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Preface

The Planning Domain Description Language (PDDL) was first devised and proposed by a com-
mittee led by Drew McDermott in preparation for what turned out to be the first in a series of
international planning competitions, held in 1998. Its role at that stage was simply to support a uni-
form foundation for the competitors in order to simplify the problem of domain encoding. Prior to
its development, planners used a mixture of similar, but slightly different, domain description lan-
guages. The differences made sharing domains significantly harder and mitigated against a strong
empirical evaluation within the subject. Although its role was originally primarily as a support for
the competition, PDDL has been widely adopted in the research community because of the growing
collection of resources available to use with it. The advantages of sharing effort on domain engineer-
ing, problem generators, domain engineering support tools, domain analysis tools, plan validation
and visualisation tools and planners themselves make it clear that the research community has much
to gain in a widespread use of a standard language.

Nevertheless, PDDL is not a panacea. Nor is it a static, stable standard. For the third compe-
tition, in 2002, Maria Fox and Derek Long led a committee that extended the core of PDDL (the
fragment that had been widely accepted) in order to capture temporal planning domains and plan
optimisation metrics. Some of the proposed extensions have already been tested and seen initial ac-
ceptance: others remain challenges that might be faced or might be superceded by other proposals
for changes to PDDL. There are significant gaps in PDDL: for example, it does not contain language
elements for expressing uncertainty, for representing certain kinds of constraints, for capturing rich
domain knowledge, for modelling knowledge acquisition or for describing the capabilities of poten-
tial plan executives. Some of these features exist in existing research languages and others remain
areas of speculation.

In order for PDDL to continue to serve the needs of the community, playing its role in unifying
effort and encouraging sharing of resources which can contribute so much to the rapid developments
in the research, it is important to make PDDL an open standard. It took the field 40 years to achieve
a reasonable consensus on the expression of basic pre- and post-condition actions: it is unlikely that
consensus will be achieved quickly on the expression of more complex planning domain features,
many of which are very active research themes. This workshop is an opportunity for members of
the research community to contribute to the debate that will progress PDDL towards a consensus.
The debate occupies two levels. On the one hand is the very immediate question of what features of
planning domains are most pressing for addition to PDDL and how can they best be integrated both
syntactically and semantically with existing features. On the other hand is the question of how the
process of the development of PDDL can be managed within the community to ensure that it does
not either stagnate, because of lack of agreement about its future development, or fork into multiple
incompatible directions, because of lack of coordination over its development.

This workshop will offer opportunities for discussion of aspects of both of these questions.
There will be technical presentations of proposed extensions or modifications to the language, panels
in which competing directions of development will be debated and, we, the workshop co-chairs,
very much hope, audience participation in debate and discussion about the future of PDDL.

Planning research has moved forward quickly over the past decade. Few would disagree that
PDDL has played an important part in that progress. Indeed, for many, the adoption of a standard
planning domain description language can be seen as central to the research goal of development of a
useful domain-independent planning system. The co-chairs hope that this workshop will contribute
an important next step in the development of the standard and, ultimately, to increasing opportunities
for planning research to find useful application.
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Abstract 
This paper describes an extension to PDDL, devised to 
support hierarchical planning. The proposed syntactic 
notation should be considered as an initial suggestion, 
headed at promoting a discussion about how the standard 
PDDL can be extended to represent abstraction 
hierarchies. 

Introduction 

Hierarchical planning exploits an ordered set of 
abstractions for controlling the search. This choice has 
proven to be an effective approach for dealing with the 
complexity of planning tasks. Under certain assumptions 
it can reduce the size of the search space from 
exponential to linear in the size of the solution 
(Knoblock 1991). The technique requires the original 
search space to be mapped into corresponding abstract 
spaces, in which irrelevant details are disregarded at 
different levels of granularity. 
Two main abstraction mechanisms have been studied in 
the literature: action- and state-based. The former 
combines a group of actions to form macro-operators 
(Korf 1987), whereas the latter exploits representations 
of the world given at a lower level of detail.  
The most significant forms of the latter rely on (i) 
relaxed and on (ii) reduced models. In relaxed models 
(Sacerdoti, 1974) a criticality value is associated to each 
predicate, so that operators’ preconditions can 
progressively be relaxed, while climbing the abstraction 
hierarchy, by dropping those predicates whose criticality 
value is under the one that characterizes the current 
level. In reduced models (Knoblock 1994) each 
predicate is associated with a unique level of abstraction 
–according to the constraints imposed by the ordered 
monotonicity property; any such hierarchy can be 
obtained by progressively removing certain predicates 
from the domain (or problem) space.  
From a general perspective, abstractions might occur on 
types, predicates, and operators. Relaxed models are a 
typical example of predicate-based abstraction, whereas 
macro-operators are an example of operator-based 
abstraction. In (Armano, Cherchi, and Vargiu 2003) 
some experiments on abstraction on all the three 
dimensions are presented. 
Historically, several planning systems used abstraction 
hierarchies, e.g.: GPS (Newell and Simon 1972), 
ABSTRIPS (Sacerdoti 1974), ABTWEAK (Yang and 
Tenenberg 1990), PABLO (Christensen 1991), 
PRODIGY (Carbonell, Knoblock, and Minton 1990), but 

each of them introduced and adopted its own notation 
without following any standard. In other words, existing 
planning systems tailored for abstraction did not take 
into account the possibility of introducing a common 
notation. 
To contrast the lack of a standard notation for supporting 
abstraction hierarchies, in this paper a suitable extension 
to PDDL 1.2 (McDermott et al. 1998) is proposed. 
The remainder of this paper is organized as follows: 
After briefly framing abstraction hierarchies according to 
a theoretical perspective, the syntax of the proposed 
extension is given. Then, a sample of an abstraction 
hierarchy –described according to the proposed 
notation– is illustrated and commented, with particular 
emphasis on the mapping between abstraction levels. 
Finally, conclusions are drawn and future work is 
outlined.  

The Proposed Extension to PDDL 

According to (Giunchiglia and Walsh 1990), an 
abstraction is a mapping between representations of a 
problem. In symbols, an abstraction f : Σ0 ⇒  Σ1 consists 
of a pair of formal systems (Σ0, Σ1) with languages Λ0 
and Λ1 respectively, and an effective total function 
f0 : Λ0 → Λ1. 
Extending the definition, an abstraction hierarchy 
consists of a list of formal systems (Σ0, Σ1, …, Σn-1) with 
languages Λ0, Λ1, …, Λn-1 respectively, and a list of 
effective total functions fκ : Λk → Λk+1, (k=0, 1, …, n-2) 
devised to perform the mapping between adjacent levels 
of the hierarchy. 
Assuming that standard PDDL is used to represent each 
Λk (k=0, 1, …, n-1), in this paper we focus on the 
problem of extending the standard for dealing with 
abstraction hierarchies, with particular emphasis on the 
mapping functions. 
The syntactic notation of the proposed extension is given 
according to the Extended BNF (EBNF), whose basics 
are briefly recalled, to avoid ambiguities: 
- each production rule has the form <syntactic element> 

::= expansion; 
- angle brackets delimit names of syntactic elements; 
- square brackets surround optional material; 
- an asterisk means “zero or more of”; 
- a plus means “one or more of”. 
Furthermore, let us point out that –here– ordinary 
parentheses are an essential part of the grammar we are 
defining and do not belong to the EBNF meta language. 
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To represent an abstraction hierarchy a new syntactic 
construct (hierarchy) has been defined, able to highlight 
the domains involved in the definition and the mapping 
between adjacent levels. Its syntax is: 
 
<hierarchy> ::= 
  (define (hierarchy <hierarchy name>) 
   <domain-def> 
   <mapping-def>*) 
 
<domain-def> ::= (:domains <domain name>+) 
 
<mapping-def> ::= 
  (:mapping <mapping-pair> 
   [:types <types-def>] 
   [:predicates <predicates-def>] 
   [:actions <actions-def>]) 
 
<mapping-pair> ::=  
  (<source domain> <destination domain>) 
 
<source domain> = <name> 
 
<destination domain> = <name> 
 
<types-def> ::= (<types-pair>+) 
 
<types-pair> ::=  
  (<destination type> <source type>) 
<types-pair> ::= (nil <source type>) 
 
<source type> = <name> 
 
<destination type> = <name> 
 
<predicates-def> ::= (<predicates-pair>+) 
 
<predicates-pair> ::= (<predicate>  <PT>) 
<predicates-pair> ::= (nil <PT>) 
 
<predicate> ::=  
  (<predicate name> <variable>*) 
 
<variable> ::= ?<name> 
 
<PT> ::= <typed-predicate> 
<PT> ::= (and <PT>+) 
<PT> ::= (or <PT>+) 
 
<typed-predicate> ::= 
 (<predicate name> <typed list>*) 
 
<typed list> ::=  
   <variable>+ - <type name> 
 
<actions-def> ::= (<action-spec>+) 
 
<action-spec> ::=  
  <action-pair> | <action-def>  
 
<action-pair> ::= (<action> <AT>) 
<action-pair> ::= (nil <AT>) 
 

<action> ::= (<action name> <variable>*) 
<AT> ::= <action> 
<AT> ::= (and <AT>+) 
<AT> ::= (or <AT>+) 
 
<action-def> ::=  
  see the PDDL 1.2 standard definition 
 
Let us briefly comment the main definitions that occur 
within the proposed extension to PDDL, focusing on the 
underlying semantics. 

Hierarchy Definition  
As specified by the syntax, the “define hierarchy” 
statement contains two subsections: <domain-def> 
and <mapping-def>. 
The :domains field lists domains’ names according to 
their abstraction level, from ground to the most abstract 
one. 
The <mapping-def> definitions specify the mapping 
between adjacent levels. In general, n levels of 
abstraction require n-1 <mapping-def> definitions. 
Therefore, a single-level hierarchy would result in 
omitting the <mapping-def> definition (i.e., in this 
case only the ground level exists). 
It is worth noting that, although it would be desirable    –
for the sake of clarity– to give :domains and 
:mapping definitions (including :types, 
:predicates, and :actions) according to the 
ordering specified by the given grammar, nothing 
prevents from following a different ordering. 

Mapping Definition  
The :mapping field specifies, through the 
<mapping-pair> definition, the name of the source 
and destination domains, respectively. Given a source 
domain, the destination domain is unambiguously 
determined by consulting the :domains field. 
Nevertheless, for the sake of readability, the destination 
domain must be explicitly specified. 

Types Definition. The :types field specifies how the 
type hierarchy is altered while translating between 
adjacent levels. Each <types-pair> is provided 
according to the following syntax: 
 

(<destination type> <source type>) 
 
It specifies that <source type> becomes 
<destination type> while performing “upward” 
translations. In particular, <source type> is 
disregarded when the first argument of the <types-
pair> equals to nil. 
By default, if a type is not mentioned in any pair, it is 
forwarded unaltered to the destination level. 
If no :types field is provided, all constants and 
variables are forwarded to the destination level, labelling 
them with their <source type>.  

Predicates Definition. The :predicates field 
declares how predicates are mapped between adjacent 
levels. Each <predicates-pair> expresses whether 
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a predicate 1 will be forwarded to the destination level. 
Generally speaking, three cases may arise: 
- a predicate is forwarded unchanged: the pair can be 

omitted, being the default; 
- a predicate is disregarded: the first argument becomes 
nil; 

- a predicate is a logical combination of some predicates 
belonging to the source level: the second argument 
expresses the logical formula. 

Note that the destination predicate accepts a list of 
untyped parameters, as –in this case– parameter types 
can be deducted from the :types mapping section. On 
the other hand, the source predicate needs to know the 
type of each parameter. This is required to avoid 
ambiguities, since there might be predicates with 
identical names, but different parameter types.  
If the :predicates field is entirely omitted, then no 
predicate-based abstraction occurs. In other words, each 
predicate is forwarded without any change to the upper 
level. 

Actions Definition. The :actions field describes how 
to build the set of operators for the destination domain. 
Four different mappings may occur: 
- an action remains unchanged or some of its parameters 

are disregarded: the pair can be omitted by default; 
- an action is removed: the first argument becomes nil; 
- an action is a combination of actions belonging to the 

source domain (“and” meaning serialization, “or” 
meaning parallelization); 

- a new operator is defined from scratch: the statement 
<action-def> is used (note that this definition is not 
expanded in the notation, since it follows the standard 
PDDL 1.2). 

An Example of the Proposed Extension 

As an example, let us consider the depot domain, taken 
from the AIPS 2002 planning competition (Long 2002). 
The domain was devised by joining two well-known 
planning domains: logistics and blocks-world. They have 
been combined to form a domain in which trucks can 
transport crates around, to be stacked onto pallets at their 
destinations. The stacking is achieved using hoists, so 
that the resulting stacking problem is very similar to a 
blocks-world problem with hands. Trucks behave like 
"tables", since the pallets on which crates are stacked are 
limited. 
Let us suppose we want to create a two-level abstraction 
for the depot domain, composed by depot-ground and 
depot-abstract. 
According to the above notation, we can start defining 
the hierarchy in the following way: 
 
(define (hierarchy depot) 
  (:domains depot-ground depot-abstract) 
  ... 
Since there are only two levels of abstraction, just one 
:mapping statement is needed. To express the mapping 
rules (on types, predicates, and operators) from the 

                                                 
1 Or a combination of predicates, obtained using logical and, 
or, not operators. 

ground to the abstract level, the following statement 
must be introduced: 
 
  (:mapping  
    (depot-ground depot-abstract) 
    ... 
 

Let us start with abstracting types of the depot domain 
type hierarchy (as reported in Figure 1). We decided to 
disregard hoists and trucks, and not to distinguish 
between depots and distributors (i.e., considering both as 
generic places). 
According to the proposed notation, the translation can 
be expressed in the following way: 
 
    :types 
      ((place depot)  
       (place distributor)  
       (nil hoist) 
       (nil truck)) 
 
The first two statements assert that both depot and 
distributor become place in the depot-abstract 
domain. The last two statements assert that both hoist 
and truck must be disregarded. Let us recall that, by 
default, the types not mentioned remain unchanged at the 
abstract level (e.g. locatable, crate, place, etc.).  
The above notation entails the type hierarchy reported in 
Figure 2. 

 

depot distributor surface hoist truck 

crate pallet 

locatable place 

object 

 
Fig. 1 - Type Hierarchy for the depot ground domain. 

 

surface 

crate pallet 

locatable place 

object 

 
Fig. 2 - Type Hierarchy for depot abstract domain. 
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The choice of removing some types implies that some 
predicates might become meaningless at the abstract 
level. In particular, predicates accepting parameters of 
type truck or hoist cannot exist at the abstract level. 
Figure 3 lists the ground predicates of the depot domain. 
Since the in predicate accepts a truck as a parameter, 
it must be explicitly disregarded by the following 
statement: 
 
       (nil (in ?c – crate ?t – truck)) 
 
Similar considerations can be made for the lifting 
and available predicates. 
The predicates (clear ?s – surface) and (on 
?c – crate ?s – surface) remain unchanged 
and can be omitted in the :mapping field (being the 
default). 

Note that (at ?l – locatable ?p – place) is 
overloaded, in the sense that it actually represents 
different predicates. Some examples of possible 
expansions are: 
 

(at ?l – hoist ?p – distributor) 
    (at ?l – truck ?p – depot) 
    (at ?l – crate ?p – depot) 
 

All expansions that accept any parameter whose type has 
been disregarded at the abstract level, must be explicitly 
removed. In this case, the following statements must be 
asserted: 
 

(nil (at ?h – hoist ?p - place)) 
     (nil (at ?t – truck ?p - place)) 
 

Let us point out that more complex mapping rules are 
admissible. For example, two or more ground predicates 
could be combined to form a new abstract predicate. Let 
us consider the statement below: 
 
((moveable ?c ?h ?s ?p) 
 (and (lifting ?h – hoist ?c – crate) 
      (at ?h – hoist ?p – place) 
      (clear ?s – surface) 
      (at ?s – surface ?p – place)) 
 
The new predicate moveable is introduced, which 
applies only when the specified group of ground 
predicates are true. 
The mapping rules enforced on types and predicates may 
modify preconditions and effects of some ground 
operators. For example, consider the drive action: 
 
(:action drive 
  :parameters 
   (?t - truck ?p1 ?p2 - place)  
  :precondition 
   (and (at ?t ?p1)) 
  :effect 

(in ?c - crate ?t - truck)  
 (lifting ?h - hoist ?c - crate) 
 (available ?h - hoist) 
 (clear ?s - surface) 
 (on ?c - crate ?s - surface) 
 (at ?l - locatable ?p - place) 

Fig. 3 – Predicates of the depot domain. 

 
(define (hierarchy depot) 

   (:domains depot-ground depot-abstract) 

   (:mapping (depot-ground depot-abstract) 

     :types 

       ((place depot)  

        (place distributor)  

        (nil hoist) 

        (nil truck)) 

     :predicates 

       ((nil (lifting ?h – hoist ?c - crate))  

        (nil (available ?h – hoist))  

        (nil (in ?c – crate ?t – truck)) 

        (nil (at ?h – hoist ?p - place))  

        (nil (at ?t – truck ?p - place))) 

      :actions 

       ((nil (drive ?t ?p1 ?p2))  

        (nil (load ?h ?c ?t ?p))  

        (nil (unload ?h ?c ?t ?p))  

        (nil (lift ?h ?c ?s ?p))  

        (nil (drop ?h ?c ?s ?p))  

        ((lift-and-drop ?c ?s1 ?s2 ?p1 ?p2) 

          (and (lift ?h ?c ?s1 ?p1) 
               (drop ?h ?c ?s2 ?p2)))))) 

Fig. 4 – Hierarchy definition for the depot domain. 

(define (domain elevator-ground) 
   (:requirements :strips :typing) 
   (:types passenger floor - object) 
 
 (:predicates  
   (origin ?person - passenger ?floor - floor) 
   (destin ?person - passenger ?floor - floor) 
   (above ?floor1 ?floor2 - floor) 
   (boarded ?person - passenger) 
   (served ?person - passenger) 
   (lift-at ?floor - floor)) 
 
 (:action board 
   :parameters (?f - floor ?p - passenger) 
   :precondition  
     (and (lift-at ?f) (origin ?p ?f)) 
   :effect (boarded ?p)) 
 
 (:action depart 
   :parameters (?f - floor ?p - passenger) 
   :precondition  
     (and (lift-at ?f) (destin ?p ?f)  
          (boarded ?p)) 
   :effect (and (not (boarded ?p))(served ?p))) 
 
 (:action up 
   :parameters (?f1?f2 - floor) 
   :precondition  
     (and (lift-at ?f1) (above ?f1 ?f2)) 
   :effect  
     (and (lift-at ?f2) (not (lift-at ?f1)))) 
 
 (:action down 
   :parameters (?f1?f2 - floor) 
   :precondition  
     (and (lift-at ?f1) (above ?f2 ?f1)) 
   :effect  
     (and (lift-at ?f2) (not (lift-at ?f1))))) 

Fig. 5 – The elevator domain. 
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   (and (not (at ?t ?p1))(at ?t ?p2))) 
 
Since the (at ?t – truck ?p – place) 
predicate has not been forwarded to the abstract level, 
the drive action could not require any such 
precondition or effect. Therefore, drive becomes 
meaningless at the abstract level, and must be removed 
throughout the following statement: 
 

((nil (drive ?t ?p1 ?p2)) 
 
Similar considerations can be made for the load and 

unload actions: 
 
         (nil (load ?h ?c ?t ?p)) 

 (nil (unload ?h ?c ?t ?p)) 
 
At this point, one may want to join the remaining actions 
lift and drop to form a new abstract operator (say 
lift-and-drop). According to the proposed 
extension, the new operator is defined as: 
 
    ((lift-and-drop ?c ?s1 ?s2 ?p1 ?p2) 
     (and (lift ?h ?c ?s1 ?p1) 
          (drop ?h ?c ?s2 ?p2))) 
 
Moreover, the lift and drop actions can be ignored:  
 
       (nil (lift ?h ?c ?s ?p))  
       (nil (drop ?h ?c ?s ?p))  
 
Alternatively, the new abstract operator lift-and-
drop could be introduced from scratch as follows: 
 
(:action lift-and-drop 
  :parameters 
   (?c - crate ?s1 ?s2 – surface 
    ?p1 ?p2 - place) 
  :precondition 
    (and (at ?c ?p1) (on ?c ?s1) 
         (clear ?c) (at ?s2 ?p2) 
         (clear ?s2)) 
  :effect  
    (and (not (at ?c ?p1)) 
         (at ?c ?p2)(clear ?s1) 
         (not (clear ?s2))  

         (on ?c ?s2) 
         (not (on ?c ?s1)))) 
 
For the sake of completeness, the entire hierarchy 
definition for the depot domain is summarized in 
Figure 4. 
In the above example, we started by abstracting the type 
hierarchy. It is worth pointing out that this choice is not 
mandatory; in fact abstraction could also be started by 
specifying the mapping of predicates or actions.  
To better illustrate an alternative approach, let us 
consider another example applied to the elevator domain 
(Koehler and Schuster 2000), whose ground definition is 
reported in Figure 5. 
The type hierarchy of elevator is very simple and 
contains only two types: passenger and floor. 
Thus, let us abstract the domain from predicates.  
In particular, one may decide to disregard (above ?f1 
?f2 – floor) and (lift-at ?f – floor), so 
that the lift is always available and moveable from a 
floor to another. This choice has an influence on actions: 
up and down become meaningless, whereas 
preconditions and effects of board and depart 
undergo some modifications on their abstract 

(define (hierarchy elevator) 

  (:domains elevator-ground 

            elevator-abstract) 

  (:mapping 

     (elevator-ground elevator-abstract) 

     :predicates 

       ((nil (lift-at ?f – floor))  

        (nil (above ?f1 ?f2 - floor))) 

      :actions 

       ((nil (up ?f1 ?f2))  

        (nil (down ?f1 ?f2))  

        (nil (board ?f ?p))  

        (nil (depart ?f ?p)) 

        ((load ?f ?p) (board ?f ?p)) 
        ((unload ?f ?p) (depart ?f ?p))))) 

Fig. 6 – Hierarchy definition for the elevator domain. 

 
(define (domain blocks-ground) 
  (:requirements :strips :typing) 
  (:types block - object) 
  (:predicates  
    (on ?x - block ?y - block)  
    (ontable ?x - block) 
    (clear ?x - block) 
    (handempty) 
    (holding ?x - block)) 
 
  (:action pick-up 
     :parameters (?x - block) 
     :precondition  
      (and (clear ?x)(ontable ?x)      
           (handempty)) 
     :effect  
      (and (not (ontable ?x)) 
           (not (clear ?x)) 
           (not (handempty))(holding ?x))) 
 
  (:action put-down 
     :parameters (?x - block) 
     :precondition (holding ?x) 
     :effect  
      (and (not (holding ?x))(clear ?x) 
           (handempty)(ontable ?x))) 
 
  (:action stack 
     :parameters (?x - block ?y - block) 
     :precondition  
      (and (holding ?x) (clear ?y)) 
     :effect  
      (and (not (holding ?x)) 
           (not (clear ?y))(clear ?x)    
           (handempty)(on ?x ?y))) 
 
  (:action unstack 
     :parameters (?x - block ?y - block) 
     :precondition  
      (and (on ?x ?y)(clear ?x)(handempty)) 
     :effect  
      (and (holding ?x)(clear ?y) 
           (not (clear ?x))(not (handempty)) 
           (not (on ?x ?y))))) 

Fig. 7 – The blocks-world domain. 
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counterparts (say load and unload, respectively). 
Figure 6 shows the described hierarchy definition for the 
elevator domain.  
As an example of abstraction starting from actions, let us 
consider the blocks-world domain, reported in Figure 7. 
In this case the type hierarchy cannot be abstracted, as it 
contains only the type block. In this domain two macro-
operators can be identified: pick-up&stack and 
unstack&put-down. The decision of adopting these 
operators entails a deterministic choice on which 
predicates have to be forwarded / disregarded while 
performing upward translations. More explicitly 
(handempty) and  (holding ?b – block) must 
be disregarded, meaning that the hand can be considered 
always available. Figure 8 shows the corresponding 
hierarchical definition of the blocks-world domain, 
according to the proposed notation. 

Conclusions and Future Work 

In this paper a novel extension to the standard PDDL 1.2 
has been proposed, devised to support hierarchical 
planning. The extension introduces the hierarchy 
construct, which encapsulates an ordered set of domains, 
together with a set of mappings between adjacent levels 
of abstraction. Since mappings are given in term of 
types, predicates, and operators, three subfields in the 
<mapping-def> have been introduced, to represent the 
abstraction over such dimensions. The extension 
described in this paper should be considered as an initial 
proposal, headed at promoting a discussion about how 
the standard PDDL can be enriched with additional 
constructs able to represent abstraction hierarchies. 
As for the future work, the possibility of extending the 
notation to encompass PDDL 2.1 (Fox and Long 2002) 
is being investigated. 
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(define (hierarchy blocks) 

  (:domains blocks-ground blocks-abstract) 

  (:mapping  

    (blocks-ground blocks-abstract) 

    :predicates 

      ((nil (handempty))  

       (nil (holding ?b - block))) 

     :actions 

      ((nil (pick-up ?b))  

       (nil (put-down ?b))  

       (nil (stack ?b1 ?b2))  

       (nil (unstack ?b1 ?b2)) 

       ((pick-up&stack ?b1 ?b2) 

          (and (pick-up ?b1)(stack ?b1 ?b2))) 

       ((unstack&put-down ?b1 ?b2) 

          (and (unstack ?b1 ?b2)  

               (put-down ?b1)))))) 

Fig. 8 – Hierarchy definition of the blocks-world domain. 
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Abstract

In this paper we present a classification scheme which cir-
cumscribes a large class of resources found in the real world.
Building on the work of others we also define key proper-
ties of resources that allow formal expression of the proposed
classification. Furthermore, operations that change the state
of a resource are formalized. Together, properties and oper-
ations go a long way in formalizing the representation and
reasoning aspects of resources for planning.

Introduction
Historically, allocation of tasks to resources has been con-
sidered part of the scheduling problem, and largely omit-
ted from the planning literature. In recent times, the
importance of such resource allocation decisions in plan-
ning has been recognized (Smith, Frank, & Jónsson 2000;
Long et al. 2000). Though progress has been made to meet
this challenge (Laborie 2001), the state of the art has not yet
advanced to a point where we have a comprehensive treat-
ment of resources as an inherent part of a planning frame-
work. More specifically, efforts to characterize the types of
resources of interest have been incomplete and largely con-
strained by the availability of efficient algorithms to reason
with them. Furthermore, approaches to natively incorporate
resources into domain descriptions have been largely absent.

We believe that the absence of explicit types of resources

• obfuscates the semantics of the model,

• impedes detection of domain modeling errors,

• complicates the mapping to efficient implementations that
could be tailored to particular resource types, and

• hinders domain analysis.

For example, resources have not yet been incorporated ex-
plicitly in the PDDL 2.1 specification (Fox & Long 2003)
although they can be represented through the use of func-
tional expressions. This is illustrated in Figure 1 which de-
scribes an actionfly consuming a resourcefuel. In the action
definition, the fuel consumption is expressed as an effect de-
creasing the level offuel. Fuel is not identified explicitly as
a resource. Furthermore, the inherent properties offuel and
the way in which it is allowed to change are not represented.

In this paper we present a classification scheme that will
circumscribe a large class of resource types found in the real

(:durative−action fly 
    :parameters (?p − plane ?t − traveller ?a ?b − location)
    :duration (= ?duration (flight−time ?a ?b))
    :condtion (and (at start (at ?p ?a))
                   (at start (at ?t ?a))                   
   (over all (inflight ?p))
   (over all (aboard ?t ?p))
   (at start  (>= (fuel−level ?p) (* (flight−time ?a
    ?b) (consumption−rate ?p)))))
    :effect (and (at start (not (at ?p ?a)))
                 (at start (not (at ?t ?a)))
                 (at end (at ?p ?b))
                 (at end (at ?t ?b))  
 (at start (inflight ?p))
                 (at end (not (inflight ?p)))
                 (at end (not (aboard ?t ?p)))
                 (at end (decrease (fuel−level ?p) (* (flight−time ?a
    ?b) (consumption−rate ?p))))))

Figure 1: Example of an activity on a resource in PDDL 2.1

world. We use and build upon the large body of work both in
the planning and scheduling communities. We first develop,
through exploration of real world examples, a description
of resources from a planning perspective. We define a set
of properties that characterize a resource. We then present a
classification scheme based on these properties. We go on to
explain how this classification will identify transactions on
resources. We present examples throughout to illustrate the
terms introduced. Where possible, we follow the PDDL 2.1
syntax in the hope that it will be familiar to the reader. We
then review related work in PDDL and other languages, in
terms of their methods and limitations to address the needs
outlined. We conclude with a brief synopsis and discussion
of future work.

Classification
Classification by Example
The following examples are designed to illustrate the various
features of resources that are of interest to the modeler.

Consider the cargo bay of the space shuttle. Many items
of different sizes are placed in the bay and consume volume.

7



The space is used when an item is placed in it. It is made
available again when the item is removed. We can consider
the space as an example of a reusable resource. In contrast
consider the fuel in a fuel tank. Once consumed it is de-
stroyed permanently. Fuel, in this case, is an example of a
consumable resource. If the fuel tank can be refueled then
it is an example of a replenishable resource. Process by-
products which are never used are examples of producible
resources.

The battery on a planetary rover is an example of a contin-
uous resource. Within the capacity of the battery any amount
of energy can be drawn at a time. In contrast disk space on
a hard drive is consumed in discrete chunks (bytes). This is
an example of a discrete resource.

A printer is an example of a single-capacity resource since
it prints only one job at a time. On the other hand, a passen-
ger aircraft contains numerous seats representing a multi-
capacity resource.

A fuel container typically has a fixed volume, and there-
fore a fixed capacity. Alternatively, a battery whose capacity
degrades over time is an example of a variable capacity re-
source.

Seats on an airplane are also examples of a determinis-
tic resource because the state of the resource is known pre-
cisely. The energy of a battery is an example of a stochastic
resource because of the inherent uncertainty in the amount
of the resource available.

The fuel tank in a car is an example of an exclusive re-
source because refueling is not allowed while the engine is
running. Data bandwidth is an example of a shared resource
because multiple activities can use the bandwidth simulta-
neously.

A cargo bay has specific restrictions for both weight and
volume. Loading a cargo bay consumes both weight and
volume at different rates. Weight and volume are two dis-
tinct dimensions of the same resource so this is an example
of a multi-dimensional resource (Smith & Becker 1997).

Keeping these examples in mind, we proceed to define
properties that precisely categorize resources.

Resource Properties

In this section we present a set of properties that can be used
to describe a quantitative resource i.e. a resource with ca-
pacity and availability described in terms of numeric quanti-
ties. We assume all measures of quantity are represented by
a generic unit rather than actual units of measure. We also
assume that all conversion operations are defined and occur
outside of the resource definitions and operations. Further-
more, we assume that all quantities are greater than zero.

We adopt the following notation for domain definitions.
Let R be to the domain of real numbers; letN be the do-
main of natural numbers;1 let Z be the domain of whole
numbers; letT be the domain of time. Notice that we ex-
plicitly defer commitment to whether time is represented
by natural numbers or real numbers, leaving the choice to
implementation. Furthermore, let� be the universe of re-

1We assume thatN includes the number zero.

sources and letX be the universe of transactions.2 Let
[t1, t2] = {x ∈ T | t1 ≤ x ≤ t2} be an interval of time.
Let t equal to[t, t] by definition.

The following properties are defined for a resource.

1. Level: The amount of available resource. The level is de-
fined asL:�× T → [Lmin,Lmax] whereLmin,Lmax ∈
R for continuous resources andLmin,Lmax ∈ Z for dis-
crete resources. We assume that plans may have temporal
flexibility so the level is given by an interval.

2. Level Limit: The instantaneous physical limit of available
resource. The level limit is given by an upper and a lower
bound and is defined asLL:� × T → 〈LLmin,LLmax〉
whereLLmin,LLmax ∈ R for continuous resources and
LLmin,LLmax ∈ Z for discrete resources.

3. Rate: The change in level per unit of time. Formally,
R:� × T → [Rmin,Rmax] whereRmin,Rmax ∈ R for
continuous resources andRmin,Rmax ∈ Z for discrete
resources. Because plans may have temporal flexibility,
the level is given by an interval.

4. Rate Limit: The limit imposed on the rate. The rate
limit is given by a lower and an upper bound and is
defined asRL:� × T → 〈RLmin,RLmax〉 where
RLmin,RLmax ∈ R for continuous resources and
RLmin,RLmax ∈ Z for discrete resources.

5. Transactions: The set of all transactions that may or must
occur by a given instant of time, defined byT :�×T → X

6. Completed Transactions: The set of all transactions that
must occur by a given instant of time, defined byCT :�×
T → X

7. Pending Transactions: The set of all transactions that may
overlap a given instant.PT :�× T → X

8. Transaction Count: The number of total transactions at an
instant of time, defined byT C:�×T → [T Cmin, T Cmax]
whereTmin, Tmax ∈ N. Because plans may have tempo-
ral flexibility, the transaction count is given by an interval.

9. Transaction Limit: The limit imposed on the number of
concurrent transactions. The transaction limit is defined
asT L:�×T → 〈T Lmin, T Lmax〉 whereTmin, Tmax ∈
N. Because a resource may have upper and lower limits
on the transaction count, the transaction limit is given by
an interval.

10. Horizon: The time interval over which the resource can
process transactions and answer queries. Formally,H =
[Hs,He], whereHs,He ∈ T.

Variations of properties 1 through 9 can be defined to
capture consumption and production on the resource, e.g.
production rate, production level, consumption transaction
count, consumption level limit, consumer transactions. It
should be noted that the levels, rates, counts and transaction
sets are derived values based on the occurrence of transac-
tions on the resource. In contrast, limits are imposed di-
rectly to capture constraints on the state. It should also be

2Transactions will be described in more detail in the next sec-
tion.
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noted that limits are not used in the definitions of the prop-
erties they intend to constrain. This is deliberate, since no
commitment is given regarding the enforcement policies of
constraints in these definitions.

In addition to the formal definitions provided for each
property, certain relationships can be observed among them
for any given instant of time.
1. The maximum transaction count is equal to the sum of the

maximum producing transaction count and the maximum
consuming transaction count.T Cmax = T Cprod,max +
T Ccons,max

2. Similarly, the minimum transaction count is equal to the
sum of the minimum producing transaction count and
the minimum consuming transaction count.T Cmin =
T Cprod,min + T Ccons,min

3. The maximum rate of change of the resource is the differ-
ence between the maximum production rate and the mini-
mum consumption rate.Rmax = Rprod,max−Rcons,min

4. The minimum rate of change of the resource is the differ-
ence between the minimum production rate and the maxi-
mum consumption rate.Rmin = Rprod,min−Rcons,max

5. The set of completed transactions is a subset of the set of
all transactions.CT ⊆ T

6. The set of pending transactions is a subset of the set of all
transactions.PT ⊆ T

7. No transaction can belong to both the pending transac-
tions and the completed transactions.PT ∩ CT = ∅

8. A transaction is either a pending or a completed transac-
tion. CT ∪ PT = T

9. The maximum resource level at an instant of time is
a function of the quantities of the completed produc-
tion transactions, the completed consumption transac-
tions, and the quantities of some subset of the pending
transactions. The subset is chosen so as to maximize
the the overall resource level.Lmax =

∑
i qpi(t) −∑

i qci(t) +
∑

i qxi(t),
where

qpi(t) : ∃ produce(r, qpi(t)) ∈ Tprod ∩ CT ,

qci(t) : ∃ consume(r, qci(t)) ∈ Tcons ∩ CT ,

qxi(t) : ∃ produce(r, qxi(t)) ∈ S or

∃ consume(r, qxi(t)) ∈ S

whereS ⊆ PT is chosen so as to maximize the sum.

10. The maximum resource level at an instant of time is
a function of the quantities of the completed produc-
tion transactions, the completed consumption transac-
tions, and the quantities of some subset of the pending
transactions. The subset is chosen so as to minimize
the the overall resource level.Lmin =

∑
i qpi(t) −∑

i qci(t) −
∑

i qxi(t),
where

qpi(t) : ∃ produce(r, qpi(t)) ∈ Tprod ∩ CT ,

qci(t) : ∃ consume(r, qci(t)) ∈ Tcons ∩ CT ,

qxi(t) : ∃ produce(r, qxi(t)) ∈ S or

∃ consume(r, qxi(t)) ∈ S

(:resource fuel−in−a−tank

        :consumption−rate−limit [0 100]

)

(fuel−in−a−tank fueltank1

        :production−rate−limit [0 42.5]
        :consumption−rate−limit [0 75.5]
        :num−transactions−limit [0 3]

        )

                                                                     ;can hold atmost 2000 units
        :production−rate−limit [0 100]             ;for all tanks in the domain

        :level−limit [0 2000]                             ;all tanks in this domain

                                                                     ;atmost 100 units can be
                                                                     ;pumped in per unit time

        :num−transactions−limit [0 4]             ;atmost 4 transactions can be
                                                                     ;done on this resource.

        :level−limit (                                         ;represents a limit profile
                      (over [0 6] [0 1000])             ;where upto 6 am and after
                      (over [6 18] [0 2000])           ;6 pm the tank can hold 1000

                     )                         ;.
                      (over [18 24] [0 1000])         ;and between 6am−6pm hold

                      ;2000

        :level 876.34                                        ;in the init state, this
                                                                     ;particular tank has 876 units
                                                                     ;in it.
        :num−producers−limit [0 2]                 ;this tank has two inlet
                                                                    ;valves
        :horizon [9 17]                                    ;fuel can be drawn only during
                                                                    ;normal working hours.

Figure 2: Example in pseudo-PDDL describing some prop-
erties of a resource

whereS ⊆ PT is chosen so as to maximize the sum of
theqxi(t).

Lmax andLmin represent what is informally called the
“resource envelope”. Different algorithms (Laborie 2001;
Muscettola 2002) compute the envelope with varying de-
grees of accuracy. The degree of accuracy depends on how
carefully the setS is chosen.

There are other distinctions that can be expressed in terms
of the properties described above. For example, persistence
and expiration dates can be described in terms of the hori-
zon. Similarly, scheduled unavailability can be described in
terms of limits on the number of transactions or the rates
of change. Other researchers (Powell, Shapiro, & Simao
2001) have mentioned concepts such as active and passive
and have characterized numbers of simultaneous producers
and consumers. These concepts can be expressed in terms
of the properties defined above.

Figure 2 presents an example illustrating the use of these
properties in specifying a resource. Restrictions included in
the definition of the resourcefuel-in-tank restrict the proper-
ties of all instances of that resource. Restrictions in the def-
inition of the instancefuel-tank1 impose further restrictions
for that particular instance alone. Additionally, the level-
limit of fuel-tank1 is expressed as a profile over time. In this
case, the profile is piecewise constant i.e. between the hours
of 6 am and 6 pm the maximum level-limit and the minimum
level-limit are constants (2000 and 0 respectively).
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Resource Categories
The set of resource categories informally introduced earlier
provide a means to qualitatively describe the nature of a re-
source. The set of properties introduced earlier provide a
means to quantitatively describe the nature of a resource. In
this section we formalize the former in terms of the latter.

A resource can be categorized based on how it may be
produced or consumed.

1. Consumable: A consumable resource is a resource that is
decreased by some activities but is not produced by any
activities in the system. For example, a resource such
as ammunition may be depleted by firing a weapon. In
a mode where the plan of attack prohibits resupply then
additional ammunition may not be obtained. This means
thatL is monotonically non-increasing.

2. Producible: A producible resource is a resource that is
created by some activities but is not consumed by any ac-
tivities in the system. A waste-product of an industrial
process may be an example of this. This means thatL is
monotonically non-decreasing.

3. Replenishable: A replenishable resource can be both pro-
duced and consumed as part of the same system. Any
ordering of production and consumption transactions are
allowed on the resource, e.g battery power which may be
produced if it is in the charger, as well as consumed, if the
device it powers is turned on.

4. Reusable: A reusable resource is a replenishable resource
that is produced and consumed with the additional con-
straint that producing and consuming transactions must
happen in tandem. That is, for any interval of time, two
consecutive consumption or production transactions are
not allowed.

We can further describe resources as discrete or continu-
ous based on the quantities produced or consumed.

1. Discrete: The resource is consumed, produced, or used in
discrete quantities. For example, disk space is allocated
in chunks of bytes. A printer consumes single sheets of
paper from the paper bin. If a resource is discrete, the
levels, limits and rates are all discrete.

2. Continuous: The resource is consumed, produced, or used
in continuous quantities, e.g energy stored in a battery. If
a resource is continuous, the levels, limits, and rates are
all continuous.

Depending on the amount (divisibility or unit) we can dis-
tinguish between single and multiple capacity resources.

1. Single Capacity: The resource can be thought of as one
unit which must be consumed as a whole. This character-
istic implies a restriction on the level limit such that

LL =
{

0 if it is being consumed
1 otherwise

2. Multiple Capacity: The resource represents multiple units
which can be used or consumed by different operations.
This characteristic implies a restriction on the level limit
such thatLLmax > 1 andLLmin �= LLmax.

The variation of capacity over time allows us to distin-
guish between fixed and variable capacity resources.

1. Fixed capacity: The level limit of a resource is fixed over
time, e.g. a gas tank has a fixed capacity to store gasoline.
This characteristic imposes a constraint on the level limit
such that the level limit is constant with respect to time.

2. Variable capacity: The level limit of a resource is a func-
tion of time, e.g. a battery whose capacity degrades over
time. This characteristic agrees with our definition of
level limit.

The level of certainty with which one can determine the
capacity allows us to classify resources as deterministic or
stochastic.

1. Deterministic capacity: The capacity is precisely deter-
mined. This characteristic agrees with our definition of
level limit.

2. Stochastic capacity: The capacity is determined proba-
bilistically. This characteristic is only mentioned for com-
pleteness since we provide no formal treatment of this
characteristic in this paper.

If simultaneous transactions are allowed to operate on re-
sources then the resource is shared as opposed to exclusive.

