
Extending PDDL to nondeterminism, limited sensing and iterative conditional
plans

Piergiorgio Bertoli1, Alessandro Cimatti1, Ugo Dal Lago2, Marco Pistore1,3

1 IRST - Istituto Trentino di Cultura, 38050 Povo, Trento, Italy
2 Università di Bologna, 40127 Bologna, Italy

3 Università di Trento, 38050 Povo, Trento, Italy
{bertoli,cimatti}@irst.itc.it

dallago@cs.unibo.it
pistore@dit.unitn.it

Abstract

The last decade has witnessed a dramatic progress in the va-
riety and performance of techniques and tools for classical
planning. The existence of a de-facto standard modeling lan-
guage for classical planning, PDDL, has played a relevant
role in this process. PDDL has fostered information sharing
and data exchange in the planning community, and has made
international classical planning competitions possible.

At the same time, in the last few years, non-classical planning
has gained considerable attention, due to its capability to cap-
ture relevant features of real-life domains which the classical
framework fails to express. However, no significant effort has
been made to achieve a standard mean for expressing non-
classical problems, making it difficult for the planning com-
munity to compare non-classical approaches and systems.

This paper provides a contribution in this direction. We ex-
tend PDDL in order to express three very relevant features
outside classical planning: uncertainty in the initial state,
nondeterministic actions, and partial observability. NPDDL’s
extensions are designed to retain backward compatibility with
PDDL, and with an emphasis on compactness of the repre-
sentation. Moreover, we define a powerful, user-friendly plan
language to go together with NPDDL. The language allows
expressing program-like plans with branching and iterations
structures, as it is necessary to solve planning problems in
the presence of initial state uncertainty, nondeterminism and
partial observability. We are testing NPDDL’s ability to cope
with a variety of problems, as they are handled by a state-of-
the-art planner, MBP.

Introduction
Planning is an extremely active field of research. Because
of its potential in terms of real-life applications, a wide vari-
ety of approaches have been developed, and several pow-
erful automated planning systems have been designed to
cope with complex problems. The existence of PDDL,
a de-facto standard language for planning has been cru-
cial for fostering the reuse of models, establishing a com-
mon repository of problems, and comparing and integrat-
ing systems, as it is evident from the results of the in-
ternational competitions (McDermott 2000; Bacchus 2000;
Fox & Long 2002).

PDDL is however limited to “classical” planning prob-
lems, and it is unable is to capture many relevant features

that are important for modeling real world domains. In par-
ticular:

• the initial situation may be only partially specified;

• it is often unrealistic to assume that actions have a fully
predictable outcome;

• the status of the domain may be only partially observable
by the plan executor, and sensing might convey unreliable
results. In general, in most cases it is unrealistic to assume
the omniscience of the plan executor;

• problems of interest may often go beyond planning to
reach a condition; in general, it is highly desirable to ex-
press properties about the whole execution of a plan, to
state e.g. safety or maintenance requirements;

• sequences of actions are not sufficient to express solutions
for problems and domains with the aforementioned fea-
tures. More complex structures, e.g. loops and condi-
tions, are required.

The growth of scientific interest for expressive planning,
taking into account nondeterminism, partial observability
and complex temporal goals, is evident. A number of
publications and events (e.g.(C. Boutilier & Koenig 2002;
Cimatti et al. 2001a)) have taken place, and increasingly
many powerful planning systems are designed to deal with
(combinations of) the features above, using a variety of
approaches (Bonet & Geffner 2000a; Weld, Anderson, &
Smith 1998; Smith & Weld 1998; Bertoli et al. 2001;
Castellini, Giunchiglia, & Tacchella 2001; Kabanza 1999;
Doherty & Kvarnström 2001; Rintanen 1999). However, no
significant effort has been made to provide a standard mean
for expressing nondeterministic, partially observable plan-
ning domains.

This paper presents the NPDDL language, a first contri-
bution in the direction of a general PDDL-like language for
planning with incomplete information. We first describe an
extension to the current standard PDDL2.1 (Fox & Long
2001; Ghallab et al. 1998) to allow for description of nonde-
terministic, partially observable planning domains. Further-
more, we add a rich, user-friendly plan language that cap-
tures the iterative, branching plan structures needed to plan
for domains involving the aforementioned features. The lan-
guage we describe is the input to MBP (Bertoli et al. 2001),
a state-of-the art planner integrating plan synthesis, valida-

1



tion and simulation within the planning via symbolic model
checking framework. The input language to MBP also pro-
vides a means to express a rich class of temporal require-
ments; this shows the potential for further extension of the
standard.

The paper is structured as follows. We first present a con-
ceptual reference model for planning with incomplete infor-
mation. We then introduce the NPDDL syntax, and show
how it allows for the description of the features of interest.
We present some results, compare NPDDL with the related
work, and discuss some open issues. A BNF characteri-
zation of NPDDL is available at http://sra.itc.it/
tools/mbp/npddl.ps.

The Framework
As a reference example, we consider a simple domain featur-
ing uncertainty in the initial condition, nondeterminism and
partial observability, and model a planning problem for it.
The domain consists of a line of rooms that can be traversed
by a robot. A printer is situated at one end of the line, and
it may print a paper everytime its exit tray is empty. Each
printed paper has a banner, where the destination room is
reported. The banner can be read by the robot. The robot
can pick up a paper at the printer, and can leave it at an of-
fice. The robot can only check the printer tray’s status when
at the printer’s place. To identify its position, the robot is
equipped with a sensor that detects whether the printer is in
the same room. For this domain, we consider the problem
of having the robot correctly deliver all the papers queued at
the printer - the length and content of the queue being un-
known, and the robot being initially positioned anywhere.
A solution plan must consider the available sensing, and re-
quires an iterative conditional structure whose execution is
possibly infinite.

