
abstraction, and using hybrid state representations. The lan-
guage should also support users to guide the abstraction pro-
cess by encoding hints that should be considered by the ab-
straction algorithm.

The rest of the section is structured in two subsections.
The first subsection identifies challenges about extending
PDDL. The second subsection shows concrete steps toward
solving some of the issues pointed out in the first subsection.

Challenges
In this subsection we identify some challenges that we have
faced that could be more easily addressed by using a more
general planning language. In our experiments with abstract
Sokoban (Botea, Müller, & Schaeffer 2002; Botea 2002), we
used TLPlan (Bacchus & Kabanza 2000), a generic planner
which allows users to plug in domain specific knowledge as
C code libraries. Next we show the parts of our framework
that had to be implemented as custom code.

Since the planning language did not support hierarchical
planning, we represented only the global component as a
planning problem (i.e., formulated in PDDL and solved by
the generic planner). The solver for the local problems was
implemented as custom code in C. This approach definitely
has the advantage of efficiency. On the other hand, it clearly
points out the need for a unified hierarchical planning frame-
work. In such a framework, users should have the opportu-
nity to describe domains using linked levels of abstraction.
As opposed to hierarchical task networks, our abstraction
approach defines boundaries between problem components.
Users should be supported in expressing topological features
of domains such as connectivity of spatial structures within
the domain.

All the abstraction levels of a problem (i.e., in our ap-
proach, both the global problem and the local problems as-
sociated to clusters) should be represented as part of a single
PDDL problem formulation. This formulation also encodes
relationships between problem components, as well as other

useful information that users may consider for explicit rep-
resentation. The issue of PDDL expressiveness should be
kept separated from the strategy adopted for solving plan-
ning problems. However, we want to point out that a uni-
fied framework may also mean a common solving strategy.
In the unified model, we could perform both the high level
planning and the low-level computation. The same solving
engine can be used to solve both levels of the problem.

The translation of a planning problem from the low-level
representation to the hierarchical representation is also part
of the planning framework. This means that the abstraction
process is also integrated in the model. PDDL could be ex-
tended to formalize the codification of rich control knowl-
edge, including hints about how best (in the encoder’s view)
to decompose a problem into components.

Integrating the abstraction process within the model leads
to the interesting and more general debate whether PDDL
should be a user-level language or a machine-level language.

In the first scenario (i.e., user-level), the language is used
only as an interface through which the planner communi-
cates to the outside world. The planner input (i.e., domain
and problem definition) is formulated in PDDL. The plan-
ner’s output (i.e. a sequence of actions representing the
problem solution) can also be considered as a PDDL se-
quence. All the internal problem representations used by
the planner are not part of the generic planning framework.
In this scenario, there is a gap in the framework between the
low-level representation and the abstracted representation of
a problem. Since internal problem representations are hid-
den and planner specific, we cannot have both a low-level
and an abstract PDDL formulation for the same problem.
We either start the solving process with an abstracted PDDL
formulation, or perform the abstraction internally, being un-
able to access the internal abstracted problem representation.
In our previous experiments in Sokoban we performed the
abstraction a priori, as a separate pre-processing step. The
input of the planner was a PDDL formulation of the global
component of the abstracted problem.

The more interesting scenario is to consider PDDL as a
machine-level planning language. This allows us to integrate
the abstraction process into the framework. Planners can
use the language to express internal problem representations
at various stages of abstraction. Several possible problem
representations, having different abstraction degrees, can be
formulated in PDDL and used internally by the planner.
This sets a better framework for planners to automatically
discover useful abstractions and represent them in PDDL.
This also induces greater task modularity and standardiza-
tion. Abstracted problem representations can be produced
and used by other solvers. Last but not the least, when writ-
ten in PDDL, internal problem representations are easier to
understand for humans.

Language Extension Ideas
In this subsection we propose some solutions to the chal-
lenges presented above. First, we show how an abstracted
problem can be formulated in an unitary framework. Sec-
ond, we provide concrete ideas about supporting the abstrac-
tion process. We include language features that allow users

6



to guide the abstraction.
When expressed in the extended PDDL, the abstract prob-

lem formulation should actually be a set of inter-dependent
sub-problems defined in the same PDDL file. There is a
global problem and several local problems, one for each
cluster. The file should also contain inter-relationships oc-
curring across the abstraction levels. To identify the sub-
problems, we can introduce two new keywords to the lan-
guage: global and local. These keywords are used for
the problem formulation, not the domain formulation. The
first keyword is part of the global problem header. This
problem is described using abstract state features and ab-
stract actions. When we use a hybrid state representation,
low-level features can be part of the global state description
too. However, to keep our presentation simple, we ignore
this possibility for now. The keyword local introduces the
description of a local problem. For instance, the statement:

local: room1

can be the header of the local problem associated to the ab-
stract object called room1 (which was defined inside the
global problem). The header should be followed by the
PDDL description of the problem. This problem description
is at the low level.