1. Shared: Using the resource at less than full capacity al-
lows others to use the resource simultaneously, e.g. a bat-
tery on a rover typically provides energy simultaneously
to a number of devices. This characteristic imposes a con-
straint on the transaction limit such thatT Lmax > 1 for
all time instants.

2. Exclusive: Only one activity is allowed to access the re-
source at a time, regardless of the amount of resource
used, e.g. a restaurant table that seats 10 but only 6
people are seated at the table. Even though it seats 10,
the remaining 4 seats are made unavailable. This char-
acteristic imposes a constraint on transactions such that
T L = 〈0, 1〉 for all time instants.

There are two additional characteristics noted in (Smith &
Becker 1997) that are also important: single-dimensional vs.
multi-dimensional, and pooled vs. not pooled. A resource is
multi-dimensional if it has more than one aspect to its quan-
tity and each aspect must be updated together but at different
rates. A cargo bay with constraints on weight and volume is
an example of a multi-dimensional resource. Eachload ac-
tivity would simultaneously consume both weight and vol-
ume in different quantities. A resource may be aggregated
into a resource pool. This allows the domain model to ab-
stract out details of individual resources while preserving
the individual nature of each resource for final allocation.
We have not had the time to further explore these concepts.
For the purpose of this paper we consider all resources to be
single-dimensional and omit treatment of resource pools.

Figure 3 gives an example of three resources which have
been defined in terms of the categories described above.
Qualitative categories impose restrictions on quantitative
properties. Note that as before, properties may be addition-
ally restricted.
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;A camera that can be used to take a picture at a time
(:resource camera

        fixed 
        single−capacity 
        discrete 
        deterministic 

;Earth communication window with a fixed bandwith
(:resource Earth−Communication

        fixed 
        multi−capacity 
        continuous 
        deterministic 
        reusable)

;Solid state data storage disk on which data can be written and erased
;after downloading.
(:resource data−storage−disk

        fixed 

        discrete 
        deterministic 

        multi−capacity 

    :categories (exclusive 

    :categories (shared 

    :categories (exclusive

        reusable))

        replenishable))

    :horizon ((540 550) (1020 1030) )

Figure 3: Examples in pseudo-PDDL describing resources
based on their categories

Operations on Resources
Resource categories provide a means to qualitatively de-
scribe the nature of a resource. Resource properties, on the
other hand, provide a means to quantitatively describe both
its nature and its current state. Given this model, the oper-
ations to effect state change (transactions) can be formally
defined. Throughout, we take the view that all operations on
resources should be context free, i.e. we make no assump-
tions about the activity context that is causing the transac-
tion.

Resource Transactions

Resource transactions are caused by actions in a plan to
change the state of a resource. Transactions on resources
have fixed semantics that are fully defined based on each
transaction type. We assume that transactions can always be
applied and that if no other transactions occur in the period
(instant or interval) of time over which they’re applied, the
effect is always observed.3

The termquantity is used in transaction specifications to
indicate the amount of the given resource to be transacted.
In the general case, quantity may vary over time. In this
case, quantity is a function of time returning a number, an
element ofR for continuous resources or an element ofN

3If there is any concurrency of transactions it is not always pos-
sible to say that if a production of 5 units occurs, the level := level
+ 5.

for discrete resources. The precise semantics of thequantity
function, however, is implementation specific and we define
it externally. Computing with these functions has to be well-
defined, so we require that allquantity functions be commu-
tative and convolvable. It is also likely we could enforce
additional restrictions given the particulars of a resource de-
scription and more explicit insight into the semantics of a
quantity function. At this time, no scheme has been devel-
oped to formalize the semantics of these functions to allow
such checks for correctness by analysis of the model.

We define the following transactions.

1. Consume: Consumption can occur either at an instant of
time or over an interval of time.

• at t consume(r, q) If a consume transaction and no
other transactions are operating on a resource at the
specified time, the transaction has the effect of reduc-
ing the level by the specified quantity at that instant
of time. This transaction also increases the transaction
count and consumer transaction count by one.

• over [ts, te] consume(r, q(t)) If a consume transac-
tion and no other transactions are operating on a re-
source over the specified time interval, the transaction
has the effect of reducing the level by the quantity eval-
uated at each instant of time in the interval. This trans-
action also increases the transaction count and con-
sumer transaction count by one for allts ≤ t ≤ te.

A consume transaction is only allowed on resources which
arereplenishable or consumable.

2. Produce:

• at t produce(r, q) If a produce transaction and no
other transactions are operating on a resource at the
specified time, the transaction has the effect of reduc-
ing the level by the specified quantity at that instant
of time. This transaction also increases the transaction
count and producer transaction count by one.

• over [ts, te] produce(r, q(t)) If a produce transac-
tion and no other transactions are operating on a re-
source over the specified time interval, the transaction
has the effect of reducing the level by the quantity eval-
uated at each instant of time in the interval. This trans-
action also increases the transaction count and producer
transaction count by one for allts ≤ t ≤ te.

A produce transaction is only allowed on resources which
arereplenishable or producible.

3. Use: A use operation is defined in terms of consume and
produce transactions such that a consume transaction oc-
curs at the start of the use operation and a produce transac-
tion occurs at its end. The quantity consumed is equal to
the quantity produced. This operation increases the total
number of transactions by two.over [ts, te] use(r, q)
which evaluates to
at ts consume(r, q) and
at te produce(r, q).
A use transaction is only allowed onreusable resources
and is allowed to use only a fixed quantity.
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Queries and Constraints on resources
Once a resource is defined in terms of its properties, planners
can access state of the resource during planning by querying
these properties at any instant of time. It is possible to gain
access to how a resource changes over time through complex
queries that perform arithmetic calculations of the properties
over time. The information provided by these queries is very
useful in guiding a planner in its search to find a resource
compliant plan. Specifically, queries about excess level of
resource and the number of transactions provide a planner
with the means to look ahead in the planning process and
backtrack if necessary. For example, the planner can attempt
to balance the consumption of the resource by prefering time
intervals where there is the excess capacity is large.

The limit properties of a resource already constrain the
operations that can be performed on a resource. For ex-
ample, the level-limits constrain the total amount of pro-
duction and consumption, while the transaction count limits
constrain the number of activities producing or consuming a
resource. More significantly, using the ability to build com-
plex queries over properties, additional constraints can be
incorporated into the action definitions (in conditions and
effects). Since the properties are defined over time, it is
also possible to define constraints that hold only over spe-
cific time periods. Complex and dynamic domains can be
more naturally expressed through these constraints.

Related Work
Our work is focused on the development of a scheme for
classifying and reasoning with resources in planning and
we confine ourselves to a discussion of work related to this
effort. For a broader examination of the issues of incor-
porating resources into planning systems see (Longet al.
2000). For a discussion of algorithmic issues more perti-
nent to implementation see (Laborie 2001; Muscettola 2002;
Srivastava 2000; Zhou & Smith 2002).

Our work shares some common ground with other efforts
to formalize representations and reasoning with resources
(Smith & Becker 1997; Yang & Geunes 2001). We differ
primarily in our extension to cover epistemological issues,
and also in the details of the classfication.

IxTeT (Laborie & Ghallab 1995), ILOG (Laborie 2001)
and O-Plan2 (Tate, Drabble, & Kirby 1994) provide exam-
ples of planning frameworks that have incorporated complex
resource handling capabilities. The scope of their represen-
tation is, not surprisingly, constrained by the functionality
available in their systems. They each have similar expressive
power to handle resources that can be variations of the cross-
product of{single-capacity, multi-capacity} and{reusable,
consumable, replenishable}. They do not separate the con-
cepts of shareability and capacity, nor do they support the
notion of requiring a resource without diminishing its level.
No support is provided for resource pools, though approx-
imations are proposed which provide aggregation by creat-
ing a new resource of aggregated capacity, e.g. a pool of
10 people becomes a resource of capacity 10. Though they
do provide explicit type support for resources, the type struc-
tures defined do not account for the variety of characteristics

identified in this paper.
More recently, a number of planners have been devel-

oped which exploit resource constraints and resource state
to control search (Do & Kambhampati 2002; Koehler 1998;
Haslum & Geffner 2001; Kvarnstrom & Magnusson 2002).
Our work draws from these efforts in developing com-
monly used terms, transactions, queries and constraints on
resources.

Deficiencies in PDDL 2.1 (Fox & Long 2003) with
respect to dealing with resources have been documented
(Kvarnstrom & Magnusson 2002; Frank, Golden, & Jons-
son 2003). For example, treatment of resources implicitly
through numeric variables excludes access to aspects of re-
sources that could be useful as operator preconditions, con-
straints or control rules. Furthermore, the necessity to refer-
ence resources as preconditions and effects in this form im-
poses an artificial serialization of activities. We further be-
lieve that the absence of explicit type support for resources
makes models more difficult to comprehend due to the nat-
ural semantics of resources being implicit. It also makes it
more error-prone since one cannot check compatibility of
operations on the resource, e.g. producing a consumable re-
source. Furthermore, it makes it more difficult to map to
efficient implementations that could be tailored to particular
resource types.

Figure 4 is a representation of the example in figure 1 us-
ing our richer representation. A key feature is the representa-
tion of the continuous consumption of fuel over an interval
of time in the effect of the actionfly. The semantic of the
consume statement is to evaluate the consumption rate (an
external function that is time dependent) at various instants
of time (determined by the planner implementation) to de-
termine the quantity to be consumed. This quantity is then
used in the consume operation of the resource to suitably
change its level.

Conclusion
In this paper we have presented a classification scheme
which circumscribes a large class of resources found in the
real world. Building on the work of others we have also de-
fined key properties of resources that allow formal expres-
sion of the proposed classification. Furthermore, operations
which alter, query and constrain resource state have been
presented. Together this work forms a classification and se-
mantic description that goes a long way in formalizing the
representation and reasoning aspects of resources for plan-
ning.

Due to the limits of time, a number of outstanding issues
have been deferred. For example, no formal treatment is
given to resource pools i.e. the ability to aggregate distinct
heterogeneous resources into a pool which can be treated as
a single resource and still allow allocation of transactions
to individual members. Nor have the semantics for multi-
dimensional resources been formalized, e.g. simultaneous
treatment of the weight and volume aspects of a cargo bay.
It may be worthwhile to consider explicitly modeling these
composite semantics and provide operations that reflect this.

The properties of resources clearly support expression of
temporally scoped limits. This seems adequate to represent
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(:resource fueltank−in−a−airplane
   :properties (exclusive fixed multi−capacity continuous deterministic
   consumable)
)

(:durative−action fly 
    :parameters (?p − plane ?t − traveller ?a ?b − location)
    :duration (= ?duration (flight−time ?a ?b))
    :condtion (and (at start (at ?p ?a))
                   (at start (at ?t ?a))                   
   (at start  (>= (level (fuel−tank ?p) (* (flight−time ?a
    ?b) (max−consumption−rate ?p))))))
    :effect (and (at start (not (at ?p ?a)))
                 (at start (not (at ?t ?a)))
                 (at end (at ?p ?b))
                 (at end (at ?t ?b))  

                 (at end (not (inflight ?p)))
                 (at end (not (aboard ?t ?p)))

(:objects fueltank1 plane1 city1 city2)
(:init(plane plane1)
(airport city1)
(airport city2) 
(fueltank−in−a−airplane fueltank1

       (= (fuel−tank plane1) fueltank1))

(:extern  (#t (consumption−rate ?p)))

                 (over [start end] (inflight ?p))

                 (over [start end] (consume  (fuel−tank ?p)
    (consumption−rate ?p)))))

            :level−limit [0 2134.5]
            :level  872.7
            :consumption−rate−limit [0 10.6])            

Figure 4: Examples in pseudo-PDDL describing resources
and their use in an action

important patterns such as shift rotations or recurring com-
munication windows. However, no methods have been de-
fined to concisely impose cyclic or recurring patterns of con-
straints on resource properties. This will be investigated in
the context of integration of resources into a formal model-
ing language.

A key issue for reasoning with resources is balancing the
costs of checking resource constraints with the benefits that
may be obtained to inform search. In scheduling, the set
of activities is fixed. In planning, new activities are intro-
duced throughout the process. Consequently, the challenge
of deriving useful information from resource propagation
is much greater in planning than in scheduling. This is-
sue is highlighted by reported degradations of planner per-
formance (Srivastava & Kambhampati 1999) as more re-
sources are added to the problem, which is counter-intuitive.
Approaches to address this have studied deferment of re-
source reasoning until all activities have been selected (Sri-
vastava 2000), which effectively recasts resource reasoning
as a scheduling problem addressed after the planning phase.
An important extension of the work described in this pa-
per is to explore techniques which exploit the rich semantics
of the proposed representation. More sophisticated queries
may be utilized to inform search. More powerful constraints
may be specified to make stronger inferences despite the fact

that all activities have not been selected. More refined, ex-
plicit characterizations of resources and transactions may al-
low specialization of resource handling algorithms based on
model descriptions.

Throughout this paper it has been assumed that all re-
sources are deterministic. It is an open question how the
formalism described in this paper could or should be ex-
tended to reflect uncertainty. Furthermore, it is assumed
that the semantics of external functions describing transac-
tion quantities are defined outside of the model. Although
some progress has been made in dealing with this issue, i.e.
by requiring such functions to be convolvable and commu-
tative as a prerequisite for admissibility, it is preferable to
describe and enforce the semantics of such functions explic-
itly and unambiguously. It seems plausible that one could
require registration of external functions with formal sig-
natures. One could further introduce specified type mech-
anisms to characterize different classes of functions. The
means to achieve this more generally is an open question.

With a view to practical application, and in support of
further experimentation, we plan to incorporate the formal-
ism proposed, together with any extensions we may develop,
into formal modeling languages for domain, problem and
heuristic descriptions. We also plan to integrate the proposed
formalism to a planning framework such as that described in
(Frank & J́onsson 2003). This effort is likely to raise many
interesting issues and trade-offs in terms of modeling fidelity
and computational complexity. Furthermore, domain analy-
sis techniques shall be investigated to aid model specifica-
tion and allow domain-independent specialization of imple-
mentations. This work would require mapping data structure
and algorithm choices to particular classes of resources.
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Abstract

The last decade has witnessed a dramatic progress in the va-
riety and performance of techniques and tools for classical
planning. The existence of a de-facto standard modeling lan-
guage for classical planning, PDDL, has played a relevant
role in this process. PDDL has fostered information sharing
and data exchange in the planning community, and has made
international classical planning competitions possible.

At the same time, in the last few years, non-classical planning
has gained considerable attention, due to its capability to cap-
ture relevant features of real-life domains which the classical
framework fails to express. However, no significant effort has
been made to achieve a standard mean for expressing non-
classical problems, making it difficult for the planning com-
munity to compare non-classical approaches and systems.

This paper provides a contribution in this direction. We ex-
tend PDDL in order to express three very relevant features
outside classical planning: uncertainty in the initial state,
nondeterministic actions, and partial observability. NPDDL’s
extensions are designed to retain backward compatibility with
PDDL, and with an emphasis on compactness of the repre-
sentation. Moreover, we define a powerful, user-friendly plan
language to go together with NPDDL. The language allows
expressing program-like plans with branching and iterations
structures, as it is necessary to solve planning problems in
the presence of initial state uncertainty, nondeterminism and
partial observability. We are testing NPDDL’s ability to cope
with a variety of problems, as they are handled by a state-of-
the-art planner, MBP.

Introduction
Planning is an extremely active field of research. Because
of its potential in terms of real-life applications, a wide vari-
ety of approaches have been developed, and several pow-
erful automated planning systems have been designed to
cope with complex problems. The existence of PDDL,
a de-facto standard language for planning has been cru-
cial for fostering the reuse of models, establishing a com-
mon repository of problems, and comparing and integrat-
ing systems, as it is evident from the results of the in-
ternational competitions (McDermott 2000; Bacchus 2000;
Fox & Long 2002).

PDDL is however limited to “classical” planning prob-
lems, and it is unable is to capture many relevant features

that are important for modeling real world domains. In par-
ticular:

• the initial situation may be only partially specified;

• it is often unrealistic to assume that actions have a fully
predictable outcome;

• the status of the domain may be only partially observable
by the plan executor, and sensing might convey unreliable
results. In general, in most cases it is unrealistic to assume
the omniscience of the plan executor;

• problems of interest may often go beyond planning to
reach a condition; in general, it is highly desirable to ex-
press properties about the whole execution of a plan, to
state e.g. safety or maintenance requirements;

• sequences of actions are not sufficient to express solutions
for problems and domains with the aforementioned fea-
tures. More complex structures, e.g. loops and condi-
tions, are required.

The growth of scientific interest for expressive planning,
taking into account nondeterminism, partial observability
and complex temporal goals, is evident. A number of
publications and events (e.g.(C. Boutilier & Koenig 2002;
Cimatti et al. 2001a)) have taken place, and increasingly
many powerful planning systems are designed to deal with
(combinations of) the features above, using a variety of
approaches (Bonet & Geffner 2000a; Weld, Anderson, &
Smith 1998; Smith & Weld 1998; Bertoli et al. 2001;
Castellini, Giunchiglia, & Tacchella 2001; Kabanza 1999;
Doherty & Kvarnström 2001; Rintanen 1999). However, no
significant effort has been made to provide a standard mean
for expressing nondeterministic, partially observable plan-
ning domains.

This paper presents the NPDDL language, a first contri-
bution in the direction of a general PDDL-like language for
planning with incomplete information. We first describe an
extension to the current standard PDDL2.1 (Fox & Long
2001; Ghallab et al. 1998) to allow for description of nonde-
terministic, partially observable planning domains. Further-
more, we add a rich, user-friendly plan language that cap-
tures the iterative, branching plan structures needed to plan
for domains involving the aforementioned features. The lan-
guage we describe is the input to MBP (Bertoli et al. 2001),
a state-of-the art planner integrating plan synthesis, valida-
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tion and simulation within the planning via symbolic model
checking framework. The input language to MBP also pro-
vides a means to express a rich class of temporal require-
ments; this shows the potential for further extension of the
standard.

The paper is structured as follows. We first present a con-
ceptual reference model for planning with incomplete infor-
mation. We then introduce the NPDDL syntax, and show
how it allows for the description of the features of interest.
We present some results, compare NPDDL with the related
work, and discuss some open issues. A BNF characteri-
zation of NPDDL is available at http://sra.itc.it/
tools/mbp/npddl.ps.

The Framework
As a reference example, we consider a simple domain featur-
ing uncertainty in the initial condition, nondeterminism and
partial observability, and model a planning problem for it.
The domain consists of a line of rooms that can be traversed
by a robot. A printer is situated at one end of the line, and
it may print a paper everytime its exit tray is empty. Each
printed paper has a banner, where the destination room is
reported. The banner can be read by the robot. The robot
can pick up a paper at the printer, and can leave it at an of-
fice. The robot can only check the printer tray’s status when
at the printer’s place. To identify its position, the robot is
equipped with a sensor that detects whether the printer is in
the same room. For this domain, we consider the problem
of having the robot correctly deliver all the papers queued at
the printer - the length and content of the queue being un-
known, and the robot being initially positioned anywhere.
A solution plan must consider the available sensing, and re-
quires an iterative conditional structure whose execution is
possibly infinite.

We rely on a simple, general framework to provide a se-
mantic foundation to our work; this is depicted in fig.1. In
our view, a domain is a (possibly nondeterministic) finite
state machine, whose state evolves according to the actions
received as input, and to the previous state. The domain con-
veys information to the plan by means of observations. We
think of a plan as a deterministic finite state machine, which
determines the actions to be performed according to the ob-
servations from the domain, and to its state. The execution
of a plan in the domain can be thought of as an iteration
where (i) an observation is given as input to the plan, (ii) the
status of the plan evolves and the next action is determined,
(iii) the action affects the domain status and the possible ob-
servations. A formal characterization of the framework is
provided in (Bertoli et al. 2002b). In the following it is
sufficient to limit the discussion to the underlying intuitions.

With this approach, it is possible to encompass incom-
pletely specified initial conditions, and nondeterministic ac-
tion effects. Incompletely specified initial conditions are
represented by specifying a set of possible initial states of
the domain. In our example, the initial states cover every
possible position of the robot, and every possible content of
the printer queue.

Action effects are characterized by associating actions
with transitions from state to state. Nondeterministic ac-

observation action

DOMAIN

state

state

PLAN

Figure 1: Planning Framework

tion effects are obtained by associating an action with sev-
eral transitions from the same initial state to different result
states. The domain is therefore characterized as a relation,
rather than as a partial function as in the deterministic case.
In our example, the effect of picking a paper may result in
several states, where the printer queue may be either empty,
or may have on top papers with different banners.

Our modeling of observations maps states of the domain,
which may not be directly observable, into observation vari-
ables, the value of which can be directly inspected at run
time by the executor. Our approach, that is somewhat sim-
ilar to (Goldman & Boddy 1996; Bonet & Geffner 2000b;
Nourbakhsh & Genesereth 1996), also allows us to cap-
ture noisy/unreliable and partial sensing, where informa-
tion is available only under specific conditions. This is
achieved by relating values to observation variables not as
a function of the domain state, but as relations. In this
way, when an observation variable conveys no information,
it can assume any value in its range, nondeterministically.
As a special case, an observation O may be undefined over
a domain state, by making every value of O possible on
S. Within this framework, different forms of sensing can
be modeled. With “automatic sensing” (Tovey & Koenig
2000), information can always be acquired, as usual in em-
bedded controllers, where a signal from the environment
is sampled and acquired at a fixed rate, latched and inter-
nally available. Observations resulting from the execution of
“sensing actions” (Cassandra, Kaelbling, & Littman 1994;
Weld, Anderson, & Smith 1998; Pryor & Collins 1996;
Bonet & Geffner 2000a) can be modeled by representing
in the domain state the last executed action, and exploiting
the possibility for describing undefinedness. In our exam-
ple, the domain features three observations: one, in case the
robot is at the printer’s place, indicates whether the tray is
full or not, and provides no information otherwise; another
signals whether the robot is at the printer’s place or not; the
last signals to the robot the current banner of the carried pa-
per. These are easily modeled exploiting the possibility of
unreliable/noisy sensing.
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The idea of plans as finite state machines makes it possi-
ble to express complex courses of actions. In particular, we
take into account the possibility of branching (which is able
to exploit the information acquired at run-time in order to
tackle the nondeterminism of the domain) iteration (which
enables to express possibly cyclic, trial-and-error courses of
actions). Such more expressive plans are required to solve
problems under partial observability and with nondetermin-
ism.

The NPDDL Language
NPDDL is a language that extends PDDL to encompass the
intuitions outlined in previous section. NPDDL provides a
set of independent extensions to describe incompletely spec-
ified initial conditions, nondeterministic action effects, and
partial observability.

NPDDL starts from the standard PDDL 2.1. In particu-
lar, it starts from the level 2 of PDDL 2.1, thus inheriting a
compact and clearly defined set of constructs to handle nu-
meric and conditional effects, and first-order quantification,
as well as STRIPS effects on predicates. The aspects related
to the higher levels (level 3 to level 5) of PDDL2.1, such as
durative actions, are not taken into account with this version
of NPDDL.

In the following, we assume that we are referring to a
specific ground planning domain, where F is the finite set
of fluents. The instantiation of operators and predicates to
the objects in the domain in NPDDL follows the very same
schema as in PDDL. Our discussion is based on possibly
non-boolean fluents; each fi ∈ F is associated with a finite
range of values. An assignment, denoted in the following
by a, a1, a2, . . ., is an expression that maps a fluent fi on
a value vj of the associated range. (In the following, with-
out loss of generality, we do not explicitly treat predicates,
that can be seen as fluents with values over the binary range
boolean.) NPDDL allows for n-ary constructs whenever
PDDL does. However, we restrict our discussion to their bi-
nary version, leaving the trivial generalization to the reader.

Incompletely Specified Initial Conditions
PDDL allows for the specification of completely character-
ized initial condition, i.e. of a single initial state. This is
described with the :init statement, containing a set of
conjunctive assignments i =̇ {i1, . . . , in}. Each conjunctive
assignment is a (possibly nested) conjunction of fluent as-
signments. The initial state specification i is in fact an im-
plicit conjunction of fluent assignments; the top-level con-
junction is left implicit. Fluents in F that are not explic-
itly assigned are treated according to the Closed-World As-
sumption (CWA) and given a value (by convention, we as-
sume the first value in the range is given). More formally,
let ASSIGNED(i) be the set of fluents assigned by i. Let
F ⊆ F be a set of fluents, and CWA(F ) the CWA-implied
assignment to the set of fluents F , then the initial state is
identified by

INITIAL(i) =̇ i ∧ CWA(F \ ASSIGNED(i))

The set of assigned fluents is computed as follows:

1. ASSIGNED(“(assign f v)”) = {f}
2. ASSIGNED(“(and i1 i2)”) = ASSIGNED(i1) ∪

ASSIGNED(i2)
In NPDDL an incompletely specified initial condition is

characterized by describing the set of possible initial states.
To allow for multiple initial states, NPDDL introduces a
oneof construct (oneof i1 . . . in), meaning that exactly
one of the specifications described by ij is active. Thus a
statement of the form (oneof i1 . . . in) is associated to a
set of partial assignments. The corresponding set of initial
states is simply obtained by applying CWA to each of those
partial assignments. The oneof construct can be com-
bined arbitrarily with PDDL constructs, in order to allow
for an independent description of uncertainty over distinct
sets of domain fluents. As such, a generic PDDL initial state
specification i is associated to a set of partial assignments
ASSSET(i). This is defined as follows, considering the se-
mantics of oneof, and that of and (which distributes upon
the set of possible assignments):

• ASSSET(“(assign f v)”) = {(assign f v)}
• ASSSET(“(and i1 i2)”) =

⋃ {(and b1 b2)} where
bj ∈ ASSSET(ij), for j ∈ {1, 2}

• ASSSET(“(oneof i1 ... in)”) =⋃
1≤j≤n ASSSET(ij)

The initial states are then built by complementing each par-
tial assignment with the CWA, as follows:

INITIALS(i) =̇ {INITIAL(ij)|ij ∈ ASSSET(i)}
Notice that, if the initial condition is completely speci-
fied, NPDDL maps back to PDDL: ASSSET(i) = {i} and
INITIALS(i) = {INITIAL(i)}.

NPDDL also contains the unknown construct, to express
the set of all possible assignments to a generic fluent f . This
construct enables us to avoid explicitly listing every possible
value of f . “(unknown f)” is equivalent to specifying a
oneof statement on any possible value of the type of f:

(unknown f) =̇
(oneof (assign f v1)...(assign f vn))

where {v1, . . . , vn} is the finite range of f .

Example Initially, the status of the queue is unspecified,
and the robot may be in any room. This can be easily ex-
pressed in NPDDL by a conjunction of unknown state-
ments.
(:init

(unknown (robot_room))
(unknown (paper_at_printer))
(not (papers_around))
(not (arm_busy)))

In the appendix, we provide a full NPDDL modeling for
the reference domain and problem.

Nondeterministic Action Effects
Action effects in PDDL
In PDDL, actions are deterministic: the execution of an ac-
tion in a domain state S result in a single outcome S’. The
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way S’ is determined depends on the interaction of PDDL’s
effect features: conditional effects, quantifiers and inertia
handling. In order to describe actions in NPDDL, we first
reduce the general structure of PDDL to a simple normal
form. First, universal quantifications can be eliminated by
replacement with n-ary conjunctions. Then, we observe that
nested conditional effects can be eliminated by rewriting. In
Appendix, we show that it is enough to consider top-level
conditional effects whose branches are mutually exclusive.
When executing an action A featuring such a set of top-level
conditional effects, exactly one of the conditions holds, trig-
gering the associated condition-free effect E. E’s outcome
consists in the (possibly partial) assignment described by E,
complemented by assigning “inertially” those fluents not as-
signed by E:

OUTCOME(E) =̇ E ∧ INERTIA(F \ ASSIGNED(E))

where INERTIA(E) assigns each fluent in E its current
value. Notice the similarity with the way the initial state
is computed.

Action Effects in NPDDL
NPDDL allows for nondeterministic actions, whose ex-
ecution on a domain state S may have several possible
outcomes. NPDDL uses the oneof construct in action
effects for this purpose; intuitively, in an action effect,
(oneof e1 . . . en) indicates that exactly one of the ei

effects will take place, and, as such, it is associated to a
set of partial assignments (those resulting from ei). Since
NPDDL allows for a general combination of oneof state-
ments with PDDL’s constructs, a generic condition-free
NPDDL effect e is associated to a set of partial assignments.
This is computed by ASSSET(E).

The set of possible outcomes of a nondeterministic effect
E simply results from the set of (possibly partial) assign-
ments ASSSET(E):

OUTCOMES(E) =̇ {OUTCOME(ei)|ei ∈ ASSSET(E)}
Notice that, if the effect is fully deterministic,
ASSSET(E) = {E}, implying OUTCOMES(E) =
{OUTCOME(E)}, i.e. NPDDL maps back to PDDL.

Example Uncertain action effects are in that, when pick-
ing a paper, it may be the last or not, and on the infor-
mation reported by the banner. This is modeled in the
pick_paper operator

(:action pick_paper
:precondition (and (paper_at_printer)

(not (arm_busy))
(= (robot_room) 0))

:effect (and
(arm_busy)
(unknown (paper_banner))
(unknown (paper_at_printer))))

It is possible to use the unknown construct in action ef-
fects in order to express the assignment of a fluent to any
value. As for the initial condition, this avoids the explicit
listing of assignment for each possible fluent value. The

unknown construct in action effects is handled similarly to
the case of initial states: “(unknown f)” is equivalent to

(oneof (assign f v1)...(assign f vn))

where {v1, . . . , vn} is the finite range of f .

Compactness of the representation NPDDL is designed
to compactly model domains where actions could possibly
have high branching rates, and problems with a possibly
large number of initial states. To this end, it is very im-
portant that oneof constructs can be arbitrarily nested and
combined with other operators, in order to compactly spec-
ify problems with high degrees of uncertainty. A solution
where oneof constructs are allowed only at top level would
result in very clumsy specifications, since it would force
considering every combination of the effects of nondeter-
minism/initial uncertainty over each fluent. This is also clear
in the reference example, where independent facets of initial
uncertainty (robot position and print queue) would otherwise
result in a lengthy state enumeration.

The characterization provided in this section is by no
means intended to suggest a practical way to deal with
NPDDL, e.g. to build a parser and a domain constructor.
One of the challenges in planning with nondeterministic do-
mains is to be able to internally represent domains with-
out having to enumerate their initial states and the possi-
ble action outcomes. Symbolic techniques (Rintanen 2002;
Bertoli et al. 2001; Castellini, Giunchiglia, & Tacchella
2001) appear to have significant leverage in this respect.

Partial Observability in NPDDL
In order to allow for partial observability, NPDDL intro-
duces a notion of “observation”. Similar to (Bonet &
Geffner 2000b; Nourbakhsh & Genesereth 1996), and in ac-
cord to the framework, in order to model unreliable sens-
ing, observations are defined as arbitrary relations from the
domain state to finitely valued observation variables, to be
intended as the “sensors” available to the plan executor.

In the concrete syntax of NPDDL, this is achieved by
a parametric :observation construct. An observation
variable V is characterized by a boolean formula over V and
the domain fluents. The intuition is that the formula defines
the relation between the value of the observation variable,
and the values of the (possibly unobservable) domain flu-
ents. The formula is arbitrary, with the only (semantic) con-
straint that every domain state must correspond to at least
one value of V . For the sake of simplicity, a domain fluent f
can be declared :observable. This amounts to introduc-
ing a new observation, the value of which faithfully reports
the values of f .

Example The sensing described in the example can be
modeled as follows. Notice the way NPDDL allows describ-
ing a paper_in_printer sensor which does not provide
information (is undefined) unless the robot is appropriately
placed at the printer.

(:observable (paper_banner) - room_number)

(:observation (robot_at_printer) - :boolean
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(iff (robot_at_printer) (= (robot_room) 0)))

(:observation (paper_in_printer) - :boolean
(and

(imply (paper_in_printer)
(or (> (robot_room) 0)

(paper_at_printer)))
(imply (not (paper_in_printer))

(or (> (robot_room) 0)
(not (paper_at_printer))))))

Problems in NPDDL
When dealing with nondeterminism and partial observabil-
ity, a plan may admit a set of different executions, possi-
bly resulting in different final states. This makes it neces-
sary to specify whether every execution is required to be
successful or not, and whether the possibility of having in-
finite executions is accepted. These natural requirements
are captured by specifying that plans have to be “weak”,
“strong”, “strong cyclic” (:weakgoal,:stronggoal,
:strongcyclicgoal resp). Intuitively, a plan is “weak”
if it admits at least one successful finite execution; it is
“strong” if every admissible execution is finite and success-
ful; it is “strong cyclic” if every (possibly infinite) execu-
tion always admits a possibility of succeeding finitely. See
(Cimatti et al. 2001b) for formal definitions.

Moreover, several problems, e.g. classical planning prob-
lems or conformant planning problems, define implicit as-
sumptions about the observability of the domain. To support
users in naturally specifying these, NPDDL introduces an
optional :observability keyword. This allows users
to specify that a plan must be synthesized under e.g. full ob-
servability assumptions, regardless of the observations spec-
ified in the domain. Default observability is assumed to be
:full, to retain backward compatibility with PDDL.

Example A possible expression of desired goal consists in
the following:

(:observability :partial)
(:strongcyclicgoal

(and
(not (arm_busy))
(not (papers_around))
(not (paper_at_printer))))

Plans in NPDDL
In classical planning, a plan is simply a set of partially or-
dered actions. Nondeterminism entails the necessity for it-
erative structures; partial observability requires the introduc-
tion of branching in the plan language. NPDDL supports a
high-level plan language. A plan may have local, internal
variables, different from the ones of the domain, containing
information to encode, for instance, the progress of the plan.
We call such variables “plan variables”; plan variables are
in a finite number, and feature finite ranges. The basic steps
of the language, differently from what happens in a simple
programming language, must take into account the issue of
execution, with the delivery of actions to the domain actua-
tors. The basic construct is evolve, with syntax
(evolve <assignment>+ <action-call>)

that specifies a set of assignments to plan variables, followed
by an action. Unless assigned, plan variables retain their
previous value. The action construct, with syntax

(action <action-call>)
is a variation on evolve that does not alter the plan state.
The done construct indicates that the plan has to be in-
tended as terminated; no specification is given upon which
actions are produced by a plan after (done) is executed.

The plan language also provides a number of imperative-
style constructs:
• Sequencing Commands: (sequence <command>+)

corresponds to sequentially executing all the commands
in the specified order.

• Branching Commands: (if <condition>
<plan then> <plan else>), with its usual
semantic.

• Iterative Commands: (while <condition>
<plan) and (repeat <plan>). The while
semantics is standard; repeat causes an endless
looping execution.

• Labeling and Jumping Commands. Labeling may refer
to a command or to a given point inside a command; this
is reflected by two alternative syntaxes, namely (label
<name> <command>) and (label <name>). The
(goto <name>) construct has the usual semantics.

Example Consider the following course of actions, solv-
ing the example problem. “Loop forever, acting as follows:
first the robot re-positions at the printer’s room, then, if some
paper is there, it picks it up, and delivers it to the proper
room; if no paper is there, the plan terminates.” This is repre-
sented by the following plan. Once picked a paper, to deliver
it to the proper room, the robot traverses x rooms, where x
is the paper banner content. Unless the printing queue is ini-
tially empty, the reference problem may require an infinitely
executing plan, e.g. one like the following.
(define (plan deliver_paper)
(:domain paper_delivery)
(:problem continuous_delivery)
(:planvars known_room - room_number)
(:init (= (known_room) 1))
(:body
(repeat
(sequence

(while (not (robot_at_printer))
(action (move_left)))

(if (not (paper_in_printer))
(done)
(sequence

(evolve
(assign (known_room) 0)
(action (pick_paper)))

(while (< (known_room) (paper_banner))
(evolve

(assign (known_room)
(+ (known_room) 1))

(action (go_right))))
(action (leave_paper))))))))

A plan can be converted into a Finite-State Machine. The
conversion procedure, that results in a definition of the tran-
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sition relation of the FSM, is the following:

• Sequencing, branching and iterative constructs are re-
moved by introducing label/jump pairs, and splitting the
plan into a set of labeled plans whose bodies only includes
goto and basic commands.

• goto occurrences are eliminated by inlining the bodies
of the labeled plan they refer to.

• The set of labeled plans is translated into an equivalent fi-
nite state machine, whose state space is augmented with a
variable ranging over the set of all used labels; this addi-
tional variable serves to model a “plan program counter”
to appropriately sequentialize the executions of labeled
plans.

Related Work and Discussion
Several works present PDDL-like languages to deal with
some aspects related to nondeterminism (Bonet & Geffner
2000a; Kabanza 1999; Smith & Weld 1998; Weld, An-
derson, & Smith 1998). The language of GPT (Bonet &
Geffner 2000a) adopts a PDDL-like syntax, extended with
a quantitative model with probabilities and rewards. Such
issues were purposefully avoided in NPDDL, where a qual-
itative model is assumed. If we compare the language of
GPT and NPDDL disregarding quantitative issues, however,
NPDDL exhibits an improved flexibility in expressing non-
determinism. In particular, the GPT language does not allow
for a general description of nondeterminism in the form of
nested/conjoined nondeterministic assignments. The result
raises an issue of compactness in the domain/problem de-
scriptions, as an explicit enumeration of all of the possible
initial states (or action outcomes) is in order. Our clean treat-
ment of nondeterminism, on the other hand, opens up the
possibility of extending NPDDL with quantitative aspects.
In fact, the characterization in terms of sets of assignments
presented in this paper seems to be amenable to a straightfor-
ward extension, that results in a quantitative model without
suffering from the problems related to the explicit enumer-
ation of initial states and transitions. The extension is the
object of an ongoing investigation. As far as observability
is concerned, the GPT language is based on “knowledge-
gathering actions”, making it difficult to express automatic
sensing, where observations can be automatically gathered
at each “cycle”. Although NPDDL focuses on automatic
sensing, action-dependent sensing can be easily encoded by
suitably defining observed values as undetermined unless a
given action is formerly executed.

The PDDL-like languages used in CGP (Smith & Weld
1998) and SGP (Weld, Anderson, & Smith 1998) allow the
description of incompletely specified initial conditions, but
are limited to deterministic actions. Sensing in SGP is re-
stricted to knowledge-acquisition actions, and the underly-
ing model is very limited.

SimPlan (Kabanza 1999) is able to deal with initial un-
certainty and nondeterminism, but does not admit partial ob-
servability. The ADL/STRIPS interface of SimPlan allows
for a very limited forms of nondeterminism, resulting from
the combinations of controllable actions with environment

actions. A more accurate handling of nondeterminism is
only possible using SimPlan’s custom interface language to
specify a domain transition relation, but the specification of
complex domains turns out to be very cumbersome. NADL
(Jensen & Veloso 2000) is a language that allows for ex-
pressing qualitative models of nondeterministic domains in
a multiagent setting. Exogenous actions are supported, as
well as a limited form of concurrency for actions that in-
volves a notion of resource constraint.

Both SimPlan and NADL try to address the fact that of-
ten a nondeterministic domain is naturally described as the
composition of a (possibly deterministic) plant with some
form of nondeterminism due, for instance, to uncontrollable
agents in the domain. For instance, the reference example
could be extended with the notion of doors between rooms,
that are being opened/closed e.g. possibly by non control-
lable agents (this example is remarkably similar to the kid
doors in (Kabanza, Barbeau, & St-Denis 1997)). The prob-
lem with this kind of dynamics is in the fact that it is not
naturally described in the style of PDDL, where operators
describe the possible tasks of the agent the activity of which
is being planned for. Every action should have this environ-
ment dynamics in its effects, e.g. doors being nondetermin-
istically open or closed. In fact, even if a do-nothing ac-
tion is performed, the effect of doors possibly being open or
closed by other agents should be taken into account. Similar
examples arises when a system has a certain dynamics (e.g.
a timer being set in a certain situation and expiring after N
time units). In a PDDL-style characterization, each action
should have the effect of decrementing the timer value, and
possibly making the “expired” predicate become true. A de-
sign choice underlying NPDDL was to retain the operator-
based description of actions. Although we believe that the
current expressive power is enough to characterize many in-
teresting domains, whether the modeling is natural this is an
open issue. A principled analysis is in order for the exten-
sion of NPDDL to deal with this important issue.

Somewhat less related are high level action languages
such as AR (Giunchiglia, Kartha, & Lifschitz 1997) and
C (Giunchiglia & Lifschitz 1998), that deal with the problem
of providing expressive languages for domain description in
presence of nondeterminism. AR deals with ramification
constraints, can represent different forms of nondetermin-
ism, and its semantics is defined in terms of a minimization
procedure to solve the frame and the ramification problem.
C is an action language based on causal explanation, allow-
ing for nondeterminism and concurrency. In both cases, the
underlying semantics and the representation style are very
far from PDDL’s, and observability issues are not taken into
account.

Finally, (Petrick & Bacchus 2002) discusses a different
approach to nondeterminism, based on encoding actions at
the knowledge level, and exploiting “knowledge databases”
to trigger knowledge-level derivations. Knowledge-level
reasoning is not explicitly addressed by NPDDL, although
for several domains/problems suitable knowledge-level ab-
stractions are possible within standard PDDL.

20



Results
NPDDL is the input language of the MBP planner. MBP in-
tegrates plan synthesis, plan validation and plan simulation;
MBP handles plans in the format described in this paper.
MBP applies some restrictions to the language; in partic-
ular, observations are currently to boolean variables and
have a fixed structure; the number type is not allowed, and
union types are not implemented. Several NPDDL exam-
ples have been designed, e.g. the “maze” benchmark for
partial observability (Bertoli, Cimatti, & Roveri 2001), and
domains taken from the Power Supply Restoration (Bertoli
et al. 2002a). Moreover, MBP supports two extended
goal languages for expressing maintenance goals, safety
goals, liveness goals. Most of these classes identify con-
straints over the plan execution, e.g. a certain property must
hold throughout the whole execution, or it must never hold
throughout the execution, and so on. As such, they can be
captured by a temporal logic that deals with nondetermin-
ism, such as CTL (Emerson 1990). More recently, the ne-
cessity of expressing intentionality in the goals to achieve
high-quality plans has been highlighted ((Pistore, Bettin, &
Traverso 2001)). MBP allows for CTL and for EaGLe ((Dal
Lago, Pistore, & Traverso 2002)), an extended temporal lan-
guage to express intentionality into goals.