We rely on a simple, general framework to provide a se-
mantic foundation to our work; this is depicted in fig.1. In
our view, a domain is a (possibly nondeterministic) finite
state machine, whose state evolves according to the actions
received as input, and to the previous state. The domain con-
veys information to the plan by means of observations. We
think of a plan as a deterministic finite state machine, which
determines the actions to be performed according to the ob-
servations from the domain, and to its state. The execution
of a plan in the domain can be thought of as an iteration
where (i) an observation is given as input to the plan, (ii) the
status of the plan evolves and the next action is determined,
(iii) the action affects the domain status and the possible ob-
servations. A formal characterization of the framework is
provided in (Bertoli et al. 2002b). In the following it is
sufficient to limit the discussion to the underlying intuitions.

With this approach, it is possible to encompass incom-
pletely specified initial conditions, and nondeterministic ac-
tion effects. Incompletely specified initial conditions are
represented by specifying a set of possible initial states of
the domain. In our example, the initial states cover every
possible position of the robot, and every possible content of
the printer queue.

Action effects are characterized by associating actions
with transitions from state to state. Nondeterministic ac-

observation action

DOMAIN

state

state

PLAN

Figure 1: Planning Framework

tion effects are obtained by associating an action with sev-
eral transitions from the same initial state to different result
states. The domain is therefore characterized as a relation,
rather than as a partial function as in the deterministic case.
In our example, the effect of picking a paper may result in
several states, where the printer queue may be either empty,
or may have on top papers with different banners.

Our modeling of observations maps states of the domain,
which may not be directly observable, into observation vari-
ables, the value of which can be directly inspected at run
time by the executor. Our approach, that is somewhat sim-
ilar to (Goldman & Boddy 1996; Bonet & Geffner 2000b;
Nourbakhsh & Genesereth 1996), also allows us to cap-
ture noisy/unreliable and partial sensing, where informa-
tion is available only under specific conditions. This is
achieved by relating values to observation variables not as
a function of the domain state, but as relations. In this
way, when an observation variable conveys no information,
it can assume any value in its range, nondeterministically.
As a special case, an observation O may be undefined over
a domain state, by making every value of O possible on
S. Within this framework, different forms of sensing can
be modeled. With “automatic sensing” (Tovey & Koenig
2000), information can always be acquired, as usual in em-
bedded controllers, where a signal from the environment
is sampled and acquired at a fixed rate, latched and inter-
nally available. Observations resulting from the execution of
“sensing actions” (Cassandra, Kaelbling, & Littman 1994;
Weld, Anderson, & Smith 1998; Pryor & Collins 1996;
Bonet & Geffner 2000a) can be modeled by representing
in the domain state the last executed action, and exploiting
the possibility for describing undefinedness. In our exam-
ple, the domain features three observations: one, in case the
robot is at the printer’s place, indicates whether the tray is
full or not, and provides no information otherwise; another
signals whether the robot is at the printer’s place or not; the
last signals to the robot the current banner of the carried pa-
per. These are easily modeled exploiting the possibility of
unreliable/noisy sensing.

2



The idea of plans as finite state machines makes it possi-
ble to express complex courses of actions. In particular, we
take into account the possibility of branching (which is able
to exploit the information acquired at run-time in order to
tackle the nondeterminism of the domain) iteration (which
enables to express possibly cyclic, trial-and-error courses of
actions). Such more expressive plans are required to solve
problems under partial observability and with nondetermin-
ism.

The NPDDL Language
NPDDL is a language that extends PDDL to encompass the
intuitions outlined in previous section. NPDDL provides a
set of independent extensions to describe incompletely spec-
ified initial conditions, nondeterministic action effects, and
partial observability.

NPDDL starts from the standard PDDL 2.1. In particu-
lar, it starts from the level 2 of PDDL 2.1, thus inheriting a
compact and clearly defined set of constructs to handle nu-
meric and conditional effects, and first-order quantification,
as well as STRIPS effects on predicates. The aspects related
to the higher levels (level 3 to level 5) of PDDL2.1, such as
durative actions, are not taken into account with this version
of NPDDL.

In the following, we assume that we are referring to a
specific ground planning domain, where F is the finite set
of fluents. The instantiation of operators and predicates to
the objects in the domain in NPDDL follows the very same
schema as in PDDL. Our discussion is based on possibly
non-boolean fluents; each fi ∈ F is associated with a finite
range of values. An assignment, denoted in the following
by a, a1, a2, . . ., is an expression that maps a fluent fi on
a value vj of the associated range. (In the following, with-
out loss of generality, we do not explicitly treat predicates,
that can be seen as fluents with values over the binary range
boolean.) NPDDL allows for n-ary constructs whenever
PDDL does. However, we restrict our discussion to their bi-
nary version, leaving the trivial generalization to the reader.