Since the global states are described using new abstract
features, we need new types of global actions, that change
cluster states. The global actions should also be included
in the global problem definition. The initial low-level ac-
tions become part of the local problems. We point out again
that how to define abstract actions should be kept separated
from the problem of extending the language. What we con-
sider more relevant is the mechanism for computing action
preconditions and effects in the global problem. This mech-
anism actually establishes the relationship between the local
level and the global level of a problem.

The local problems do not interact directly. The only
problem interaction allowed in our model is between the
global problem and a local problem. At the global level,
the clusters are treated as black boxes. When solving the
global problem, the planner may need information about the
clusters. This information is necessary to check action pre-
conditions (i.e., whether the current state of a cluster allows
performing a certain action) and compute action effects (i.e.,
the resulting internal state of a cluster when a certain action
is performed). The cluster information is provided by the
local problem associated with the corresponding cluster.

The planner starts solving the global problem. When
information about a cluster is necessary, the planner stops
solving the global problem and computes the needed piece
of knowledge by performing a search in the corresponding
local problem. After the information needed at the global
level becomes available, the solving of the global problem
resumes. There are several ways to optimize this problem
solving approach at the local level. First, when local prob-
lems are small enough, they can be solved a priori (i.e., com-
pute and store all the information about the corresponding
cluster that may be needed for the global problem). Second,
the results of on-demand local computations can be cached
and re-used when needed again. Third, several equivalent

cluster states can be merged to compose one abstract state
of a cluster.

In Sokoban, we performed the problem abstraction as
an application-specific method, with no interference with
the generic planning framework. However, we want to de-
velop generic abstraction methods, integrated in our plan-
ning model. Since it is often hard to find “good” abstractions
by using generic methods only, we consider that language
features allowing users to guide the abstraction process are
useful.

At one extreme, the user’s hints could actually complete
the abstraction process. For instance, for each atomic square
squarei we can declare:

(hint (belongs to squarei roomj)).

This series of statements shows precisely how to build the
abstract clusters.

On the other hand, the abstraction process can be auto-
mated. The rest of our discussion focuses on this case. The
user can assist the abstraction process by encoding hints
about how best to decompose a problem into components.
A very simple example is the following:

(hint (= (max cluster size 10))),

stating that a cluster should contain at most 10 atomic
squares.

Another possible language extension supporting auto-
matic abstraction is the following. Let us assume that the
language accepts the declaration:

(abstracts room square)

as part of the domain formulation. square is a predicate
instantiated in the low-level problem description, room de-
fines an abstract feature, and abstracts is a key word
of the language. The semantic of this statement is that the
domain can be topologically abstracted by building rooms
out of (closely related) squares. When a problem is initially
loaded to the planning system, no room object is instanti-
ated. Since the system knows that squares can be grouped
together to form rooms, a clustering method can be used to
discover rooms for the given problem. The clustering algo-
rithm could be either domain-specific or generic. The algo-
rithm can use hints that the user formulates as part of the
domain or problem definition. When formulated in the do-
main definition, the hints apply to all problem instances of
that domain. When formulated in the problem definition, the
hints apply to the considered problem.

The computed clusters replace the corresponding low-
level features in the global problem representation. These
low-level features become part of the local problems corre-
sponding to those clusters.

The discussion on hierarchical planning and abstraction
applies to both our test cases, Sokoban and path-finding. In
addition, path-finding is a good test-bed for adaptive abstrac-
tion and hybrid state representation. As in the Sokoban ex-
ample, the declaration:

(abstracts cluster square)

can be part of the domain definition in path-finding. Initially,
no cluster object is instantiated, since the planning agent

7



did not explore the map at all. On this map, the planning
agent is requested to perform many searches, for different
start and destination points. For instance, in a commercial
game, there can be many characters that have to travel across
the map. Moreover, one character can do many trips during
one game. As the planning agent performs more and more
searches, it also learns more about the map, being able to
abstract the already explored parts. In effect, the state rep-
resentation changes gradually, as more and more low-level
squares are replaced by abstract clusters. After building one
more abstract cluster, the global problem changes, replac-
ing several low-level squares by an abstract feature. Also,
one more local problem, corresponding to navigation within
the newly created cluster, is added. Before the abstraction
is completed, we need to be able to represent a state as a
mixture of both low-level squares and abstract clusters. This
means that the global problem accepts both abstract clusters
and low-level squares for state representation.