Example We consider a variation of the original goal,
adding the requirement that, everytime a robot has a paper
and is in the right room to deliver it, it should leave it with
no delay. This can be modeled as a CTL goal:
(:ctlgoal

(and
(ag
(imply (= (robot_paper_x) (robot_x))

(not (next (arm_busy)))))
(aw

(and
(not (papers_around))
(ef (not (paper_at_printer))))

(not (paper_at_printer)))))

Conclusions
In this paper we have presented NPDDL, an exten-
sion to PDDL for planning in nondeterministic domains.
NPDDL retains all the features of PDDL, and allows for
a compact characterization of incompletely specified initial
conditions and nondeterministic action effects. NPDDL pro-
vides a clear solution to the issues related to the interac-
tion between closed world assumption and initial condition,
and nondeterministic action effects and law of inertia. The
model for observations underlying NPDDL allows to char-
acterize and combine action-dependent and automatic sens-
ing. In addition, NPDDL allows to model complex plan
structures and temporally extended goals. NPDDL is imple-
mented in MBP, has been used to model complex real-world
problems, and will hopefully prove to be an adequate start-
ing point for a standard extension to PDDL. In this sense, we
are studying ways to improve its flexibility, e.g. by suitably
extending the PDDL :requirements to allow certain
features (e.g. support for temporal goals) without forcibly
requiring them.
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PDDL Conditional effects rewriting
In the following we outline a procedure for rewriting a
generic effect (with nested conditional effects) into an ef-
fect featuring only non-nested conditional effects. The pro-
cedure is based on a set of rewrite rules, and introduces, in
the intermediate steps, a SWITCH construct that generalizes
the when dealing with a set of mutually exclusive CASEs.
The result of the procedure is a PDDL term, where the in-
termediate SWITCH and CASE have been eliminated. Rule
1 is used as the first rewriting step to translate whens into
binary SWITCHes. Rules 2, 3 are used to bring switches to
top-level, eliminating nesting within other switches or into
PDDL constructs. Finally, rule 4 is used to transform the
top-level switch into a set of whens, making use of the fact
that the switch features mutually exclusive conditions cov-
ering all CASEs.

Rule 1: when elimination
(when <condition> <effect>)

becomes
(SWITCH

(CASE <condition> <effect>)
(CASE (not <condition>) true))

Rule 2
(and

(SWITCH
(CASE <condition1

1> <effect1
1>)

...
(CASE <condition1

n1> <effect1
n1>))

...
(SWITCH

(CASE <conditionm
1> <effectm

1>)
...
(CASE <conditionm

nm> <effectm
nm>)))

becomes
(SWITCH

(CASE
(and <condition1

1> ... <conditionm
1>)

(and <effect1
1> ... <effectm

1>))
...
(CASE

(and <condition1
n1> ... <conditionm

nm>)
(and <effect1

n1> ... <effectm
nm>)))

Rule 3
(SWITCH

(CASE <condition1> <effect1>)
...
(CASE <conditioni−1> <effecti−1>)
(CASE <conditioni>

(SWITCH
(CASE <innercondition1> <innereffect1>)
...
(CASE <innerconditionm> <innereffectm>)))

(CASE <conditioni+1> <effecti+1>)
...
(CASE <conditionn> <effectn>))

becomes

(SWITCH
(CASE <condition1> <effect1>)
...
(CASE <conditioni−1> <effecti−1>)
(CASE (and <conditioni> <innercondition1>)

<innereffect1>)
...
(CASE (and <conditioni> <innerconditionm>)

<innereffectm>)
(CASE <conditioni+1> <effecti+1>)
...
(CASE <conditionn> <effectn>))

Rule 4: when introduction

(SWITCH
(CASE <condition1> <effect1>)
...
(CASE <conditionm> <effectm>))

becomes

(and
(when <condition1> <effect1>)
...
(when <conditionm> <effectm>))

NPDDL Conditional Effects Rewriting
The following rule is used, in conjunction to rules 2 and 3, to
bring switches to top-level, in the case of nondeterminism.

(oneof
(SWITCH

(CASE <condition1
1> <effect1

1>)
...
(CASE <condition1

n1> <effect1
n1>))

...
(SWITCH

(CASE <conditionm
1> <effectm

1>)
...
(CASE <conditionm

nm> <effectm
nm>)))

becomes

(SWITCH
(CASE

(and <condition1
1> ... <conditionm

1>)
(oneof <effect1

1> ... <effectm
1>))

...
(CASE

(and <condition1
n1> ... <conditionm

nm>)
(oneof <effect1

n1> ... <effectm
nm>)))
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The Complete NPDDL Model
(define (domain paper_delivery)

(:types room_number)
(:predicates
(arm_busy)
(papers_around)
(paper_at_printer))

(:functions
(robot_room) - room_number
(paper_banner) - room_number)

(:action move_left
:precondition (not (= (robot_room) 0))
:effect (assign (robot_room) (- (robot_room) 1)))

(:action move_right
:precondition (not (= (robot_room) (sup room_number)))
:effect (assign (robot_room) (+ (robot_room) 1)))

(:action pick_paper
:precondition (and (paper_at_printer)

(not (arm_busy))
(= (robot_room) 0))

:effect (and
(arm_busy)
(unknown (paper_banner))
(unknown (paper_at_printer))))

(:action leave_paper
:precondition (arm_busy)
:effect (and

(not (arm_busy))
(when (not (= (robot_room) (paper_banner)))

(papers_around)))))

(:observable (paper_banner) - room_number)

(:observation (robot_at_printer) - :boolean
(iff (robot_at_printer) (= (robot_room) 0)))

(:observation (paper_in_printer) - :boolean
(and

(imply (paper_in_printer)
(or (> (robot_room) 0)

(paper_at_printer)))
(imply (not (paper_in_printer))

(or (> (robot_room) 0)
(not (paper_at_printer))))))

(define (problem continuous_delivery)
(:domain paper_delivery)
(:typedef room_number - (range 0 50))
(:init

(unknown (robot_room))
(unknown (paper_at_printer))
(not (papers_around))
(not (arm_busy)))

(:observability :partial)
(:strongcyclicgoal

(and
(not (arm_busy))
(not (papers_around))
(not (paper_at_printer)))))
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Abstract

Despite major progress in AI planning over the last few
years, many interesting domains remain challenging for cur-
rent planners. Topological abstraction can reduce planning
complexity in several domains, decomposing a problem into
a two-level hierarchy. This paper presents LAP, a planning
model based on topological abstraction. In formalizing LAP
as a generic planning framework, the support of a planning
language more expressive than PDDL can be very important.
We discuss how an extended version of PDDL can be part
of our planning framework, by providing support for hierar-
chical planning and topological abstraction. We demonstrate
our ideas in Sokoban and path-finding, two domains where
topological abstraction is useful.

Introduction
AI planning has recently achieved significant progress in
both theoretical and practical aspects. The last few years
have seen major advances in the performance of planning
systems, in part stimulated by the planning competitions
held as part of the AIPS series of conferences (McDermott
2000; Bacchus 2001; Fox & Long 2002). However, many
hard domains still remain a great challenge for the current
capabilities of planning systems.

Abstraction is a natural approach to simplify planning in
complex problems. For instance, humans often create ab-
stract plans that they try to follow during their search. In this
paper we present topological abstraction, a technique for re-
ducing planning complexity in hard domains. Based on this
abstraction model, we also discuss extending the PDDL lan-
guage so that it supports hierarchical planning and abstrac-
tion. In exploring how PDDL can be extended, the mean-
ing of “abstraction” can be more general than our topologi-
cal approach. Topological abstraction is only one of a gen-
eral class of hierarchical relationships that PDDL may not
be able to express well.

Our abstraction approach reformulates the state represen-
tation, grouping related low-level features in local clusters.
The clustering aims to catch local relationships inside clus-
ters and keep cluster interactions as low as possible. In ef-
fect, the initial problem is decomposed into a two-level hi-
erarchy of sub-problems, each being much simpler than the
initial one. At the local level, each cluster has associated
a local problem that solves the local constraints. There is

also a global planning problem where clusters are treated
as black-boxes and local state features are hidden away. The
reason why we call this topological abstraction is that an im-
portant class of applications of which the approach is suit-
able have a spatial structure such as a grid. In such a domain,
we group atomic grid squares into abstract clusters such as
rooms in a building.

Motivation
Many interesting domains are hard to deal with when no ab-
straction is present. Examples of such domains are Sokoban
and path-finding. In these domains, a hierarchical problem
decomposition based on topological clustering can lead to
significantly better performance. Our preliminary work us-
ing these domains as a testbed has already shown an impres-
sive potential of the topological abstraction.

Sokoban is a puzzle with many similarities to a robotics
application. In this domain, a man in a maze has to push
stones from their initial positions to designated destinations
called goal squares (see Section 3 for a detailed descrip-
tion of the rules). Both the AI planning and the single-agent
search communities agree that this is a hard domain. The
game is difficult for a computer for several reasons includ-
ing deadlocks (positions from which no goal state can be
reached), the large branching factor (can be over 100 – if we
consider as moves all the stone pushes in the man reachable
area), and long optimal solutions (can be over 600 moves).
Another problem is that all known lower-bound heuristic es-
timators for the solution length are either of low quality, or
expensive to compute.

Humans, who solve Sokoban puzzles much easier than
state-of-the-art AI applications, abstract the maze into rooms
and tunnels and use this high-level representation to create
abstract plans. Following the humans’ example, an AI appli-
cation can cluster atomic squares into more abstract features
such as rooms connected by tunnels, reducing the complex-
ity of the hard initial problem. In effect, a large number of
atomic squares is replaced by a few abstract, more meaning-
ful features such as rooms and tunnels.

In the domain of path-finding, an agent on a map has to
find a (shortest) path from its current position to a destina-
tion position. The map topology can have many forms, such
as a battlefield, the interior of a building, etc. The problem
is important in commercial computer games, robot planning,
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military applications, etc. The efficiency of the path-finding
algorithms is often crucial, as they have to produce solutions
in real-time and use limited resources. The classical solv-
ing strategy represents the maze as a grid of atomic cells
and uses a search algorithm such as A* on that graph. An
action is to move to an adjacent cell that is not part of an
obstacle. The representation of states in the search space
greatly influences the efficiency of the search. A fine gran-
ularity of the map leads to a large search space, requiring
serious time (and possibly space) resources. A much more
efficient problem representation is to abstract the map into
connected clusters such as rooms, large obstacle-free areas,
bridges, etc. As in Sokoban, the abstract map representation
is a small graph of connected clusters, with a much reduced
search space.

To the best of our knowledge, in some commercial games
the search space is abstracted by human experts, who de-
fine the abstract clusters by hand. Our contribution is an
automated abstraction method, especially useful when hu-
man expertise is expensive or not available. For instance, a
bomb can destroy a bridge, changing the landscape dynam-
ically and invalidating the previous abstract representation.
Also, the user of a game may be allowed to define new map
configurations, which have to be abstracted from scratch.

In standard planning domains such as Logistics, topolog-
ical abstraction of the real world is part of the domain defi-
nition. In Logistics, several packages have to be transported
from their initial location to various destinations. A Logis-
tics problem has a map of cities connected by airline routes.
Transportation inside cities can be done by truck (there is
one truck in each city). Cities are abstracted, being treated
as black boxes. Inside a city, a truck can go from any point to
any destination at no cost. However, in the real world, trans-
portation within a city is a subproblem that can involve con-
siderable costs. In this context, removing human expertise
and automatically obtaining abstracted models of the real
world is an important research problem.

The Planning Language Support
Topological abstraction is appropriate for several application
domains. Our goal is to build a general planning framework
where topological abstraction is automatically performed for
different planning domains. In such a framework, the ro-
bustness of the planning language used to describe the do-
main and problem instances is very important. Many parts
of our abstraction framework could more easily be expressed
when using a more general planning language. The lan-
guage support for hierarchical planning in general should
deal with representing the abstraction levels, and modeling
relationships and communication across the levels. The lan-
guage support for abstraction should cover several issues,
such as problem reformulation, automatic abstraction, adap-
tive abstraction, and a hybrid problem representation. In this
paper, hybrid representation refers to using both low-level
features (for the part of the problem representation space
not abstracted yet) and abstract features (for the already ab-
stracted part of the space) to represent a problem state. In our
framework, problem reformulation means to replace a low-
level domain and problem representation by an equivalent

abstract representation, which is easier to solve. We want to
represent the abstracted problem explicitly, as an indepen-
dent planning problem written in a language such as PDDL.
This allows solving the abstract problem with no interaction
with the initial low-level formulation. Another advantage
of representing abstraction as part of the PDDL formulation
is that, at one moment, we can use a hybrid state represen-
tation, using both low-level and abstract features for state
description. When planning is done repeatedly in a fixed
environment, an adaptive abstraction, which is performed
as the system learns more about the environment, is also
valuable. For instance, in a path-finding problem the map
is initially represented at the low-level. An adaptive abstrac-
tion algorithm builds the clusters gradually, as the planning
agent discovers more and more parts of the map. Before
the abstraction is completed, the planning is done using a
state representation composed of both atomic squares (for
the unexplored parts of the map) and abstract clusters (for
the explored parts of the map).

Adaptive abstraction can naturally be related to planning
with uncertainty. We can consider that the part of the prob-
lem not abstracted yet is in a sense unknown to the plan-
ner. Using abstraction this way also required the domain
description (or, more generally, the planning and plan exe-
cution framework) to handle uncertainty. PDDL currently
doesn’t do this, and topological abstraction can’t handle this
without a treatment of uncertainty. Even if this is an interest-
ing topic, in this paper we don’t focus on how an extended
PDDL can be used to better handle uncertainty. We keep
our discussion limited to hierarchical planning and abstrac-
tion issues.

The rest of the paper is structured as follows: In the next
section we review the related work. In the third section
we highlight our abstraction framework and briefly describe
how we applied it to Sokoban and path-finding. We point
out some features that can easier be addressed using a more
robust planning language. In the fourth section we discuss
extending PDDL to support hierarchical planning and topo-
logical abstraction. The last section presents our conclusion.

Related Work
Abstraction is a frequently used technique to reduce problem
complexity in AI planning. Automatically abstracting plan-
ning domains has been explored by Knoblock (Knoblock
1994). His approach builds a hierarchy of abstractions by
dropping literals from the problem definition at the previ-
ous abstraction level. Bacchus and Yang define a theoreti-
cal probabilistic framework to analyze the search complex-
ity in hierarchical models (Bacchus & Yang 1994). They
also use some concepts of that model to improve Knoblock’s
abstraction algorithm. In this work, the abstraction consists
of problem relaxation. In our approach, abstraction means
to reformulate a problem into an equivalent hierarchical rep-
resentation. The abstract problem is solved independently
from the initial problem formulation.

Long et al. use generic types and active preconditions
to reformulate and abstract planning problems (Long, Fox,
& Hamdi 2002). As a result of the reformulation, sub-
problems of the initial problem are identified and solved by
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using specialized solvers. Our approach has similarities with
this work. Both formalisms try to cope with domain-specific
features at the local level, keeping the global problem as
generic as possible. The difference is that we reformulate
problems as a result of topological abstraction, whereas in
the cited work reformulation is obtained by identifying var-
ious generic types of behavior and objects such as mobile
objects.

Using topological abstraction to speed-up planning in
a reinforcement learning framework has been proposed in
(Precup, Sutton, & Singh 1997). In this work, the authors
define macro actions as offset-casual policies. In such a pol-
icy, the probability of an atomic action depends not only on
the current state, but also on the previous states and atomic
actions of the policy. Learning macro actions in a grid robot
planning domain induces a topological abstraction of the
problem space.

Previous experiments showed that planning in a low-
level Sokoban formulation was too hard for state-of-the-art
generic planners (McDermott 1997; Junghanns & Schaef-
fer 1999). Culberson performed a theoretical analysis of
Sokoban, showing that this domain is PSPACE-complete
(Culberson 1997). The state-of-the-art Sokoban solvers
are Junghanns’ Rolling Stone (Junghanns 1999; Junghanns
& Schaeffer 2001) and deep green, developed inside the
Japanese Sokoban community (Junghanns 1999). These ap-
plications can find solutions for two thirds of the standard
90-problem test suite 1.

Local Abstraction in Planning
In this section we present an overview of our abstraction
model, called LAP (Local Abstraction in Planning). We
also show how the model can be applied to domains such as
Sokoban and path-finding. We use the model and these do-
mains as a basis to motivate the need for a PDDL extension
supporting hierarchical planning and abstraction. Thus, im-
plementation details and analysis of experimental results are
not our focus here. We rather consider issues such as hier-
archical planning, automatic clustering, adaptive clustering,
and hybrid state representation.

The Model Overview
LAP is a planning model based on a topological abstrac-
tion of the state representation. A clustering of the problem
representation space is used to group related low-level fea-
tures. The goal of the clustering process is to group together
related atomic pieces and keep cluster interactions low. The
abstraction allows us to decompose the initial problem into a
hierarchy of sub-problems in a divide-and-conquer manner.
For each cluster we define a local problem, which solves the
local constraints of that cluster. The global problem uses an
abstract problem description, where global states are charac-
terized by states of abstract features. Each feature is a cluster
that represents several atomic elements of the space.

At the global level, our abstraction approach leads to a
much more compact state representation. For instance, a

1The test suite is available at http://xsokoban.lcs.
mit.edu/xsokoban.html.

room in a robot planning domain is an abstract feature en-
coding many low-level objects such as atomic-size squares.
Since one cluster is a complex feature representing several
atomic features, cluster states can have many possible val-
ues. It is therefore natural to represent the global abstract
states as tuples of cluster values. Using this representation,
our abstraction model can be defined as a special case of
the Simplified Action Structures (SAS) model (Bäckström
& Klein 1991; Bäckström & Nebel 1995). In a SAS model,
the global state space is a cross product of sub-spaces de-
scribing states of the problem features. Actions have as-
sociated three types of feature sets: precondition sets, ef-
fect sets, and prevail sets. The precondition set identifies
the features used to check the action preconditions, the ef-
fect set contains the features whose states are changed by
the considered action, and the prevail set contains the fea-
tures whose values are preserved after the action has been
applied. Below we point out the properties that differentiate
our model from other existing SAS structures. First, in the
LAP formalism, an abstract action changes either one state
component or two components, leaving the rest of the tuple
unchanged. In other words, the planning agent is only al-
lowed to do local processing inside a cluster or perform an
action affecting two clusters. Second, a transition between
two clusters is possible only if the two clusters are neigh-
bors. Third, when checking the preconditions of an operator,
the only preconditions that matter are the values of the com-
ponents that are changed by the action effect. For instance,
in the Sokoban domain, when transferring a stone between
two adjacent rooms A and B, the local stone configuration
of other rooms is not relevant.

At the global level, we use abstract planning actions called
macro-actions. Checking the preconditions of a macro-
action uses cluster states rather than states of atomic fea-
tures. The effects of a macro-action also change cluster
states. The model does not guarantee the solution optimal-
ity. If for each action of an optimal abstract solution we
compute an optimal sequence of atomic moves, the result-
ing low-level solution is not guaranteed to be optimal.

LAP in Sokoban
Sokoban is a single player game created in Japan in the
early 1980s. Figure 1 shows an example of a Sokoban prob-
lem. The puzzle consists of a maze which has two types
of squares: inaccessible wall squares and accessible interior
squares. Several stones are initially placed on some of the
interior squares. There is also a man that can walk around
by moving from his current position to any adjacent free in-
terior position. A free position is an interior square that is
not occupied by either a stone or the man. If there is a stone
next to the man and the position behind the stone is free,
then the man can push the stone to that free square. The
man moves forward to the initial position of the stone. The
goal of the puzzle is to push all the stones to some specific
marked interior positions called goal squares.

The game is difficult for a computer for several reasons
including deadlocks, the large branching factor, and long op-
timal solutions. Also, all known lower-bound heuristic esti-
mators are either of low quality, or expensive to compute.
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Figure 1: Problem #1 in the standard 90 problem Sokoban
test suite. The six goal squares are the marked ones at the
right end of the maze.

A simple planning representation of Sokoban can be ob-
tained by translating all the low-level properties of the game
into a planning language such as PDDL. For instance, a one-
square push becomes one planning action. We call this plain
Sokoban. This simple representation leads to very poor re-
sults, as it does not allow for an efficient handling of the
long-range properties of the game. The domain formulation
can be significantly improved by applying the LAP model
to plain Sokoban. We call the new abstracted formulation
abstract Sokoban. In abstract Sokoban, the clustering pro-
duces a decomposition of the maze into rooms and tunnels.
Rooms and tunnels become clusters in the abstract represen-
tation. If there are k clusters extracted from the maze, the
abstract description of a state is a tuple of integer values

s = (s1, s2, ..., sk)

where si represents the internal state of cluster i. The inter-
nal state of a cluster is a complete description of the stone
configuration and, in the case of rooms, the area reachable
by the man inside that room. The abstract planning actions
are: (a) to re-arrange stones inside a room, so that the man
can walk between two designated entrances and (b) to trans-
fer a stone between two rooms, or between a room and a
tunnel. In case (a) we have unary operators, as they only
change the status of one cluster. In case (b) we have binary
operators, as they change the status of two adjacent clusters.

Figure 2 illustrates how our abstraction model works in
Sokoban. At the global level, a search problem is trans-
formed into a graph (Ri, Tj), where the nodes Ri repre-
sent rooms and the edges Tj represent tunnels. In effect,
the global problem has a much smaller search space. Be-
sides the global planning problem, we also obtain several
local search problems, one for each room. Local problems
check the action preconditions for the global planning prob-
lem. For instance, if the abstract action is to transfer a stone
from room A to room B, we have to check that the local
stone configurations allow this macro-action. Tunnels are so
simple that the associated local problems are trivial.

State of the art in solving Sokoban is about 60 out of
90 problems solved by Rolling Stone and deep green. Our
system, called Power Plan, has solved 25 problems so far.

We consider our preliminary results very encouraging, as
they show a great reduction of the problem complexity. For
comparison, we could not solve any problem from the stan-
dard test-suite by using a non-abstracted representation of
Sokoban. Using a partial abstraction (i.e., only tunnels were
abstracted), we solved only one problem. We believe that
we can further improve our performance in Sokoban in the
future. The limitations are on the lack of domain-specific
knowledge of Power Plan, not on the abstraction approach.

LAP in Path-Finding
In path-finding, an agent on a map has to find a (shortest)
path from his current position to a destination position. The
map topology can have many forms, such as a battlefield, the
interior of a building, etc. The problem is important in com-
puter games, robot planning, military applications, etc. The
classical solving strategy is based on single agent search. In
this approach, the map is represented as a grid of atomic
cells, and a search algorithm such as A* is used to search
for the solution. An action is to move to an adjacent cell, if
the destination cell is not an obstacle (Yap 2002).

Our abstraction model groups atomic cells into abstract
clusters, reducing the size of the search space dramatically.
Actions become moving between two entrances of a clus-
ter (crossing a cluster), rather than moving from one cell to
the next. In our experiments, we split the maze into equal-
size boxes which become abstract clusters. For example, a
100 × 100 map can be decomposed into 100 10 × 10 boxes
(clusters). For each edge common to two adjacent clusters,
we identify entrances for communication between clusters.
An entrance is an obstacle-free part of the edge bounded by
two obstacles. For each entrance, we define one transition
point at the middle of that entrance. No points other than the
transition points can be used for moving from one cluster to
another.

We can identify a global problem and several local prob-
lems, one for each cluster. Processing performed inside
a cluster is part of the local problem associated to that
cluster. For each pair of transition points on the border
of the same cluster, we compute an optimal path between
them that is contained in that cluster. Since in path-finding
different problem instances use a fixed map but different
(start, target) node pairs, this pre-processing phase is per-
formed once and re-used for many problem instances. For
n ∈ {start, target}, we also compute optimal paths from
n to the transition points located on the border of the cluster
that contains n.

At the global level, we define the abstract search graph,
whose nodes are start, target, and the transition points.
Optimal paths between the nodes become weighted edges.
The abstract graph can easily be updated for different prob-
lem instances, as we only have to update information about
start and/or target. Since the map if fixed, the rest of the
abstract graph is fixed too. Searching in the abstract graph is
the global problem. In Figure 3 we illustrate this abstraction
process on a 20 × 20 map.

We compared our method with A* performed at the
atomic level. Our first results show a great reduction in the
search effort. Searching in the abstract graph expands one
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Figure 2: A Sokoban problem (#6 of the test suite) is decomposed into several abstract sub-problems. There is one global
problem as well as one local problem for each room. Rooms and tunnels are denoted by R and T , respectively.

Figure 3: A 20 × 20 map is decomposed into 4 abstract clusters. The obstacles on the map are represented by ‘@’. A search
space having 280 non-obstacle squares is replaced by a small abstract graph having 9 nodes (not including start and target).
The abstract search space is shown on the right side of the picture.

order of magnitude less nodes than searching at the atomic
level. The length of the solution computed with our method
is very close to the optimal value. When parameters such
as the maze size or the obstacle rate are varied, the average
increase of the solution length (as compared to the optimal
value) is consistently under 1%. These results are especially
valuable as, in path-finding, the speed of the search algo-
rithm is often crucial, while the solution optimality condi-
tion can be relaxed. For instance, in a commercial computer
game, most of the CPU cycles are allocated to other game
modules such as the graphics engine. In addition, solutions
don’t have to be optimal. Sub-optimal solutions that look
realistic will do, too.

We plan to extend our work in path-finding in many direc-
tions, including natural clustering, adaptive abstraction and
hybrid map representation. As we show in the next section,

when exploring these directions in a generic planning frame-
work, the support of the planning language can be very im-
portant. Even if our technique for maze clustering turned out
to be quite efficient, we still want to explore how to discover
more natural clusters such as rooms inside a building. Natu-
ral clusters can lead to simpler local problems. For instance,
if the cluster does not contain any obstacle square, then op-
timal paths between entrances are computed instantly, re-
ducing the pre-processing costs. In a path-finding problem,
parts of the map can be unknown for the planning agent. For
instance, this is the case when the map is so large that it does
not fit into the computer’s memory. In this case, the feature
clusters can be built dynamically, as the planning agent dis-
covers more and more parts of the map. When the map is
partially abstracted, the search can be performed in a space
representation containing both abstract local clusters (for the
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already explored parts of the map) and atomic-size squares
(for the unknown parts of the map).

Extending PDDL
In this section we discuss in more detail how a more power-
ful version of PDDL would be beneficial for using abstrac-
tion and hierarchies in AI planning. To better express our
vision, we use Sokoban and path-finding as case-study do-
mains.

Since topological abstraction is useful in several domains,
we plan to extend our work in the direction of develop-
ing a generic planning framework based on this type of ab-
straction. A significant part of this generic framework can
be provided by a more general planning language. As we
have pointed out before, the language support that we need
mainly refers to hierarchical planning and topological ab-
straction. The support for hierarchical planning should al-
low us to express an abstracted problem as a sum of sub-
problems having different abstraction levels. The support
for abstraction includes modeling the relation between low-
level and abstract features, automatic abstraction, adaptive
abstraction, and using hybrid state representations. The lan-
guage should also support users to guide the abstraction pro-
cess by encoding hints that should be considered by the ab-
straction algorithm.

The rest of the section is structured in two subsections.
The first subsection identifies challenges about extending
PDDL. The second subsection shows concrete steps toward
solving some of the issues pointed out in the first subsection.

Challenges
In this subsection we identify some challenges that we have
faced that could be more easily addressed by using a more
general planning language. In our experiments with abstract
Sokoban (Botea, Müller, & Schaeffer 2002; Botea 2002), we
used TLPlan (Bacchus & Kabanza 2000), a generic planner
which allows users to plug in domain specific knowledge as
C code libraries. Next we show the parts of our framework
that had to be implemented as custom code.

Since the planning language did not support hierarchical
planning, we represented only the global component as a
planning problem (i.e., formulated in PDDL and solved by
the generic planner). The solver for the local problems was
implemented as custom code in C. This approach definitely
has the advantage of efficiency. On the other hand, it clearly
points out the need for a unified hierarchical planning frame-
work. In such a framework, users should have the opportu-
nity to describe domains using linked levels of abstraction.
As opposed to hierarchical task networks, our abstraction
approach defines boundaries between problem components.
Users should be supported in expressing topological features
of domains such as connectivity of spatial structures within
the domain.

All the abstraction levels of a problem (i.e., in our ap-
proach, both the global problem and the local problems as-
sociated to clusters) should be represented as part of a single
PDDL problem formulation. This formulation also encodes
relationships between problem components, as well as other

useful information that users may consider for explicit rep-
resentation. The issue of PDDL expressiveness should be
kept separated from the strategy adopted for solving plan-
ning problems. However, we want to point out that a uni-
fied framework may also mean a common solving strategy.
In the unified model, we could perform both the high level
planning and the low-level computation. The same solving
engine can be used to solve both levels of the problem.

The translation of a planning problem from the low-level
representation to the hierarchical representation is also part
of the planning framework. This means that the abstraction
process is also integrated in the model. PDDL could be ex-
tended to formalize the codification of rich control knowl-
edge, including hints about how best (in the encoder’s view)
to decompose a problem into components.

Integrating the abstraction process within the model leads
to the interesting and more general debate whether PDDL
should be a user-level language or a machine-level language.

In the first scenario (i.e., user-level), the language is used
only as an interface through which the planner communi-
cates to the outside world. The planner input (i.e., domain
and problem definition) is formulated in PDDL. The plan-
ner’s output (i.e. a sequence of actions representing the
problem solution) can also be considered as a PDDL se-
quence. All the internal problem representations used by
the planner are not part of the generic planning framework.
In this scenario, there is a gap in the framework between the
low-level representation and the abstracted representation of
a problem. Since internal problem representations are hid-
den and planner specific, we cannot have both a low-level
and an abstract PDDL formulation for the same problem.
We either start the solving process with an abstracted PDDL
formulation, or perform the abstraction internally, being un-
able to access the internal abstracted problem representation.
In our previous experiments in Sokoban we performed the
abstraction a priori, as a separate pre-processing step. The
input of the planner was a PDDL formulation of the global
component of the abstracted problem.

The more interesting scenario is to consider PDDL as a
machine-level planning language. This allows us to integrate
the abstraction process into the framework. Planners can
use the language to express internal problem representations
at various stages of abstraction. Several possible problem
representations, having different abstraction degrees, can be
formulated in PDDL and used internally by the planner.
This sets a better framework for planners to automatically
discover useful abstractions and represent them in PDDL.
This also induces greater task modularity and standardiza-
tion. Abstracted problem representations can be produced
and used by other solvers. Last but not the least, when writ-
ten in PDDL, internal problem representations are easier to
understand for humans.

Language Extension Ideas
In this subsection we propose some solutions to the chal-
lenges presented above. First, we show how an abstracted
problem can be formulated in an unitary framework. Sec-
ond, we provide concrete ideas about supporting the abstrac-
tion process. We include language features that allow users
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to guide the abstraction.
When expressed in the extended PDDL, the abstract prob-

lem formulation should actually be a set of inter-dependent
sub-problems defined in the same PDDL file. There is a
global problem and several local problems, one for each
cluster. The file should also contain inter-relationships oc-
curring across the abstraction levels. To identify the sub-
problems, we can introduce two new keywords to the lan-
guage: global and local. These keywords are used for
the problem formulation, not the domain formulation. The
first keyword is part of the global problem header. This
problem is described using abstract state features and ab-
stract actions. When we use a hybrid state representation,
low-level features can be part of the global state description
too. However, to keep our presentation simple, we ignore
this possibility for now. The keyword local introduces the
description of a local problem. For instance, the statement:

local: room1

can be the header of the local problem associated to the ab-
stract object called room1 (which was defined inside the
global problem). The header should be followed by the
PDDL description of the problem. This problem description
is at the low level.

Since the global states are described using new abstract
features, we need new types of global actions, that change
cluster states. The global actions should also be included
in the global problem definition. The initial low-level ac-
tions become part of the local problems. We point out again
that how to define abstract actions should be kept separated
from the problem of extending the language. What we con-
sider more relevant is the mechanism for computing action
preconditions and effects in the global problem. This mech-
anism actually establishes the relationship between the local
level and the global level of a problem.

The local problems do not interact directly. The only
problem interaction allowed in our model is between the
global problem and a local problem. At the global level,
the clusters are treated as black boxes. When solving the
global problem, the planner may need information about the
clusters. This information is necessary to check action pre-
conditions (i.e., whether the current state of a cluster allows
performing a certain action) and compute action effects (i.e.,
the resulting internal state of a cluster when a certain action
is performed). The cluster information is provided by the
local problem associated with the corresponding cluster.

The planner starts solving the global problem. When
information about a cluster is necessary, the planner stops
solving the global problem and computes the needed piece
of knowledge by performing a search in the corresponding
local problem. After the information needed at the global
level becomes available, the solving of the global problem
resumes. There are several ways to optimize this problem
solving approach at the local level. First, when local prob-
lems are small enough, they can be solved a priori (i.e., com-
pute and store all the information about the corresponding
cluster that may be needed for the global problem). Second,
the results of on-demand local computations can be cached
and re-used when needed again. Third, several equivalent

cluster states can be merged to compose one abstract state
of a cluster.

In Sokoban, we performed the problem abstraction as
an application-specific method, with no interference with
the generic planning framework. However, we want to de-
velop generic abstraction methods, integrated in our plan-
ning model. Since it is often hard to find “good” abstractions
by using generic methods only, we consider that language
features allowing users to guide the abstraction process are
useful.

At one extreme, the user’s hints could actually complete
the abstraction process. For instance, for each atomic square
squarei we can declare:

(hint (belongs to squarei roomj)).

This series of statements shows precisely how to build the
abstract clusters.

On the other hand, the abstraction process can be auto-
mated. The rest of our discussion focuses on this case. The
user can assist the abstraction process by encoding hints
about how best to decompose a problem into components.
A very simple example is the following:

(hint (= (max cluster size 10))),

stating that a cluster should contain at most 10 atomic
squares.

Another possible language extension supporting auto-
matic abstraction is the following. Let us assume that the
language accepts the declaration:

(abstracts room square)

as part of the domain formulation. square is a predicate
instantiated in the low-level problem description, room de-
fines an abstract feature, and abstracts is a key word
of the language. The semantic of this statement is that the
domain can be topologically abstracted by building rooms
out of (closely related) squares. When a problem is initially
loaded to the planning system, no room object is instanti-
ated. Since the system knows that squares can be grouped
together to form rooms, a clustering method can be used to
discover rooms for the given problem. The clustering algo-
rithm could be either domain-specific or generic. The algo-
rithm can use hints that the user formulates as part of the
domain or problem definition. When formulated in the do-
main definition, the hints apply to all problem instances of
that domain. When formulated in the problem definition, the
hints apply to the considered problem.

The computed clusters replace the corresponding low-
level features in the global problem representation. These
low-level features become part of the local problems corre-
sponding to those clusters.

The discussion on hierarchical planning and abstraction
applies to both our test cases, Sokoban and path-finding. In
addition, path-finding is a good test-bed for adaptive abstrac-
tion and hybrid state representation. As in the Sokoban ex-
ample, the declaration:

(abstracts cluster square)

can be part of the domain definition in path-finding. Initially,
no cluster object is instantiated, since the planning agent
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did not explore the map at all. On this map, the planning
agent is requested to perform many searches, for different
start and destination points. For instance, in a commercial
game, there can be many characters that have to travel across
the map. Moreover, one character can do many trips during
one game. As the planning agent performs more and more
searches, it also learns more about the map, being able to
abstract the already explored parts. In effect, the state rep-
resentation changes gradually, as more and more low-level
squares are replaced by abstract clusters. After building one
more abstract cluster, the global problem changes, replac-
ing several low-level squares by an abstract feature. Also,
one more local problem, corresponding to navigation within
the newly created cluster, is added. Before the abstraction
is completed, we need to be able to represent a state as a
mixture of both low-level squares and abstract clusters. This
means that the global problem accepts both abstract clusters
and low-level squares for state representation.

Conclusion
Topological abstraction is a powerful technique for reducing
problem complexity in AI planning and single-agent search.
The method is based on a clustering of the initial problem
representation space. The clustering catches local relation-
ships inside clusters and keeps cluster interactions as lim-
ited as possible. In effect, the initial problem is decomposed
into a two-level hierarchy of sub-problems, each being much
simpler than the initial one. At the local level, each clus-
ter has associated a local problem that solves the local con-
straints. There is also a global planning problem which uses
clusters as features in the global state description.

Since this model is useful in several application domains,
it is worth to build a generic planning framework using topo-
logical clustering. In such a framework, the expressiveness
of the planning language can have a great importance. In this
paper we discussed an extension of the PDDL language sup-
porting hierarchical planning and topological abstraction.
We pointed out challenges that could be better solved with
a more general planning language. We also presented ideas
about how to solve these challenges. We demonstrated our
ideas using Sokoban and path-finding, two domains where a
hierarchical approach based on topological abstraction can
be beneficial.
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Abstract

This paper discusses specific features of planning in mul-
tiagent domains and presents concepts for a multiagent ex-
tension of PDDL, the Multiagent Planning Language MAPL
(“maple”). MAPL uses non-boolean state variables and thus
allows to describe an agent’s ignorance of facts as well as a
simplified mutex concept. The time model of MAPL is based
on Simple Temporal Networks and allows both quantitavive
and qualitative use of time in plans, thereby subsuming the
plan semantics of both partial order plans and PDDL 2.1.

Introduction
In this paper we describe some properties specific to plan-
ning in multiagent systems and, resulting from these prop-
erties, propose a multiagent extension of PDDL, the Multia-
gent Planning Language MAPL (pronocunced “maple”). By
Multiagent Planning (MAP) we denote any kind of planning
in multiagent environments, meaning on the one hand that
the planning process can be distributed among several plan-
ning agents, but also that individual plans can (and possibly
must) take into account concurrent actions by several execut-
ing agents. We do not impose any relation among planning
and executing agents: one planner can plan for a group of
concurrent executers (this corresponds roughly to planning
with PDDL 2.1 but necessitates extensions allowing more
execution flexibility), several planners can devise one shared
plan (linear or not) or, in the general case, m planners plan
for n executing agents. In the specific, yet common case of
n agents, each having both planning and executing capabili-
ties we speak of autonomous agents. Note that we do neither
assume cooperativity nor competition among agents.

H3

��
��
��
��P

R01 F

H1

Loc0 Loc1
Loc2

Loc3

R12

R13

Figure 1: A multiagent planning problem

As a motivating example, fig. 1 shows a simple MAP
problem as it appears in the RoboCupRescue simulation (Ki-
tano et al. 1999). There are two autonomous agents: police

force P and fire brigade F . They have different capabilities:
P clears blocked roads, F extinguishes burning houses, both
can move on unblocked roads. Each action has a duration
which may vary because of specific execution parameters
(e.g. location distance, motion speed) and/or intrinsic un-
predictability. For this example, we assume a duration of 30
to 180 minutes for clear, 1 to 4 hours for extinguish, and 2
to 4 minutes for move. The speed and thus the duration of
move is controlled by each agent while the duration intervals
for clear and extinguish can only be estimated. The agents’
knowledge and goals are differing, too: P wants the roads
to be clear, but is unaware of the state of all roads except
R01. F wants all burning houses extinguished, knows that
H1 and H3 are burning, but also that it cannot reach H3
because road R13 is blocked.

Even in this trivial example we can make some general
observations about planning in MAS that will motivate the
concepts introduced in the rest of the paper.

(1) Concurrent acting is central to MAS (P can move to
Loc1 and start clearing R13 while F is extinguishing H1).
(2) Metric time is needed to realistically describe action du-
rations and their relations. (3) Synchronizing on actions of
unknown (at least to some agent) duration demands qualita-
tive use of time (e.g. “after P has cleared R13”). A specific
usage of qualitative time in MAP is (4) synchronization on
communicative acts, for example “after P has informed me
that R13 is now clear”.

While many recent planning formalisms allow some de-
gree of concurrency, most fail in providing either (2) or (3).
PDDL 2.1, for example, supports metric time but enforces
planners to assign exact time stamps and durations to all
events (Fox and Long 2002). In contrast, the concurrency
model of (2001) augments partial order plans with concur-
rency, thus allowing flexible, synchronized execution, but
makes no difference between plans that take seconds and
ones that take years. None of the planning models known to
us allows to synchronize on communicative acts.

To summarize, PDDL is, in its current form, inadequate
for representing MAP problems and their solutions, namely
because of the following missing features:

1. beliefs: if more than one agent is manipulating the world
(unlike assumed by classical planners) facts about it can-
not only be true or false, but also simply unknown to an
agent (e.g. P not knowing whether road R12 is clear or
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not). Instead of using some kind of possible world seman-
tics, we propose to give up the propositional representa-
tion of facts in PDDL and move on to ternary or even
n-ary state variables.

2. model of time: Not only quantitative (“duration is 30
minutes”), but also qualitative (“F moves to Loc3 after P
has cleared R13”) models of time are needed to represent
and coordinate multiple-agent behavior. To that end, we
propose to exchange PDDL’s time-point semantics with a
semantics of temporal relations among actions that can be
both quantitative or qualitative.

3. degrees of control: An agent may exploit another agents’
actions in her own plan (“F moves to L3 after P has
cleared R13”), but cannot (by removing them from her
plan) prevent them from happening. Even her own ac-
tions might be only partially controllable by the agent,
e.g. duration of move (controllable) and extinguish (un-
controllable). PDDL must allow to describe controllable
and uncontrollable events so that agents can exploit their
differing properties during planning.