Incompletely Specified Initial Conditions
PDDL allows for the specification of completely character-
ized initial condition, i.e. of a single initial state. This is
described with the :init statement, containing a set of
conjunctive assignments i =̇ {i1, . . . , in}. Each conjunctive
assignment is a (possibly nested) conjunction of fluent as-
signments. The initial state specification i is in fact an im-
plicit conjunction of fluent assignments; the top-level con-
junction is left implicit. Fluents in F that are not explic-
itly assigned are treated according to the Closed-World As-
sumption (CWA) and given a value (by convention, we as-
sume the first value in the range is given). More formally,
let ASSIGNED(i) be the set of fluents assigned by i. Let
F ⊆ F be a set of fluents, and CWA(F ) the CWA-implied
assignment to the set of fluents F , then the initial state is
identified by

INITIAL(i) =̇ i ∧ CWA(F \ ASSIGNED(i))

The set of assigned fluents is computed as follows:

1. ASSIGNED(“(assign f v)”) = {f}
2. ASSIGNED(“(and i1 i2)”) = ASSIGNED(i1) ∪

ASSIGNED(i2)
In NPDDL an incompletely specified initial condition is

characterized by describing the set of possible initial states.
To allow for multiple initial states, NPDDL introduces a
oneof construct (oneof i1 . . . in), meaning that exactly
one of the specifications described by ij is active. Thus a
statement of the form (oneof i1 . . . in) is associated to a
set of partial assignments. The corresponding set of initial
states is simply obtained by applying CWA to each of those
partial assignments. The oneof construct can be com-
bined arbitrarily with PDDL constructs, in order to allow
for an independent description of uncertainty over distinct
sets of domain fluents. As such, a generic PDDL initial state
specification i is associated to a set of partial assignments
ASSSET(i). This is defined as follows, considering the se-
mantics of oneof, and that of and (which distributes upon
the set of possible assignments):

• ASSSET(“(assign f v)”) = {(assign f v)}
• ASSSET(“(and i1 i2)”) =

⋃ {(and b1 b2)} where
bj ∈ ASSSET(ij), for j ∈ {1, 2}

• ASSSET(“(oneof i1 ... in)”) =⋃
1≤j≤n ASSSET(ij)

The initial states are then built by complementing each par-
tial assignment with the CWA, as follows:

INITIALS(i) =̇ {INITIAL(ij)|ij ∈ ASSSET(i)}
Notice that, if the initial condition is completely speci-
fied, NPDDL maps back to PDDL: ASSSET(i) = {i} and
INITIALS(i) = {INITIAL(i)}.

NPDDL also contains the unknown construct, to express
the set of all possible assignments to a generic fluent f . This
construct enables us to avoid explicitly listing every possible
value of f . “(unknown f)” is equivalent to specifying a
oneof statement on any possible value of the type of f:

(unknown f) =̇
(oneof (assign f v1)...(assign f vn))

where {v1, . . . , vn} is the finite range of f .

Example Initially, the status of the queue is unspecified,
and the robot may be in any room. This can be easily ex-
pressed in NPDDL by a conjunction of unknown state-
ments.
(:init

(unknown (robot_room))
(unknown (paper_at_printer))
(not (papers_around))
(not (arm_busy)))

In the appendix, we provide a full NPDDL modeling for
the reference domain and problem.

Nondeterministic Action Effects
Action effects in PDDL
In PDDL, actions are deterministic: the execution of an ac-
tion in a domain state S result in a single outcome S’. The

3



way S’ is determined depends on the interaction of PDDL’s
effect features: conditional effects, quantifiers and inertia
handling. In order to describe actions in NPDDL, we first
reduce the general structure of PDDL to a simple normal
form. First, universal quantifications can be eliminated by
replacement with n-ary conjunctions. Then, we observe that
nested conditional effects can be eliminated by rewriting. In
Appendix, we show that it is enough to consider top-level
conditional effects whose branches are mutually exclusive.
When executing an action A featuring such a set of top-level
conditional effects, exactly one of the conditions holds, trig-
gering the associated condition-free effect E. E’s outcome
consists in the (possibly partial) assignment described by E,
complemented by assigning “inertially” those fluents not as-
signed by E:

OUTCOME(E) =̇ E ∧ INERTIA(F \ ASSIGNED(E))

where INERTIA(E) assigns each fluent in E its current
value. Notice the similarity with the way the initial state
is computed.

Action Effects in NPDDL
NPDDL allows for nondeterministic actions, whose ex-
ecution on a domain state S may have several possible
outcomes. NPDDL uses the oneof construct in action
effects for this purpose; intuitively, in an action effect,
(oneof e1 . . . en) indicates that exactly one of the ei

effects will take place, and, as such, it is associated to a
set of partial assignments (those resulting from ei). Since
NPDDL allows for a general combination of oneof state-
ments with PDDL’s constructs, a generic condition-free
NPDDL effect e is associated to a set of partial assignments.
This is computed by ASSSET(E).

The set of possible outcomes of a nondeterministic effect
E simply results from the set of (possibly partial) assign-
ments ASSSET(E):

OUTCOMES(E) =̇ {OUTCOME(ei)|ei ∈ ASSSET(E)}
Notice that, if the effect is fully deterministic,
ASSSET(E) = {E}, implying OUTCOMES(E) =
{OUTCOME(E)}, i.e. NPDDL maps back to PDDL.