Conclusion
Topological abstraction is a powerful technique for reducing
problem complexity in AI planning and single-agent search.
The method is based on a clustering of the initial problem
representation space. The clustering catches local relation-
ships inside clusters and keeps cluster interactions as lim-
ited as possible. In effect, the initial problem is decomposed
into a two-level hierarchy of sub-problems, each being much
simpler than the initial one. At the local level, each clus-
ter has associated a local problem that solves the local con-
straints. There is also a global planning problem which uses
clusters as features in the global state description.

Since this model is useful in several application domains,
it is worth to build a generic planning framework using topo-
logical clustering. In such a framework, the expressiveness
of the planning language can have a great importance. In this
paper we discussed an extension of the PDDL language sup-
porting hierarchical planning and topological abstraction.
We pointed out challenges that could be better solved with
a more general planning language. We also presented ideas
about how to solve these challenges. We demonstrated our
ideas using Sokoban and path-finding, two domains where a
hierarchical approach based on topological abstraction can
be beneficial.

Acknowledgment
This research was supported by NSERC and iCORE. Also,
the authors would like to thank the reviewers of this paper.
Their feedback truly helped us improve the quality of this
paper.

References
Bacchus, F., and Kabanza, F. 2000. Using Temporal Logics
to Express Search Control Knowledge for Planning. Artifi-
cial Intelligence 16:123–191.

Bacchus, F., and Yang, Q. 1994. Downward Refinement
and the Efficiency of Hierarchical Problem Solving. Artifi-
cial Intelligence 71(1):43–100.

Bacchus, F. 2001. AIPS’00 Planning Competition. AI
Magazine 22(3):47–56.
Bäckström, C., and Klein, I. 1991. Planning in Polinomial
Time: The SAS-PUBS Class. Computational Intelligence
7(3):181–197.
Bäckström, C., and Nebel, B. 1995. Complexity Re-
sults for SAS + Planning. Computational Intelligence
11(4):625–655.
Botea, A.; Müller, M.; and Schaeffer, J. 2002. Using Ab-
straction for Planning in Sokoban. To appear in Proceed-
ings of the 3rd International Conference on Computers and
Games (CG’2002), Edmonton, Canada.
Botea, A. 2002. Using Abstraction for Heuristic Search
and Planning. In Koenig, S., and Holte, R., eds., Proceed-
ings of the 5th International Symposium on Abstraction,
Reformulation, and Approximation, volume 2371 of Lec-
ture Notes in Artificial Intelligence, 326–327.
Culberson, J. 1997. SOKOBAN is PSPACE-
complete. Technical report, Department of Comput-
ing Science, University of Alberta, Edmonton, Al-
berta, Canada. ftp://ftp.cs.ualberta.ca/pub/
TechReports/1997/TR97-02.
Fox, M., and Long, D. 2002. The Third International
Planning Competition: Temporal and Metric Planning.
In Preprints of The Sixth International Conference on AI
Planning and Scheduling, Toulouse, France, 115–118.
Junghanns, A., and Schaeffer, J. 1999. Domain-
Dependent Single-Agent Search Enhancements. In Pro-
ceedings IJCAI-99, Stockholm, Sweden, 570–575.
Junghanns, A., and Schaeffer, J. 2001. Sokoban: Enhanc-
ing Single-Agent Search Using Domain Knowledge. Arti-
ficial Intelligence 129(1–2):219–251.
Junghanns, A. 1999. Pushing the Limits: New Develop-
ments in Single-Agent Search. Ph.D. Dissertation, Univer-
sity of Alberta.
Knoblock, C. A. 1994. Automatically Generating Abstrac-
tions for Planning. Artificial Intelligence 68(2):243–302.
Long, D.; Fox, M.; and Hamdi, M. 2002. Reformulation in
Planning. In Koenig, S., and Holte, R., eds., Proceedings of
the 5th International Symposium on Abstraction, Reformu-
lation, and Approximation, volume 2371 of Lecture Notes
in Artificial Intelligence, 18–32.
McDermott, D. 1997. Using Regression-
Match Graphs to Control Search in Planning.
http://www.cs.yale.edu/HTML/YALE/CS/
HyPlans/mcdermott.html.
McDermott, D. 2000. The 1998 AI Planning Systems
Competition. AI Magazine 21(2):35–55.
Precup, D.; Sutton, R.; and Singh, S. 1997. Planning
with Closed-loop Macro Actions. In Working notes of
the 1997 AAAI Fall Symposium on Model-directed Au-
tonomous Systems, 1997.
Yap, P. 2002. Grid-based path-finding. In Cohen, R., and
Spencer, B., eds., Proceedings of the 15th Conference of
the Canadian Society for Computational Studies of Intelli-
gence, 44–55.

8