4. plan synchronization: PDDL 2.1’s plan semantics forces
agents to attribute exact time points to all actions, thus
making synchronization of (partial) plans very hard (when
trivial merging is impossible). More importantly, for rea-
sons of flexibility and security it is often best to share
as little information as possible. To achieve such mini-
mum synchronization we suggest not only to change the
temporal model but to allow speech acts as synchronizing
(meta-)actions in a plan. E.g., all F needs to know about
P ’s plan is that at some point P will have cleared R13. F
can thus enter a speech act TOLD(P,F,R13=CLEAR) into
her own plan that has R13=CLEAR as effect and allows F
to plan on with that knowledge.

Our extension of PDDL will provide these features. Fig. 2
shows part of a MAPL description for the Rescue domain.
Fig. 3 shows a MAPL plan of agent F for the problem given
in Fig. 1

(:state-variables

(pos ?a - agent) - location

(connection ?p1 ?p2 - place) - road

(clear ?r - road) - boolean)

(:durative-action Move

:parameters (?a - agent ?dst - place)

:duration (:= ?duration (interval 2 4))

:condition

(at start (clear (connection (pos ?a) ?dst)))

:effect (and

(at start (:= (pos ?a) (connection (pos ?a) ?dst)))

(at end (:= (pos ?a) ?dst))))

Figure 2: Excerpt from a MAPL domain description

The remainder of the paper presents MAPL solutions to
these problems: first, we show how to describe beliefs con-
veniently as non-binary state variables. Then we present the
temporal model of MAPL and its representation of events
and actions. The concepts of control over and mutual exclu-
sivity among events are introduced in the following sections,

e_init

<

<

s:move(F,L3)

e_goal

s:ext(F,H1)

e:ext(F,H1)

s:ext(F,H3)

s:ext(F,H3)

[60,240]

< [60,240] [2,4]
<

e:move(F,L3)

<

told(P):blocked(R13)=clear

Figure 3: F’s plan including a reference speech act by P

preparing the ground for the definition of MAPL’s plan se-
mantics. Finally, we show how speech acts can provide syn-
chronization between plans of several agents.

Beliefs and other state variables
One main feature distinguishing MAPL from PDDL is the
use of non-propositional state variables: in MAP we must
dismiss the Closed-World Assumption (CWA) that every-
thing not known to be true is false – the truth value might
also be simply unknown to an agent. There are several pos-
sibilities to represent such belief states, for example sets of
possible states (possible worlds) could represent all possible
combinations of states for unknown facts. Another possibil-
ity is to represent each of the three possible states of a fact
(true, false, unknown) by a unique proposition and to assure
that exactly of one these propositions hold in any given state.
This is similar to the representation of negation proposed in
(Gazen and Knoblock 1997): explicit negation of a fact is
compiled away in a planning domain by introducing a spe-
cial proposition representing the negated fact and assuring in
the planning domain that only one of the two facts can hold
in a state.

However, we do not see any genuine merit in a proposi-
tional representation of states; the simplest way to represent
beliefs it to allow state variables to have more than just the
two values true and false. We will therefore not only al-
low ternary state variables (with values true, false and un-
known), but n-ary state variables, meaning that a state vari-
able v must be assigned exactly one of its n possible values
in any given state. Among others, Geffner(2000) uses the
same concept and gives an extended formal description and
justification.

For example, in our Rescue domain the state variable
(pos F) could have any of the values Loc0, Loc1,
Loc2, Loc3 or the new “default” value unknown that is
a possible value for each state variable. Our new CWA will
then be that every state variable the value of which is not
specified in a state (or cannot be deduced otherwise) is be-
lieved to be unknown.

Note that a compilation approach similar to the one of
(Gazen and Knoblock 1997) is still possible: every n-ary
state variable can be compiled down to a set of propositions
that must be ensured to be mutually exclusive. This en-
surance is implicit in the definition of n-ary state variables
and thus gives domain designers a natural way to describe
important invariants of a domain, for example that an object
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can only be at one location at a time or may have only shape
or color.

Definition 1 A planning domain is a tuple D =
(T,O, V, type) where T is a set of types, O a finite set of ob-
jects, V the set of state variables. type : O∪V → T assigns
a type to each object and state variable. dom : V → P(O)
with dom(v) := {o ∈ O|type(o) = type(v)} ∪ {unknown}
gives the possible values for state variable v. A state vari-
able assignment is a pair (v,o) ∈ V ×dom(v), also written
(v=o).

Temporal model
Quantitative models of time are necessary to describe ex-
act temporal relations between actions of differing dura-
tion. Level 3 of PDDL 2.1 provides a simple, yet expres-
sive means to model durative actions. However, the time-
point semantics for plans proposed in (Fox and Long 2002)
is overly restrictive. In forcing planners to assign exact time
points to every action in a plan it takes away the execution
flexibility offered by plan semantics based on action order.
Sequential, Graphplan-like ordered, or partially ordered plan
semantics can easily deal with action durations that are un-
known (in general or to a specific agent) because they offer
qualitative notions of time like “after” or “before”. MAPL
is an approach to take the best of both worlds and combine
quantitative and qualitative models of time. The key idea
is to give up the time-point semantics for plans and go back
to ordering constraints among events, but to make these con-
straints more flexible than those of total or even partial-order
planning. Precisely, the temporal component of a MAPL
plan corresponds to a Simple Temporal Network (Dechter
et al. 1991) the constraints of which are intervals describ-
ing the temporal relation among events (instantaneous state
changes). Note that in lieu of the term action we use the
more neutral event here to reflect that state changes are not
necessarily actively brought about by an agent but can also
be observations of “natural” changes in the environment.

Definition 2 An event1 e is defined by two sets of state
variable assignments: its preconditions pre(e) and its ef-
fects eff (e). For assignments (v = o) in the preconditions
[effects] of an event we will also write (v==o) [(v :=o)].

Relating events by ordering (i.e. temporal) constraints is
central to partial-order planning (but is also implicit in clas-
sical time-step based planning). To allow for a quantitative
model of time, we will extend each constraint with an inter-
val expressing the possible variation in two events’ temporal
distance.

Definition 3 A temporal constraint c = (e1, e2, I) asso-
ciates events e1, e2 with an interval I over the real num-

1In this paper we assume ground events and actions. Instantia-
tion of actions schemas (Fig. 4) includes instantiation of the state
variable schemas (like pos(?a)) as well. When a state variable
is used functionally, i.e. it represents its value in a given state
(like (pos ?a) in (connection (pos(?a) ?p)), instan-
tiation implies creation of ground actions for every possible value
o∈ dom(v). There, v is replaced by o and (v == o) is added to
the preconditions.

(:durative-action Move_F_Loc2[Loc1_R12]

:parameters (?a - agent ?dst - place)

:duration (:= ?duration (interval 2 4))

:condition (and

(at start (== (pos F) Loc1))

(at start (== (connection Loc1 Loc1) R12))

(at start (clear R12))

:effect (and (at start (:= (pos ?a) R12))

(at end (:= (pos ?a) Loc2))))

Figure 4: Instantiated Move action

bers, describing the values allowed for the temporal dis-
tance between the occurrence times te1 and te2 of the events:
(e1, e2, I) is satisfied iff te2 − te1 ∈I . I can be open, closed
or semi-open.

Using intervals, we can express that the duration of an ac-
tion is undetermined that an agent is ignorant of it. The main
advantage of the interval constraints, however, is that we can
express quantitative relations in a quantitative manner: “ex

occurs after ey” is expressed by the constraint (ex, ey, R+);
“ex occurs at the same time as ey” by (ex, ey, [0, 0]). To give
qualitative descriptions of concrete, quantitative constraints
we will use the abbreviation (e1≺e2)∈C for the expression
∀I. (e1, e2, I)∈C → I ⊆R

+, i.e. e1 occurs sometime be-
fore e2. (e1 � e2)∈C is defined similarly for sub-intervals
of R

+
0 .

With such constraints we do not need definite time points
any more: all that is important to describe a plan is the re-
lations among the actions and events. As usual in partial-
order planning, the initial state can be represented by a spe-
cial event e0 such that constraints with e0 can be seen as
absolute times. However, in MAP, there may be a different
initial event for every agent. To be able to synchronize on
absolute times if necessary, we can (but need not) assume a
common clock. It is modeled as a special event etr, the tem-
poral reference point, also called the Big Bang event because
it lies before all other events and is thus the point where time
starts. All agents know etr and thus can describe absolute
times as constraints with etr.

Definition 4 A durative action is a tuple a =
(es, ee, I, einv) where es, ee are events (called the start and
end event), I ⊆R

+ is an interval representing the temporal
constraint (es, ee, I) of the form es � ee, and einv is an
event with eff (e)= ∅, called the invariant event. An instan-
taneous action is a durative action a = (e, e, [0, 0], einv)
where pre(einv) = eff (einv) = ∅. For a set of actions Act,
EAct denotes the set of start and events of actions in Act.

It is clear that when only using instantaneous actions and
constraints of the form (ex, ey, R+) between them, we come
back to partial-order plans. On the other hand, when using
durative actions with constraints of the form (ex, ey, [d, d]),
i.e. exact durations and delays, we will create PDDL 2.1
plans. Thus, MAPL subsumes both partial-order and PDDL
plans.

Before describing the semantics of MAPL plans we will
introduce two more concepts describing events: the first,
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control, allowing planners to distinguish between endoge-
nous and exogenous events, the second, mutual exclusive-
ness (or, relatedly, read-write locks) describing events that
must not occur concurrently.

Control
There are two kinds of durative actions: those in which du-
ration is controlled by the executing agent (e.g. reading a
book) and those in which the environments determines the
duration (e.g. boiling water). In the former case, the agent
(or its corresponding planner) can choose the delay from
start to end event, in the latter case the end event may hap-
pen at any time during the interval given by the constraint.
For any set of actions Acta of an agent a we assume there is
a control function ca : EAct → {a, env} describing whether
the agent or the environment controls the occurrence time of
an event. As agents can normally decide at least the start
time of an action we assume that ca(e) = a for start events
es.

When multiple planners communicate and share parts of
their plans, a planner has to store for each event in a plan
the executing agent controlling the event. As each plan-
ner will plan for at least one agent, the control concept is
a natural way to model which events the planner can in-
fluence and how. Durations of actions where both start
and end events are controlled by the planner (i.e. execut-
ing agents associated with the planner) can be manipulated
in the limits of the constraining interval. Actions in which
only the start event is controlled by the planner can at least
be added or removed from the plan at will. Actions and
events not under control of the planner cannot simply be
removed from the plan; that would be self-deception be-
cause removal would not prevent their occurence. Their
occurence must be taken into account during planning and
plans should be valid for every possible duration in the lim-
its of the constraining interval. (Similar, but more sophis-
ticated concepts are developed in (Vidal and Fargier 1999;
Tsamardinos et al. 2002).)

Mutex events and variable locks
Concurrency is a key notion in MAS. In Multiagent Plan-
ning it appears at two levels: as concurrent actions in a plan
(or distributed over several plans by different agents) and as
concurrent planning. Both levels are closely related: con-
currency conflicts at the plan level must be detected and re-
solved during planning. For the plan level we define:

Definition 5 Two events are mutually exclusive (mutex) if
one affects a state variable assignment that the other relies
on or affects, too. mutex(e1, e2) :⇔

(∃(v :=o)∈eff (e1) ∃(v,o′)∈pre(e2) ∪ eff (e2)) ∨
(∃(v :=o)∈eff (e2) ∃(v,o′)∈pre(e1) ∪ eff (e1))
This definition corresponds to mutex concepts in single-

agent Planning, e.g. in PDDL 2.1 or Graphplan(Blum and
Furst 1997). From a Distributed Systems point of view, how-
ever, the mutex definition describes a read-write lock on the
state variable v that will prevent concurrent access to the
same resource v because this may lead to indeterminate val-
ues of v. Interestingly, the correspondence between mutual

exclusive events and locks on state variable is more visible
in a formalism like MAPL that, by the use of non-boolean
state variables, seems to be a step closer to “imperative”
distributed programming than the more declarative style of
STRIPS and PDDL in which the state variable concept is
hidden behind the Closed World Assumption and ADD/DEL
effects instead of state variable updates.

In the next section, we will use the mutex definition to de-
scribe non-interference in concurrent plans. In another paper
we introduce the related concept of state variable responsi-
bility among agents to solve lock/mutex conflicts during dis-
tributed planning (Brenner 2003).

Plans
Definition 6 A multiagent plan is a tuple P = (A,E,C, c)
where A is a set of agents, E a set of events, C a set of
temporal constraints over E, and c : E → A is the con-
trol function assigning to each event an agent controlling its
execution.

We can now start to describe when a plan is valid, i.e.
executable. We will split this definition into two aspects:
temporal validity, meaning that there are no inconsistencies
among temporal constraints in the plan, and logical consis-
tency, meaning that no actions do logically interfere or are
disabled when they shall be executed in the plan.

To simplify the next definitions we assume the set C of
temporal constraints to be always complete, i.e. ∀e1, e2 ∈
E∃I. (e1, e2, I)∈C. This is no restriction because we can
assume C to contain the trivial constraints (e, e, [0, 0]) for
all events e∈E and (e1, e2, (−∞,∞)) for unrelated events
e1 = e2.

Definition 7 A set of temporal constraints C is consistent if
¬∃e1, e2, . . . , en.(e1≺e2)∈C ∧ (e2≺e3)∈C ∧ · · · ∧ (en≺
e1)∈C. A multiagent plan P = (A,E,C, c) is temporally
consistent if C is consistent.

This is a reformulation of the consistency condition for
Simple Temporal Networks (STNs) (Dechter et al. 1991) as
(E,C) is in fact an STN2. Using the Floyd-Warshall algo-
rithm (Cormen et al. 1992), consistency of an STN can be
checked in O(n3). In planning, new events and constraints
are repeatedly added to a plan while consistenty must be
kept. To check this, we have developed an incremental vari-
ant of the algorithm (omitted from this paper) that checks for
consistency violations caused by a constraint newly entered
into the plan. This algorithm is in O(n2) (for every addition
of a constraint).

Definition 8 A multiagent plan P = (A,E,C, c) is logi-
cally valid if the following conditions hold:

1. No mutex events e′, e′′∈E can occur simultaneously:
∀e′, e′′∈E.mutex(e′, e′′) → (e′≺e′′)∈C ∨ (e′′≺e′)∈C

For any assignment (v == o) in the precondition of any
event e∈E there is a safe achieving event e′∈E:

2We are aware that STN consistency is not adequate for plans
with uncontrollable action durations. We are working to integrate
the concept of dynamic controllability into our framework (Vidal
and Fargier 1999).
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2. (e′≺e)∈C ∧ (v :=o)∈eff (e) (achieving event)

3. ∀e′′ ∈ E ∀(v := o′) ∈ eff (e′′). o′ = o → (e′′ ≺ e′) ∈
C ∨ (e≺e′′)∈C (safety)

Conditions 2 and 3 define plans as valid if there are no
open conditions and no unsafe links, an approach well-
known from partial order planning(Nguyen and Kambham-
pati 2001; Weld 1994). Condition 1 (similarly used in
GraphPlan(Blum and Furst 1997)) describes threats caused
by conflicting effects that do not necessarily cause unsafe
links. This happens especially when events violate invari-
ants of durative actions.

Definition 9 A planning problem for an agent a is a tuple
Proba = (Act, ca, e0, e∞) where Act is a set of actions, ca

is the control function for Act, and e0, e∞ are special events
describing the initial and goal conditions.

We will now define when a plan solves a problem. We do
not need to and cannot use happening sequences like PDDL
2.1 because of MAPL’s plans being partially ordered. In-
stead we will reduce the question to a check for temporal
and logical validity of a new plan that is obtained as a com-
biniation of the problem with the solution plan.

Definition 10 A multiagent plan P =(A,E,C, c) is valid if
it is both temporally consistent and logically valid. A plan
P is a solution to a problem Proba = (Act, ca, e0, e∞) of
agent a if the following conditions are satisfied

1. c is consistent with ca: ca(e)=x → c(e)=x and
∀(es, ee, I, einv) ∈ Act.

[c(ee)=a → ∀(es, ee, I
′) ∈ C. I ′ ⊆ I] ∧

[c(ee)=env → ∀(es, ee, I
′) ∈ C. I ′ = I]

2. ∀(es, ee, I, einv) ∈ Act.
es ∈ E → (ee∈E ∧ einv ∈E) ∧
(es≺einv)∈C ∧ (einv ≺ee)∈C

3. for C ′ = C ∪ ⋃
e∈E{(e0, e, R

+), (e, e∞, R+)}
P ′ = (A,E ∪ {e0, e∞}, C ′, c) is valid.

In words these conditions can be described as follows:
(1) the plans uses actions controlled by the agent in the

way they are specified in the problem: the agent controlling
an event is the same in the problem and in the plan; only
actions in which the planner can control start and end event
can be tightened during planning (complete control).

(2) durative actions and their invariants are used as ex-
pected: for each action appearing in a plan, its start, end,
and invariant event must all appear in the plan as well as
constraints describing their appearance in the natural order:
es ≺ einv ≺ ee. Note that no “pseudo” time points must
be associated with invariants but that it suffices to have con-
straints forcing them to hold anytime between the start and
end events.

(3) executing the plan in the initial state reaches the goals.
Though looking simple, this last condition is the most im-
portant: when initial and goal events are added to the plan
with constraints describing that the initial event (goal event)
happens before (after) all others in the plan, then temporal
and logical validity of the resulting plan signifies that the
plan solves the problem.

Note that the solution plan is not required to contain only
actions from Act: a plan can solve an agent’s problem even
if it contains not a single action of that agent!

Speech acts as synchronizing events between
plans

An agent using a fact in his plan need not know how, why
or by whom it has been achieved. In temporally uncertain
domains the agent must even plan not knowing when ex-
actly the fact will become true. To enable planning under
these different kinds of ignorance, we will allow agents to
use different kinds of possibly virtual reference events in
their plans. As the same event may appear in plans of dif-
ferent agents this provides an implicit coordination among
those plans while still allowing the knowledge about causal
or temporal links of the event with others to vary largely
from agent to agent.

A basic reference event that we will only briefly men-
tion here is etr, the temporal reference point lying before
all other events. All agents know etr and thus can describe
absolute times as constraints with etr.

For MAP it is most important that agents can coordinate
and exchange knowledge about the domain and their plans.
This can be done with communicative events (i.e. speech
acts). For now, we propose only the simple communica-
tive act of the form TELLv,o with pre(TELLv,o) = {(v, o)}
and eff (TELLv,o) = ∅ and its counterpart TOLDv,o with
pre(TOLDv,o) = ∅ and eff (TOLDv,o) = {(v, o)}.

By entering new information into the current plan with
TOLD agents can use it like any effects of other events: as
preconditions of new actions and as temporal reference in
constraints. It is the latter use that is especially helpful:
the TOLD event provides automatic synchronization with an-
other agents plan. E.g. fig. 3 shows how the fire brigade
synchronizes on the police clearing a road without knowing
when or how this is done. Only the minimum of information
necessary for coordinated action is communicated. This is
important both for privacy reasons and to keep individual
knowledge bases conveniently small.

Having communication explicitly anchored in the plan
has several advantages. First and foremost, “being told
something” is one of the simplest means for modeling “ob-
servations” of world changes not brought about by an agent
himself. This way, we do not need complex semantics for
information gathering or conditional plan execution.

For the speaking agent, the communicative act represents
a commitment to inform the other of a specific fact during
execution. It is not enough, for example, that a police agent
promises to clear a road during planning, but that also the
fire agent somehow has to be informed during execution that
this promise has been realized. Anchoring the speech act in
the plan thus is a “physical” representation of the link be-
tween the commitment made during planning and its fulfill-
ment during execution.

During distributed planning this means, on the other hand,
that plans synchronized by speech acts also commit the
agents to coordinate changes to their plans. If, for exam-
ple, the police agent decides at some point during planning
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that he must revise his decision to clear R13, the TELL event
will remind him to inform the fire brigade of this change.
The speech act can thus represent a distributed backtracking
point, a concept similarly used in Distributed CSP solving
(Yokoo and Hirayama 2000).

The basics for a distributed planning algorithm using
speech acts both to exchange missing information and to
synchronize are presented in (Brenner 2003).

Conclusion and future work
We have presented basic concepts for the Multiagent Plan-
ning Language MAPL, an extension of PDDL that supports
planning for and by Multiagent Systems. MAPL’s temporal
model can be used to describe exact, quantitative temporal
relations as well as flexible, quantitative ones. It might there-
fore be useful not only for multiagent scenarios but for every
domain where execution flexibility is important after plan-
ning has been completed. MAPL’s use of non-boolean state
variables makes it easier for domain designers to describe
basic invariants like “an object can have only one location
at a time”. It also sheds some light on the relation between
mutually exclusive actions in Planning and similar concept
in Distributed Computing like read-write locks on variables.

We have defined temporal and logical validity of MAPL
plans as well as what it means to solve a specified planning
problem. As, in contrast to PDDL 2.1, MAPL plans are par-
tially ordered we cannot and do not need to define happening
sequences or induced simple plans for MAPL plans. This
also avoids associating invariants with “pseudo” time points.

In another paper (Brenner 2003), we present the first sin-
gle agent and distributed planning algorithms for MAPL do-
mains. These algorithms are as preliminary as the definition
of MAPL’s syntax and semantics. Exciting future work is
possible now: we are currently working on a parser and a
small domain suite to test both the expressivity of the lan-
guage and the powers and limits of our algorithms.

MAP has been a topic of interest in AI for quite some
time. However, not much work has been published, neither
in the field of Multiagent Systems (MAS) nor in Planning;
furthermore, what has been published is mostly stand-alone
work that has not led to a steady development in MAP re-
search. In our view, this is due to an unfavorable separation
of the (single-agent) planning phase and the (multi-agent)
coordination and execution phase, resulting in AI Planning
researchers concentrating mostly on the former and MAS
researchers almost exclusively dealing with the latter. This
separation is only possible with strong assumptions that nar-
row the generality of the proposed approaches, for example
the assumption in MAS research that the actual planning of
each agent can either be handled by classical single-agent
planning methods or is eased by a given hierarchical task
decomposition. The AI planning community, on the other
hand, has only recently fully acknowledged the need for so-
phisticated models of concurrent plan execution (earlier ex-
ceptions include most notably work by M. Ghallab(Ghallab
and Laruelle 1994)). MAPL is an attempt to show possible
extensions of PDDL 2.1’s representation in a way that al-
lows flexible execution after and easy coordination during
the planning process. We hope that our representation will

allow to conveniently describe largely differing MAP do-
mains for which researchers can propose and cross-evaluate
very different algorithmic approaches, thus promoting the
field of Multiagent Planning.
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Abstract

In this paper we take a critical look at PDDL 2.1 as designers
and users of plan domain description languages. We describe
planning domains that have features which are hard to model
using PDDL 2.1. We then offer some suggestions on domain
description language design, and describe how these sugges-
tions make modeling our chosen domains easier.

The Loyal Opposition
PDDL has served as the underpinnings of the Planning Com-
petition, and has had an enormous impact on the planning
community as a whole. PDDL and STRIPS have served as
a lingua franca for deterministic planning domains, mak-
ing it possible for researchers to compare techniques on
the same problems and enabling meaningful comparisons of
those techniques. The result has been considerable progress
in planning algorithms.

Recently, however, the problems of interest to the plan-
ning community have changed. Goal achievement by itself
is no longer enough, and the form of the goals has changed
as well. Temporal planning requires meeting goals that in-
clude temporal constraints and resource constraints. While
it is possible to model planning domains with temporally ex-
tended state and resources using purely propositional mod-
eling languages, it is expensive in modeler effort and results
in huge domain descriptions. By contrast, software domains
such as data processing, web services integration and and
information integration generally require incomplete infor-
mation, incompletely known dynamic universes and sensing
actions, but do not, generally, require rich models of time.

In this paper, we take a critical look at the design of PDDL
2.1. Our perspective is that of researchers in planning and
scheduling who have considerable experience in designing
and using planning domain description languages. We will
describe planning domains that pose problems for PDDL
2.1. We will then describe what we believe are the core set of
features for modeling planning domains. We will show how
these core features simplify the modeling of the domains of
interest.

PDDL and its Discontents
In this section, we describe some domain models and their
PDDL 2.1 representations, and then discuss reasons why the
PDDL 2.1 model is problematic.

Temporal Constraints and Instantaneous Events

PDDL 2.1 requires that propositions hold for a non-zero
amount of time before they are used as preconditions for ac-
tions. However, PDDL’s underlying representation of states
is not based on intervals, and so this makes it difficult to
specify the interaction between multiple events that modify
the same proposition. It will also be difficult to see what
domain axioms resulted in the separation of two events that
modify the same proposition in the final plan.

Part of the reason for this is that sometimes actions require
additional constraints to decide whether the action sequence
is legal, and PDDL 2.1’s semantics forbid such plans when
there is a possibility of plan execution failure. The following
example appears in (Fox & Long 2003) . The model includes
action

�
with preconditions ����� and effect � , and action�

with preconditions � and effect �	� and 
 . These two
actions are considered mutually exclusive because a plan in
which

�
and

�
execute concurrently may fail. We might

have
�

and
�

execute at the same time in a state where ���
holds, for example. PDDL assumes that the executions of�

and
�

are actually ordered, and that the order is arbitrary.
Thus, if the state happens to be one where ��� holds, it may
be that

�
happens first, making

�
fail both its preconditions.

Modeling this scenario by asserting the intervals of time
over which � and � hold, and forcing actions to declare
how long the precondition must hold, clarifies the situation.
For example, if

�
requires � to hold for 1 unit of time prior

to
�

’s execution, then in order for the plan to be legal,
�

can’t happen at a time that makes � true for less than a unit
of time. This makes it possible to both post and check the
constraints that must hold for both

�
and

�
to happen con-

currently. If � has held for long enough, then
�

and
�

can
happen at the same instant, even in a state where ��� holds.

A related problem is that it is hard to express certain tem-
poral constraints in PDDL 2.1. For example, suppose that an
action Take-Picture requires a proposition stable to hold for
a period lasting from at least 5 seconds before to at least 5
seconds after the Take-Picture ends. Furthermore, the cam-
era expends energy only during the time of the exposure,
which lasts 24 seconds. During the intervening 5 seconds
before and after the exposure, the camera could be involved
in other activities such as changing the filters, but can’t slew
(as this results in vibration).

PDDL 2.1 does not allow direct expression of the con-
straints on stability. As we said previously, there is no way
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(:durative-action take-picture
:parameters (?s - satellite ?c - camera ?o - observation)
:duration (= ?duration 24)
:condition (and (at start (pointing-at (?s ?o)))

(at start (on ?c))
(at start (stable ?s))
(over all (on ?c))
(over all (stable ?s))

:effect (and (captured-but-not-stabilized ?o)
(at start (decrease (energy ?s 5)))
(at end (increase (energy ?s 5)))))

(:durative-action stabilize-before
:parameters (?s - satellite)
:duration (= ?duration 5)
:condition (over all (stable ?s))
:effect (and(at end (stable ?s))))

(:durative-action stabilize-after
:parameters (?s - satellite ?o - object)
:duration (= ?duration 5)
:condition (and(at-start (captured-but-not-stabilized ?o))

(at start (stable ?s))
(over all (stable ?s)))

:effect (and (at end (not(captured-but-not-stabilized ?o)))
(at end (captured ?o))))

Figure 1: Temporal Constraints in PDDL 2.1

in PDDL 2.1 to write a condition that requires a proposi-
tion to hold for an interval of time. Thus, we can’t even re-
quire that Stable hold for 5 seconds before Take-Picture can
start. We can write an action Stabilize-Before that lasts for 5
seconds, with an effect Stable, after which Take-Picture can
be performed. Take-Picture also asserts Stable throughout
the 24 second interval, and properly asserts that the instru-
ment must be on, and affects the power properly. Now, how-
ever, we must ensure that stability is held for another 5 sec-
onds. We can do so by asserting a condition captured-but-
not-stabilized for the observation. The only way to assert
captured, then, is to execute the stabilize-after action. The
only remaining problem is that these actions should be ex-
ecuted back-to-back to enforce our original constraint, and
PDDL 2.1 has no way of ensuring that this happens.

Notice that PDDL 2.1 does not allow direct assertions that
states hold for a period of time, but rather uses action dura-
tion to indirectly affect the amount of time that propositions
hold during a plan. More generally, PDDL preserves the no-
tion of preconditions and effects from STRIPS, which sim-
ply doesn’t make sense when considering plans with over-
lapping concurrent activities. The stability condition de-
scribed above is more than a persistent precondition, in that
it outlasts the end of the action. PDDL has no mechanisms
to specify such requirements.

Exogenous Events
Consider a domain containing a spacecraft that collects data
which can be transmitted back to Earth only at specific
times. PDDL 2.1 forces this to be modeled using constraints
on the times that communication actions can begin and end.
This must be accomplished by using a conditional effect that

enumerates, in the condition, the possible start times for the
communication windows. For instance, suppose that com-
munication windows are open from times 1 to 5, and from
times 7 to 10. The model in Figure 2 describes how this
works. Notice also that we have a function compute-open-
window-duration that determines how long the action takes
based on the start time.

While this enforces the correct behavior in the sense that
communication windows are open at the correct times, it
doesn’t actually have the desired semantics; if a use-window
action occurs at a time when no window is available, the ac-
tion occurs and uses time, but the communication window
is not open for use, when in fact we would like the action
to fail. Furthermore, this approach requires rewriting the
model for each new situation. In particular, the conditions
and the function compute-open-window-duration now must
be revised for each new set of communication windows de-
sired.

The problem is that PDDL does not allow the user to spec-
ify specify exogenouseventsthat are known to be in the plan.
For a treatment of exogenous events in temporal planning
we refer the reader to (Smith & Jonsson 2002). Exogenous
events require no explanation, and may establish states that
can be used by other actions. Often, a null action is assumed
to have established all the propositions in the initial state;
the ability to include many such exogenous actions at differ-
ent times is therefore a natural extension to planning domain
initial states. Including exogenous events will make domain
models more general; for example, the constraints in the
satellite domain governing communication activities can be
removed, and a general condition establishing the existence
of a communication window can be used instead. The initial
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(:durative-action use-window
:parameters (?s - ground-station)
:duration (= ?duration (compute-open-window-duration(?s ?start))
:condition (at start (closed ?s)))
:effect (and (when (or (and ( � (?start 1)) ( � (?start 5)))

(and ( � (?start 7)) ( � (?start 10))))
(over-all (in-use ?s))
(at end (not(in-use ?s))))))

Figure 2: Exogenous Events in PDDL 2.1

state will contain a listing of all communication windows.

Continuously Varying Quantities
Suppose we have an aircraft that can be refueled in flight.
We would like to model the amount of fuel in the fuel tank
while the aircraft is both consuming fuel and being refueled.
As pointed out in (Fox & Long 2003), PDDL 2.1 offers two
options for modeling this domain; discrete durative actions
and continuous durative actions. Discrete durative actions
force all modification of the fuel amount to occur at the end
of the action. Under some circumstances this assumption
eliminates plans that are legal. Suppose the plane has 5 units
of fuel left when the refueling action begins, and consumes
1 unit of fuel per unit of time. Suppose further that the re-
fueling operation adds 20 units of fuel but takes 10 units of
time. Modeling with discrete updates, the plane would be
out of fuel before the refueling action finishes.

Continuous durative actions allow the fuel state to be con-
tinuously updated, and so the situation described above can
be avoided, since the net fuel change is to add one unit of
fuel per unit of time during refueling. This increased power
comes at a high price. The function governing the amount of
fuel must be evaluated at arbitrary points during the action,
and this imposes strict requirements on concurrent actions
updating the same numeric quantity in the plan.

The requirement for continuous updating of variables re-
sults in complex and overly restrictive semantics. It is un-
necessary to allow such unrestricted access to continuously
varying quantities. First, (Fox & Long 2003) indicate that
plan validation only checks the values of continuously vary-
ing quantities at finitely many points, which implies that
high order nonlinear functions cannot be validated. Thus,
the power of the approach is not actually used. It is not clear
whether such high order variations are simply forbidden, or
whether model correctness is sacrificed in such cases. Sec-
ond, modelers usually have a good idea of the conditions un-
der which values of variables are needed, and can build the
models to correctly account for these situations. As pointed
out in (Fox & Long 2003), an alternative model is possible
in which the correct value of the fuel was only guaranteed
to be visible at the start and end of the action. The action of
refueling would change the rate of fuel consumption, neces-
sitating a new action, Flying-and-Refueling. After the com-
pletion of the refueling, if further flying was needed, then
Flying would resume.

As discussed in (Fox & Long 2003), a model such as this
one is weaker than the model using continuous durative ac-
tion, in the sense that more states are needed, more param-

eters may be needed to propagate values through Flying-
while-Refueling, and there is no way to access the value of
fuel in the middle of the Flying or Flying-while-refueling
actions. But the need for doing so has been eliminated, be-
cause the Refueling action now changes the state to Flying-
and-Refueling, and all that is needed is the value of the fuel
level at the end and beginning of the actions to ensure the
fuel value is propagated correctly. The arguments in (Fox
& Long 2003) indicate that all possible concurrent actions
affecting fuel may need to be considered. While this is true,
the approach taken in PDDL 2.1 actually infers these concur-
rent actions during the plan validation phase, and assumes
that checking the endpoints of the actions is sufficient to
validate the constraints. In situations where this is not suf-
ficient, the modeler musttake the burden on, to the extent
they see fit when modeling the application. Thus, the PDDL
2.1 approach makes the commitment to model fidelity for
the modeler, and is inappropriate for more complex cases.

Resources
PDDL 2.1 uses numeric expressions to model resources. We
have seen examples of resources modeled this way in Figure
3. However, this approach makes it difficult to do some very
useful reasoning about resources. Techniques like edge find-
ing (Baptiste & Pape 1996) and resource envelopes (Muscet-
tola 2002; Laborie 2003) require an explicit notion of activ-
ities using resources in order to work. In addition, modeling
resources solely through numeric expressions tends to hide
information from humans reading models, as well as forc-
ing modelers to hide obvious resources in the model by us-
ing the numerical expressions. While techniques like TIM
(Long & Fox 2000) can be used to infer the presence of re-
source behavior in planning domains, we feel there are sig-
nificant advantages to explicitly declaring these parts of do-
main models. Note that complex numeric expressions may
still be necessary to determine the actual amount of resource
consumption or production; for example, a model of so-
lar panel power production will require complex numerical
constraints to determine the actual impact on the resource.
However, an explicit declaration of resources and explicit
declaration of resource use by actions can be beneficial.

Infinite and Dynamic Domains
In order to ensure that the number of actions and proposi-
tions is finite, PDDL permits only a finite number of objects,
which must be explicitly enumerated, and does not allow ar-
guments to actions or predicates to include numeric expres-
sions (numbers being the only non-finite domains permitted
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(:durative-action fly
:parameters (?x - airplane ?y - waypoint ?z - waypoint)
:duration (= ?duration (travel-time ?y ?z))
:condition (and (at start (at (?x ?y)))

(over all (inflight ?x))
(over all ( �

� (fuel-level ?x) 0)))
:effect (and (at start (not (at ?x ?y)))

(at end (at (?x ?z)))
(at start (inflight ?x))
(at end (not (inflight ?x)))
(decrease (fuel-level ?x) (* #t (fuel-consumption-rate ?x)))))

(:durative-action midair-refuel
:parameters (?x - airplane)
:condition (inflight ?x)
:effect (increase (fuel-level ?x) (* #t (refuel-rate ?x))))

Figure 3: Flying and Refueling in PDDL 2.1

in PDDL). It also forbids functions that return objects, which
could be used to introduce infinitely many new objects. The
justification for these restriction is that many planners rely
on being able to enumerate the actions and propositions in a
planning problem.1

Since PDDL is designed for the planning competitions,
tailoring it to the limitations of the planners competing is
reasonable. However, from the perspective of modeling cer-
tain real-world domains, having such a requirement encoded
in the language definition is problematic. For example, (Fox
& Long 2003) point out that it is impossible to write a PDDL
action to fly at a certain altitude. Indeed, an action to drive
at a given speed or a given distance would also be ruled out
for the same reason.

This requirement also makes PDDL unsuitable for mod-
eling software domains. Software domains include informa-
tion integration, web services, data processing, and other do-
mains where the agent interacts in a software environment.
These domains are typically characterized by a large, incom-
pletely known and often dynamic universe. Since PDDL 2.1
was not designed to handle sensing, we will defer the dis-
cussion of incomplete information. Instead, we focus on dy-
namic universes. In PDDL 2.1, actions that create new ob-
jects must be modeled by enumerating all objects that might
appear during planning ahead of time, either explicitly or
implicitly. For example, in the Settlers domain, newly cre-
ated machines are modeled using an integer counter. Such
an approach is inadequate for describing software domains.
For example, consider the following command, which cre-
ates a new archive of the files in directory ˜/papers:

zip papers.zip ˜/papers

This action fails to conform to PDDL restrictions in
two ways; first, it creates a new object, the archive
˜/papers.zip. Second, one of its arguments is a string,
which is not a finite type. Actually, both arguments are
strings, but one of them, ˜/papers, designates an exist-

1A philosophical argument is also offered: that there are only
finitely many objects in the world; we agree that this is technically
true, but for all practical purposes it is false, and the number of
possible actions in many worlds of interest is essentially infinite.

ing object, a directory, and the number of directories is fi-
nite. Following the general advice in (Fox & Long 2003),
we could use the directory as an argument, rather than re-
ferring directly to its pathname, so that argument would be
finite. However, the other argument designates a file yet to
be created, so there is no existing object for which it is an
attribute.

One might insist that such open-ended choices in action
selection create an unreasonable burden for the planner, but
nothing could be further from the truth. Either the choice
will be constrained by the problem specification, in which
case there may be no choice at all, or it will not, in which
case the choice doesn’t matter; any random string will suf-
fice. From a constraint reasoning perspective, it is a trivial
problem.

String and numeric arguments are ubiquitous in software
domains. In addition to file creation, many image processing
commands take numeric arguments, such as thresholds, val-
ues for scaling, rotating, brightening, compression factors,
etc., and positions for cropping or overlapping images. None
of these values are attributes of existing objects, but they
are controls that the planner should be able to set, because
whether, and how well, the plan achieves the goal depends
on the values of those numeric arguments. For example, a
user may want to scale an image to just fit on her screen,
maintaining the same orientation and aspect ratio. The ap-
propriate scale value depends on the horizontal and vertical
extents of the image and of the screen. Another user may
want to combine two images which are at different resolu-
tions. Doing so will require scaling one of the images so that
its resolution matches the other; the appropriate scale value
depends on the resolutions of the two images, and possibly
additional constraints, such as memory and the resolution of
the final image.

One could imagine handling the object creation by list-
ing, in advance, all of the objects that could be created. For
example, we could have a few hundred ”blank” file objects,
and instantiate them as needed when new objects are cre-
ated. However, this is not just inelegant and inefficient; it is
also inadequate. Consider the reverse of the archive creation
action above: archive extraction:
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unzip papers.zip

This action will create new copies of every file in the
archive papers.zip, preserving the original directory
structure from ˜/papers, but rooted in the current direc-
tory. Since a single action can create an unbounded num-
ber of new objects, listing all of the new objects up front is
clearly infeasible.

(Fox & Long 2003) raise the concern in connection with
infinite domains that extensional interpretations of quanti-
fied preconditions are no longer possible. This is not a prob-
lem in the examples we have discussed because, although
domains are dynamic, in any given state, any object domain
is finite and can be directly determined from the execution
trace that led to it. In fact, there is no way to introduce infi-
nite numbers of new objects unless actions can have an infi-
nite number of effects, which impossible to describe unless
we already allow quantification over infinite domains. In
other words, there is no way to get quantification over infi-
nite domains unless we already have it.

A related issue is that an extensional interpretation of uni-
versally quantified goalsmay not be possible, because the
universe at the time the goal is achieved is not known at plan-
ning time, even if the agent has complete information and all
actions are deterministic. Indeed, there could be many goal
states with quite different universes, depending on the exe-
cution traces followed to reach the goal. However, this can
be solved quite simply by interpreting the Herbrand universe
with respect to the initial state, as is done in (Golden & Weld
1996).

Domain Description Languages: An
Ontological Approach

The essence of modeling is abstraction, and the essence of
abstraction is simplification – omitting details so that the
model is simpler than the thing being modeled. Choosing
the right abstraction for a problem makes the problem much
easier to solve. Domain description languages should enable
modelers to abstract away details of planning domains that
they feel are irrelevant to the task at hand.

There is an implicit agenda in the expansion of PDDL
to gradually encompass more and more features that are
needed for various planning domains. One possible conclu-
sion of this is a grand-unified domain description language
(GUDDL). As we have pointed out in this paper, some of the
problems with PDDL 2.1 stem from an attempt to shoehorn
time and resources into a STRIPS-based language. We an-
ticipate similar problems as other features are encompassed.
Domain modelers will tend to reject a language with un-
needed features if the presence of those features proves to
be a burden, either in increased computational complexity
or increased modeling difficulty.

STRIPS and earlier versions of PDDL impose one set of
abstractions: instantaneous action, the STRIPS assumption
concerning persistence of states, and so on. Planning frame-
works like CAIP (Frank & Jónsson 2003) impose different
abstractions, such as the failure to distinguish state and ac-
tion. PDDL 2.1 offers yet another set of abstractions, the
ability to assert only local temporal constraints and tying
temporally extended states to actions with duration, and the
freedom from modeling the interaction of some concurrent

actions that modify the same quantities. Incomplete infor-
mation, offers additional options for abstraction. Some rep-
resentations opt for a list of all possible states, others for
a probability distribution over all possible states, in which
the underlying representation is propositional. Still others
reject the propositional abstraction, to allow sensors that re-
turn (possibly continuous) values, but give up explicit case
analysis afforded by enumerating states.

It is unlikely that a modeler will model a behavior in
two different ways in the same model. Having a language
that supports different abstractions of the same underlying
concept also makes the language clumsy to use and makes
model validation more difficult. While some of the abstrac-
tions are hierarchical, forcing a planning domain to sup-
port the most concrete leads to both inefficiency and frus-
tration on the part of domain modelers who don’t use the
power of the language. Furthermore, it is unlikely that dif-
ferent abstractions will be needed in the same model 2 A
domain modeler is unlikely to want to put both continuously
changing quantities and discretely changing quantities into
the same model, for example. That same modeler, however,
may want unary resources in a model which also has contin-
uously changing quantities. In order to unify the languages,
the resulting language will have to be less abstract, and the
language will become more unwieldy.