Example Uncertain action effects are in that, when pick-
ing a paper, it may be the last or not, and on the infor-
mation reported by the banner. This is modeled in the
pick_paper operator

(:action pick_paper
:precondition (and (paper_at_printer)

(not (arm_busy))
(= (robot_room) 0))

:effect (and
(arm_busy)
(unknown (paper_banner))
(unknown (paper_at_printer))))

It is possible to use the unknown construct in action ef-
fects in order to express the assignment of a fluent to any
value. As for the initial condition, this avoids the explicit
listing of assignment for each possible fluent value. The

unknown construct in action effects is handled similarly to
the case of initial states: “(unknown f)” is equivalent to

(oneof (assign f v1)...(assign f vn))

where {v1, . . . , vn} is the finite range of f .

Compactness of the representation NPDDL is designed
to compactly model domains where actions could possibly
have high branching rates, and problems with a possibly
large number of initial states. To this end, it is very im-
portant that oneof constructs can be arbitrarily nested and
combined with other operators, in order to compactly spec-
ify problems with high degrees of uncertainty. A solution
where oneof constructs are allowed only at top level would
result in very clumsy specifications, since it would force
considering every combination of the effects of nondeter-
minism/initial uncertainty over each fluent. This is also clear
in the reference example, where independent facets of initial
uncertainty (robot position and print queue) would otherwise
result in a lengthy state enumeration.

The characterization provided in this section is by no
means intended to suggest a practical way to deal with
NPDDL, e.g. to build a parser and a domain constructor.
One of the challenges in planning with nondeterministic do-
mains is to be able to internally represent domains with-
out having to enumerate their initial states and the possi-
ble action outcomes. Symbolic techniques (Rintanen 2002;
Bertoli et al. 2001; Castellini, Giunchiglia, & Tacchella
2001) appear to have significant leverage in this respect.

Partial Observability in NPDDL
In order to allow for partial observability, NPDDL intro-
duces a notion of “observation”. Similar to (Bonet &
Geffner 2000b; Nourbakhsh & Genesereth 1996), and in ac-
cord to the framework, in order to model unreliable sens-
ing, observations are defined as arbitrary relations from the
domain state to finitely valued observation variables, to be
intended as the “sensors” available to the plan executor.

In the concrete syntax of NPDDL, this is achieved by
a parametric :observation construct. An observation
variable V is characterized by a boolean formula over V and
the domain fluents. The intuition is that the formula defines
the relation between the value of the observation variable,
and the values of the (possibly unobservable) domain flu-
ents. The formula is arbitrary, with the only (semantic) con-
straint that every domain state must correspond to at least
one value of V . For the sake of simplicity, a domain fluent f
can be declared :observable. This amounts to introduc-
ing a new observation, the value of which faithfully reports
the values of f .

Example The sensing described in the example can be
modeled as follows. Notice the way NPDDL allows describ-
ing a paper_in_printer sensor which does not provide
information (is undefined) unless the robot is appropriately
placed at the printer.

(:observable (paper_banner) - room_number)

(:observation (robot_at_printer) - :boolean

4



(iff (robot_at_printer) (= (robot_room) 0)))

(:observation (paper_in_printer) - :boolean
(and

(imply (paper_in_printer)
(or (> (robot_room) 0)

(paper_at_printer)))
(imply (not (paper_in_printer))

(or (> (robot_room) 0)
(not (paper_at_printer))))))

Problems in NPDDL
When dealing with nondeterminism and partial observabil-
ity, a plan may admit a set of different executions, possi-
bly resulting in different final states. This makes it neces-
sary to specify whether every execution is required to be
successful or not, and whether the possibility of having in-
finite executions is accepted. These natural requirements
are captured by specifying that plans have to be “weak”,
“strong”, “strong cyclic” (:weakgoal,:stronggoal,
:strongcyclicgoal resp). Intuitively, a plan is “weak”
if it admits at least one successful finite execution; it is
“strong” if every admissible execution is finite and success-
ful; it is “strong cyclic” if every (possibly infinite) execu-
tion always admits a possibility of succeeding finitely. See
(Cimatti et al. 2001b) for formal definitions.

Moreover, several problems, e.g. classical planning prob-
lems or conformant planning problems, define implicit as-
sumptions about the observability of the domain. To support
users in naturally specifying these, NPDDL introduces an
optional :observability keyword. This allows users
to specify that a plan must be synthesized under e.g. full ob-
servability assumptions, regardless of the observations spec-
ified in the domain. Default observability is assumed to be
:full, to retain backward compatibility with PDDL.

Example A possible expression of desired goal consists in
the following:

(:observability :partial)
(:strongcyclicgoal

(and
(not (arm_busy))
(not (papers_around))
(not (paper_at_printer))))

Plans in NPDDL
In classical planning, a plan is simply a set of partially or-
dered actions. Nondeterminism entails the necessity for it-
erative structures; partial observability requires the introduc-
tion of branching in the plan language. NPDDL supports a
high-level plan language. A plan may have local, internal
variables, different from the ones of the domain, containing
information to encode, for instance, the progress of the plan.
We call such variables “plan variables”; plan variables are
in a finite number, and feature finite ranges. The basic steps
of the language, differently from what happens in a simple
programming language, must take into account the issue of
execution, with the delivery of actions to the domain actua-
tors. The basic construct is evolve, with syntax
(evolve <assignment>+ <action-call>)

that specifies a set of assignments to plan variables, followed
by an action. Unless assigned, plan variables retain their
previous value. The action construct, with syntax

(action <action-call>)
is a variation on evolve that does not alter the plan state.
The done construct indicates that the plan has to be in-
tended as terminated; no specification is given upon which
actions are produced by a plan after (done) is executed.

The plan language also provides a number of imperative-
style constructs:
• Sequencing Commands: (sequence <command>+)

corresponds to sequentially executing all the commands
in the specified order.

• Branching Commands: (if <condition>
<plan then> <plan else>), with its usual
semantic.

• Iterative Commands: (while <condition>
<plan) and (repeat <plan>). The while
semantics is standard; repeat causes an endless
looping execution.

• Labeling and Jumping Commands. Labeling may refer
to a command or to a given point inside a command; this
is reflected by two alternative syntaxes, namely (label
<name> <command>) and (label <name>). The
(goto <name>) construct has the usual semantics.

Example Consider the following course of actions, solv-
ing the example problem. “Loop forever, acting as follows:
first the robot re-positions at the printer’s room, then, if some
paper is there, it picks it up, and delivers it to the proper
room; if no paper is there, the plan terminates.” This is repre-
sented by the following plan. Once picked a paper, to deliver
it to the proper room, the robot traverses x rooms, where x
is the paper banner content. Unless the printing queue is ini-
tially empty, the reference problem may require an infinitely
executing plan, e.g. one like the following.
(define (plan deliver_paper)
(:domain paper_delivery)
(:problem continuous_delivery)
(:planvars known_room - room_number)
(:init (= (known_room) 1))
(:body
(repeat
(sequence

(while (not (robot_at_printer))
(action (move_left)))

(if (not (paper_in_printer))
(done)
(sequence

(evolve
(assign (known_room) 0)
(action (pick_paper)))

(while (< (known_room) (paper_banner))
(evolve

(assign (known_room)
(+ (known_room) 1))

(action (go_right))))
(action (leave_paper))))))))

A plan can be converted into a Finite-State Machine. The
conversion procedure, that results in a definition of the tran-

5



sition relation of the FSM, is the following:

• Sequencing, branching and iterative constructs are re-
moved by introducing label/jump pairs, and splitting the
plan into a set of labeled plans whose bodies only includes
goto and basic commands.

• goto occurrences are eliminated by inlining the bodies
of the labeled plan they refer to.

• The set of labeled plans is translated into an equivalent fi-
nite state machine, whose state space is augmented with a
variable ranging over the set of all used labels; this addi-
tional variable serves to model a “plan program counter”
to appropriately sequentialize the executions of labeled
plans.

Related Work and Discussion
Several works present PDDL-like languages to deal with
some aspects related to nondeterminism (Bonet & Geffner
2000a; Kabanza 1999; Smith & Weld 1998; Weld, An-
derson, & Smith 1998). The language of GPT (Bonet &
Geffner 2000a) adopts a PDDL-like syntax, extended with
a quantitative model with probabilities and rewards. Such
issues were purposefully avoided in NPDDL, where a qual-
itative model is assumed. If we compare the language of
GPT and NPDDL disregarding quantitative issues, however,
NPDDL exhibits an improved flexibility in expressing non-
determinism. In particular, the GPT language does not allow
for a general description of nondeterminism in the form of
nested/conjoined nondeterministic assignments. The result
raises an issue of compactness in the domain/problem de-
scriptions, as an explicit enumeration of all of the possible
initial states (or action outcomes) is in order. Our clean treat-
ment of nondeterminism, on the other hand, opens up the
possibility of extending NPDDL with quantitative aspects.
In fact, the characterization in terms of sets of assignments
presented in this paper seems to be amenable to a straightfor-
ward extension, that results in a quantitative model without
suffering from the problems related to the explicit enumer-
ation of initial states and transitions. The extension is the
object of an ongoing investigation. As far as observability
is concerned, the GPT language is based on “knowledge-
gathering actions”, making it difficult to express automatic
sensing, where observations can be automatically gathered
at each “cycle”. Although NPDDL focuses on automatic
sensing, action-dependent sensing can be easily encoded by
suitably defining observed values as undetermined unless a
given action is formerly executed.

The PDDL-like languages used in CGP (Smith & Weld
1998) and SGP (Weld, Anderson, & Smith 1998) allow the
description of incompletely specified initial conditions, but
are limited to deterministic actions. Sensing in SGP is re-
stricted to knowledge-acquisition actions, and the underly-
ing model is very limited.

SimPlan (Kabanza 1999) is able to deal with initial un-
certainty and nondeterminism, but does not admit partial ob-
servability. The ADL/STRIPS interface of SimPlan allows
for a very limited forms of nondeterminism, resulting from
the combinations of controllable actions with environment

actions. A more accurate handling of nondeterminism is
only possible using SimPlan’s custom interface language to
specify a domain transition relation, but the specification of
complex domains turns out to be very cumbersome. NADL
(Jensen & Veloso 2000) is a language that allows for ex-
pressing qualitative models of nondeterministic domains in
a multiagent setting. Exogenous actions are supported, as
well as a limited form of concurrency for actions that in-
volves a notion of resource constraint.