A Common Core
As an alternative to a single language for all planning do-
mains, we propose a common core for use in many planning
domain description languages. The core must contain the
essential elements of all planning domains, and provide a
common set of concepts that can be used to develop many
planning languages. These languages can have different
syntax, and different underlying implementations that play
to the strengths of the particular additional components, but
depend on the same set of underlying ideas.

We believe that all planning domains require the follow-
ing components:

1. A notion of state. States must be allowed to contain nu-
mericalarguments, but are fundamentally discrete state-
ments about the world.

2. A notion of objectsor attributes, which take on states.

3. A notion of the conditions governing state transitions.
States may either end on their own or be terminated by
an event or action. The rules governing these state transi-
tions must be encoded in the domain description. Some-
times these transitions may be uncertain, and sometimes
they may be conditional, but they must be described.

4. A notion of the requirementsstates impose on plans.
States must be explained; either an event establishes them
or they are exogenous. Furthermore, states generally im-
pose conditions on the plan. Again, sometimes the re-
quirements may be conditional.

Modelers must describe the set of objects that ex-
ist in the world, and enumerate the states they can

2A potential exception to this is unified agent models, in which
models of different levels of abstraction must be coordinated. How-
ever, it is unlikely that the same planner will work with the different
levels of abstraction.
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take on. For example, a satellite object may take on
the states Take-Picture, Idle, Communicate or
Slew. This is a generalization of the idea that propositions
are either true or not true at any given instant. By declaring
the set of states an object can take on, the modeler also de-
clares a number of mutual exclusion constraints. That is, ob-
jects can be in only one state, and the set of possible states is
enumerated in the model. Notice how the semantics of nega-
tion are affected. In the example of the satellite domain, if a
satellite is not Idle then by closure it must be in one of the
other states.

A state takes the form P( ��������� ��� ) where P is a predi-
cate and ��� are parameter variables. We will refer to the
additional variables 	�
 , �
 and ��
 , the object, start and end
variables of the state. Extending the set of variables this way
makes it easy to post precedence constraints among states,
and also to make decisions about what object of a class of
objects takes on a required state. The constraint ��� � ��� is
implicitly understood to hold for all states. We view these
additional variables as being implicit parameters to all states.

DomainAxiomsprovide the means to explain states, as-
sert the conditions that states impose on plans, and de-
scribe the rules of state transitions. This is accomplished
using constraints on the variables of states. Domain ax-
ioms take the form: P( � � ����� � � ) ����������� Q( � � ����� ��� )
�� !�#"$� where �&%(' � � ����� � �*) and "+%,' � � ����� � �.- � � ����� ��� ) ,
� is a set of conditions and  is a set of constraints. If a
state P is in the plan, then some other states must be in the
plan, and some constraints must hold among the variables
representing those states. Notice that the states that must
be in the plan are not necessarily new states; they can be
states established some other way. Thus, planners must de-
cide whether to reuse existing states or establish new state
instances. The conditions � allow us to specify that some of
the variables in � must take on certain values for the axiom
to apply. The constraints in  allow us to impose limitations
on the possible ground states Q that can be in the plan along
with P.

The conditions can be used to dictate the transitions
between states. Constraints can be posted among the
parameters to limit the legal sets of predicates as well
as imposing ordering constraints among the states in the
plan. As an example, suppose that in the satellite do-
main a Take-Picture can be followed by another
Take-Picture or an Idle state. The rules
Take-Picture(/ - � ) � eq( � ,take-picture) �
Take-Picture( 0 -21 ),eq( �3�4 �5- �63�457 )

Take-Picture(/ - � ) � eq( � ,idle) �
Idle(),eq( �3�4 - � � )

ensure these conditions hold.
Constraints are also a natural way to model both disjunc-

tive preconditions and conditional effects. For example, the
rules
Take-Picture(/ - � ) � eq(/ ,idle) �
Idle(), eq( �63�4 - � � )

Take-Picture(/ - � ) � eq(/ ,warmup) �
Warmup(), eq( � 3�4 - ��8 )

indicate that two possible preconditions can hold for a
Take-Picture action, either an Idle action or a
Warmup action. This easily enables back chaining from ex-

ogenous events.
Constraints also replace numerical expressions in PDDL

2.1. Let us consider the in-flight refueling model of Figure
3. This would be modeled in the following way: the action
Fly( � -29.-.:�- � ) � eq( � ,refuel) �
Fly-and-refuel( 1;-=<>-2?@-.A ),

fuel-cons( ��B - ��B -29.-.: ),
eq(<>-2: ), eq( � -.A )
computes the fuel consumption for the Fly action, which

determines how much fuel is available when the refueling
begins. We post equality constraints to ensure that the des-
tination of the original Fly operation persists in the new
action. The Fly-and-Refuel action looks similar:
Fly-and-Refuel( � -*9C-.:�- � ) � eq( � ,fly) �
Fly( 1;-=<>-.?D-CA ), fuel-prod( ��B - ��B -29C-2: ),eq(<>-2: ),eq( � -CA )
In this case, we post the constraint that fuel is produced

instead of consumed, but otherwise the state axioms look
very similar.

Exogenous events are simply assertions that actions take
place in a plan. One way of thinking about exogenous events
is that they are simply a set of simple domain axioms that
always hold. Since they are volatile in the same way that
goals and initial states are, they properly belong in the initial
state file, It is very convenient, however, that we can express
them using the same underlying concepts that we use to ex-
press the domain axioms. Returning to the communication
windows example, we can express the assertion that a com-
munication window is in a plan as follows:
TRUE � Comm-Window()
and constraints that a communication window is followed
immediately by a closed communication window are written
TRUE �
Comm-Window(), No-Comm-Window(),

eq( ��E - � � )
Pros and Cons of a Constraint-Based
Representation
A number of aspects of PDDL 2.1 make it difficult to build
planners that work by means other than progression. For
example, suppose that a goal is to fly an airplane to a city,
but nothing in the goal specifies the remaining fuel. A pro-
gression planner can simulate the Fly action with the cur-
rent fuel and check for action success. However, a regres-
sion planner must figure out how to invert the functions in
the domain axioms to determine the minimum amount of
fuel needed to perform the action in the city of origin. Con-
straints make this easier, since they are simply relations on
the legal values of the variables. In a sense, however, this
moves the problem to the underlying support system to en-
force the relation correctly. However, this is not required.
Domains can be written that involve only successor state ax-
ioms, or only involve explanatory axioms. Thus, if a mod-
eler knows that only progression planning is needed, only
the successor axioms need to be put in the model.

As with PDDL, generic states can be introduced without
fixing the entity that takes on that state. Since this is just
another variable, it can be constrained just like any other
variable. However, as we said earlier, mutual exclusion is
enforced on objects as a part of the semantics of objects.
For PDDL, this must be done by other means, either using
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hand-coded domain axioms or propositions or numeric ex-
pressions to simulate unary resources.

PDDL uses the STRIPS axiom to ensure that propositions
that are not negated persist in time. This is a little harder
to do using our framework. Since properties of objects are
manifested as parameters in the states, we need to ensure
they are propagated from state to state using equivalence
constraints, as we saw in the Fly-and-Refuel example.

PDDL actions can change the value of many propositions
at once. Synchronizing state changes using the concepts we
describe is also simple. We can write a rule that forces many
objects to change their states all ”simultaneously”.

An advantage of our approach over PDDL is that we can
write rules that require unconditional state changes. How-
ever, in some cases, we are actually forced to do so; an ex-
ample is “idle” states where we would like to persist some
state information.

We have eliminated explicit actions from our representa-
tion. Part of the reason for this is that, when states have dura-
tion, there is a blurring of the distinction between temporally
extended states and actions with duration. In many domains,
some properties that appear ”static” are really ”active”; a
spacecraft pointing at Earth is performing many functions in
order to do so, for example. Finally, some states may only
hold for a short time, as opposed to continuing indefinitely.
Since actions can be mimicked using parameters of states,
and since most propositional planners assume actions to be
instantaneous, we feel this imposes no great burden. As we
discuss later, actions can be introduced at the syntactic level
if desired. However, the underlying semantics is concerned
only with state transitions.

Extensions
How can the core be extended? We describe three principal
extensions: states with temporal extent, uncertainty, and dy-
namic domains. All of these extensions are very natural and
the fundamental concepts we have described above make it
easy to create languages that support these features.

State Duration and Metric Temporal Constraints

States can be extended to have duration, and constraints
then govern duration and the temporal relationship between
states. As an example consider the Take-Picture state.
Suppose its duration is 24 seconds. Then we have the fol-
lowing rule: Take-Picture(/ - � ) �
addeq( �63�4 - ��� - �3�4 )

States are now more properly called intervals. Note that this
is a very natural extension given the representation described
previously; we merely add more constraints on the start and
end variables of states.

More generally, we can post any constraints in Allen’s
algebra. For example, consider the satellite domain in
which the Take-Picture state required the satellite to
be Stable for 5 seconds before and after the action. Con-
sider the domain description in Figure 1. Compare it to the
following:
Take-Picture(/ - � ) �
Stable( 1 ), eq( � -*1 ),
addeq( ��� -���� - �
	 ),addeq( ��� -�� - ��	 )

We can concisely express the constraint that a
Take-Picture state requires a Stable state that
”contains” it, and express the exact constraints that must
hold between the temporal variables of the states. Further-
more, we can also ensure not only that some state occurs in
the plan, we can ensure that it happens at a particular time.

If states have duration, we can no longer employ the
STRIPS axiom, States do not necessarily persist indefinitely;
we must write the successor axioms and frame axioms for
all states. However, this does not impose a serious burden
on the modeler in most cases. A domain axiom can indicate
that a particular state can last indefinitely, but their succes-
sors must be enumerated in case the state is terminated. For
example, consider the Idle state in the satellite example.
In the event that a state terminates, we must describe what
states can follow it. Termination is accomplished by assign-
ing or constraining the duration of the state. Defining suc-
cessors can be done a number of ways, but an easy way is
to use a parameter of the state to define the possible succes-
sors, then use conditions as we have described in previous
examples. The rules would look like this:

Uncertainty

Uncertainty can be added in several different flavors to ac-
commodate the needs of the domain. For example, in a con-
tingency planning context, one might only wish to provide
the set of possible outcomes. Those wishing a description
more like MDPs can provide probability distributions over
action transitions. If we revisit the satellite domain, we see
that the rules need to be augmented in these cases. Suppose
that trying to take a picture may fail because the shutter does
not open. We can do so by introducing a special set of world-
choice variables for each state, which are “set” by the world.
For example, suppose the Take-Picture action either results
in a Camera-Ready state or a Camera-Broken state, condi-
tional on an outcome,  	 , which the planner has no control
over:
Take-Picture(/ - � )
� eq( � ,take-pic),eq(  	 ,ready) �
Camera-Ready(),eq( �3�4 - �
� )

Take-Picture(/ - � )
� eq( � ,take-pic),eq(  	 ,broken) �
Camera-Broken(),eq( �3�4 - ��� )
A richer representation of uncertainty allows us to spec-

ify a probability distribution over possible outcomes. We
can augment the above example by associating probabilities
with the different values of the outcome variable  	 . Notice
we need only do this for successor state transitions, not ex-
planatory axioms.

A more complex task is to handle continuous probabil-
ity distributions over the outcomes of actions. Uncertainty
can be represented in terms of unknown values of variables.
For example, uncertainty over the start time of an event can
be expressed as an interval representation for the start-time
variable. Again, we must take care to distinguish between
uncertainty, where the world chooses, and temporal flexibil-
ity, where the agent chooses. More sophisticated represen-
tations can add probability distributions over values in the
interval. For example, if the Take-Picture action re-
sults in an uncertain amount of onboard storage use, we can
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imagine extending the set of constraints to involve contin-
uous probability distributions as constraints over quantities.
Sensing actions can constrain the parameters of the distri-
butions, for example. However, the fundamental notion of
constraints over variables in the states still holds.

More importantly for software domains, we can repre-
sent uncertainty over the value of an object attribute, such
as the pathname or size of a file. Here we see a significant
advantage over propositional representations, because these
attributes have infinite domains; representing the possibili-
ties as a list of worlds is impossible. Instead, we leave the
domain of the variable open, to indicate that it could have
any value, or partially open, to indicate that it is restricted to
a particular subset of values.

In addition to uncertainty over the attributes, we can rep-
resent uncertainty over the objects themselves using the
same representation. It is not necessary to list all objects
that could exist in the world; it is sufficient to represent the
actions that can discover new objects and dynamically in-
troduce new variables as needed to describe new objects as
they are discovered. We can represent sensors that return ar-
bitrary numbers of new objects by making the world-choice
variables  	 universally quantified (Golden & Weld 1996;
Golden & Frank 2002).

Dynamic Domains

Dynamic domains arise both in the context of sensing, when
a new object in the world is detected, and object creation,
when an action in the plan leads to the creation of new ob-
jects whose states must be reasoned about. We can han-
dle sensing and object creation using a similar approach. A
newly created value is similar in most respects to a newly
sensed value, the differences being that, in the case of ob-
ject creation, the world changes and the planner has some
control over the outcome. We can represent a new object,
such as the output of a data-producing action, as a variable
whose value is a skolem function of the corresponding ac-
tion. As in the case of sensing, if the number of objects that
will be created is unknown (because it depends on an un-
known number of inputs, for example), we can represent the
effect using universal quantification, where one variable is
used to represent a set of objects.

A simple extension to the form of domain axioms enables
this. Recall that domain axioms can lead to the creation of a
new state for an object, if an existing state isn’t appropriate.
Thus, there is already precedent for constraints that hold to
justify the existence of a new state. We can extend the form
of domain axioms to enable the creation of new objects as
well. For example, consider the zip file creation action. Let
us suppose that the states a zip file can be in are Idle,
Compressing, Uncompressing, Moving, and the
properties of interest of zip files are its size, whether or not
it is compressed (represented by a boolean) and its location.
We can write this as follows:
Zip(

� - / ) �
new Zip-File, Idle( � - � -.: ),eq( : ,false)
zipsizeof( � - / ),eq( � - � ),eq( � � - ��� )
The keyword new indicates that the zip file we are as-

serting properties of is created and is like the approach used
in (Golden 2002). The semantics of this can ensure that no

state before the time of creation can be asserted. However,
we can also impose the usual constraints on the Idle state
of the file, along with asserting the files initial size, location,
and compressed state.

Syntax
The fundamental construct we have used in the descriptions
above is that the presence of a state in a plan implies some
other states must exist, and that there are some constraints.
We can wrap these ideas in a number of convenient syntactic
constructs. We will describe a variety of these in this section.

We will begin with simple domains where states do not
have duration and metric temporal constraints are not used.
We can use syntax that posts ordering constraints on the
states directly:
P � Q and translate this into the constraints on variables. If
temporal constraints and states with duration are used, we
can use the Allen’s algebra names or other convenient labels
to express temporal constraints. In the case of the constraint
that the satellite must be stable while taking pictures, this
constraint is written
Take-Picture(/ - � ) �
contained-by[5][5] Stable( 1 )
Equivalence constraints can be posted by simply using the

same variable names in the parameter lists of the states.
For those who want to build models with a distinction

between state and action, this can be accomplished. Ac-
tions would depend on objects being in particular states, and
would ensure that some objects have new states. A sim-
ple transformation would augment each state with action pa-
rameters and the axioms can be rewritten to ensure that the
proper constraints are posted among the variables of differ-
ent states.

As we said previously, since properties of objects are rep-
resented by parameters of states, a mechanism is needed to
propagate values to states where they are involved in con-
straints. However, syntax can conceal these details from
the modeler. For example, objects can be created with a
fixed set of variables, and the states can use these variable
names in constraints. The underlying reasoning system can
then decide whether new variable instances are needed and
post the appropriate constraints. In the satellite domain,
Idle states normally would propagate the amount of data
in the onboard storage unit to the next Take-Picture or
Communicate state. However, the action need not name
the variable representing the data amount, and the underly-
ing system would simply use the variable representing the
last computed quantity in the constraint involving the next
state. Notice that this syntax is similar to the PDDL 2.1 syn-
tax, but with a different interpretation.

The astute reader will notice that, since mutual exclusion
is enforced on object states, that state machines or timed
automata are a good representation for many planning do-
mains. The transformation between these representations
and our fundamental language of states and constraints is
also very straightforward. Rules relating the states of differ-
ent objects are represented by synchronizations across dif-
ferent state machines.

As we said previously, domain axioms can be thought of
as implications that always hold. However, another way of
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Figure 4: A simple state machine representation of the satel-
lite domain. The rules implied by the state machine appear
below the figure.

thinking about them is as partial plans. As such, we can as-
sert that actions take place and have constraints among their
variables, without deciding when they take place, or even
whether they are ordered or not. Syntax describing partial
plans can take a wide variety of forms.

Finally, resource declarations can be added to a language
to augment numerical constraints, enable technologies like
edge finding and envelope calculations, and to add descrip-
tive clarity to model definitions. With an explicit resource
declaration, we can replace axioms designed to enforce mu-
tual exclusion with a unary resource shared by many ac-
tions, as well as numerical expressions meant to simulate
resources.

For example, consider the case of a unary resource, sta-
bility, used by 5 different actions: three Take-Picture actions
(one for each of three instruments on a satellite), communi-
cation, and slewing. All the actions but the slewing action
require stability, and slewing makes the satellite unstable.
We might write this model as follows:
Resource unary stability
Take-Picture(/ - � ) �
uses Stability ( � 3 � � - � 3 � � )

Communicate() �
uses Stability ( �63 - �3 )

Slew() �
uses Stability ( � 3 - � 3 )
Each state now declares how it uses the resource. The us-

age time can be constrained using mathematical functions of
the start and end times of the activity in any way the domain
modeler sees fit.

Now consider a mutli-capacity reusable resource such as
power. Resources now must declare their resource impact as
well as the time span during which the resource is affected.
As an example:
Resource multi reusable power 5
Take-Picture(/ - � ) �
uses power ( �63 � � - �3 � � -�� )
Finally, we consider renewable resources, where each ac-

tivity can consume the resource or produce the resource. In

this case, we must allow for the possibility that an activ-
ity could change the resource in different ways at different
timepoints, in general.
Resource multi renewable power 5
Take-Picture(/ - � ) �
uses power ( � 3 � � -�� )
This looks quite similar to the declaration of a function

in PDDL, but there is an important difference: it is eas-
ier to understand that the resource is a complex, flexibly
scoped constraint that can be reasoned about as a single en-
tity. This simplifies modeling as well as revealing the rea-
sons for mutual exclusion of actions. The computational
burden is wholly shifted to the implementation, where it can
be efficiently handled in any way the implementer sees fit.
All of these declarations can be converted into simple arith-
metic constraints, or they could be used as the input to edge
finding, envelope calculations, or other sophisticated tech-
niques.

A final syntax issue is that of functional representations
versus object based representations. PDDL 2.1 uses a func-
tional representation, and allows objects to be passed as ar-
guments to functions. Other planning domain languages use
a notion of objects with attributes, where attributes can be
accessed using syntax that resembles that in object oriented
programming languages. Neither of these approaches is fun-
damentally incompatible with a constraint-based representa-
tion such as the one we have proposed. The two approaches
offer different representational transparency in the model
and in the way in which planners access the information,
but can represent the same things.

A Challenge for the Community
In this paper, we do not advocate a single planning domain
description language. Even though the fundamental con-
cepts we have described appear quite general and powerful,
it would be easy to create a single, very clumsy language
supporting many features using these concepts. However,
we believe that using these concepts as a starting point will
make it easier for language designers to extend the basic lan-
guage in a wide variety of ways and create good languages
for accomplishing many modeling tasks.

Several existing plan domain description languages make
use of some of the ideas presented here. Numerous lan-
guages have more flexible temporal representations (Jónsson
et al. 2000; Smith & Jonsson 2002), use constraints rather
than functions (Frank & Jónsson 2003), and use dynamic do-
mains (Golden & Frank 2002). All of these languages have
their pros and cons. Language designers should be sensi-
tive to the strengths and weaknesses of these languages for
the various purposes they are used for, and consider how
the language is likely to be used. The challenge for the plan-
ning community is not to search for one language that fits all
needs, but to search for the core elements of languages that
are most suitable for modeling different planning domains.
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Abstract

We describe a model-based planning representation, aimed
at capturing more efficiently the basic topological and struc-
tural properties of a domain. We specify the syntax of a
domain-modelling language based on the proposed repre-
sentation. We report the experimental results obtained with
a prototype system (called PMP, Pattern-Matching Planner)
able to represent and solve planning problems expressed in
this language. The performances of PMP on a set of five do-
mains are compared with those of a second planner, adopt-
ing the same search algorithm but using a classical STRIPS
propositional language. Preliminary results show a superior
performance of PMP on all of the chosen domains.

Introduction
During the past few years, the planning community has put
a significant effort into developing systems able to exploit
domain-specific knowledge to carry out a more ‘informed’
search (e.g., knowledge about the generic type and struc-
ture of a domain (Fox & Long 2001; 2002), control knowl-
edge and structure of desirable solutions (Bacchus & Ka-
banza 2000)(Nau et al. 1999), heuristics (Hoffmann &
Nebel 2001)(Haslum & Geffner 2000), problem constraints
and domain invariants (Kautz & Selman 1999)(Gerevini &
Schubert 1998)). In spite of the leap in the scale and com-
plexity of the problems solved that this effort has produced,
current applications are still limited to narrow, well-defined
domains, and do not exhibit the flexibility and adaptability
that characterise human planners (Wilkins 1997)(Wilkins &
desJardins 2001). To a large extent, the cause of this limita-
tion is the fact that, in addition to domain-specific knowl-
edge, planning in the real world requires using common-
sense knowledge and reasoning (including reasoning by
analogy, abstraction, learning, and dealing with uncertainty
and incomplete knowledge), a type of inference which has
proven particularly hard to automate in all areas of AI.

This work is guided by the hypothesis that one of the main
factors preventing modern planning systems from carrying
out fast and effective common-sense reasoning (and, hence,
from scaling well to realistic domains) lies in their adoption
of inefficient problem representations. In particular, most

�This work was partially supported by the UK Engineering and
Physical Sciences Research Council, grant no. GR/R53432/01

current planners rely on ‘propositional’ domain descriptions
languages (e.g., STRIPS, ADL, PDDL and descendants).
Such formalisms are not always appropriate for modelling
real-world problems, particularly when these require a sub-
stantial amount of common-sense reasoning about spatial
and topological relations between objects. Indeed, even the
most recent versions of PDDL (Fox & Long 2003) require
the basic physical properties and constraints of the world
(e.g., the fact that an object cannot be simultaneously in two
different places) to be declared and/or dealt with explicitly.
The adequate encoding and exploitation of such constraints
turns out to be crucial for achieving good performances in
large and realistically complex problems (e.g., see (Kautz &
Selman 1998)).

An alternative to adopting propositional (or ‘sentential’)
formalisms consists of using model-based (or ‘analogical’)
domain descriptions. In a model-based representation, the
world state is encoded as a data structure which is iso-
morphic to (i.e., a model of) the semantics of the prob-
lem domain. For example, in their seminal work, Halpern
and Vardi proposed the adoption of a Kripke structure to
model the ‘possible-worlds’ knowledge of a group of in-
teracting agents (Halpern & Vardi 1991). Because of their
isomorphism with the world state, a key feature of model-
based representations is their ability to implicitly embody
constraints that other representations must make explicit,
and, hence, to improve the efficiency of the reasoning pro-
cess (Myers & Konolige 1992). On the other hand, model-
based formalisms tend to be less expressive and more limited
in scope than propositional languages.

In this paper, we propose a model-based planning rep-
resentation, able to capture implicitly, more efficiently and
naturally the basic, common-sense structural and topolog-
ical constraints (expressing spatial and ‘containment’ rela-
tionships, respectively) of a domain. Although model-based,
the representation is sufficiently expressive to allow the en-
coding of a significant set of domains, in which the planning
performances are notably improved.

The rest of the paper is organised as follows: first of all,
we delimit the class of domains included within the scope
of this investigation and describe the general features of the
new representation. Secondly, we specify the syntax of a
description language, which allows encoding domains using
a simplified version of the general representation proposed.
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Thirdly, we discuss preliminary results obtained with a pro-
totype planner on a set of five domains, and conclude by
pointing out advantages, limitations and possible extensions
of the proposed approach.

A Model-Based Representation
The planning representation that we describe here has been
developed to allow the efficient and natural encoding of
object-rearrangement (or, simply, move) domains. These
can be defined as problems that require planning the changes
of position (location) of a finite set of objects on the basis
of their spatial and topological relations, subject to a set of
constraints. The Tower of Hanoi (ToH) represents a pro-
totypical example of this class, in which the positions of a
set of objects (disks) have to be changed according to a set
of rules (constraining the movement of the disks). Other
examples of this class are the Briefcase domain, Gripper,
Blocksworld (BW), Grid, Logistics and Eight-puzzle. No-
tice, however, that although not explicitly of a ‘move’ na-
ture, some domains are isomorphic to (and can be treated
as) object-relocation problems. For example, if activities are
represented as objects, and locations denote time points or
intervals, then the problem of scheduling a number of tasks
over a given time period can be seen as that of re-assigning
to each ‘object’ (activity) an appropriate ‘location’ (start/end
time point), subject to various constraints. More in general,
any state change of an object can be modelled as a change of
position, given an appropriate reformulation of the domain.

The basic entities of our representation are ‘nodes’,
‘places’ and ‘edges’. ‘Nodes’ represent instances of the
types of (mobile) objects present in the domain (e.g., phys-
ical objects, agents, resources, etc.). ‘Places’ denote differ-
ent locations of the domain, and can be thought of as quali-
tatively distinct areas of space containing sets of objects. A
place can contain nodes, other ‘sub-places’, or both. ‘Edges’
are pairs of places and nodes, and express spatial and topo-
logical relationships between them. An edge may ‘connect’
two places, two nodes, or a place and a node. Nodes, places
and edges can be associated to unique labels.

The sub-places of a place are places themselves, and can
be used to define the internal structure of a place. A place
may be defined so that it is subject to specific restrictions,
limiting, for example, the type and number of nodes that it
can contain. The sub-places of a place may also be con-
nected by edges. A place containing no connected sub-
places will be called ‘unstructured’.� Nodes, places and
edges are defined using three separate type hierarchies, in
which the properties of a type are inherited by all of its in-
stances and sub-types.

Figure 1.(a) shows an example of node and place hierar-
chies for the well-known Briefcase domain. The types “OB-
JECT” and “PLACE” lie at the roots of the two hierarchies.
The place hierarchy specifies that a “Location” place will be
allowed to contain any number of nodes of type “OBJECT”
(i.e., instances of “Portable” or “Mobile”). A place of type
“Briefcase” can only contain “Portable” nodes.

�In general, one can see nodes as places required to be always
empty, or places as nodes which contain other nodes.

Location
{OBJECT}

Briefcase
{Portable}

OBJECT

Portable

PLACE

Office

P

Home

B D

Briefcase1

(a)

(b)

Mobile

Figure 1: Briefcase world: (a) type hierarchies, and (b) ini-
tial state for the “Get-paid” problem

Figure 1.(b) contains a graphical representation of a pos-
sible encoding of a state in terms of places, nodes and
edges. Nodes are represented as (labelled) filled circles,
places are denoted by dashed ellipses, and edges are de-
picted as bold arcs (in this example, the edge hierarchy can
be assumed to contain only the root class “EDGE”). The
state represented in Figure 1.(b) corresponds to the set of
propositions �at(Home,B), at(Home,D), in(P),
at(Home,P)�, the initial state for the “Get-paid” problem.
Nodes ‘P’ and ‘D’ are “Portable” objects (the types of the
various instances are not shown in the figure), whereas ‘B’
(the briefcase) is an instance of “Mobile”. Notice also the
presence of different types of places: ‘Home’ and ‘Office’
are instances of “Location”, while ‘Briefcase1’ is a place
of type “Briefcase”. The state contains a single edge, con-
necting node ‘B’ with place ‘Briefcase1’ and encoding the
association between the briefcase node and its contents.

As a second example, Figure 2 models the Blocksworld
domain. Part (a) of the figure describes node and place hi-
erarchies, according to which a “Cell” place is allowed to
contain up to one (‘[1]’) node of type “OBJECT”, while a
“Stack” place can contain any number of “Cells” as sub-
places. Part (b) shows a graphical representation of a three-
block problem. This example demonstrates the use of struc-
tured places and edges as place-to-place connectors. In par-
ticular, each of the three “Stacks” S�-S� contains four con-
nected “Cells”, some of which contain a node. Although
in this example they are not connected, these three places
could, in turn, be linked by (possibly labelled) edges. The
nodes labelled ‘A’, ‘B’ and ‘C’ are instances of the type
“Block”, while the three nodes labelled ‘T’ are of type “Ta-
ble”. Notice that such ‘T’ nodes refer to distinct objects
of the current state which do not need to be discriminated
at this level of the representation, and that have been as-
signed the same label. We will refer to this kind of objects
as generic instances of a type, in that they cannot be dis-
tinguished from each other, but can still be discerned from
other entities (even of the same type) having a unique name.
In this example, none of the internal sub-places or edges
have been associated to a unique label.
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Figure 2: Blocksworld: (a) type hierarchies; (b) graphical
representation of the state �On(A,Table), On(B,C),
On(C,Table), Clear(A), Clear(B)�

Representing Change
Having described the basic elements of the state represen-
tation, let us move on to the definition of the formalism for
specifying the set of possible action schemata, necessary for
identifying the legal transformations of the state. In this rep-
resentation, the world state is a collection of places, nodes
and edges. In general, any of these elements will be al-
lowed to be moved from their current position, or even to
be added to or removed from the state. However, nodes are
often the only mobile objects of the domain, while places
and connecting edges cannot be affected during plan execu-
tion and can be regarded as forming an underlying stationary
structure. For example, in Blocksworld, the internal cells of
the three stacks can be regarded as ‘fixed’ places, while the
blocks and the ‘table’ nodes can be moved from one place
to another (subject to appropriate constraints).

In this analysis, we assumed that the possible transfor-
mations of the state are limited to the movement of nodes
and places, while the edges connecting such entities remains
unchanged.� When a node (or a place) moves, all edges
connecting it to other entities remain ‘attached’ to it, and all
contents of a place move with it. In addition, the movement
of places and nodes is restricted by the general constraints
of the domain (e.g., number and types of nodes allowed in a
place) specified by the type hierarchies.

Consider, for example, the action schema ‘Put-in’ for
the Briefcase domain, illustrated graphically in Figure 3.(a).

�This implies that the initial number of entities – nodes, places
and edges – remains constant throughout plan execution.

The left-hand side (preconditions) of the schema specifies
the situation holding in the two relevant (‘loosely’ con-
nected) places before the execution of the action. (Notice
that the absence of nodes in one of the places should not be
interpreted here as requiring such place to be empty – this
is clarified below). The right-hand side (effects) depicts the
same set of places and nodes after the action has produced a
new node arrangement.�

x

y

x y

(a) Put-in

x

(b) Move-B

x

Figure 3: Briefcase domain: action schemata

In general, the preconditions of an action may contain a
conjunction of ‘groups’ of connected places and nodes. An
action schema can be applied in a state � when each and ev-
ery one of the elements – places, nodes and edges – present
in its preconditions ‘matches’ (can be bound to) a distinct �

element of �, so that each precondition group is bound to a
(distinct) group in � having the same topological structure
(‘pattern’ of places and edges) and node arrangement. The
definition of ‘match’ is as follows: two types match iff one
is sub-type of the other; two instances match iff they are the
same instance (i.e., they have the same name); an instance
� and a type � match iff � is an instance of � , or � is an
instance of any of � ’s sub-types. A precondition group con-
sisting of a place containing � nodes matches any place (of
the appropriate type) containing at least � nodes (of the ap-
propriate type). For two edges to match, they must connect
matching entities. In summary, for an action to be applica-
ble, each of its precondition groups must ‘overlap’ with a
distinct part of the current state. In the previous example,
the preconditions of the Put-in operator contain only one
group, which is easily mapped to corresponding elements
of the state shown in Figure 1.(b).

Figure 3.(b) contains the graphical representation of the
more interesting action schema ‘Move-B’, which allows the
movement of the briefcase from a location to another. The
preconditions of this action contain two groups, which must
be bound to distinct places of the state. For the action
schema to be applied correctly, node ‘x’ must be bound to

�The Take-out action schema can be obtained simply by reading
the Put-in operator ‘backwards’.

�Notice that generic instances of a type still represent distinct
elements of the state.
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an instance of “Mobile”, and the two places to (distinct) in-
stances of “Location”. If these constraints on the type of the
nodes and places were not enforced, these elements could be
bound to incorrect instances and lead to illegal moves (such
as moving a “Portable” node like ‘D’ directly across loca-
tions, or a “Mobile” (briefcase) node inside a “Briefcase”
place). Notice that the Put-in operator (and its mirror-image
Take-out) will also be subject to appropriate type require-
ments, although in this case the topological structure of the
preconditions and effects is sufficient to guarantee that the
application of the schema (in both directions) to a semanti-
cally correct state will always produce a correct state, even
when multiple briefcases are present.

x y y

x

Figure 4: Blocksworld: ‘Put-On’ action schema

Finally, consider the BW Put-on action schema, repre-
sented graphically in Figure 4. Let us assume the types
of the nodes ‘x’ and ‘y’ to be, respectively, “Block” and
“OBJECT”, and all places to be of type “Cell”. Notice
the use of empty-set symbols in the preconditions, requir-
ing the two top cells to be empty. With reference to the
state depicted in Figure 2.(b), the first group of the precon-
ditions would match the cell containing ‘A’ (and the empty
cell immediately above), or, alternatively, the cell contain-
ing ‘B’ (and the one just above). Similarly, the second group
would match the same cells, and, in addition, the two cells
at the bottom of ‘S�’ (‘y’ is of type “OBJECT”). Hence,
this schema could be applied in the current state to move
‘A’ onto ‘B’ or vice versa, or either of the two blocks on
the table. Notice that for this action schema to be used in a
‘backward’ search, it would be necessary to require an extra
empty cell on top of the second group, in order to guarantee
that node ‘x’ (being removed from the top of ‘y’) is ‘clear’.

In general, the nodes, places and edges present in the ini-
tial state of a problem are not necessarily preserved through-
out the plan execution: new objects can be dynamically ‘pro-
duced’, existing objects can change their state or be ‘con-
sumed’, and relations between places might change as a re-
sult of some of the actions. For example, in a ‘house con-
struction’ domain in which places represent the locations
that the workers can currently reach, the addition of a new
floor or of a new scaffolding will change the set of places
and the connections between them. Although such ‘non-
conservative’ state transformations have not been considered
here, the model could be easily extended to include a set
of primitive actions which allow the addition and removal
of nodes, places or edges (subject to appropriate precondi-
tions), enabling the representation of this type of dynamics.

A Prototype Language
In order to assess the effectiveness of the representation,
a prototype planner has been implemented. The domain-

description language developed for the planner consists of
a restricted, ‘diagrammatic’ version of the formalism de-
scribed in the previous section. In particular, in the imple-
mentation, the internal structure of places is confined to be
a one- or two-dimensional grid of sub-places. Hence, places
can either be unstructured, or have their internal structure
equivalent to that of a matrix (or vector), in which cells are
considered as a collection of adjacent locations and are al-
lowed to contain up to one object (node).� Since nodes have
been represented simply as labels, a place is a (structured or
unstructured) collection of strings.

A further simplification of the language implemented con-
sists of not allowing the use of connecting edges, which en-
code topological and spatial relationships. This restriction
is compensated in part by the possibility of places to have a
predefined, fixed internal structure (which can be augmented
with a set of dedicated spatial relationship – this is discussed
below in more details), and in part by the possible use of
identical names across hierarchies, which allows, for exam-
ple, a node and a place to be assigned the same label (i.e.,
to be somewhat connected). As mentioned before, dynamic
changes of the underlying topological structure of the do-
main have not been allowed.

In spite of the limited expressiveness, this language still
contains most of the fundamental characteristics of the gen-
eral model, and allows a preliminary assessment of the va-
lidity of its basic assumptions. The language developed is
sufficiently flexible to be able to model naturally and effi-
ciently a small subset of the benchmark domains (including
BW, Briefcase, Miconic, Gripper and Eight-puzzle), which
we used to carry out a set of experiments. The results of such
experiments are reported in the final part of this section. In
what follows, we illustrate briefly the syntax of the language
and its semantics, exemplifying the description with decla-
rations taken from the BW domain.

Type Hierarchies
The type hierarchies are declared using a syntax similar to
that of PDDL. To describe the syntax, we adopt the extended
BNF (EBNF) formalism, used in the original PDDL defini-
tion (McDermott et al. 1998):

�types-def� ::= (:ObjectTypes �typed-list (name)�)
�types-def� ::= (:PlaceTypes �place-type��)
�typed-list (�)� ::= �� � ��� �type� �typed-list (�)�
�place-type� ::= �name� ��type�[::�dimension�]�
�type� ::= �name� � (either �type��)
�dimension� ::= 1 � 2

The pipe character (‘�’) indicates disjunction (e.g.,
�dimension� can be either ‘1’ or ‘2’). The category
�name� can be any string of characters, not necessarily be-
ginning with a letter. The ‘typed list’ is a parameterised pro-
duction that generates a (possibly empty) list of object-type
names and ‘IS-A’ relations, using the minus sign (“�”) as in
PDDL to indicate a ‘parent’ type. ‘object’ and ‘place’
are both predefined types, and ‘object’ is used as default

�Notice that, for simplicity, the notion of ‘adjacency’ in two-
dimensions is restricted to vertical and horizontal pairs of cells.
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terminator of any typed list. The optional parameter in the
place type declaration (surrounded by square brackets) al-
lows the specification of the internal structure of a type of
place (array of one or two dimensions)�. In absence of such
parameter, the place type is assumed by default to be un-
structured. As in PDDL, the ‘either’ construct allows an ob-
ject type to be defined as the union of several types. Below
is an example of type declaration for the BW domain:

(define (domain blocksworld)
� � �
(:ObjectTypes block table)
(:PlaceTypes stack �object::1�)
� � �

)

Types ‘block’ and ‘table’ are declared (by default) as
sub-types of ‘object’. Places of type ‘stack’ will be
one-dimensional arrays (“::1”) of ‘object’s. Notice that
this syntax does not allow the specification of an upper limit
on the number of elements contained in an unstructured
place, or on the number of ‘cells’ composing a structured
place. That is, a ‘stack’ place (vector) could, at this point,
contain any number of cells, each one containing up to one
‘object’. The upper limit on the number of elements (or
cells) contained in a place will be determined at ‘run time’,
by the specific problem instance.

Action Schemata
The following EBNF productions specify the syntax for the
declaration of an action schema:

�action-def� ::= (:action �name�
:parameters (�typed-list (variable)�)
�body-def�)

�body-def� ::= :pre (�place��)
:post (�place��)

�place� ::= �name� � [�relation�] �object���
�object� ::= �variable� � �emptySpace�
�variable� ::= �name�
�relation� ::= � � / � � � �
�emptySpace�::=

The action declaration consists of a unique name, a list of pa-
rameters, and lists of ‘pre’- and ‘post’-conditions (effects).
The parameters are names of variables, coupled with the re-
spective types. The pre- and post-conditions consist of lists
of place types, each containing as argument a list of parame-
ters and, possibly, ‘empty spaces’. The empty-space symbol
(‘ ’) is used in the preconditions to require the presence of
empty cells in structured places, or to require the availability
of ‘space’ for an object in non-structured ones.

For an action to be applicable, all the elements present in
the preconditions must be bound to appropriate elements of
the current state, as explained earlier on. Notice that all the
places listed in the preconditions must be in a 1-1 mapping
with those listed in the postconditions, following the order
in which they are listed. In addition, the number of objects

�Notice that unlike square brackets, which are meta-symbols,
curly brackets are terminal symbols of the language being defined.

present in each place must remain constant�. Below is an
example of ‘Put-on’ action schema in Blocksworld:

(:action Put-on
:parameters (x y - block)
:pre (stack �x � stack �y �)
:post (stack � � stack �y x �)

)

This declaration can be easily mapped to the graphical repre-
sentation of Figure 4. By default, the elements listed inside
a structured place are interpreted as being required to be ad-
jacent (i.e., to occupy adjacent cells). Thus, blocks ‘x’ and
‘y’ are guaranteed to be ‘clear’ by the presence of an empty
cell adjacent to them.	 The two ‘stack’ places listed in
the preconditions are mapped to the two places listed in the
effects, in the order specified. The content of each cell of a
structured place listed in the preconditions (identified by a
parameter or an empty space) is replaced with the object oc-
cupying the same position in the postconditions, following
the order in which the objects are listed. For example, the
cell containing the object that gets bound to parameter ‘x’
will end up containing an empty-space (‘ ’), and the (cur-
rently empty) cell adjacent to ‘y’ will contain ‘x’. Elements
specified in a non-structured place cannot be required to be-
long in any specific spatial relationship.

In order to require more complex spatial relationship
to hold between elements contained in a structured place,
the language has been endowed with a set of (optional)
�relation� symbols, representing a limited version of the
more general feature of labelled edge. These symbols can
be used inside structured places to require that a certain spa-
tial relationship, different from that of adjacency, hold be-
tween the specified elements. For example, ‘�’ indicates that
the elements that follow can be (with respect to each other)
“anywhere within the place”; ‘�’ means “anywhere on the
same row”, ‘�’ means “anywhere in the same column”, and
‘/’ requires that the two following elements be located in
adjacent cells of the same column (the last two relationships
are only needed for two-dimensional arrays). The chosen set
of relationships is by no means complete, and can be easily
extended with other, more complex, ones. An example of
usage of these relationships is demonstrated by the Miconic
(elevator) domain description, reported in Appendix A.