Both SimPlan and NADL try to address the fact that of-
ten a nondeterministic domain is naturally described as the
composition of a (possibly deterministic) plant with some
form of nondeterminism due, for instance, to uncontrollable
agents in the domain. For instance, the reference example
could be extended with the notion of doors between rooms,
that are being opened/closed e.g. possibly by non control-
lable agents (this example is remarkably similar to the kid
doors in (Kabanza, Barbeau, & St-Denis 1997)). The prob-
lem with this kind of dynamics is in the fact that it is not
naturally described in the style of PDDL, where operators
describe the possible tasks of the agent the activity of which
is being planned for. Every action should have this environ-
ment dynamics in its effects, e.g. doors being nondetermin-
istically open or closed. In fact, even if a do-nothing ac-
tion is performed, the effect of doors possibly being open or
closed by other agents should be taken into account. Similar
examples arises when a system has a certain dynamics (e.g.
a timer being set in a certain situation and expiring after N
time units). In a PDDL-style characterization, each action
should have the effect of decrementing the timer value, and
possibly making the “expired” predicate become true. A de-
sign choice underlying NPDDL was to retain the operator-
based description of actions. Although we believe that the
current expressive power is enough to characterize many in-
teresting domains, whether the modeling is natural this is an
open issue. A principled analysis is in order for the exten-
sion of NPDDL to deal with this important issue.

Somewhat less related are high level action languages
such as AR (Giunchiglia, Kartha, & Lifschitz 1997) and
C (Giunchiglia & Lifschitz 1998), that deal with the problem
of providing expressive languages for domain description in
presence of nondeterminism. AR deals with ramification
constraints, can represent different forms of nondetermin-
ism, and its semantics is defined in terms of a minimization
procedure to solve the frame and the ramification problem.
C is an action language based on causal explanation, allow-
ing for nondeterminism and concurrency. In both cases, the
underlying semantics and the representation style are very
far from PDDL’s, and observability issues are not taken into
account.

Finally, (Petrick & Bacchus 2002) discusses a different
approach to nondeterminism, based on encoding actions at
the knowledge level, and exploiting “knowledge databases”
to trigger knowledge-level derivations. Knowledge-level
reasoning is not explicitly addressed by NPDDL, although
for several domains/problems suitable knowledge-level ab-
stractions are possible within standard PDDL.

6



Results
NPDDL is the input language of the MBP planner. MBP in-
tegrates plan synthesis, plan validation and plan simulation;
MBP handles plans in the format described in this paper.
MBP applies some restrictions to the language; in partic-
ular, observations are currently to boolean variables and
have a fixed structure; the number type is not allowed, and
union types are not implemented. Several NPDDL exam-
ples have been designed, e.g. the “maze” benchmark for
partial observability (Bertoli, Cimatti, & Roveri 2001), and
domains taken from the Power Supply Restoration (Bertoli
et al. 2002a). Moreover, MBP supports two extended
goal languages for expressing maintenance goals, safety
goals, liveness goals. Most of these classes identify con-
straints over the plan execution, e.g. a certain property must
hold throughout the whole execution, or it must never hold
throughout the execution, and so on. As such, they can be
captured by a temporal logic that deals with nondetermin-
ism, such as CTL (Emerson 1990). More recently, the ne-
cessity of expressing intentionality in the goals to achieve
high-quality plans has been highlighted ((Pistore, Bettin, &
Traverso 2001)). MBP allows for CTL and for EaGLe ((Dal
Lago, Pistore, & Traverso 2002)), an extended temporal lan-
guage to express intentionality into goals.

Example We consider a variation of the original goal,
adding the requirement that, everytime a robot has a paper
and is in the right room to deliver it, it should leave it with
no delay. This can be modeled as a CTL goal:
(:ctlgoal

(and
(ag
(imply (= (robot_paper_x) (robot_x))

(not (next (arm_busy)))))
(aw

(and
(not (papers_around))
(ef (not (paper_at_printer))))

(not (paper_at_printer)))))

Conclusions
In this paper we have presented NPDDL, an exten-
sion to PDDL for planning in nondeterministic domains.
NPDDL retains all the features of PDDL, and allows for
a compact characterization of incompletely specified initial
conditions and nondeterministic action effects. NPDDL pro-
vides a clear solution to the issues related to the interac-
tion between closed world assumption and initial condition,
and nondeterministic action effects and law of inertia. The
model for observations underlying NPDDL allows to char-
acterize and combine action-dependent and automatic sens-
ing. In addition, NPDDL allows to model complex plan
structures and temporally extended goals. NPDDL is imple-
mented in MBP, has been used to model complex real-world
problems, and will hopefully prove to be an adequate start-
ing point for a standard extension to PDDL. In this sense, we
are studying ways to improve its flexibility, e.g. by suitably
extending the PDDL :requirements to allow certain
features (e.g. support for temporal goals) without forcibly
requiring them.

Acknowledgements
The starting point of this work is a number of discus-
sions that were in August 2001 at IJCAI, including Enrico
Giunchiglia, David Smith, Blai Bonet, Keith Golden, Jussi
Rintanen. We thank Marco Roveri and Paolo Traverso for
many fruitful discussions on the topic.

References
Bacchus, F. 2000. AIPS-2000 plan-
ning systems competition. On-line report at
http://www.cs.toronto.edu/aips2000/.

Bertoli, P.; Cimatti, A.; Pistore, M.; Roveri, M.; and
Traverso, P. 2001. MBP: a Model Based Planner. In Proc.
of the IJCAI’01 Workshop on Planning under Uncertainty
and Incomplete Information.

Bertoli, P.; Cimatti, A.; J.Slaney; and S.Thiebaux. 2002a.
Solving power supply restoration problems with planning
via model checking. In Proceedings of ECAI’02.

Bertoli, P.; Cimatti, A.; M.Pistore; and Traverso, P. 2002b.
Plan validation for extended goals under partial observabil-
ity (preliminary report). In Proc. of AIPS-02 Workshop on
Planning via Model Checking.

Bertoli, P.; Cimatti, A.; and Roveri, M. 2001. Condi-
tional Planning under Partial Observability as Heuristic-
Symbolic Search in Belief Space. In Proceedings of IJ-
CAI’01.

Bonet, B., and Geffner, H. 2000a. Planning with Incom-
plete Information as Heuristic Search in Belief Space. In
Chien, S.; Kambhampati, S.; and Knoblock, C., eds., 5th

International Conference on Artificial Intelligence Plan-
ning and Scheduling, 52–61. AAAI-Press.

Bonet, B., and Geffner, H. 2000b. Planning with Incom-
plete Information as Heuristic Search in Belief Space. In
Proc. AIPS 2000, 52–61.

C. Boutilier, T. D., and Koenig, S., eds. 2002. ”Artificial
Intelligence Journal, Special Issue on Planning with Un-
certainty and Incomplete Information”. Elsevier.

Cassandra, A.; Kaelbling, L.; and Littman, M. 1994. Act-
ing optimally in partially observable stochastic domains. In
Proc. of AAAI-94. AAAI-Press.

Castellini, C.; Giunchiglia, E.; and Tacchella, A. 2001.
Improvements to sat-based conformant planning. In Proc.
of 6th European Conference on Planning (ECP-01).

Cimatti, A.; Giunchiglia, E.; Geffner, H.; and Rintanen, J.,
eds. 2001a. Proc. of the IJCAI’01 Workshop on Planning
under Uncertainty and Incomplete Information.

Cimatti, A.; Pistore, M.; Roveri, M.; and Traverso, P.
2001b. Weak, Strong, and Strong Cyclic Planning via Sym-
bolic Model Checking. Technical report, IRST, Trento,
Italy.

Dal Lago, U.; Pistore, M.; and Traverso, P. 2002. Plan-
ning with a Language for Extended Goals. In Proceedings
of the 18th National Conference on Artificial Intelligence
(AAAI02).

7



Doherty, P., and Kvarnström, J. 2001. TALplanner: A
temporal logic-based planner. The AI Magazine22(1):95–
102.
Emerson, E. A. 1990. Temporal and modal logic. In van
Leeuwen, J., ed., Handbook of Theoretical Computer Sci-
ence, Volume B: Formal Models and Semantics. Elsevier.
chapter 16, 995–1072.
Fox, M., and Long, D. 2001. PDDL2.1: an extension to
pddl for modelling time and metric resources.
Fox, M., and Long, D. 2002. The third international plan-
ning competition: Temporal and metric planning. In Proc.
of Sixth International Conference on Artificial Intelligence
Planning and Scheduling (AIPS02).
Ghallab, M.; Howe, A.; Knoblock, C.; McDermott, D.;
Ram, A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998.
Pddl—the planning domain definition language.
Giunchiglia, E., and Lifschitz, V. 1998. An action lan-
guage based on causal explanation: Preliminary report. In
AAAI/IAAI, 623–630.
Giunchiglia, E.; Kartha, G. N.; and Lifschitz, V. 1997.
Representing action: Indeterminacy and ramifications. Ar-
tificial Intelligence95(2):409–438.
Goldman, R., and Boddy, M. 1996. Expressive Planning
and Explicit Knowledge. In Proc. of AIPS-96.
Jensen, R., and Veloso, M. 2000. OBDD-based Universal
Planning for Synchronized Agents in Non-Deterministic
Domains. Journal of Artificial Intelligence Research
13:189–226.
Kabanza, F.; Barbeau, M.; and St-Denis, R. 1997. Plan-
ning control rules for reactive agents. Artificial Intelligence
95(1):67–113.
Kabanza, F. 1999. Simplan - theoretical background.
McDermott, D. 2000. The 1998 AI planning systems com-
petition. AI Magazine21(2):35–55.
Nourbakhsh, I., and Genesereth, M. 1996. Assumptive
planning and execution: a simple, working robot architec-
ture. Autonomous Robots Journal3(1):49–67.
Petrick, R., and Bacchus, F. 2002. A knowledge-based ap-
proach to planning with incomplete information and sens-
ing. In Proceedings of AIPS’02, Toulouse, France, 212–
221.
Pistore, M.; Bettin, R.; and Traverso, P. 2001. Sym-
bolic techniques for planning with extended goals in non-
deterministic domains.
Pryor, L., and Collins, G. 1996. Planning for Contingency:
a Decision Based Approach. J. of Artificial Intelligence
Research4:81–120.
Rintanen, J. 1999. Constructing conditional plans by a
theorem-prover. Journal of Artificial Intellegence Research
10:323–352.
Rintanen, J. 2002. Backward plan construction for plan-
ning with partial observability. In M. Ghallab, J. H.,
and Traverso, P., eds., Proceedings of the Sixth Interna-
tional Conference on Artificial Intelligence Planning and
Scheduling (AIPS02).