Initial State and Goal

We use an actual initial state and goal declarations for a spe-
cific BW problem (the ‘Sussman anomaly’) to illustrate in-
formally the syntax adopted for describing initial state and
goal. The correct formalisation can be easily inferred from
this example and the EBNF rules used earlier for the types
and actions declarations:

�An ‘empty space’ is treated as a special type of object.
�This assumes that all the ‘block’ objects will be arranged in

the ‘stack’s so as to have always at most one empty cell adjacent
to them, which represents the space on ‘top’ of them – e.g., see
Figure 2.(b).
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(define (problem Sussman)
(:domain blocksworld)
� � �
(:Objects A B C - block T - table)
(:Places s1 s2 s3 - stack)
(:init

s1 [T A C ]
s2 [T B ]
s3 [T ])

(:goal
stack �C B A�)

)

Notice the similarity between the declaration of the initial
state and the graphical representation shown in Figure 2.(b).
In the declaration of the initial state, the contents of a struc-
tured place are delimited by square brackets, indicating the
actual ‘start’ and ‘end’ of the array. Hence, the declaration
implicitly specifies the maximum number of required cells,
and the exact position of all the objects and empty spaces
(‘ ’) within them. For unstructured places, the contents will
be delimited by curly brackets (as for normal sets), and the
declaration will specify the contents and the maximum num-
ber of objects that a place is able to contain.

A goal is syntactically equivalent to a precondition list.
It consists of a ‘conjunction’ of places required to contain
specific sets of objects (nodes), possibly subject to specific
spatial relationships. The conditions for achieving a goal are
analogous to those required for the application of an action
schema: a goal 	 is achieved in a state � when all groups
specified in 	 can be bound to distinct groups of �, such that,
for each place of 	, all the elements contained in it match dis-
tinct elements in the corresponding place of � (which satisfy
the same spatial relationships, if appropriate).

In goals – like in action preconditions – the objects listed
inside a structured place are required to occupy consecu-
tive cells of the place, in the same order specified. How-
ever, the ‘pattern’ of objects specified can be placed any-
where within the place. More formally, if 
 is a type of
structured place, and ��� ��� � � � � �� are objects, the goal

����� � � � ��� requires an instance of a place of type 

to contain the listed objects in any � consecutive cells, such
that (��� ��), (��� ��), (��� ��), � � �, (����� ��) are all pairs
of adjacent elements. Thus, for example, for a state � to
achieve the goal of the ‘Sussman’ problem presented ear-
lier, it must be the case that � contains a place of type
‘stack’ in which (‘C’,‘B’), and (‘B’,‘A’) are pairs of ad-
jacent elements. Two examples of stacks of four cells that
satisfy such requirements are ‘[T C B A]’ and ‘[C B A ]’.

Experimental results
Ideally, the evaluation of the efficiency gain (or loss) re-
sulting from the adoption of a new domain representation
– let us call it ‘�’ – with respect to another (propositional)
representation, ‘’, could involve the following four steps:
(1) measuring the performance of a state-of-the art plan-
ning system adopting  a on a select set of problems; (2)
‘switching’ the domain representation to �; (3) measuring
the performance of the system on the same set of prob-

lems; (4) comparing the results. However, this method of
assessment presents several drawbacks. The first one con-
cerns the fairness of the evaluation in itself. After more
than three decades of research based almost exclusively on
propositional domain-modelling languages, planning algo-
rithms have become more and more sophisticated and geared
towards purely sentential descriptions. In fact, one could say
that their efficiency results mainly from their ability to ex-
ploit some of the inherent properties of such representations.
Taking a state-of-the-art planning system, designed specifi-
cally for propositional descriptions, and simply ‘switching’
its representation into a completely different one (assuming
that this is possible) would not produce a system ‘compara-
ble’ with the original one. Indeed, the new formalism might
be incapable of replicating some of the particular techniques
upon which the propositional planner might rely for achiev-
ing good performances. At the same time, new, different
reasoning modes may become available in the new repre-
sentation, which could lead to gains in performance. How-
ever, modifying the algorithm to take advantage specifically
of such features would lead to the implementation of an en-
tirely different system, not comparable with the original one.

The second methodological issue concerns the actual
value and feasibility of the assessment. Even assuming that
a specific system can be identified such that all of its sophis-
ticated search mechanisms can be correctly ‘translated’ in
the new representation, what would be the significance of
an evaluation carried out on such a specific case? The re-
sults would not apply to all planning algorithms, not even to
those adopting the same propositional language. In addition,
replicating correctly all of the various features of the plan-
ner in the new representation would require a considerable
effort, and would still leave a margin of uncertainty on the
soundness of the outcome.

The above considerations suggest that a fair evaluation
should be based on a very simple, ‘primitive’ planning al-
gorithm, in which the few mechanisms at the basis of the
search can be encoded in a straightforward manner in both
representations. One possible candidate that immediately
springs to mind is the original STRIPS planner. However,
although old and inefficient, STRIPS is quite a complex sys-
tem; obtaining, understanding and modifying the original
software, written more than thirty years ago, did not seem
a very practical approach.

Therefore, in order to assess the value of the new repre-
sentation, we decided to build two simple prototype plan-
ners, adopting exactly the same search engine (a traditional,
uninformed, breadth-first forward state-space search), but
differing in the way they represent domains and prob-
lems. The first, propositional planner (which we called
‘PP’) adopts a classical (typed) STRIPS representation. The
second planner (which we called ‘PMP’, Pattern-Matching
Planner) adopts the ‘diagrammatic’, simplified version of
the general model-based representation described in the pre-
vious section. The two planners were developed using the
same programming environment and language (Java), and
were run on the same machine. We tested the planners on the
same problems for the five chosen domains (BW, Gripper,
Miconic, Eight-puzzle and Briefcase). In carrying out these
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Table 1: Time taken (in sec.) by PP and PMP for solving
Blocksworld problems with four, five and six blocks.

BW-�-problem instance (� = no. of blocks)
Planner BW-4-0 BW-4-1 BW-5-0 BW-6-0
PP 0.52 1.50 7.43 144.42
PMP 0.08 0.44 0.34 1.60
PMP��� 0.19 0.54 2.13 36.23

experiments we hoped to demonstrate that: (1) PMP actu-
ally produced correct solutions; (2) its performances were
at least ‘comparable’ with those of PP. The very first results
that we obtained were encouraging: in the four BW prob-
lem instances used, PMP was not only producing correct
solutions, but also performing much better than PP, with a
speed-up factor varying from more than three to as much as
ninety times faster (see the first two rows of Table 1).

We reasoned that such difference in performance had to
do with the fact that the specific representation of BW in
PMP is implicitly constrained. For example, in PP the space
available on the table is not limited; hence, at any point of
the search, any block on top of another can be put on the
table. By contrast, in PMP the problem representation is
limited to three stacks.
 Hence, many of the moves which
are possible in the standard propositional representation are
no longer available in PMP, which can avoid exploring them.
This significantly prunes the number of possible paths in the
search space. In order to evaluate the performance of PMP
without this ‘inherent’ advantage, we added to the descrip-
tion of the problems a number of redundant empty stacks,
so that the total number of stacks equalled the total number
of blocks. This ‘evened up’ the number of possible paths
in the two representations, as the space available on the ta-
ble in PMP was now sufficient to allow the same number of
moves as in the propositional representation. We repeated
the same experiments, adding five extra problems to the set
of tests (all taken from the benchmark problems used in the
AIPS’00 International Planning Competition). The new re-
sults for PMP on the original four experiments are reported
in the last row of Table 1 (labelled ‘PMP(b)’), while the re-
sults for the complete set of instances are plotted in Figure 5.

As expected, the presence of the redundant stacks caused
a loss in performance, evident from the comparisons of the
PMP and PMP(b) data. However, PMP still took signifi-
cantly less than PP to find the same (shortest) plan in all of
the problems. Figure 5 shows that the increasing difficulty
of the problems produces (exponentially) bigger differences
in performance in favour of PMP. One possible explanation
for this speed-up may be that the problem representation in
PMP is still more constrained than the propositional one. In
other words, many of the search paths that are considered in
PP may be redundant or non-feasible, and are completely ig-
nored in PMP. For example, the ground action-schemata in
PP may contain duplicate or unadmissable instances (e.g.,

	The problems had been chosen so that three stacks were suffi-
cient for finding the same optimal solution found by PP.

move a block on top of itself) that are implicitly avoided by
PMP’s object-based representation.

Problem
 instance

100

102

103

104

105

101

 5 blocks

10-1

= PPTime (s.)

 4 blocks  6 blocks

= PMP

Figure 5: Blocksworld: results for PP and PMP planners.

In order to further investigate the effectiveness of the rep-
resentation, we carried out experiments on four other do-
mains – namely, Gripper, Miconic, Briefcase and Eight-
puzzle. The results are plotted in Figures 6, 7, 8 and 9,
respectively. In Figures 6 and 8 the problems have been or-
dered by increasing PP-time; notice that the sum of the two
numbers identifying each problem increases monotonically.

Problem
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10-1

101

102
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104

100

Time (s.)

 1-0

= PP = PMP

10-2

105

 2-0  2-1  3-0  2-2  3-1  4-0  4-1

Figure 6: Gripper domain. Problem instance ‘�-�’ consists
of two rooms, containing respectively � and � balls.

a

100

102
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104

101

= PPTime (s.)

 2 persons  3 persons

= PMP

10-1

Figure 7: Results for the Miconic domain. All problems
contain four floors (except for problem (a), which has three).
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Figure 8: Briefcase domain. Problem instance ‘�-�’ con-
tains one briefcase, � locations and � portable objects.
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Figure 9: Eight-puzzle domain.

Being confined to a small set of domains not randomly
chosen from the entire population, these results cannot be
assumed to form a representative sample from which general
conclusions can be drawn. However, albeit preliminary, they
demonstrate the effectiveness of the proposed approach, and
give a clear indication of the performance improvements that
the new representation can yield (with respect to a standard
propositional representation) in the context of move prob-
lems.

Related work
One of the few recent works adopting a model-based view
to planning is that of Giunchiglia and Traverso (Giunchiglia
& Traverso 1999), who treat planning as a model-checking
problem. Their approach is more abstract and general than
the one proposed here: the representation is not based on a
model structurally isomorphic to the world, but on a graph
(FSM) representing the possible states in which the world
can be and the possible transitions between them. Although
more general, this representation fails to implicitly capture
the spatial and topological constraints of the domain.

In the work of Cesta and Oddi (Cesta & Oddi 1996), plan-
ning is seen as the problem of deciding the behavior of a
dynamic domain described as a set of state variables subject
to constraints. This view can be seen as complementary to
the approach taken in this work, as it is based on the idea
of representing a domain as a set of possible state changes,
instead of possible object moves. However, once again, the

representation is not capable to implicitly embody the topo-
logical and structural constraints of the problem.

The object-centred domain-description language (OCL)
developed by Liu and McCluskey (Liu & McCluskey 2000)
allows modelling a domain as a set of objects subject to var-
ious constraints. The idea of an object-based representation
is, in many respects, analogous to that of a model-based ap-
proach. However, OCL does not allow the specification of
the spatial features of the domain; hence, some of the con-
straints which are implicit in the proposed model still have to
be explicitly declared in OCL (e.g., the fact that if an agent
holds an object, the location of the object must coincide with
that of the agent).

The work of Long and Fox (Long & Fox 2000) on the
abstract structure of domains and generic types is also rele-
vant in this context. Long and Fox have developed domain
analysis techniques which allow the automatic detection and
exploitation of generic types of objects (such as mobiles and
portables) in a domain, given its propositional description.
In essence, the move problems considered here can be seen
as generalizing and combining two of the abstract classes
identified by Long and Fox (namely, those of ‘transporta-
tion’ and ‘construction’ domains).

An earlier example of work integrating model-based and
propositional representations is the hybrid problem-solving
system of Myers and Konolige (Myers & Konolige 1992).
Myers and Konolige proposed a formal framework for com-
bining analogical and deductive reasoning. The system they
implemented could reason about ‘diagrammatic’ structures
isomorphic to the current world state. However, the system
did not allow the model to undergo any change during the
reasoning process, and, hence, could not be used to solve
planning problems. In addition, the efficiency of the repre-
sentation was not evaluated against that of a propositional
language through a comparative study, as it has been done
here. The latter approach and other related ones fall within
the area of ‘diagrammatic reasoning’ (Glasgow, Narayanan,
& Chandrasekaran 1995), and are particularly relevant to
the simplified, diagrammatic version of the representation
which was used in the experiments.

Discussion
In this paper we have introduced and assessed a new plan-
ning representation, able to capture more efficiently the ba-
sic topological (containment relationships between places
and objects, or objects and objects) and structural (spatial
relationships between places, or internal structure of a place)
properties of a domain. In addition, we have described the
syntax of a specific domain-description language, represent-
ing a simplified version of the general model proposed. The
performance of a prototype system (PMP) on a subset of
five domains has been compared with that of an equivalent
propositional planner (PP), adopting an identical planning
algorithm but using a STRIPS domain-description language.
The results show that PMP is superior to PP on all of the
chosen instances of problems. We believe that the speed-
up of the PMP planner is the result of the ability of the new
representation to (1) capture naturally and implicitly some of
the basic, common-sense physical constraints of the domain,
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and to (2) organize in appropriate structures the relevant en-
tities of the domain, allowing more efficient reasoning about
the object-rearrangement aspects of the problem.

The adoption of a simpler, model-based, spatially-
structured representation that allows effective common-
sense reasoning also enables new reasoning modes, which
can support easier and more efficient learning, heuristic-
extraction and abstraction techniques. For example, it is
easy to see that the graphical description of the action
schemata shown in Figures 3 and 4 could be inferred au-
tomatically using machine-learning and image-processing
techniques. In addition, the use of edges as node-to-place
connections can easily support abstraction: a group of ob-
jects contained in the same place (or attached to the same
object) can be represented as a single entity, allowing the
system to abstract away from the details of the parts and en-
abling abstraction to take place at different levels.

The use of a model which replicates the spatial and topo-
logical aspects of the real world also provides the planner
with an implicit guidance on the ordering of subgoals. Con-
sider, for example, the ‘Sussman anomaly’ problem in BW,
presented earlier. A propositional description of the prob-
lem does not provide a priori information on the order in
which the two subgoals �(On A B),(On B C)� must be
achieved. By contrast, in the proposed representation, the
goal-pattern � = stack�C B A� allows regressing a new
goal �� in which ‘A’ has been picked up from the top of ‘B’
(by reversing step Put-on(A,B)), but does not permit the re-
gression of a situation in which ‘B’ has been removed from
the top of ‘C’ (via step Put-on(B,C)). In fact, consider the ac-
tion schema Put-on(�,�): its effects include leaving block �
‘clear’. While goal � makes no requirements on the content
of the cell to the immediate right (read ‘top’) of ‘A’ (which
may thus be assumed empty), the cell to the right of ‘B’ is
currently occupied by ‘A’. This prevents � from being bound
to ‘B’. Hence, a backchaining planner would be (correctly)
forced to begin with addressing subgoal (On A B) – i.e.,
to execute Put-on(A,B) as final step.

Finally, a domain-modelling language (such as the one de-
scribed earlier) based on the proposed representation has a
straightforward graphical interpretation, and, hence, should
result more intuitive and easier to use for the non-experts;
this, together with better performances, is expected to fa-
cilitate the take-up of AI planning technology and its wider
application to the real world.

The proposed representation, however, is also limited in
several ways. Perhaps its most obvious weakness is the
fact that it does not offer any means for describing the non
spatial or topological aspects of a domain (such as time or
metric quantities), which, on the other hand, could be mod-
elled using a propositional language. However, the approach
described here should be seen as representing the extreme
of a continuum of possible domain-modelling languages, in
which propositional and analogical aspects of a domain can
be present in different degrees. One of the future directions
of this work consists of extending the representation to allow
the use of propositional expressions. A more expressive ver-
sion, for example, could allow nodes to consist of complex
objects, having an internal (static or dynamic) structure and

properties. In such an extended model, the action precon-
ditions could require the attributes of the specified objects
(such as size, color, shape, etc.) to satisfy specific (qualita-
tive or quantitative) constraints.

In conclusion, the results of this investigation demonstrate
the potential benefits of the proposed representation, and
motivate further work on model-based planning formalisms
and on their use in conjunction with current propositional
paradigms. This paper lays the foundations for future devel-
opments in this direction.
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Appendix A

A.1 – Miconic domain description

(define (domain miconic)
(:ObjectTypes person lift)
(:PlaceTypes building �object::2�

lift �person�)

(:action board
:parameters (P - person L - lift)
:pre (building�� L P� lift� �)
:post (building� L � lift� P �)

)

(:action depart
:parameters (P - person L - lift)
:pre (building�� L � lift� P �)
:post (building� L P � lift� �)

)

(:action move-up
:parameters (L - lift)
:pre (building�/ L �)
:post (building�/ L�)

)

(:action move-down
:parameters (L - lift)
:pre (building�/ L �)
:post (building�/ L �)

)
)

A.2 – Miconic problem instance

(define (problem mic-01)
(:domain miconic)

(:Objects A B C D E - person
lf - lift)

(:Places bd - building lf - lift)
(:init bd [ [ A B ]

[lf D ]
[ C ] ]

lf � �
)
(:goal bd [ [lf A ]

[ D C ]
[ B ] ]

)
)
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Abstract

We discuss an application of planning to data processing, a
planning problem which poses unique challenges for domain
description languages. We discuss these challenges and why
the current PDDL standard does not meet them. We discuss
DPADL (Data Processing Action Description Language), a
language for describing planning domains that involve data
processing. DPADL is a declarative, object-oriented lan-
guage that supports constraints and embedded Java code, ob-
ject creation and copying, explicit inputs and outputs for ac-
tions, and metadata descriptions of existing and desired data.
DPADL is supported by the IMAGEbot system, which we
are using to provide automation for an ecological forecast-
ing application. We compare DPADL to PDDL and discuss
changes that could be made to PDDL to make it more suitable
for representing planning domains that involve data process-
ing actions.

1 Introduction
Earth-observing satellites return terabytes of data per day,
providing global daily coverage across multiple spectral
bands at a variety of resolutions. These observations can
be used in countless ways: to monitor changes in Earth’s cli-
mate, assess the health of forests and farms, and track critical
short-term events, such as severe storms. However, doing all
this in a timely manner is a significant challenge, which will
require greater levels of automation. To go from raw “level
0” satellite data to high-level observations or predictions
such as “decreased vegetation growth” or “high fire risk” re-
quires many data-processing steps, from filtering out noise
to running simulations. There are often many data sources
to choose from, and many ways to process the data to pro-
duce the desired data product. These choices involve trade-
offs along many dimensions, including data quality, tempo-
ral and spatial resolution and coverage, timeliness, CPU us-
age, storage and bandwidth.

We use planning technology to automate this data pro-
cessing. We represent data-processing operations as plan-
ner actions, descriptions of desired data products as plan-
ner goals, and use a planner to generate data-flow programs
that output the requested data. We are working with Earth
scientists to provide planner-based automation to an eco-
logical forecasting system called the Terrestrial Observa-
tion and Prediction System, or TOPS (Nemaniet al. 2002)
(http://www.forestry.umt.edu/ntsg/Projects/TOPS/). We

have developed a planner-based softbot (software robot),
called IMAGEbot, to generate and execute data-flow pro-
grams (plans) in response to data requests. The data-
processing operations supported by IMAGEbot include im-
age processing, text processing, managing file archives and
running scientific models. Some aspects of the planner are
described in (Golden & Frank 2002).

In the course of developing IMAGEbot, we considered
available domain description languages, especially PDDL,
for representing data processing actions, but found them un-
suitable. We discuss the features of these domains that are
problematic for PDDL and the changes to the PDDL that
would be needed to handle them. To deal with these issues,
we developed a new language called DPADL, for Data Pro-
cessing Action Description Language. We considered bas-
ing our language on PDDL, which is attractive in that it has
become a standard for much of the planning community, but
decided instead to base the syntax on a different widely-used
language: Java. This decision was driven by practical con-
siderations, such as our desire for the language to be usable
by software developers, the appropriateness of an object-
oriented language to describe the complex data structures
that arise in data-processing domains, and the fact that Java
is the language that both TOPS and IMAGEbot are written
in, to name a few.

In the remainder of the paper, we discuss language fea-
tures relevant to representing data-processing domains, how
those features are implemented in PDADL, and what issues
there would be in including those features in PDDL:
• First-class objects (Section 2): Data files often have com-

plex data structures. The language should provide the vo-
cabulary for describing these structures.

• Constraints (Section 4): Determining the appropriate pa-
rameters for an action can be more difficult than determin-
ing which action schemas belong in the plan. Parameter
values can depend on other actions or objects in the plan.
The language should provide the ability to specify such
constraints where they are needed.

• Integration with a run-time environment (Section 4):
Sensing and acting in a complex software environment
requires “hooks” into that environment, both to obtain in-
formation and to initiate operations.

• Metadata goals (Section 5) and inputs (Section 7): The
inputs and outputs of data-processing plans are data, so
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the language should be expressive enough to describe re-
quested and available data . Since a data file contains in-
formation about past states of the world, metadata should
be able to describe how the content of the data depends
on the past state of the world.

• Object creation and copying (Section 6.3): Many pro-
grams create new objects, such as files, sometimes by
copying or modifying other objects. The language must
provide a way of describing such operations.

• Data-flow plans (Section 8): Since the purpose of plans
is to process data, they should take the form of data-flow
programs, in which outputs of one action are fed into in-
puts of another.

At the end of each section, we present a BNF grammar
covering the language elements described in that section.
For example, the top-level production rule for a domain
description is:

DOMAIN ::= (TYPE | FUNCTION | ACTION | GOAL

| STATE | <INLINE_CODE>)+ <EOF>

where symbols inSMALL CAPS are non-terminals, symbols
in <ANGLE_BRACKETS> are terminals, and keywords are
underlined.

2 First-class objects
Data files (and other entities in a software environment)
typically have a complex, hierarchical structure, which can
be described in terms of object composition. Representing
these data structures explicitly as first-class citizens not only
makes domains simpler to encode and understand, but pro-
vides valuable information to the planner. Thus, we decided
that DPADL should be an object-oriented language. Al-
though the identification of objects and object attributes is
important, an object-oriented syntax, such as our Java-based
syntax, is less so; the same information could be expressed
in a PDDL-style relational syntax, just not as concisely.

DPADL allows the definition of new types correspond-
ing either to structures (objects) or primitive types, such
as integers or strings. The keyword for introducing a new
type declaration istype . Here and elsewhere in the paper,
DPADL text is rendered intypewriter font, and keywords
arebold . We use ellipses (. . .) to indicate that text has been
omitted for the sake of brevity. For example,

static type Filename extends String

introduces a new type,Filename, which is a subtype of
String, a predefined type. The predefined types areint,
unsigned, float, String, Object andboolean. The key-
word static means that no instance ofFilename, once
created, can ever be changed.1 A type that is not static is
fluent .

Subtypes ofObject may be used to represent Java ob-
jects. For example,

static type Tile extends Object
mapsto tops.modis.Tile

1This is a departure from the Java meaning ofstatic.

means that the typeTile corresponds to the Java class
tops.modis.Tile. As we discuss in Sections 4 and 6.4,
the agent can manipulate Java objects in the course of con-
straint reasoning or action execution by executing in-lined
Java code.

Alternatively, when there is a small number of instances
of a type, we can define it by listing all possible instances.
This is similar to enumerated types in C/C++, but without
the restriction to integral values.2 Listing values in this way
is useful for constraint reasoning, since the domain of a vari-
able corresponding to such a type can be initialized with the
set of possible values.

static type ImageFormat =
{"JPG", "GIF", "TIFF", "PNG", "XCF", . . .};

As in C/C++, enumerated values can have symbolic names
attached to them.

static type ProjectionType =
{LAZEA=11, GOODE_HOMOL=24, ROBINSON=21, . . .};

Like classes in C++ and Java, types can have attributes. For
example, file attributes include pathname and owner:

type File extends Object {
static key Path pathname;
User owner;
. . .

}

The keywordkey is used to indicate thatpathname is a
unique identifier for a file, so two files that have the same
pathname must in fact be the same file. This is not correct
if we access files on multiple machines, in which case we
should use the host machine as an additional key.

In addition to the subtype relation, designated using
extends , we can specify that one typeimplements an-
other, meaning it inherits all the attributes of the other type
but is not an instance of that type.3 This is useful in cases
where two objects share the same structure but cannot be
used interchangeably. For example, a file archive, such as a
tar file, contains records that reflect all the properties and
contents of individual files, but are not themselves files.
We say thatTarFile.Record implements File. This
is especially useful when used in conjunction withcopyof
(Section 6.3), since a record in a tar file can be a copy of a
file, or vice versa.

When referring to an attribute of an object, we use a
Java-like syntax. For example,f.filename refers to the
filename attribute of the object represented by the vari-
able f. Attributes can take arguments. For example,
pic.pixelValue(x,y) refers to the value of the pixel at
the x,y coordinates of the imagepic. Although the syntax
resembles that of Java method calls,pixelValue(x,y) is
simply a parameterized attribute, and can be used in exactly
the same contexts. For example,

2In PDDL, all types other than numbers are effectively enumer-
ated types, since all objects of each type must be explicitly de-
clared. Since the Closed-World Assumption is not at all reasonable
for data processing domains, DPADL does not impose this require-
ment.

3This is a departure from the Java meaning ofimplements.
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pic2.pixelValue(x,y) = pic1.pixelValue(y, x+5);

describes an effect that transposes an image to the left by 5
pixels.

The object-oriented notation is convenient, but not essen-
tial. Any object description can be translated into an equiva-
lent relational form by translating each attribute description
into a relation in which the first argument is a reference to
the object, the second argument is the value of the attribute,
and the remaining arguments are the arguments of the at-
tribute. From the example above, we would define a PDDL
relation (pixelValueR ?image ?pvalue ?x, ?y). Additionally,
the action descriptions or domain axioms would need to be
modified to enforce the fact that

• Two objects are equal if and only if their key attributes are
equal and

• An attribute can have only one value, so (pixelValue
IMAGE-56, BLACK, 10, 10) is mutually exclusive with
(pixelValue IMAGE-56, ?v, 10, 10), for all ?v6= BLACK.

Alternatively, we could provide additional syntax to convey
the same information while maintaining a relational repre-
sentation, as was done in the SADL language (Golden &
Weld 1996).

Explicitly identifying objects is not just useful to the
domain developer, but also to the planner. For example,
the planner can reduce search by exploiting the fact that
attributes of static objects don’t change once the object
is created. Additionally, Section 6.3 discusses the role
attributes play when objects are copied.

TYPE ::= (static | fluent)? type
((<IDENTIFIER> = { MEMBERS } )
| (TYPESPEC)) (TYPEBODY | ; )

MEMBERS ::= ((<IDENTIFIER> = )? LITERAL)
( , MEMBERS)?

TYPESPEC ::= PRIMTYPE | ( <IDENTIFIER> extends
TYPENAME

( implements TYPENAME )* )
( mapsto <CLASSNAME> )?

TYPEBODY ::= { ( MEMDEF | CTRSPEC | TYPE)* }
MEMDEF ::= ( static | fluent )? key? TYPENAME

<IDENTIFIER>
( PARAMS )? ( MEMBODY | ; )

MEMBODY ::= { ( CTRSPEC )* }
PRIMTYPE ::= int | unsigned | float | String |

Object | boolean
TYPENAME ::= <IDENTIFIER> | PRIMTYPE

QUALTYPE ::= TYPENAME ( . <IDENTIFIER> )*

3 Functions and relations
The object-attribute notation is just a special case of a func-
tional notation, which DPADL also supports. Functions, like
types, may be static or fluent. The value of a fluent function
changes over time, whereas the value of a static function
does not. For example,

fluent float temp(float lon, float lat);

declares a function that takes two real values, representing
longitude and latitude, and returns a real value representing
the temperature at that location. Functions, like attributes,
may have zero arguments, in which case the parentheses are
omitted. For example,

fluent Date currentDate;

specifies thatcurrentDate is a fluent function taking no
arguments.

Functions over objects have been mentioned as a possible
future extension to PDDL (Fox & Long 2003). While that
would make it easier to describe data-processing domains in
PDDL, we should note that functions in DPADL are merely
a notational convenience; they allow us to avoid explicitly
stating the mutual exclusions to specify that, for example,
a file can have only one size, but semantically they are no
different from relations in which one of the arguments is
restricted to a single value. In particular, they do not play the
same role that functions play in first-order predicate logic.
DPADL does not support domain axioms, which could be
used to generate an arbitrary number of object references
through repeated function composition.

To indicate that a function is undefined for particular
arguments, we use the keywordnull to represent invalid
values. The type ofnull is a subtype of all types, but
null will not match any value except itself.

FUNCTION ::= (static | fluent) TYPENAME

( <IDENTIFIER>
| <OPERATOR> ) ( ( PARAMS? ) )?
( ; | { ( CTRSPEC )* } )

PARAMS ::= ( PARAMDEF ( , PARAMS )? )
| :rest PARAMDEF

PARAMDEF ::= QUALTYPE <IDENTIFIER>

4 Constraints
In data-processing domains, we need to be able to express
thresholds, intervals over space or time, mathematical func-
tions, and more complex calculations. In DPADL, these are
all represented using constraints. PDDL supports numeric
functions, which are used to specify how quantities change
over time. PDADL constraints can serve the same role, but
are more flexible; they can perform arbitrary calculations or
sense information from the environment. However, they are
also more limited than PDDL functions, in that they cannot
represent and reason about quantities that change continu-
ously over time, such as fuel (Fox & Long 2003).

Formally speaking, a constraint is simply a relation that
holds over a set of variables, so we could view any functions,
object attributes or types as constraints. However, thus far,
we have only shown how todeclarefunctions, attributes and
types, not (with the exception of enumerated types) how to
definethem. To reason about constraints, we need defini-
tions, not just declarations. For example, consider the fol-
lowing declaration.

float foo(float x);

Given the value ofx, we know there must be some valuey =
foo(x), but we have provided no way to determine what that
value is. Viewingfoo as a constraint is valid but pointless.
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We provide two alternative ways of specifying the defini-
tion of a constraint; it may be selected from a library of pre-
defined constraint definitions or defined in terms of arbitrary
Java code embedded in the type and function declarations.
The constraint reasoning system supports constraints over
all primitive types as well as Java objects. It can also handle
constraints involving universal quantification, as discussed
in (Golden & Frank 2002).

Constraint definitions can only be given for statics. Any
function defined as a constraint must be determined only by
that constraint; no action may affect it. This restriction pro-
vides a clear division of labor between causal reasoning and
constraint reasoning.

4.1 Type constraints

Formally, a type is a unary relation that is true for all in-
stances of the type and false for all non-instances. But in
the type declarations of Section 2, we did not define what
those relations were. It is fine to sayFilename extends
String, but given a String, how do we know if it is a valid
filename?

One possibility might be to defineFilename as an enu-
merated type; that is, we list all valid filenames. The obvious
problem with this is that there are, for all practical purposes,
infinitely many of them. A better option is to specify a reg-
ular expression that concisely specifies all valid filenames:

static type Filename extends String {
constraint Matches(true , this , "~[/]+");

}

means that filenames must contain at least one character, and
they cannot contain the character ‘/’. In Unix, this is, in
fact, the only practical limitation on filenames.Matches is
a constraint from the constraint library requiring a string to
a match a regular expression. All string constraints are ac-
tually defined in terms of operations on regular expressions,
so Matches is, in a sense, the simplest. The keywordthis
designates an instance of the type being defined, in this case
a filename.

Constraints can also be defined in terms of inlined Java
code, as discussed in the next section.

4.2 Attribute constraints

We can define attributes as constraints as well. One reason
for doing this is to supportprocedural attachment: specify-
ing program code that provides the definition of the attribute.
For example, if we have a DPADL object that corresponds
to a Java object, we must specify what methods to call on
the Java object to determine the values of the attributes as
declared in DPADL:

static type Tile extends Object
mapsto tops.modis.Tile {

key String uniqueId {
constraint {

value (this ) = $this .getUID()$;
this (value ) = $Tile.findTile(value )$;

}
. . .

The attributeuniqueId is declared as akey of a (mosaic)
Tile, meaning there is a one-to-one mapping between tiles
and their unique identifiers. Given a tile, we should be
able to obtain its unique identifier, and given a unique iden-
tifier, we should be able to obtain the corresponding tile.
The embedded Java code provides instructions for perform-
ing these mappings. TheuniqueId attribute of aTile can
be determined by calling thegetUID method on theTile,
and aTile object corresponding to a givenuniqueId can
be determined by calling the methodfindTile, with the
uniqueId as an argument. The text preceding the “=” is
a “signature” specifying the return value and parameters of
the following Java code. The keywordvalue refers to the
value of the attribute being defined, in this caseuniqueId.
The keywordthis refers to an object of the type being de-
fined, in this caseTile. Thus,value (this ) means that
given an object of typeTile, we can obtain the value of
theuniqueId attribute by executing the following Java code
(delimited by$). Conversely,this (value ) means that
given auniqueId, we can find the correspondingTile.

The above constraint will only be enforced if there is a
singleton domain for some tile or ID variable. It is also pos-
sible to define constraints that work for non-singleton do-
mains, by indicating that an argument or return value repre-
sents an interval (delimited by[]) or a finite set (delimited
by{}). For example, one attribute of aTile is that itcovers
a given longitude, latitude. Given a particular longitude and
latitude, the constraint solver can invoke a method to find a
single tile that covers it, but it can do even better. Given a
rectangular region, represented by intervals of longitude and
latitude, it can invoke a method to find a set of tiles covering
that region.

boolean covers(float lon, float lat) {
constraint {

. . .
// returns the set of tiles covering
// a given lon/lat range.
{this }([lon], [lat], d=day, y=year,

p=product, value )
= {$ if (value)

return tm.getTiles(lon.max,
lat.min,
lon.min,
lat.max,
d, y, p);

else return null ; $};
}

}

In this example, the signature is more complicated.
{this }(. . .) means that the return value of the Java code is
a set (specified by{. . .}) of Tiles (specified bythis ). The
first two arguments, lon and lat, are surrounded by[. . .], in-
dicating that the variable domains should be intervals. The
next three arguments, d, y, and p are defined as being equal
to the Tile attributes day, year and product, not shown in
this example. Finally,value is the boolean value of the
covers relation, true if and only if the tile covers the speci-
fied lon/lat.
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The Java code is also more complex. Unlike the previ-
ous example, it has a conditional and an explicit return call.
If value is true, then it returns the result of the method
getTiles. Since lon and lat are intervals, we refer to their
maximum and minimum values to specify the bounding box
of interest. Ifvalue is false, it returnsnull , meaning the
set of tiles could not be determined, since there is no method
for returning the tiles outside of a bounding box.

4.3 Function constraints
Functions, like attributes, can have constraints associated
with them, the only difference being that the constraints can-
not reference the keywordthis , because there is no object
to reference. Infix mathematical operators are also func-
tions, and they can be defined for any type, using a syn-
tax similar to that used for C++ operator overloading. For
example to specify that the “+” operator can be used to con-
catenate strings, as in Java, we can write

static String operator+ (String s1,
String s2) {

constraint Concat(value , s1, s2);
}

where Concat is a constraint from the constraint library,
specifying that the first argument is the concatenation of the
remaining arguments.

4.4 Restrictions
Minimum requirements on the inlined code used to define
constraints are:

1. The code may not do anything other than calculate the
domain of a variable and return it. That is, it may not
have any side-effects.

2. If the code is called multiple times with the same argu-
ments, it will always return the same calculated domain.
This requirement precludes using constraints to represent
values that change during the course of planning.

3. If the domains corresponding to one or more of the ar-
guments is reduced, then the calculated domain will be a
subset of the original domain.

If these requirements are not met, then the results are
undefined. With them, we can view each constraint as some
unknown relation and the procedures as sensors that provide
limited information about the extension of the relation.

CTRSPEC ::= constraint ( <IDENTIFIER>
( ARGS ) ; ) | { ( JAVACTR )+ } )

JAVACTR ::= ( CTRARG CTRARGS =
<INLINE_CODE> ; )
| ( [ CTRARG ] CTRARGS =
[ <INLINE_CODE> ,
<INLINE_CODE> ] ; )
| ( { CTRARG } CTRARGS =
{ <INLINE_CODE> } ; )

CTRARG ::= <IDENTIFIER> | value | this
CTRARG2 ::= (CTRARG | [ CTRARG ] | { CTRARG } )

( = ADDITIVE )?
CTRARGS ::= ( CTRARG2 [ , CTRARGS ] )

5 Goals
Goals are used primarily to describe data products that the
system should produce. Data product descriptions should
specify at least the following:

• Data semantics: the information represented by the data.
That is, what facts about the world can be inferred from
the data contents.

• Data syntax: how the information is coded in the data.
For example, what pixel values in an image are used to
represent the information.

• Time: what time the information pertains to. For exam-
ple, we need to be able to distinguish between rainfall last
week and rainfall last year.

Time is an optional argument of all fluents. The mapping
between semantics and syntax is specified using the key-
word when. For example, to request a file that contains
gridded temperature values over a particular region, using
the LAZEA projection and a particular mapping (tempEn-
coding) from temperatures to pixel values, we could write:

forall int x, int y, float lon, float lat,
float t;

when(tempEncoding(temperature(lon, lat)) == t
&& proj(LAZEA, x, y, lon, lat)
&& 0 <= x < MAXX && 0 <= y < MAXY) {

file.pixelValue(x, y) == t;
}

We will call the expression inside the parentheses following
the keywordwhen the left-hand side (LHS) of the goal, and
we will call the expression in the braces the right-hand side
(RHS).

A key aspect of DPADL is that all data descriptions are
purely causal; we describe how the data content of the file
causally depends on the (earlier) state of the world. An ad-
vantage of this representation is that standard temporal pro-
jection techniques can be used to to determine how a succes-
sion of data-processing operations affect the data content of
the final output.

A when condition describes an implication, but an impli-
cation between conditions that hold at two different times.
The LHS implicitly refers to the time the goal is posted (un-
less an earlier time is specified), and the RHS refers to the
final state (whenever the goal achieved). Because the agent
cannot change the past, the only way to achieve the goal is
to make sure the RHS is satisfied, subject to the conditions
given by the LHS.

More formally, awhen goal can be be described as fol-
lows. Let s0 be the initial state and letΣ be the set of
states indistinguishable froms0 consistent with the agent’s
knowledge in the initial state (i.e., the set of all possible
worlds). Let π be a plan consisting of a sequence of ac-
tions, and letdo(π,s) be the state reached froms by exe-
cutingπ. The goalwhen(Φ(~x)) { Ψ(~x)} is achieved byπ if
∀~x∀s∈ Σ((s |= Φ(~x))⇒ (do(π,s) |= Ψ(~x))).

The only formal difference between conditions in the LHS
and conditions in the RHS is the time that they refer to,
but this provides a sufficient foundation for describing data
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goals, since the important characteristic of data is that it
stores information about the past. Thus, we use temporal
goals to describe how the past information of the world de-
termines the future content of the data:

• The semantics of the desired data (e.g., temperature) is
specified in terms of fluents in the LHS of the goal, be-
cause it concerns properties of the world that hold when
the goal is specified (or earlier), properties that are not
affected by the agent in pure data-processing domains.

• The data syntax (e.g., pixelValue) is specified in terms of
static predicates in the RHS, because it concerns prop-
erties of data that may not exist at the time the goal is
given, properties that must be affected by the agent to
produce the requested data. Optionally, predicates de-
scribing syntax could also appear on the LHS, to rep-
resent goals of converting file formats, etc. For ex-
ample, we might specify a goal of making all the red
pixels in an image blue:when(input.color == RED)
{output.color == BLUE;}

• Constraints (e.g.,0 <= x < MAXX) are specified in the
LHS of the goal because, being static, they must hold in
the initial state and cannot be affected by the agent. Since
variables involved in constraints can appear in the RHS,
this is not a practical limitation.

To use these conventions in PDDL, we would need to
extend PDDL to specify goals that refer to an earlier state of
the world in addition to the final state. PDDL 2.1 can refer
to time, but only the start and end times of actions. It would
also be necessary to relax the CWA, if these domains are to
be remotely interesting.

GOAL ::= goal <IDENTIFIER> ( PARAMS? ) {
( (output | forall | exists) PARAMS

; )* OREXP }
OREXP ::= CONDEXP+ ( || CONDEXP+ )*

CONDEXP ::= ( when ( ANDEXP ) { CONDEXP* }
( else { CONDEXP* } )? ) | EQUAL ;

ANDEXP ::= EQUAL ( && ( EQUAL ) )*
EQUAL ::= RELATION ( ( == | != ) RELATION

)*
RELATION ::= ADDITIVE ( ( < | > | <= | >=

) ADDITIVE )*
ADDITIVE ::= MULTIPL ( ( + | - ) MULTIPL )*
MULTIPL ::= UNARY ( ( * | / | % ) UNARY )*

UNARY ::= ( + | - | ! )? PRIMEXP

PRIMEXP ::= ( ANDEXP ) | ( FUNEXP | this )
( . FUNEXP )* | LITERAL

FUNEXP ::= <IDENTIFIER> ( ( ARGS ) )?
LITERAL ::= <INTEGER_LITERAL>

| <FLOATING_POINT_LITERAL>
| <CHARACTER_LITERAL>
| <STRING_LITERAL> | null
| true | false

ARGS ::= ADDITIVE ( , ARGS )?

6 Actions
Actions can include data sources (which provide data
based on the state of the world) and filters (which provide

data based on their inputs), so preconditions and effects
describe inputs and outputs as well as the state of the world.
Additionally, actions must be executable, so the procedure
for executing an action (i.e., Java code) is part of the action
description.

ACTION ::= action <IDENTIFIER> ( PARAMS ) {
(( input | forall) PARAMS ; )
| (output OUTPUTS ; )
| PRECOND | EFFECT | EXEC )* }

OUTPUTS ::= PARAMDEF (copyof <IDENTIFIER>)?
( , OUTPUTS)?

6.1 Inputs, outputs and parameters
As in PDDL (McDermott 2000), actions are parameterized,
and parameters are typed. In addition to ordinary parame-
ters, two kinds of variables are recognized as unique and are
treated somewhat differently; namely, inputs and outputs.