Smith, D. E., and Weld, D. S. 1998. Conformant graph-
plan. In Proceedings of the 15th National Conference on
Artificial Intelligence (AAAI-98) and of the 10th Confer-
ence on Innovative Applications of Artificial Intelligence
(IAAI-98), 889–896. Menlo Park: AAAI Press.
Tovey, C., and Koenig, S. 2000. Gridworlds as testbeds for
planning with incomplete information. In Proceedings of
the National Conference on Artificial Intelligence.
Weld, D. S.; Anderson, C. R.; and Smith, D. E. 1998.
Extending graphplan to handle uncertainty and sensing ac-
tions. In Proceedings of the 15th National Conference on
Artificial Intelligence (AAAI-98) and of the 10th Confer-
ence on Innovative Applications of Artificial Intelligence
(IAAI-98), 897–904. Menlo Park: AAAI Press.

8



PDDL Conditional effects rewriting
In the following we outline a procedure for rewriting a
generic effect (with nested conditional effects) into an ef-
fect featuring only non-nested conditional effects. The pro-
cedure is based on a set of rewrite rules, and introduces, in
the intermediate steps, a SWITCH construct that generalizes
the when dealing with a set of mutually exclusive CASEs.
The result of the procedure is a PDDL term, where the in-
termediate SWITCH and CASE have been eliminated. Rule
1 is used as the first rewriting step to translate whens into
binary SWITCHes. Rules 2, 3 are used to bring switches to
top-level, eliminating nesting within other switches or into
PDDL constructs. Finally, rule 4 is used to transform the
top-level switch into a set of whens, making use of the fact
that the switch features mutually exclusive conditions cov-
ering all CASEs.

Rule 1: when elimination
(when <condition> <effect>)

becomes
(SWITCH

(CASE <condition> <effect>)
(CASE (not <condition>) true))

Rule 2
(and

(SWITCH
(CASE <condition1

1> <effect1
1>)

...
(CASE <condition1

n1> <effect1
n1>))

...
(SWITCH

(CASE <conditionm
1> <effectm

1>)
...
(CASE <conditionm

nm> <effectm
nm>)))

becomes
(SWITCH

(CASE
(and <condition1

1> ... <conditionm
1>)

(and <effect1
1> ... <effectm

1>))
...
(CASE

(and <condition1
n1> ... <conditionm

nm>)
(and <effect1

n1> ... <effectm
nm>)))

Rule 3
(SWITCH

(CASE <condition1> <effect1>)
...
(CASE <conditioni−1> <effecti−1>)
(CASE <conditioni>

(SWITCH
(CASE <innercondition1> <innereffect1>)
...
(CASE <innerconditionm> <innereffectm>)))

(CASE <conditioni+1> <effecti+1>)
...
(CASE <conditionn> <effectn>))

becomes

(SWITCH
(CASE <condition1> <effect1>)
...
(CASE <conditioni−1> <effecti−1>)
(CASE (and <conditioni> <innercondition1>)

<innereffect1>)
...
(CASE (and <conditioni> <innerconditionm>)

<innereffectm>)
(CASE <conditioni+1> <effecti+1>)
...
(CASE <conditionn> <effectn>))

Rule 4: when introduction

(SWITCH
(CASE <condition1> <effect1>)
...
(CASE <conditionm> <effectm>))

becomes

(and
(when <condition1> <effect1>)
...
(when <conditionm> <effectm>))

NPDDL Conditional Effects Rewriting
The following rule is used, in conjunction to rules 2 and 3, to
bring switches to top-level, in the case of nondeterminism.

(oneof
(SWITCH

(CASE <condition1
1> <effect1

1>)
...
(CASE <condition1

n1> <effect1
n1>))

...
(SWITCH

(CASE <conditionm
1> <effectm

1>)
...
(CASE <conditionm

nm> <effectm
nm>)))

becomes

(SWITCH
(CASE

(and <condition1
1> ... <conditionm

1>)
(oneof <effect1

1> ... <effectm
1>))

...
(CASE

(and <condition1
n1> ... <conditionm

nm>)
(oneof <effect1

n1> ... <effectm
nm>)))

9



The Complete NPDDL Model
(define (domain paper_delivery)

(:types room_number)
(:predicates
(arm_busy)
(papers_around)
(paper_at_printer))

(:functions
(robot_room) - room_number
(paper_banner) - room_number)

(:action move_left
:precondition (not (= (robot_room) 0))
:effect (assign (robot_room) (- (robot_room) 1)))

(:action move_right
:precondition (not (= (robot_room) (sup room_number)))
:effect (assign (robot_room) (+ (robot_room) 1)))

(:action pick_paper
:precondition (and (paper_at_printer)

(not (arm_busy))
(= (robot_room) 0))

:effect (and
(arm_busy)
(unknown (paper_banner))
(unknown (paper_at_printer))))

(:action leave_paper
:precondition (arm_busy)
:effect (and

(not (arm_busy))
(when (not (= (robot_room) (paper_banner)))

(papers_around)))))

(:observable (paper_banner) - room_number)

(:observation (robot_at_printer) - :boolean
(iff (robot_at_printer) (= (robot_room) 0)))

(:observation (paper_in_printer) - :boolean
(and

(imply (paper_in_printer)
(or (> (robot_room) 0)

(paper_at_printer)))
(imply (not (paper_in_printer))

(or (> (robot_room) 0)
(not (paper_at_printer))))))

(define (problem continuous_delivery)
(:domain paper_delivery)
(:typedef room_number - (range 0 50))
(:init

(unknown (robot_room))
(unknown (paper_at_printer))
(not (papers_around))
(not (arm_busy)))

(:observability :partial)
(:strongcyclicgoal

(and
(not (arm_busy))
(not (papers_around))
(not (paper_at_printer)))))

10