Outputs represent objects (e.g., files) generated as a result
of executing the action. An output does not exist before the
corresponding action is executed, and is always distinct from
all other objects.

Inputs represent objects that are required by the action
but are not required to exist after the action has been exe-
cuted. Inputs may come from outputs of other actions or
they may be preexisting objects. In the former case, all pre-
conditions describing attributes of a given static input must
be supported by the same action, since only one action can
have produced the output, and once it is created, no action
can change it.

Ordinary parameters are essentially like the parameters
passed to method or function calls in C or Java; they refer to
primitive values or objects that may exist before the action
is executed and may persist afterward.

In addition to parameters, inputs and outputs, actions can
refer to universally quantified variables and introduce vari-
ables corresponding to new objects with thenew keyword,
discussed in Section 6.3.

To extend PDDL to handle input and output parameters,
it would be necessary to allow for object creation (which re-
quires a dynamic universe), and to allow the values of certain
variables to be unbound at planning time, provided it can be
proven that they will be bound at execution time.

6.2 Preconditions
Preconditions describe the conditions that must be true of
the world and of the inputs in order for the action to be ex-
ecutable. Thus, action preconditions need to reference the
input variables and the prior world state, but cannot refer-
ence the output variables, which describe objects that don’t
exist in the prior state.

Low-level actions, such as filters, can be described purely
in terms of the syntactic properties of the input files. For ex-
ample, an image-processing operation doesn’t care whether
the pixels of the input image represent temperatures in Mon-
tana or a bowl of fruit. All that matters are the values of the
pixels. Thus, the preconditions for these actions should re-
fer only to properties of the data that hold in the prior state.
Similarly, simple sensors (data sources) depend only on the
immediate state of the world, so their preconditions should
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only refer to conditions of the world that hold in the prior
state.

However, some high-level actions, such as ecological
models, expect their inputs to represent certain information
about past states of the world, such as temperature or pre-
cipitation, so it is appropriate for the preconditions of these
actions to specify the information content of their inputs, not
just the structure. The descriptions the information content
of these inputs will be in terms of states other than the prior
state. For example, an ecological model might require a
file containing temperature data from last Tuesday. In other
words, preconditions, like goals, can include metadata de-
scriptions, which are described in exactly the same way, us-
ing the keywordwhen.

The LHS of awhen precondition, like the LHS of a goal,
refers to past states. The RHS, however, rather than referring
to the final state, refers to the start of execution of the corre-
sponding action. Conventions for describing data inputs in
preconditions are the same as the conventions for describing
goals: The LHS specifies the semantics of the data file and
the RHS specifies the syntax. Any constraints must appear
in the LHS.

Preconditions are introduced with the keyword
precond , and introduce a condition, which may be
disjunctive.

PRECOND ::= precond OREXP

6.3 Effects
Effects, introduced with the keywordeffect , are used to
describe the outputs generated by an action. Outputs depend
on the state of the world (in the case of sensory actions) or
the inputs (in the case of filters), so effects need to be able
to reference both the prior state and next state and both the
input and output variables.

EFFECT ::= effect ( WHENEXP )+

Conditional effects Like goals and preconditions, condi-
tional effects are introduced using the keywordwhen, but
here the LHS refers to the prior state (and input variables),
not the initial state. The RHS describes the next state and
output variables, so the combination of the two describes
how the output depends on the input (or on the state of
the world). This is no different than conditional effects in
PDDL.

As with goals, there are conventions for describing data
effects.

• data sources are described using conditional effects, in
which conditions on the LHS are either constraints or flu-
ents describing the state of the world and conditions on
the RHS are statics describing the syntax of the output
data.

• Filters are described using conditional effects, in which
conditions on the LHS are either constraints or statics de-
scribing the syntax of the input data, and conditions on the
RHS are statics describing the syntax of the output data.

In order to restrict the language to only describe data-
processing domains, we do not allow fluents to appear on the

RHS of any effect. This means that actions cannot change
the world except by creating objects (e.g., files) that satisfy
certain conditions based on the current (or past) state of the
world. This restriction could easily be lifted, allowing us to
describe arbitrary planning domains, but imposing it allows
the use of specialized planning algorithms that take advan-
tage of unique properties of pure data-processing domains.
An alternative would be to run a simple preprocessor that
checks whether a domain is a data-processing domain and
runs a specialized planner if it is.

Every atomic RHS expression involves setting the (pos-
sibly boolean) value of a function or attribute or creating a
new object. A static attribute can only be set if it is an at-
tribute of a newly created object. Since we restrict predicates
on the RHS of effects to static predicates, that means all that
actions can do is produce data; they cannot change the world
or alter preexisting data.

For example, to describe a threshold action, which sets
output pixels to either BLACK or WHITE, depending on
whether the corresponding input pixels are below or above a
given thresholdthresh, we can write:

action threshold (unsigned thresh) {
input Image in;
output Image out copyof in;
forall unsigned x, unsigned y;
effect when ((x < in.xSize)

&& (y < in.ySize) {
when (in.valueAt(x, y) <= thresh) {

out.valueAt(x, y) = BLACK;
} else {

out.valueAt(x, y) = WHITE;
}

}
}

The keywordelse has the same meaning as in C or Java.
The keywordcopyof is explained below.

WHENEXP ::= (when ( ANDEXP ) { ( WHENEXP )* }
( else { ( WHENEXP )* } )? )
| CONSEQNT

CONSEQNT ::= ASSIGNMNT | NEWDECL

ASSIGNMNT ::= CFUN ( . CFUN )* ( =
( EQUAL | NEWEXP ) )? ;

CFUN ::= <IDENTIFIER> ( ( CARGS ) )?
CARGS ::= ( ADDITIVE | NEWEXP )

( , CARGS )?

Object creation and copying Output variables implicitly
describe newly created objects, but it is sometimes neces-
sary to explicitly refer to object creation in action effects.
For example, an output may be a complex object, such as a
file archive or a list, with an unbounded number of complex
sub-elements. Since each of those sub-elements is (possi-
bly) newly created, we need some way of describing their
creation. We do so using the keywordnew.

Additionally, newly created objects may be copies of
other objects, possibly with minor changes. Listing all the
ways the new objects are the same as the preexisting ob-
jects can be cumbersome and error-prone, so we would like
to simply indicate that one is a copy of the other, and then
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specify only the ways in which they differ. We do so using
thecopyof keyword.

Suppose we have an action whose input,in, is a collection
of JPEG files and whose output,out, is a new collection, in
which the files from the input are compressed with quality
of 0.75.

forall Image orig;
when(in.contains(orig)) {

out.contains
(new Image copyof orig {
quality = min(orig.quality, 0.75); });

}

When an object is copied, all attributes of the original ob-
ject are inherited by the copy, unless explicitly overridden.
For example, the new Image is identical to the original in
every way, except in quality, which is set to 0.75. Note that
this is one way in which attributes of objects are different
from other relations on objects.in.contains(orig) is an
attribute ofin, but not an attribute oforig, so afterorig
is copied,in.contains(copy) is not true but, for example,
copy.format == JPEG is true.

The copy and the original need not be the same type, as
long as they inherit from or implement a common parent
type. All attributes common to both types are copied.

Formally, we can describe new objects as Skolem func-
tions of the actions, inputs and quantified variables that they
depend on.The semantics ofcopyof can be specified in
a manner similar to Reiter’s solution to the frame problem
(Reiter 1991).Let a be an action with an effect“new T n
copyof i,” and let p represent an attribute common to the
type of i and type T. Letn = sk(a, i,v) be a Skolem function
of actiona, input i and variablesv appearing ina. We will
write p(n) to designate the value of the attributep of object
n. Let Πa be the precondition of actiona, let do(a,s) be
the state reached by executing actiona in states. Without
loss of generality, assume that for each possible valuev of
attribute p, there is a single conditional effect of the form
“when (γv

p(n)(a)) {n.p = v;}.” If a has no direct effects

concerningp(n), thenγv
p(n)(a,s) is false for allv. If a un-

conditionally setsp(n) = x, thenγx
p(n)(a,s) = true. Because

the effects ofa are assumed to be consistent,γv
p(n)(a,s) can

be true for at most one value ofv.
The successor state axiom forp(n) is:

Πa(s)⇒ p(n,do(a,s)) =
{

v if γv
p(n)(a,s)

p(i) otherwise
That is, assuminga is executable (Πa(s)), the value ofp(n)
after a is executed isv if a has an effect that sets it tov.
Otherwise, it is the value ofp(i). A similar axiom must be
given for each attribute common betweeni andn.

The advantage ofcopyof is purely syntactic, since
it could be replaced by a large number of conditional
effects, one for each attribute of the object being copied.
However, since the number of attributes can be quite large,
the reduction in the size and apparent complexity of action
descriptions can be substantial. This is exactly analogous
to the advantage of the STRIPS assumption as a solution to
the Frame Problem, in that we avoid specifying conditions
that stay the same. The only difference is that the properties

that “persist” are actually copied from one object to another.
Using conditional effects would also make it harder for a
planner to distinguish effects that result in progress toward
some goal from those that simply propagate a condition
from one file to another. Although this could be determined
using domain analysis, that would be making life harder
for both the planner and domain modeler with no apparent
advantage for either.

NEWDECL ::= new QUALTYPE <IDENTIFIER>
(copyof <IDENTIFIER> )?
( ({ ( ATTRIBUTES )* } ) | ; )

NEWEXP ::= new QUALTYPE

( copyof <IDENTIFIER> )?
( ( { ATTRIBUTES * } ) | ; )

ATTRIBUTES ::= FUNEXP = ( EQUAL ;
| NEWEXP )

6.4 Execution

The action descriptions include instructions for actually ex-
ecuting the action. These instructions are written in Java,
which enables us to write actions that correspond to any op-
eration that can be performed by the Java runtime environ-
ment, including invoking methods on objects or making sys-
tem calls. All parameters and inputs corresponding to Java
objects or primitives may be referenced in the Java code, and
outputs must be initialized.

We pose the requirement that the results of execution
are accurately reflected by the stated effects of the action.
There is, of course, no way to verify this requirement, but
that’s the case for execution in any planning domain.

EXEC ::= exec <INLINE_CODE> ;

7 States
A typical component of planning problems is a specification
of the “initial state,” from which the goal must be achieved.
In PDADL, a significant amount of state information is com-
municated through the execution of inlined code during con-
straint reasoning, which can be used to “query the world”
to determine the current state. However, static state infor-
mation is also useful, especially metadata descriptions for
stable data sources. The language provides the ability to
define multiple named states through thestate keyword.
States may be thought of as dumbed-down actions that have
no preconditions and can only be “executed” in the initial
state. As with goals, metadata descriptions are specified us-
ing thewhen keyword. As with goals, the LHS can refer to
the current state or earlier, but the RHS refers to the current
state, not the final state. The conventions for describing the
semantics and syntax of data are the same as they are for
goal descriptions.

The RHS of metadata state conditions can only contain
static predicates describing the data and the LHS can only
contain fluents and constraints. Recall that the LHS of goals
could contain static predicates, which allowed us to express
goals that relate the contents of one data file to the contents
of another. Metadata formulas in the initial state can only re-
late data contents to the current or past state of the world. A
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consequence of this restriction is that the predicates appear-
ing on the LHS are completely disjoint from the predicates
appearing on the RHS.

In addition to metadata, state conditions can also include
unconditional fluent literals describing simple facts such as
the names and locations of files.

STATE ::= state <IDENTIFIER> {
( forall PARAMS ; )
| WHENEXP )+ }

8 Plans
A DPADL plan is a triple< N ,A ,C >, whereN andA are
a set of nodes and arcs in the form of a directed acyclic graph
(DAG). The nodes represent actions. The goal is represented
as a node with only incoming arcs, and the initial state is
represented as a node with only outgoing arcs. An arcA∈A
is a tuple< p,op,c, ic >, in which p ∈ N is the producer
or source node,op is an output variable ofp, c ∈ N is the
consumer or target node andic is an input variable ofc. We
refer to the arcs inA as “I/O links,” because they link the
output of the producer to the input of the consumer.C is
a constraint network, which is a triple< V,D,C >, where
V is a set of variables appearing in actionsn ∈ N , D is a
set of domains of those variables, representing their possible
values, andC is a set of constraints, each of which defines a
relation on some subset of the variables inV.

A plan is valid if

• All of the variables inV corresponding to action param-
eters are grounded (i.e., have singleton domains inD), C
is solved. See (Golden & Frank 2002) for a discussion of
how the constraint network is solved.

• All of the constraints corresponding to goals or precondi-
tions are inC.

• Each inputin of each actionn ∈ N has a corresponding
arc < p,op,n, in >, such that the constraintin =op is in
C and every precondition (excluding constraints) associ-
ated within is supported byp. A disjunctive precondition
is supported if one of the disjuncts is supported, a con-
junctive precondition is supported if all of the conjuncts
are supported, and a precondition of the form“when (Φ)
{ ψ},” where ψ is a literal andΦ is conjunctive, is sup-
ported byp if

– It is a constraint inC or
– Φ |= ψ or
– There is a corresponding effect“when (Φ′) { ψ′}” in

p, such thatψ′ |= ψ,4 subject to the constraints inC,
and eitherΦ |= Φ′ or the subgoal “when(Φ) { Φ′}” is
supportedor

– There is no effect“when (Φ′) { ψ′}” in p, such that
ψ′ |= ψ or ψ′ |= ¬ψ, but there is an effect“when (Φ′′)
{ op copyof ip},” where ip is an input ofp, and the
subgoal“when (Φ) { ψ{in/ip}∧Φ′′}” is supported.

• Each precondition not associated with any input is true in
the initial state.

4Entailment can be determined using unification.

Since we are restricting our consideration to pure data-
processing domains, we can ignore “sibling” subgoal clob-
bering. Actions only create new objects; they don’t change
the world or existing objects, so there is no opportunity for
parallel branches to interact with each other. Note also that
there is nothing preventing us from having multiple I/O links
coming in to a single input, providing redundant ways of
producing that input. At execution time, the agent will need
to choose which to use, but deferring this choice to execu-
tion time can provide flexibility and robustness, since some
data source may be unavailable, late, or of poor quality.

9 Conclusions and Related Work
We have described DPADL, an action language for data pro-
cessing domains, which is used in the IMAGEbot system.
The parser for the language, and a planner that supports the
language, are fully implemented, and the whole system is
fully integrated with the TOPS ecological forecasting sys-
tem, which is under ongoing development; IMAGEbot can
sense, plan and act in the TOPS domain.

We have compared DPADL to PDDL and discussed some
of the reasons PDDL is not suitable for data processing do-
mains. Of these, the most important are that it relies on the
CWA, provides no support for inputs, outputs and object cre-
ation, and is very limited in the kinds of constraints that can
be expressed. These problems could be addressed by less
radical changes to the PDDL language. Some features, such
as the use ofwhen expressions in goals and the initial state
and quantification over potentially infinite sets, are neces-
sary for describing data processing on a causal level. We
have found this low-level causal representation quite con-
ducive to planning, since standard planning techniques can
be used to correctly reason about the result of chaining mul-
tiple data-processing actions together. With a more abstract
representation, paradoxically, more effort would be required
of the domain designer .

DDL, the language used in the Europa planner (Jönsson
et al. 2000), the descendent of the Remote Agent planner
that flew on-board Deep Space One, supports constraints
and rich temporal action models. In fact, the constraint rea-
soning system we use was taken from Europa. DDL sup-
ports a limited ability to create new objects, but not as a
consequence of action execution. DDL domain descriptions
are quite different from those of either PDDL or DPADL.
Rather than describing actions in terms of preconditions and
effects, DDL uses explanatory frame axioms. That is, for
every condition that could be achieved, the domain designer
must specify how to achieve it, listing all actions that could
support it and other conditions that must be satisfied. DDL is
also timeline-based and makes no distinction between states
and actions. While these may be good design decisions for
spacecraft domains, they are not appropriate for data pro-
cessing domains.

DAML-S (Ankolenkar et al. 2002) and WSDL (Chris-
tensenet al. 2002) are languages for describing web ser-
vices, both based on XML. DAML-S is the more expres-
sive, allowing the specification of types using a description
logic and allowing one to specify preconditions and post-
conditions, which might be used by a planning agent. How-
ever, we don’t believe that description logics are expressive
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enough to describe the data-processing operations that we
need to support.

The Earth Science Markup Language (ESML;
http://esml.itsc.uah.edu) is another language based on
XML, under development at the University of Alabama
in Huntsville to provide metadata descriptions for Earth
Science data. Unlike DAML-S and WSDL, ESML is well
suited to describing the complex data structures that appear
in scientific data. Unlike DPADL, it is only intended to
describe data files, not data processing operations, but it
does provide explicit support for describing the syntax
and semantics of data files and allows the specification
of constraints in the form of equations. Although it is
less expressive and more specialized than DPADL, it is a
promising metadata standard for Earth Science. In the near
future, we hope to support conversion between ESML and
DPADL metadata specifications.

Near the far end of the expressiveness spectrum, the situ-
ation calculus (McCarthy & Hayes 1969) provides plenty of
expressive power, but at a price: planning requires first-order
theorem proving. We opted instead to make our language as
simple as possible, but no more so. DPADL does not sup-
port domain axioms, nondeterministic effects or uncertainty
expressed in terms of possible worlds, and much of the ap-
parent complexity of the language is handled by a compiler,
which reduces complex expressions into primitives that a
simple planner can cope with. Despite the superficial sim-
ilarity to program synthesis (Stickelet al. 1994), DPADL
action descriptions are not expressive enough to describe ar-
bitrary program elements, and the plans themselves do not
contain loops or conditionals.

Of the many planning domain description languages that
have been devised, the closest to DPADL is ADLIM (Golden
2000), on which it is based. Advances over ADLIM include
tight integration with the run-time environment (Java) and
constraint system and a Java-like object-oriented syntax that
makes it natural to describe objects and their properties. As
discussed in Sections 2 and 6.3, this encodes valuable infor-
mation used by the planner.

Collage (Lansky & Philpot 1993) and MVP (Chienet
al. 1997) were planners that automated image manipula-
tion tasks. However, they didn’t focus as much on accurate
causal models of data processing, so their representation re-
quirements were simpler.
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Abstract

Planning systems rely on knowledge about the problems they
have to solve: The problem description and in many cases ad-
vice on how to find a solution. This paper is concerned with a
third kind of knowledge which we term domain knowledge:
Information about the problem that is produced by one com-
ponent of the planner and used for advice by another. We first
distinguish domain knowledge from the problem description
and from advice, and argue for the advantages of the explict
use of domain knowledge. Then we identify three classes
of domain knowledge for which these advantages are most
apparent and define a language, DKEL, to represent these
classes. DKEL is designed as an extension to PDDL.

Knowledge in Planning
The knowledge input to a planning system may be divided in
two distinct classes: problem specification and advice. The
problem specification in turn typically consists of two parts:
(1) a description of the means at the planners disposal, such
as the possible actions that may be taken and resources that
may be consumed, and (2) the goals to be achieved, includ-
ing possibly a measure that should be optimized, constraints
that should never be violated, and so on. Advice we term
knowledge, of all kinds, intended to help the planner find a
better solution, find it more quickly or even to find a solution
at all.

There is often a certain difficulty in distinguishing the
two, particularly since the same kind of knowledge, indeed
the very same statement, may sometimes play one role and
at other times another: e.g. constraints may be part of a prob-
lem specification, but there are also several planners that
accept advice formulated as constraints. Nevertheless, two
things always distinguish advice from the problem specifi-
cation:

First, the problem specification defines what is a solu-
tion, advice does not. It may well be possible to find good
solutions while ignoring, or even acting in conflict with,
the given advice, and conversely, heeding poor advice may
cause a planner to fail to find a solution even though one
exists. It is, however, obviously never possible to find a so-
lution in violation of the problem specification.

Second, the problem specification is, at least in theory, in-
dependent of the planning system used, or even of the fact
that an automated planner is being used at all (apart from

the fact that the specification must be expressed in a format
understandable by the planner). What constitutes useful ad-
vice, by contrast, tends to be highly dependent on the type
of planning system used.

Languages for Specification and Advice

Any automated planning system needs a means of accept-
ing as input a problem specification, and in most cases this
means is language. Consequently, many different planning
problem specification languages, with a varying degree of
similarity, have been used, but recently, PDDL (McDermott
etal. 1998; Bacchus 2000; Fox & Long 2002b) has emerged
as a kind of de facto standard. On a “specification vs. ad-
vice” scale, PDDL is strongly oriented towards specifica-
tion, and even as a specification language, it has its short-
comings: there is for example no easy way to specify con-
straints, which, as mentioned above, may be an important
part of a problem. To combat these shortcomings, several
extensions of PDDL (or PDDL-like languages) have been
proposed: PDDL2.1 (Fox & Long 2002b) adds the abil-
ity to express temporal and metric properties of actions as
well as metric goals. PCDL (Baioletti, Marcugini, & Milani
1998) extends PDDL with a constraint vocabulary, which
is then “compiled away” into standard PDDL. Many plan-
ners have added their own specific extensions, e.g. for con-
straints (Huang, Selman, & Kautz 1999) or invariants (Re-
fanidis & Vlahavas 2001), and many use altogether different
languages, e.g. to allow the expression of non-determinism
(Bertoli etal. 2001) or of more elaborate action and resource
models (Chien etal. 2000).

Languages for expressing plan constraints, whether they
be specification or advice, tend to be quite closely related
to the kind of planning algorithm used. Examples include
Hierarchical Task Network (HTN) schemas, which have a
long tradition as a means of expressing plan constraints (Tate
1977; Wilkins 1990; Nau et al. 1999; Wilkins & desJardins
2000), and more recently different temporal logics, as in
e.g. TLPlan (Bacchus & Kabanza 2000) and TALplanner
(Kvarnstrom & Doherty 2001).

Planners capable of accepting as input control knowledge
of other kinds also use mostly specific languages. This is
a natural consequence of the fact that the knowledge itself
tends to be highly planner-specific.
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Domain Knowledge
In between specification and advice, a third class of knowl-
edge, commonly called domainknowledge, may be distin-
guished. Briefly, it consists of statements about a planning
problem that are logically implied by the problem specifica-
tion, but that are not part of the specification. We would like
to amend this definition with the requirement that domain
knowledge is “planner independent”, i.e. not closely tied to
the internal workings of any particular planning system, but
such a requirement is difficult to formulate precisely.

There are several good reasons for making this distinc-
tion. First of all, domain knowledge is implied by the prob-
lem specification, so it can be derived from same, and in
many cases derived automatically. In this way it is different
from advice, which must be provided by a domain expert, or
learned from experience over many similar problems. There
is a large, and growing, body of work on automatic “domain
analysis” of this kind.

Furthermore, good planner advice tends to depend on
knowledge both about properties of the problem and the
planner used to solve it. For a given planner, there is of-
ten a fairly direct mapping from certain classes of domain
knowledge to useful advice for that planner. To take a sim-
ple example, in a regression planner an obvious use of state
invariants is to cut branches of the search tree that violate an
invariant. This is a sound principle, since a state that violates
an invariant can never be reached and thus a goal set that vi-
olates the invariant is unreachable. The principle is founded
on knowledge of how the planner works, but depends also on
the existence of a certain kind of domain knowledge, namely
state invariants.

On the other hand, domain knowledge in itself does not
determine its use for advice. To continue the example,
state invariants have many more uses: the MIPS planner
uses them to find efficient state encodings (Edelkamp &
Helmert 1999) and to find abstractions for generating heuris-
tics (Edelkamp 2001), while in GRT (Refanidis & Vlahavas
2001) they are used to split the problem into parts and to
improve the heuristic. In principle, the same planner can
use the same domain knowledge in different, even mutually
exclusive, ways.

For many classes of domain knowledge there exists al-
gorithmic means of generating such knowledge, and indeed
many planners do produce and make use of it: GRT, MIPS
and STAN (Long & Fox 1999) use state invariants, FF (Hoff-
mann & Nebel 2001) uses goal orderings (Koehler & Hoff-
mann 2000), and IPP uses irrelevance information (Nebel,
Dimopoulos, & Koehler 1997; Koehler 1999).

In these examples, the algorithms for generating domain
knowledge can be, at least in principle, separated from the
planning algorithm where it is used, but for practical rea-
sons, the two are built together as one unit. We believe that
making a practice out of this separation is good idea, as it
enables “fast prototyping” of integrated planning systems,
where existing implementations of different domain analy-
sis techniques can easily be “chained” and coupled to ex-
isting planners. Although this is not necessary for building
high performance planning systems, it would simplify the
experimental evaluation of the impact of domain analysis on

different planners, and thereby further the development of
both automatic domain analysis and more flexible planners.

A Language for Domain Knowledge
In order to separate the generation and use of domain knowl-
edge, we need some means of exchanging this knowledge
between producer and consumer. What we propose is to
“standardize” the expression of domain knowledge, using
a language that builds on PDDL, to make this exchange as
natural and easy as the passing of a problem specification to
a planner. In short, what PDDL has done for planning prob-
lem specification, we wish to do for domain knowledge.

To this end, we have created the Domain Knowledge Ex-
change Language (DKEL). The language is an extension of
PDDL and provides a means for items of domain knowledge
to be stated as part of a PDDL domain or problem specifi-
cation. The main goal of DKEL is to enable the kind of
quick and easy prototyping of integrated planning systems
outlined above. At the same time, it provides a limited tax-
onomy of different kinds of domain knowledge, with an at-
tempt at a rigorous definition of the semantics for each kind.

DKEL is currently limited to a few classes of domain
knowledge (described in the next section). We have selected
these classes because they are reasonably well understood
and obviously useful to planners of different kinds, but most
of all because there exist domain analysis tools able to gen-
erate them.

Given that there already exists many formalisms for the
specification of so-called “knowledge rich” planning prob-
lems, it is reasonable to ask why we propose yet another.
The reply would be that DKEL fills a different niche: the
kinds of knowledge expressible in DKEL are different from
those expressible by constraint languages such as HTN
schemas and temporal logics. In short, DKEL is a comple-
ment to, and not a replacement for, existing languages.

Implications of Explicit Domain Knowledge
DKEL augments the original domain or problem descrip-
tion with domain knowledge rather than altering or reducing
it right away. Preserving the original structure of the domain
and problem specification has several advantages: First of
all, it is a prerequisite for the “chaining” of several analy-
sis techniques described above. It also leaves the choice of
what knowledge to apply, and how to apply it, up to the plan-
ner. As mentioned, turning domain knowledge into effective
advice for a specific planner depends on knowledge of the
workings of that planner, and including this in the exchange
language would blur the separation between the generation
and use of knowledge that it is meant to help achieve.

There are also problems with the use of domain knowl-
edge. Not all knowledge is useful to all planners, and may
even be detrimental if incorrectly used. Even if a particular
item of knowledge is useful, the computational cost of in-
ferring it may be higher than the benefit incurred by its use.
Adding explicit domain knowledge to a problem specifica-
tion increases the size of the specification, and although a
planner may always choose to ignore useless items of knowl-
edge, indiscriminate adding-on may blow specifications up
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to a size where the increased cost of simply reading and han-
dling them outweighs any advantage. Note, however, that
these problems are not intrinsic to explicit representations of
domain knowledge, but only more prominent for them: In an
integrated planning system, domain analysis algorithms can
be customized to closely match needs, while explicit repre-
sentations are intended for use with prefabricated, general
tools.

Separating domain analysis from its use in planning
means that the planner component loses control over how
knowledge is generated, and must simply accept it as stated.
Knowledge expressed in an interchange format like DKEL
may have been added by the domain designer instead of be-
ing discovered by automatic analysis. Regardless of origin,
it may be incorrect due to a flawed analysis, differences in
the interpretation of knowledge statements, or even sheer
malice. However, adopting an explicit representation for do-
main knowledge, such as DKEL, may also help in avoiding
problems of the kinds mentioned before. It offers a human-
readable intermediate format with a well-defined semantics,
and encourages empirical evaluation of planning tools. Ul-
timately, the decision what domain knowledge generating
components to couple to a specific planner still belongs with
the designer of the integrated planning system.

Demarcating Domain Knowledge: Scope of DKEL

Distinguishing domain knowledge from other forms of
knowledge, and thus finding the right scope for DKEL, is
not easy. For example, it is not entirely clear where domain
analysis ends and planning begins: Heuristic state evalua-
tions done by a planner such as FF falls under our defini-
tion of domain knowledge as “statements logically implied
by the problem specification”, but we would not consider
it such because what meaning, and relevance, would this
information have to any other planner? Conversely, state-
ments that are in fact not domain knowledge may appear
syntactically indistinguishable from statements that are. For
example, to a regression planner that uses state constraints
to prune unreachable states from the search, advice to prune
reachable but undesirable states could be given in exactly
the same form. Only the fact that these constraints are not
implied by the problem specification makes it advice rather
than domain knowledge.

Another point is that domain knowledge is defined with
respect to a problem instance, but what we really want to
do is state knowledge about a planning domain, i.e. about
all problem instances belonging to the domain. Because the
concept of “domain” in PDDL is rather weak1, we must in
doing this exclude “unreasonable” problem instances. The
semantics of DKEL statements, and language features such
as :context, have been made with this in mind.

1The domain can for instance not specify the existence of any
particular object, or sanity constraints on the initial state, nor re-
strictions on the goal. The first PDDL specification (McDermott et
al. 1998) had some features along these lines, e.g.:constants
and situations but they never gained widespread use.

Meta Knowledge
The semantics of DKEL statements are carefully and exactly
defined, but they are in a sense not complete. For exam-
ple, the meaning of the :irrelevant clause for actions
is roughly “if there exists a plan, there also exists a plan that
does not contain the irrelevant action”, but this does not say
whether the plan not containing the irrelevant action is of
the same length (or cost according to the problem metric).
Given two statements about action irrelevance, it is also not
clear whether they can both be applied at the same time, or if
doing so will make the problem unsolvable altogether. An-
other example is the :replaceable clause, which states
that any occurrence of a particular action sequence can be re-
placed by a different action sequence, in any valid plan, but
it does not specify if the replacement is valid in the presence
of another action sequence in parallel,

These uncertainties could be resolved by adopting a
stricter semantics for the various DKEL statements, but this
would be likely to make the whole language too restricted to
be useful. At the same time, most domain analyzers can be
much more specific about properties of the domain knowl-
edge they produce. For example, all :irrelevant action
clauses produced by RedOp (Haslum & Jonsson 2000) can
be safely used together, and some of them are also guaran-
teed not to increase the length (serial or parallel) of the plan.

We call this knowledge about properties of particular
items of domain knowledge “meta knowledge” and ideally,
we would like to be able to express it alongside domain
knowledge in DKEL. However, what kinds and forms of
meta knowledge are relevant is not clear to us, and therefore,
at the moment, DKEL supports it only via “tags”: domain
knowledge items may be annotated with arbitrary symbols,
intended to express such properties. A sketch of an ontology
for meta knowledge is given in section “Current Form and
Future Development” below.

Classes of Domain Knowledge
This section presents definitions of the semantics of three
different classes of domain knowledge: state invariants,
fact and action irrelevance, and replaceability of action se-
quences. These are the classes that can be expressed in
DKEL. They represent by no means an exhaustive classifi-
cation of domain knowledge, but together they cover a large
part of the domain knowledge that is made explicit by exist-
ing automatic analysis techniques.

In defining the meaning of knowledge clauses, we con-
sider for the most part plans to have the simple form of a se-
quence of atomic actions, although in some cases, e.g. state
invariants, the meaning of a domain knowledge statement
remains unchanged when slightly more complicated plan
forms, such as partially ordered sets of actions, are used.

State Invariants
State invariants are probably the most commonly produced
and used class of domain knowledge. They express prop-
erties of a planning domain that are invariant under action
application, e.g. the uniqueness of a physical location of an
object. State invariants in planning are commonly defined as
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a formula F on states such that if F is true in the initial state
of a planning problem, F is true in all reachable states. The
following is a typical example, taken from the blocksworld
domain2, which states that a block is either on the table or
on exactly one other block:

(forall (?x) (and
(or (clear ?x) (exists (?y)

(implies (not (= ?x ?y)) (on ?x ?y))))
(forall (?y ?z)
(implies (and

(not (= ?x ?y)) (not (= ?x ?z))
(on ?x ?y) (on ?x ?z)) (= ?y ?z)))

(not (exists (?y) (implies (not (= ?x ?y))
(and (on-table ?x) (on ?x ?y)))))))

The formula is best explained in the terminology of TIM,
see (Fox & Long 1998), p. 386f. The first of the three
outer conjuncts corresponds to a state membership invariant,
meaning that in every state and for every block ?x at least
one of (on-table ?x) or (on ?x ?y) is true, where ?y
is different block than ?x. Likewise, the second and the third
conjunct correspond to a identity and a uniqueness invariant,
respectively. The second denotes that a block is on top of at
most one other block and the third that a block is never si-
multaneously on top of another block and on the table. Then,
for a problem with two blocks A and B, this formula speci-
fies that exactly one of the facts (on-table A) and (on
A B), and analogously exactly one of the facts (on-table
B) and (on B A), is true (provided this was the case in the
initial state).

We will generalize the above definition of state invariants
slightly. First, we simply drop the reference to the initial
state. As any state can be the initial state of a planning prob-
lem, an invariant according to the first definition is useful
even if it becomes true in an intermediate state of a plan
instead of in the initial state. Second, we consider invari-
ants also on pairs of adjacent states. This allows us to ex-
press monotonicity properties on transitions among states.
Although this extension may seem complicated, it fits natu-
rally into the framework of DKEL.

Hence, our definition of a state invariant is (1) a formula
F on states such that if F is true in a state s, F is true in
all states reachable from s by application of a sequence of
actions. In addition, a state invariant may be (2) a pair F1,
F2 of a formula on states and a formula on pairs of states,
respectively, such that if F1 is true in a state s then F2 is true
for all pairs (s, s′) where s′ is reachable from s by the appli-
cation of a single action or a set of non-conflicting actions in
parallel.

With this definition we can formulate state invariants for
a planning domain independently of any particular problem,
even though their applicability clearly depends on the initial
state of the problem. For example, intuition says that all
the blocksworld state invariants given above are properties
of the blocksworld domain, but it is easy to define problems
whose initial state violates them. Our definition simply says

2We use blocksworld as example domain throughout this paper.
The blocksworld domain is simple, widely known, and allows the
formulation of a wide variety of domain knowledge.

that because such an initial state falsifies the antecedents of
the state invariants, there is nothing said about the following
state.

Also note that an invariant according to (1) remains an
invariant, in the intuitive sense, also if the plan is parallel
or partially ordered, if one makes the common assumption
that the result of executing such a plan is the same as that
of executing one of its linearizations. The definition does,
however, not guarantee that the invariant formula holds dur-
ing the execution of each action in the plan. In PDDL2.1,
it is possible to specify effects at different time points in
the execution of an action, and thus an action may falsify
an invariant formula at the start but restore the truth of the
formula at its end.

State invariants are explicitly and implicitly used by a va-
riety of planners, among which are SATplan (Kautz & Sel-
man 1992), STAN, GRT, and MIPS. A similar variety of
tools calculate invariants from domain and problem descrip-
tions, e.g. TIM, Discoplan (Gerevini & Schubert 1998), and
a technique by Rintanen (2000).

Operator and Predicate Irrelevance
The difficulty of solving a planning problem increases, fre-
quently exponentially, with the size of the problem speci-
fication. Unfortunately, for most planners it makes small
difference how much of the specification is actually relevant
for solving the problem goals. The larger and more complex
problems get, the more likely is the presence of irrelevance
(most of the real world is irrelevant for any of our tasks) and
the greater is the cost of not realizing it. It is fair to say that
the identification and efficient treatment of irrelevance is one
of the key issues in building scalable planners.

As important as we consider the treatment of irrelevance
to be, as difficult it is to define precisely. Nebel etal. (1997)
identify three different kinds of irrelevance: (1) a fact or
action is completelyirrelevant if it is never part of any so-
lution. This is a very weak criterion, since a plan can al-
ways contain redundant steps that contribute nothing to the
achievement of the problem goals but make use of otherwise
irrelevant facts or actions. Unreachable actions are of course
completely irrelevant. (2) An initial fact or an action is so-
lution irrelevant if its removal from the specification does
not affect the existence of solution, and (3) an initial fact or
an action is solution-lengthirrelevantif its removal does not
affect the length of the shortest solution plan. This can ob-
viously be generalized to any conceivable cost measure on
plans.

We adopt solution irrelevance as the basis for our defi-
nition, since it seems the most intuitive and least compli-
cated. Solution-cost preserving irrelevance is an important
concept, but because of the unlimited number of measures,
we relegate this property to meta knowledge. Thus we say
that an action a is irrelevant if removing a from the set of
actions available to the planner does not alter the existence
of a solution. In other words, if there exists a plan, then there
also exists a plan that does not contain the irrelevant action.

Concerning facts, the situation is more complicated, since
there are several possible interpretations of what it means
to “remove” a fact from the problem. Removing an “initial
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fact”, i.e. one that is true in the initial state, can be simply
defined to mean making its value in the initial state false
(or unknown) instead. For facts that are not initial there is
no such obvious interpretation, since removing a fact from
the problem completely may have undesired side effects: If
the removed fact appears as a precondition, an action may
become applicable in a state where it was not applicable be-
fore, and thus the simplified problem may have a solution
that is not a solution to the original problem.

Because of this, we choose only a simple definition of
“initial fact irrelevance”: A fact is initial-irr elevant if its
truth value in the initial state does not affect solution ex-
istence.

Action irrelevance is usable by practically every planner,
since its effect is only to reduce the size of the problem. This
is particularly important for planners that work with an in-
stantiated representation. Fact initial-irrelevance has been
shown to be important for Graphplan and Graphplan-like
planners (Nebel, Dimopoulos, & Koehler 1997). Domain
analysis tools that produce irrelevance information include
RIFO (Nebel, Dimopoulos, & Koehler 1997) and RedOp.
RIFO implements several methods of detecting irrelevance,
some of which are not guaranteed to be solution-preserving
and therefore do not strictly fall within our definition. Still,
since the knowledge produced by RIFO has been shown to
be very useful in practice, we feel that the lack of a solution-
preservation guarantee should be regarded as meta knowl-
edge and indicated by a tag.

Replaceable Sequences of Operators
Planning problems tend to have numerous solutions and
many of them are similar. They may differ perhaps only
by a reordering of actions that do not interfere with each
other, or by the substitution of a different object with iden-
tical properties, and recognizing this can improve the effi-
ciency of search since only one of the equivalent sequences
have to be considered (Fox & Long 1999; Taylor & Korf
1993). More generally, a sequence of actions may be “sub-
sumed” by a different sequence, in the sense that wherever
the first sequence occurs, the second can be substituted. We
say that an action sequence T1 is replaceableby an action
sequence T2 if in every executable action sequence contain-
ing T1, replacing T1 by T2 also results in an executable se-
quence, which, in addition, achieves all the goals achieved
by the original sequence.

An example of such a pair in the blocksworld domain are
T1 =(move A B D)◦(move A D C) and T2 =(move A
B C): whenever a block is moved twice in a row, this se-
quence can be replaced by a single move directly to the des-
tination of the second move. This is also an example where
replaceability holds only in one direction, since replacing
the second sequence by the first may result in an invalid plan,
if D is covered by another block.

The replaceability relation is defined with respect to linear
plans only: It leaves no guarantee that making the replace-
ment in a plan where there exists actions parallel with the
replaced sequence yields a valid plan. For example, if the
sequence (move E C F)◦(move G H D) happens in par-
allel with T1, the previous replacement yields a conflict: If

(move A B C) is placed at the same time as (move A B
D) then block C is still occupied, and if it is placed one step
later, block D is not freed early enough. Note, however, that
if replaceability between two sequences holds in the con-
text of parallel totally ordered plans, it always holds also for
linear plans. Thus, knowledge of replaceability as defined
above may useful at least as a basis for computing replace-
ability for other kinds of plans.

Examples of automatically generated replaceability
knowledge includes the result of RedOp and the RAS con-
straint of Scholz (1999). The latter also goes into replace-
ability for parallel plans. A common use of replaceabil-
ity is “commutativity pruning”, i.e. pruning from search all
but one permutations of a sequence of commutative actions,
used for example by GRT (Refanidis & Vlahavas 2001).
An example of a different use is the “Planning by Rewrit-
ing” approach (Ambite & Knoblock 2001), although this
uses a more elaborate model of replacement and hand-coded
knowledge.

Other Classes of Domain Knowledge
Many classes of domain knowledge beside the three detailed
above have appeared in the literature. They have all been
implemented as part of planning systems, or in some cases
as stand-alone tools, and thus are all candidates for future
extensions of DKEL. Examples include

Landmarks: A landmark (Porteous, Sebastia, & Hoffman
2001) is a fact that must be achieved at some point in ev-
ery solution to a planning problem. Different ordering re-
lations on landmarks can be identified and used to prune
from search candidate plans that achieve landmarks in vi-
olation of the order.

Goal orderings: Goal orderings (Koehler & Hoffmann
2000) allow a divide and conquer approach to planning.
A goal ordering for a planning problem consists of two
or more ordered subsets of its goals. Instead of planning
for all goals at once, a planner can repeatedly search for a
plan from one subset to the next, using the goal state of the
previous plan as initial state. Then, the overall solution is
the concatenation of the plans for the subgoals.

Symmetries: The detection of symmetry can considerably
improve the performance of planning systems: If a can-
didate plan does not yield a solution, there is no use in
considering a symmetric candidate. Fox and Long (1999;
2002a) describe how to find symmetries in planning prob-
lems.

Generic Types: Fox and Long (2000; 2001) define a
generic type as a collection of types, characterized by spe-
cific kinds of behaviors, e.g. movable objects and lockable
doors. Generic types are present in a variety of planning
domains and are amenable to the application of special-
ized techniques. The identification of generic types al-
lows to automatically compose a planner specialized for
the planning problem at hand.

Another important class of knowledge in widespread use
is general constraints on sequences of states and actions. It
is common both as part of a problem specification (although
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not directly expressible in PDDL) and as a means of express-
ing advice. There are, however, good reasons why we have
chosen not to include it in DKEL: There are already many
languages for expressing constraints for these purposes, e.g.
HTN schemas, temporal logic, and more. Such languages
also tend to be highly expressive and quite complex. Even
though constraints on action and state sequences can consti-
tute domain knowledge, their main use is as either part of the
specification, or as advice founded on the intuition of the do-
main designer. Also, there exists very few domain analysis
tools that automatically discover knowledge of this kind.

The Domain Knowledge Exchange Language
This section describes how the three classes of domain
knowledge detailed in the previous section are expressed in
DKEL.

DKEL Design Principles
Our main goal in the design of DKEL has been to make a
language that is useful in practice. In short, it should be
simple, extendible, and as familiar as possible.

The most important design principle is simplicity, which
does not only apply to the language definition but also
to its intended use. In other words, we tried to keep
things simple and ask the users of DKEL to do the same.
On the other hand, the expressiveness of the language
should be adapted to current (and, as far as possible, fu-
ture) use, which motivates our restriction to three common
classes of domain knowledge. In a trade-off with simplic-
ity, we introduce a certain amount of “syntactic sugar”,
i.e. abbreviations for some common cases, for example the
:set-constraint.

Finally, DKEL is designed as an extension of PDDL, so
we expect the user to be familiar with this language. For this
reason, we tried to keep DKEL as close to PDDL as possible
and share some of the syntax with this language. For ele-
ments DKEL which are not described in this paper, please
refer to the PDDL subset used in the AIPS 2000 Planning
Competition (Bacchus 2000).

Stating Domain Knowledge in DKEL
DKEL clauses can be placed within either a domain,
situation, or problem definition. Each location yields
a different scope for the clause: If placed within a domain
definition, a DKEL clause is valid for all problems of this do-
main. Analogously, a DKEL clause within a situation
and a problem definition is valid only for problems that
have the specified initial state and the specific problem, re-
spectively. Note that the semantics of some DKEL clauses,
e.g. state invariants, and the :context feature of the lan-
guage (see below) allows domain descriptions to contain do-
main knowledge that is problem dependent to some extent.

DKEL clauses have the form of a list beginning with an
identifier. Elements within a clause, like the elements of
an action definition, consist of a keyword followed by some
“content” in the form of a LISP expression, i.e. a single sym-
bol or a list with balanced parentheses. The basic form of a
DKEL clause is:

(<KNOWLEDGE_KIND> <ELEMENT>)

<KNOWLEDGE_KIND> ::=
:replaceable | :irrelevant | :invariant

<ELEMENT> ::=
[:tag <name>]*
[:vars (<TYPED?-LIST-OF(VARIABLE)>)
[:context <CONTEXT_FORMULA>] ]

<CONTENT>+

Elements common to all clauses are :tag, :vars,
:context, and <CONTENT>. The first allows a limited
amount of meta knowledge, in the form of an arbitrary sym-
bol, to be associated with the clause. Note that a clause
may have more than one :tag element. Writing several
instances of content within the same DKEL clause is equiv-
alent to writing one clause with the same :tag, :vars,
and :context for each of them.

Variables on the <ELEMENT> level act as universally
quantified parameters to the content of the clause, allowing
several instances of a domain knowledge item to be writ-
ten in a single statement. The :context clause limits the
possible instantiations of these variables. Thus, writing a
DKEL clause with parameters is equivalent to writing one
ground instance of the clause for each assignment of the
variables that satisfies the context formula. For example,
consider the :invariant clause in the next subsection:
In a blocksworld problem with three blocks A, B, and C, it
denotes three state invariants, one for each binding of ?x to
a block.

The context formula is required to be “static”, i.e. evalu-
able without reference to a particular state. This makes it
possible (but not necessary) to convert all DKEL clauses to a
set of ground instances in a preprocessing step. The restric-
tion is reasonable, since for none of the classes of domain
knowledge currently expressible in DKEL does validity de-
pend on the state, but it may have to be lifted in the future if
DKEL is extended to other kinds of domain knowledge.

To allow knowledge items in the domain definition to
depend on properties of the problem instance, a context
formula may contain two kinds of modal literals: (:init
<literal(t)>) and (:goal <literal(t)>).
They refer to the truth value of the literal in the initial and
goal state of the problem, respectively.

Since even simple conjunctive goals in PDDL do no
specify a complete state, there is a question of how to
interpret negative :goal literals: Does (:goal (not
<ATOM>)) mean “it is a goal that <ATOM> should be
false”, or does it mean “it is not a goal that <ATOM> should
be true”? The most straightforward and general interpre-
tation, and the one we choose for DKEL, is that (:goal
<literal>) is true if and only if <literal> is entailed
by the goal formula of the problem, even though this does
make it more difficult to handle problems with complex goal
formulas (see e.g. Kvarnström and Doherty (2001), Section
3.4, for a more detailed discussion). Consequently, the sec-
ond possible interpretation suggested above is expressible as
(not (:goal <ATOM>)).
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State Invariants
An :invariant clause specifies a state invariant as first-
order formula or as a set constraint. As defined in the previ-
ous section, this means that the given property is preserved
by all operators. It does not necessarily mean it is true in ev-
ery reachable state: Only if the :invariant clause stands
within a situation or problem definition the property
is required to be true in the initial state.

The syntax of an :invariant clause is as follows:

<CONTENT> ::=
:formula <FORMULA>

| :set-constraint (<CONSTRAINT_TYPE>
<INTEGER> <LITERAL_SET>+)

<SET_CONSTRAINT> ::=
exactly | at-most | at-least

| decreasing | increasing

<LITERAL_SET> ::=
<LITERAL(<TERM>)>

| (:setof
[:vars (<TYPED?-LIST-OF(VARIABLE)>)
[:context <CONTEXT_FORMULA>] ]

<LITERAL(<TERM>)>)

The motivation for introducing set constraints is to simplify
the writing of common types of invariants. A set constraint
specifies the literal set as a union of <LITERAL SET>, each
of which can either be a single literal or an instance of the
(setof VARS CONTEXT LITERAL) construct. The latter
denotes the set of literals entailed by the (closed) formula

(forall (VARS) (implies CONTEXT LITERAL)),

like the literals entailed by an action precondition. For ex-
ample, the invariant given in the previous section may be
expressed as follows using a set constraint:

(:invariant
:vars (?x - block)
:set-constraint (exactly 1

(on-table ?x)
(setof :vars (?y - block)

:context (not (= ?x ?y))
(on ?x ?y))))

The setof clause corresponds to the formula (forall
(?y) (implies (not (= ?x ?y)) (on ?x ?y))),
where ?x has already been bound on the <ELEMENT>
level. In a blocksworld problem with blocks A, B, and C, if
?x is bound to A, the formula denotes the set {(on A B),
(on A C)}.

The set constraint abbreviation is provided mainly be-
cause the corresponding first-order formulas quickly be-
come very large: Imagine a blocksworld domain extended
to have n tables, so that a block ?x could be (on-table1
?x), (on-table2 ?x), and so on. In this case, we need
only to replace (on-table ?x) by the n new predicate
schemata in the DKEL clause above, while formulating
the same invariant in first-order logic requires a formula
quadratic in size.

As it turns out, set constraints are well suited to express
many of the invariants found by current analysis techniques.

For example, the invariants found by TIM (identity, state
membership, uniqueness, and fixed resource) and most of
those found by Discoplan (implicative, single-valuedness,
antisymmetry, OR, and XOR) all correspond to set con-
straints. Consider the following Discoplan XOR-constraint:

((XOR (ON ?X ?Y) (ON-TABLE ?X)) (BLOCK ?X))

Here, ?X is universally quantified, ?Y existentially quantified
and (BLOCK ?X) is a supplementary condition that has to be
true in the initial state. Hence, the constraint reads: “In every
reachable state it holds that for all ?X such that (BLOCK ?X)
is true in the initial state, either there is a ?Y such that (ON
?X ?Y) is true or (ON-TABLE ?X) is true”. The one-to-one
corresponding DKEL invariant is

(:invariant
:vars (?x)
:context (:init (block ?x))
:set-constraint (exactly 1

(on-table ?x)
(setof :vars (?y) (on ?x ?y))))

Of course, set constraints can only describe a limited class
of invariant properties, but for remaining invariants we can
always resort to first-order formulas.

The semantics of set constraints are as follows: The con-
straints exactly, at-most, and at-least denote that
exactly n, at most n, and at least n of the literals in the
given set are true in a state, respectively. In TIM termi-
nology, an at-most set constraint is the conjunction of
the corresponding identity and uniqueness invariants, lim-
ited to the variable bindings that satisfy the context. Like-
wise, an at-least set constraint is the conjunction of
the corresponding state membership and uniqueness invari-
ants, again limited by the context. An exactly set con-
straint is the conjunction of the corresponding at-most
and at-least set constraints.

The decreasing and increasing constraints are
examples of the second type of invariants defined in the
previous section, i.e. invariant properties on pairs of adja-
cent states. A decreasing (increasing) set constraint
means that at most n (at least n) of the literals in the set are
true in a state and that in any succeeding state, the number of
true literals is the same or less (more). We give its semantics
in first-order logic by quantifying TIM invariants over states.
Then the first invariant formula F1(s) of decreasing
is (at-most i s), where the extra argument denotes the
state that the invariant holds in. Formula F2(s, s

′) is a con-
junction of k+1 implications (implies((exactly i s)
(at-most i s’))), one for each i in the range 0 ≤ i ≤ k.
Here, s and s′ denote adjacent states. The meaning of the
increasing constraint may be expressed by a similar pair
of formulas, with an upper limit given by the size of the fact
set.

Operator and Predicate Irrelevance
The :irrelevant knowledge clause allows irrelevance
information to be stated as part of the domain description
instead of removing the irrelevant operator or predicate in-
stances directly, thus preserving more of the original domain
structure. The syntax is as follows:
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<CONTENT> ::=
:fact <ATOMIC-FORMULA(<TERM>)>

| :action <OP_SCHEMA>

Any variables appearing in either fact or action schema
should appear also in the :vars element of the clause.

If the clause contains an operator schema, the meaning
is that any matching instance of that operator is solution-
irrelevant, as defined in the previous section, i.e. if there
exists a plan which contains such an action, there also ex-
ists a plan that does not. A predicate schema indicates that
instances of this predicate are initial-irrelevant, as defined
in the previous section, i.e. those instances can be removed
from the initial state of the problem without affecting so-
lution existence. The following is an example from the
blocksworld domain:

(:irrelevant
:vars (?x ?y ?z - block)
:context (not (:goal (on ?x ?z)) )
:action (move ?x ?y ?z))

It states that unless (on ?x ?z) is a goal, any instance of
the move operator that places ?x on ?z is irrelevant.

Replaceable Sequences of Operators

A :replaceable clause specifies replaceability of oper-
ator sequences in the context of linear plans. The syntax of
a :replaceable clause is as follows:

<CONTENT> ::=
:replaced <OP_SEQUENCE_SCHEMA>
:replacing <OP_SEQUENCE_SCHEMA>

<OP_SEQUENCE_SCHEMA> ::= (<OP_SCHEMA>*)

<OP_SCHEMA> ::= (<name> <TERM>*)

An example of a :replaceable clause from the
blocksworld domain is the following:

(:replaceable
:vars (?x ?y ?z - block)
:replaced ((move-from-table ?x ?y)

(move-onto-table ?x ?y))
:replacing ())

It states that it is always possible to replace the sequence of
moving a block from the table onto a block and immediately
back onto the table by the empty sequence. In other words,
this subsequence can be removed from any solution plan.

Current Form and Future Development
DKEL, as presented in this paper, is a first step, not a fi-
nal solution. It is the nature of a first step that there might
be discussions about its direction. Specification languages
for planning problems have evolved over many years, and
PDDL is still undergoing development.

In the following, we identify some of the weaknesses
DKEL currently exhibits, and discuss future developments
to remedy those.

Coverage
DKEL does not offer a representation for every conceivable
item of interesting domain knowledge. In fact, even the clas-
sification outlined in this paper does not cover all the kinds
of domain knowledge that have been discussed in planning
literature and used in planners up to now. The main rea-
son why we have left it in such an unfinished state is that
we believe the construction of a complete ontology of do-
main knowledge, and a matching representation, must be a
project for the planning community, not only because of the
scale of such a project but more importantly because an in-
terlingua such as DKEL is intended to be is useless unless it
is accepted by a large part of the community.

This said, we also think that DKEL, as presented here,
is an adequate first step towards a more comprehensive rep-
resentation. The three classes of knowledge it does cover
have been selected as a starting point because they are fairly
well understood and useful to a wide variety of planners,
and because there exist techniques to automatically derive
them from problem descriptions. In a sense, the language is
a “snapshot” of the state of the art in domain analysis. As
work in this area continues, we expect more kinds of domain
knowledge fulfill these criteria, and we hope that they will
also be incorporated into DKEL.

Finally, although DKEL is designed as an extension of
PDDL, there is no reason to believe that similar extensions
to other formalisms for specifying planning problems should
not be of use: compared to constraint languages, such as e.g.
HTN schemas, DKEL plays a different, and complementary,
role.

Meta Knowledge
Neither have we provided a syntax or an ontology of the
properties of items of domain knowledge which we have re-
ferred to as meta knowledge. Examples of such properties
that may be important include:

Assumptions about domain, problem and plan. The va-
lidity of action sequence replaceability may depend on
the assumption that the plan is linear, but instances of
the replaceability relation may be valid also in the con-
text of parallel or temporal plans. In a temporal planning
domain, invariant and replaceability knowledge may also
depend on exactly what action execution semantics are
assumed.

Effects of applying domain transformations. Irrelevance
and replaceability knowledge both describe (potential)
changes to the planning domain and problem: as de-
fined, these changes are guaranteed to preserve solution
existence, but other properties of the solution, e.g.
optimality with respect to number of actions, makespan,
or the problem-defined metric, are not guaranteed to be
preserved.

Compatibility and synergy. As already pointed out, action
irrelevance statements may be mutually exclusive, in the
sense that applying one such statement (by removing the
action or actions from the domain) renders the other in-
valid. Less obviously, there may be synergy effects be-
tween domain knowledge items: For example, there may
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be state invariants not valid for the original domain and
problem that become valid if a particular action replace-
ment or irrelevance statement is consistently applied.

Origin and dependencies. With the proper meta knowl-
edge attached, the origin of a particular item of domain
knowledge is of no importance. However, as long as there
is no detailed ontology of meta knowledge, it might be
necessary to know what program produced the knowl-
edge (and with what options), what other items of domain
knowledge were used to derive it, and so on.

This, however, is merely a sketch, which may prove inade-
quate if DKEL is extended to cover more classes of domain
knowledge. Although a need for a more structured classifi-
cation of meta knowledge is sure to develop if DKEL be-
comes used in wider circles, such widespread use is also
a prerequisite for designing an ontology that properly ad-
dresses that need.

Current Use of DKEL
Currently, there are two domain analysis tools that produce
state invariants in DKEL form: version 2.0 of Discoplan3

and TIM dkel, a reimplementation of TIM.
RedOp4 identifies actions that can be replaced by action

sequences. This knowledge can be output in DKEL, either
as :irrelevant or :replaceable statements.

One of the main goals of DKEL is to enable fast and easy
prototyping of integrated planning systems built from exist-
ing preprocessing techniques and planners. Varrentrapp et
al. (2002) demonstrate this with an on-line testbed for plan-
ning systems.5. Part of the testbed is a reimplementation of
GRT that accepts DKEL invariants. Here it is also possible
to download TIM dkel.

DKEL, in its current form, has been subjected to relatively
little in the way of evaluation. How does one evaluate a lan-
guage, especially a language targeted at the role we have in
mind for DKEL? While expressivity can be formally ana-
lyzed and compared, again, we believe the most important
metric of the value of DKEL is acceptance.

Conclusions
Domain knowledge is an important resource for automated
planners: It can be extracted automatically from the domain
and problem specification by a variety of techniques, and in
combination with knowledge of the workings of a planner
it can be turned into effective advice for reducing search ef-
fort or improving the quality of plans found. The language
DKEL has been conceived and designed as means for allow-
ing easy integration of domain analyzers and planners in a
flexible way. In a sense, this reduces the effort devoted to
inventing efficient domain and problem specifications in ex-
change for finding a combination of tools and planner that
efficiently solves the problem.

3http://prometeo.ing.unibs.it/discoplan
4http://www.ida.liu.se/˜pahas/hsps/

redop.html
5http://www.intellektik.informatik.

tu-darmstadt.de/˜planlib/Testbed

The explicit representation of domain knowledge also has
other uses. For example, it opens up the possibility of rea-
soning about the planning process. An example of this is
the planner HAP (Vrakas, Tsoumakas, & Vlahavas 2002),
whose planning strategy is adjusted according to the exis-
tence and characteristic of domain properties. Statements
of domain knowledge, e.g. a state invariant, are regarded as
property of the corresponding domain, similar to details like
the number of goal facts.

Two things we wish to stress. First, DKEL is aimed at
describing a particular kind of knowledge about a planning
domain: It is not a substitute for extensions to the expres-
sivity of problem specification languages, or formalisms for
“knowledge rich” domain description, it is a complement.
Second, it is not final: Although useful in its current form,
it will certainly need to be extended to meet future develop-
ments in planning and in domain analysis. Ultimately, the
goal may be a unified and standardized language for plan-
ning problem specification, domain knowledge and planner
advice, but it still lies far in the future.
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Abstract

For 5 years now PDDL has been growing in complexity and
size. With the languages success the field of Planning and
Scheduling (P&S) has grown in the light of the International
Planning Competition (IPC), in both complexity and popular-
ity. It is proposed that now is the time to allow the commu-
nity, as a whole, to drive the progress of PDDL and to create a
community outside that of the competition. With this in mind
some prerequisites are outlined that are deemed necessary to
achieve success in this aim, with both some minor extensions
to the language but also with greater development infrastruc-
ture.

Introduction
This paper sets out some answers to the issues raised as
discussion topics for the ICAPS-03 workshop. It focuses
on the PDDL infrastructure and the need to secure greater
links with a wider community for the development of the
language. There are a number of areas where Planning and
Scheduling could greatly increase its desirability to the in-
dustrial community starting with some improvements in the
way languages and resources are managed.

In the first part of the paper the various questions pointed
to by the initial call for papers are discussed. Following this
a number of infrastructure changes are proposed, ending up
in some suggestions for small extensions to the language to
enable more flexibility and knowledge sharing.

Infrastructure
What is the ambition for PDDL?
Although PDDL was initially conceived for the IPC in 1998
by Drew McDermott, it has since become the main language
for the Planning and Scheduling community as a whole. As
such it is no longer just a ’toy’ for use with the competition
and is becoming a popular research, and in the near future,
industrial standard. These ambitions are necessary to ensure
that a sensible, community driven language, that addresses
all the issues that come with such a standard is created. Any-
thing less than this and the continuing multitude of small
specialist languages will continue.

∗I would like to thank the reviewers and John Levine for their
helpful comments.

There are many roles for languages in planning whether
it be to capture heuristics, to communicate knowledge about
a particular domain or to help knowledge acquisition, and
as such it is for a standards committee to set the main ob-
jectives of the language, guided by what the community are
using the language for, rather than one person’s ideals, as
it is this that will allow the language to continue to become
more popular and useful in applied planning. The main fea-
ture of PDDL that is important to all these languages is the
format and tools for dealing with it. By having the ambition
to merge the various syntax and increasing PDDL’s flexibil-
ity it will be possible to cut the learning and development
curve of these language aspects down to a minimum, there-
fore aiding PDDL’s overall appeal. This is in contrast to
the belief that there is a need for individual languages for
specific planning purposes, which hinders development of
complimentary technologies.

There are those that would have PDDL as a language only
available to experts rather than general users, but as in other
modelling languages such as HTML and VRML, their pop-
ularity has been greatly aided by their broad appeal. Users
could program PDDL by hand but by making the language
available to the community in terms of libraries a number
of utilities such as PDDL editors could be written allow-
ing normal users to investigate their own individual planning
problems. There are no gains to be had by keeping the lan-
guage at a research/expert level only therefore it should be
an ambition, as the whole premise of planning is to apply to
problems in the real-world, to make the language accessible
to ’real-world’ users.

Are we ready for such a standard?
Even though there are a number of areas that can be im-
proved upon in the language and also a number of pressures
to consider in its later development from both research and
industrial backgrounds, it is the position of this paper that
the community is both ready and willing to accept a com-
mon standard. For years there has been development of var-
ious specialist languages that confuse and obscure the more
general landscape of the field. This is one of the reasons
why it is so hard to sell Planning and Scheduling as a seri-
ous industrial tool. If a common language was adopted with
the ability for the community to make specialist changes for
their own particular product it would enable and create a
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more uniform and pervasive image to emerge.

Should there be a formal standard committee?
As in other languages such as HTML, C and Java there needs
to be a lead direction for a language to go in. It is therefore
both right and necessary that a central committee be formed
to maintain the coding and theoretical standards of the lan-
guage. It should be comprised of all the areas of influence,
such as research, industrial and commercial. In this way the
language will be able to accommodate and present itself to
all interested parties. But having made the above points it
should also be open to the community to add and update
the language for there own particular use. With the right in-
frastructure a similar effect to the Mozilla project (mozilla
2003) could be achieved. This would enable specialist lan-
guages and tools to be written quickly and made available to
the community but for them to be made part of the official
standard the committee would have to vote on the quality of
the change and the real value to the community as a whole.

Should developments be allowed to branch as
expressive power increases?
This question rests on the assumption that one community
base would be too restrictive to encompass all the needs of a
increasing language complexity. With a flexible infrastruc-
ture such as the one proposed above there would be little
need to branch out. That is not to say though that should
a need arise to split the language that it should never be
considered. In this early stage though it would be unwise
and lead to the continuing complex image of the field. With
the minor extensions proposed below it should be possible
to keep logs of the additions and changes to a standard for
the purpose of specialist areas and to allow the community
access to it all. The most useful should then naturally be
chosen to become part of the overall standard.

Infrastructure Changes
Due to the global nature of the subject the Internet is the
most obvious way to promote and develop PDDL. As such
an interface that allows users to submit their particular ver-
sions of the PDDL language should be made available with
the ability to detail changes that they have made. These
archives can then be made publicly accessible and if deemed
important, additions to the language can be added to the
PDDL standard. This common gateway could be used also
to develop new tools and foster new discussion on the direc-
tion of the language currently only possible via these pro-
ceedings which occur too infrequently to drive the language
forward.

An example of where a language has had huge suc-
cess through a community-based approach is the growth of
HTML as the standard markup language for the web. The
W3C(W3C 2003) organisation is the main body in charge
of setting up the standards used on the web but anyone can
upload their own tools and updates to the HTML standard to
be scrutinised and used by the community. By having mail-
ing lists and newsgroups for people to air their views the
whole community feels included in the overall direction of

the language. Another advantage of this community-based
approach is that documentation becomes more reliable and
examples more prolific. This includes the translation of doc-
uments into various different languages, there by in itself
enlarging the popularity of PDDL.

Another interesting case study is that of the C language(c
2003) that now has a number of working groups. The inter-
esting point here is how it has adapted itself to new tech-
nologies such as embedded systems with ease due to its
community-based approach. Although there are numerous
libraries and extensions available in the public domain, it is
still the responsibility of the ISO and IEC to set the C stan-
dard. Thereby giving a strict standard to adhere to but also
giving maximum flexibility.

There are disadvantages though with the community-
based approach. For instance if there is a disagreement
about a particular implementation for the standard then this
may cause a split in the community. At the moment as
there is only a very small number of people who decide on
how PDDL grows this is not a problem. A solution may
be that some sort of version split may occur but the differ-
ences could be allowed to be switched on/off depending on
a requirement flag as happens at the moment. Therefore in
a way the community will produce its own solution to the
problem in its flexibility. Another disadvantage is that there
will be a lot more documentation to be done and laziness
may creep in to certain versions. This though has also been
overcome by other communities by allowing the less compe-
tent programmers to debug and document any new versions
of tools and the language that come out. Therefore the scale
of the community is what keeps these factors in check.

In order to properly archive the expected mass of versions
it would be necessary to create add some meta data to the
current language. These extensions, proposed in the next
section, would allow a systematic library to be created, de-
tailing standard and complexity of the language in use.

Extensions
With the above infrastructure ideas in mind a number of ex-
tensions to the language would seem necessary to be able to
maintain integrity of the language. These extensions would
also help the ability to share knowledge of domains amongst
various Planning and Scheduling software.

The first extension is that of language version. With the
formation of a committee one of the first things necessary
would be to create a numbering system that reflected the dis-
tance of the new language concept from that of the standard.
An example might be as follows:

[standard version e.g. year.month.day of release] - [spe-
cific version of change]

This particular example allows the programmer reading
this to determine how current the language version is in
terms of the PDDL standards but also a particular version
number for the specialisation which would be maintainable
by the author.

The next few extensions area also to do with authoring of
the language. An indication of the maximum PDDL level
reached would be useful so that programs written for a spe-
cific level do not try and read above that level which could
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cause problems in an automated environment. Finally on
this theme an indication of where the language originated
and a contact email would be helpful for extra development
purposes. These fields would be optional as in HTML but
authors would be wise to use them to help third-party users
adoption of their specialist modifications.

Therefore a new meta keyword might look as follows:
(:meta 02.11.14-1.11 3 ’University Of Edinburgh’ ’au-

thor@ed.ac.uk’)
Translated as the community standard set on the 14-11-

2002 altered by University of Edinburgh, released again at
version 1.11 which goes up to PDDL level 3. The person to
contact for any questions is author@ed.ac.uk.

Just as in HTML this sort of information will allow pro-
grams to inter-operate and programmers will be able to write
their software to any degree of specialisation that they de-
sire but still be able to contribute to the community as a
whole. This sort of information might also generate greater
interest in the generation of a hybrid between PDDL and
XML which can handle this sort of meta-information in a
predictable manner.

Conclusion
In this paper it has been outlined that changes to the infras-
tructure plus a few minor extensions would enable the lan-
guage to present itself in as both a research and industrial
standard. It has been argued that this would increase in-
terest from the industrial and commercial communities by
simplifying the overall landscape of Planning and Schedul-
ing and allowing greater knowledge sharing between current
software. Examples have been suggested from the Internet
community where tools and languages have been allowed to
grow via a large community making small suggestions and
then an overall committee from all areas strengthen the lan-
guage by using the most popular alterations to set a common
standard. This community-based approach does need more
planning but it is the way forward if PDDL wants to be-
come a true language standard of the Planning and Schedul-
ing community.
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Abstract

In order to make planning technology more accessible and us-
able the planning community may have to adopt standard no-
tations for embodying symbolic models of planning domains.
In this paper it is argued that before we design such languages
for planning we must be able to evaluate their quality. In
other words, we must clear for what purpose the languages
are to be used, and by what criteria the languages’ effective-
ness are to be judged. Here some criteria are set down for
languages used for theoretical and practical purposes respec-
tively. PDDL is evaluated with respect to them, with differ-
ing results depending on whether PDDL’s purpose is to be a
theoretical or practical language. From the results of these
evaluations some conclusions are drawn for the development
of standard languages for AI planning.

Introduction
Good planning algorithms are hard to devise, but fairly easy
to evaluate; on the other hand, modelling languages are
fairly easy to devise, but hard to evaluate. Language ex-
tension is similar: it is relatively easy to add arbitrary fea-
tures to a language, but adding the tools to manipulate the
enhanced language, or perfecting a semantic definition of
the extension, is much more difficult. Having devised a lan-
guage1, how can we evaluate it’s quality? One way is to
use practical methods. Experiments can be set up to test the
effectiveness of a language, using engineers in a controlled
environment. This is a time consuming and costly business,
however, and the tests are prone to extraneous variables as
people act differently when on their own to when they are
being experimented on.

For reasons such as these, more analytical methods of
evaluating languages are popular. This involves generat-
ing a list of criteria, usually called design criteria, that have
been devised when considering the purpose of the language.
Sometimes these criteria are well developed a priori, and
sometimes old languages are subject to being evaluated with
new criteria. A well-used language does not necessarily
mean it will score highly on a desired set of criteria; it may
be that one feature of the language makes it uniquely us-

1It is assumed in this paper that the languages considered are
for domain models input to a planner, rather than ‘plan’ languages
used to represent the output of a planner.

able by a community. That feature may be that it is sim-
ilar to a set of languages it was designed to replace, mak-
ing it easy to migrate to. Or as another example, consider
the old language FORTRAN IV. It was well respected by
engineers of mathematical applications because of its com-
pilers’ efficiency and its wealth of mathematical primitives.
But given it should embody desirable software engineering
criteria such as strong typing and structured programming
then it was quite obvious that it scored poorly. Thus lan-
guages like FORTRAN were either re-invented (hence envi-
ronments such as ’MatLab’) or they evolved to score higher
against the new criteria (hence FORTRAN 77 with its struc-
tured control constructs).

In this paper I discuss the kinds of criteria against which
an AI planning language might be judged, making a dis-
tinction between them depending on the purpose of the lan-
guage. I apply them to version 1.2 of PDDL, and draw some
conclusions for the future development of planning language
standards.

Criteria for Evaluating Languages
The study of languages for machine as well as human con-
sumption (ie ones that people have to manipulate or under-
stand in some way) encompasses three aspects: syntax, se-
mantics and pragmatics. A fundamental question about a
language arises when considering these three aspects: is it
going to be used theoretically or is it going to be used gener-
ally by people to encode complex algorithms or knowledge?

Theoretical formal languages: Considering theoretical
languages, in computer science we have the Lambda Calcu-
lus, the Pi-Calculus, the Turing Machine, first order logics
etc. They are often used to theorise about concepts (e.g.
sequential or concurrent computation), or are used as the
meaning domain for the semantical definition of practical
languages. Considering the well-known languages which
are used in theoretical research, the intrinsic criteria that un-
derlie their success appear to be the following:

• (1) simple, clear, precise syntax and well-researched se-
mantics
For example, in Lambda Calculus the syntax is defined in
a few BNF rules, with syntactic sugar being added when
needed. The semantics have been studied in depth: for
example, recursive functions in Lambda Calculus have a
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clear and precise operational semantics (using conversion
rules and normal order reduction) and fixed point seman-
tics. Research has showed that these two kinds of seman-
tics co-inside.

• (2) adequate expressiveness
Can the language adequately represent the range of its tar-
geted application domains? For Lambda Calculus this
is the domain of computable functions, and it is a well
known (though unproven) conjecture that it is adequate
for this.

• (3) clear mechanisms for reasoning
Can a user (perhaps with tool support) reason with parts
of a formula in the language? In Lambda Calculus one
uses the conversion rules to transform one expression into
another, equivalent expression.

Applied formal languages: Theoretical languages, how-
ever, tend to have little or no pragmatic features. At the
other extreme are formal languages which have complex
syntax which support many useful pragmatic features. For
example we have Java in the field of programming, Z in for-
mal specification of software, RML in requirements mod-
elling (Greenspan et al. 1994) or (ML)2 in knowledge-
based systems (van Harmelen et al. 1996). Often, prag-
matic features are present at the expense of clarity. For ex-
ample, the amount of extra syntactic baggage employed by
JAVA tends make it much less clear that the older, simpler
PASCAL programming language. In AI planning there are
a spectrum of languages between these two extremes. Some
planning systems require complex practical-oriented fea-
tures in their input languages, such as hierarchically struc-
tured objects and operators (McCluskey 2000), or Condition
Types (Tate et al. 1994); some researchers need to use an
input language that minimally models the dynamics of the
domain, for example when exploring the theoretical com-
plexity of planning (e.g. (Bylander 1991)).

I now consider some criteria that have been found useful
for evaluating the pragmatic aspects of formal languages. A
quite general framework for the evaluation of languages and
their environments is Green’s Cognitive Dimensions (Green
2000). This involves using a set of criteria as ’discussion
points’ to focus on the various dimensions of a language,
and may result in an informal evaluation (Green admits his
method in not analytic, and the dimensions are not mutu-
ally independent). He devised fourteen criteria which have
been used to evaluate various types of language and envi-
ronments, including theorem proving assistants, UML and
programming languages. Although these criteria have been
quite widely used, they have been successful for languages
which are embedded in an environment rather than a lan-
guage itself. Some of these criteria are aimed at the visual
aspects of environments in which the language is embed-
ded. Thus they would be better applied to a planning knowl-
edge acquisition environment than the language used to rep-
resent the knowledge only. However, I have extracted and
enhanced three criteria which are particularly related to the
language itself, and have been used elsewhere in the litera-
ture:

• (4) maintenance (also referred to as hidden dependencies
or locality of change)
After changing one part of the notation, will this have any
invisible knock-on effects on other parts? Do changes to
a part of a model just have a local effect, or will they have
global connotations? Can the model be easily and consis-
tently updated to reflect changes? (from the viewpoint of
maintenance, it is desirable that all changes have minimal
global effects).

• (5) closeness of mapping / customisation
How natural is the mapping between the domain and the
model? how small is the ‘semantic gap’? Is the language
customisable in some sense so that it can fit in well with
applications?

Since there is a whole range of assumptions involved in plan-
ning which may or may not hold in an application (for ex-
ample to do with action duration, resources, closed world) it
may be that the modelling language will have “variants” to
deal with different assumptions. Related to this is the need
to have ’hooks’ in the language to allow extension: if the
scope or depth of requirements of the domain are increased,
can the formalism be likewise extended?

• (6) error-proneness:
does the design of the language discourage errors, or are
there any parts where it is hard to avoid errors? Is the
construction of domain models error prone in a particular
way?

Criteria (4) - (6) are analogous to those used to evalu-
ate programming languages: (4) reflects the idea that lan-
guages should embody structures to promote loose cou-
pling between sub-parts, and strong coherence. The ‘ob-
ject’ in object-oriented programming scores highly in this
respect, as implementations of object behaviour are insu-
lated from other parts via the object interface. (5) reflects the
dominance of ‘high-level’ languages - those that are more
problem-oriented than machine oriented, and are equipped
with user-defined structures for customisation. Finally, (3)
has influenced programming language design in order to
eliminate common errors; for example, languages which are
not strongly typed are particularly prone to errors resulting
from variable misuse and misspelling.

To investigate more criteria we use Van Harmelen et al’s
evaluation of (ML)2, a formal KBS specification language,
and hence relevant to AI planning languages. They use six
criteria to evaluate this formal language used for formalis-
ing KADS expertise models (van Harmelen et al. 1996).
Although objectiveness may be compromised when a group
sets out their own criteria for evaluating their own product,
the criteria they use are clearly worked out in response to
considering the purpose of the language. They use criteria
similar to those above (in particular (1), (4) and (6)), as well
as the following:

• (7) reusability
Can models or parts of models be easily reused to con-
struct models for new domains?

• (8) guidelines and tool support
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Is there a useful method to follow to build up a model, and
are there tools to support this process?

With respect to the last point, in all areas in computer sci-
ence involving some kind of non-trivial knowledge cap-
ture, methods have been developed to support this. For
example in formal specification of software there is the B
method(Schneider 2001), or in the acquisition of knowl-
edge for KBS there is the KADS method (Wielinga et
al. 1992), and some methods have also been developed
for acquiring AI planning knowledge (Tate et al. 1998;
McCluskey & Porteous 1997). The method will give a set
of ordered steps to be carried out in order to capture and de-
bug the domain model, thus guiding the knowledge engineer
throughout the process. Ideally, the tools will be available in
an integrated environment, and will support the steps in the
method. Using the structure of the model language, the tools
should be able to provide powerful support for statically val-
idating, analysing and operationalising the model.

Finally, I draw on the guidelines for the design of domain
model languages as recorded in the Knowledge Engineering
for AI Planning Roadmap (McCluskey et al. 2003). This
was written in the context of planning domain modelling,
with the purpose of the language being to assist the process
of knowledge acquisition and domain model validation. The
criteria included several similar to those discussed above (in
particular (1), (2), (5), (8)), and additionally the following:

• (9) structure
It should provide mechanisms that allow complex actions,
complex states and complex objects to be broken down
into manageable and maintainable units. For example, the
dynamic state of a planning application could be broken
down into the dynamic state associated with each object.
On this structure can then be hung ways of checking the
model for internal consistency and completeness.

• (10) support for operational aspects
The language’s framework should include a set of prop-
erties and metrics which can be evaluated to assess a
model’s operationality and likely efficiency. It should be
possible to predict whether the model can be translated to
an efficient application, and what kind of planner should
be used with the model.

To sum up, the criteria for practical formal languages
are based around the idea that the structure of the language
should support initial model acquisition and debugging, and
subsequent model maintenance and re-use. Also, although
criteria (1) - (3) are aimed specifically for theoretical lan-
guages they are often thought desirable for practical lan-
guages also.

Design Criteria for a Planning Language
What are the design criteria for an AI planning language? As
mentioned above, it depends for what purpose the language
is set, and a particular concern is whether the language is for
theoretical or practical use. In the case of PDDL, this ’pur-
pose’ seems to have grown and changed as the language is
used more widely. From the initial PDDL report(AIPS-98
Planning Competition Committee 1998), it appears that the

language was designed to represent the syntax and seman-
tics of domain models that were currently available to the
authors, and that were used as input languages to many of
the published planners of the time. Not all planners were
expected to use all PDDL’s features, and on the other hand
planners were expected to have requirements that would
mean a user extending PDDL in a controlled way. Its initial
purpose, therefore, appears to have been as a communica-
tion language - a basic common denominator for planners
of the STRIPS-tradition at the time so that (a) they could
be compared in competition and (b) problem sets could be
shared and planning algorithms independently validated. In
this respect, as a communication language it has clearly been
successful.

Nowadays the Planning Domain Definition Language is
sometimes described as a ’modelling language’, which has
quite different ramifications than its originally expressed
purpose. If its purpose is to support theoretical study, eg to
help compare the capabilities of new planning algorithms,
then it should be evaluated with respect to a restricted set
of criteria such as (1) - (3). If its purpose (now) is to be
a practical language, to help an engineer accurately and ef-
ficiently encode an application domain into a planning do-
main model then additionally it should be subject to evalua-
tion by a range of the criteria such as (3) - (10).

Evaluation of PDDL with respect to stated
criteria

In PDDL we have a family of languages to suit planners
with different capabilities. The basic requirement in PDDL
is ‘:strips’ which indicates the underlying semantics of the
language worlds are considered as sets of situations (states),
where each state is specified by stating a list of all predicates
that are true. Firstly, I evaluate the language using criteria
(1) - (3) given above. I concentrate here on version 1.2 of
the language, and remark on the extensions later.

Clear syntax and semantics: The syntax is clear and pre-
cisely defined within the manual, and parsing tools that em-
body this definition are publically available. The seman-
tics of PDDL version 1.2, however, are informal and appear
to be distributed among the manual itself, the pre-existing
languages/systems that PDDL replaced (eg ucpop), PDDL’s
language processors, and the LISP interpreter. Although the
fact that PDDL’s syntax is LISP-like appears a superficial
observation, the meaning of several of the primitive func-
tions is given in terms of LISP functions. For example, the
manual often relies on the reader using his intuition (p9:
‘Hopefully, the semantics of these expressions is obvious’).
As the language becomes more complex, then the natural
language semantics are less obvious (for example, consider
the meaning of domain axioms and their relationship with
action definitions on page 13 of the manual). These ex-
tensions need to be defined precisely, as if two systems use
these extensions, then they ought to do so in a uniform way,
otherwise the standard is not preserved.

Adequate expressiveness: That PDDL a very expressive
language for a range of planning applications has been
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shown by the range of problem domains used in competi-
tions and in benchmark sets. Further, the ability to change
some of the environmental assumptions is also present, al-
though the semantics of some of these extensions is not
clear.

Clear mechanisms for reasoning: A domain definition in
PDDL is a ‘model’ in the sense that we have a representation
that can be used to perform operations in the same manner
that occur in the domain; and that there is a well-known op-
erational semantics for constructs in the model. The declara-
tive features of the notation - pre- and post-conditions, logic
expressions, and named objects within the model which cor-
respond directly to named objects in the domain, make rea-
soning about the notation feasible. However, problems to do
with semantics, particularly to do with its extensions, restrict
the success of this language with respect to the criterion.

Summary

In terms of the criteria for a language used for theoretical
purposes, PDDL scores well on some aspects. There are
problems with the lack of a clear semantics but these tend to
be more to do with the non-basic parts such as the domain
axioms. Also, the temporal and resource extensions of ver-
sion 2.1 seem to have addressed the semantic issues more
thoroughly (Fox & D.Long 2001).

PDDL: a modelling language?

Here I briefly evaluate PDDL using (3) - (10), the criteria
reserved for languages aimed at practical application.

structure and error-proneness: PDDL has features such
as ‘:timeless’ - which allow the statement of static knowl-
edge, and ‘:domain-axioms’ which allow left-to-right rules
that form invariants on situations. A domain definition is
structured into components by Keywords e.g. :constants :ac-
tions etc. A special keyword is :requirements which tells a
process which blend of PDDL features are used in the do-
main definition. Further, the manual devotes several pages
to a hierarchical action notation; unfortunately, perhaps re-
lated to the fact that it was not subsequently used, version
2.1 of PDDL excludes this. On the negative side, whereas
PDDL (v1.2) has features for hierarchically structuring ac-
tions, it does not have sufficient features for giving structure
to objects or states. Further, the language lacks structures
for setting up internal consistency criteria such as the com-
pleteness or validity of world states or actions.

maintenance and re-usability: PDDL’s declarative form
makes adding and changing operators a local task, and re-
using operators in new domains feasible. The ‘:extends’
feature allows a form of modularisation - one can import
previously written components into a new model. However,
no help is given in dealing with the natural dependency of
actions on each other: the requirement that pre-conditions
should be achievable by the execution of other actions or
the initial state causes global interference and is the cause of
many errors when defining domains.

guidelines and tool support: there are parsers, solution
checkers and domain analysis tools available publically, but
PDDL was not designed to be associated with a method
for model building. This one point alone seems to make it
currently ineffective as a practical ‘modelling language’ for
complex applications.

closeness of mapping / customisation: Clearly PDDL’s
encodings shares the same ‘high level’ aspects as do propo-
sitional encodings in general. Also, one can pose domain
axioms to model invariants in the domain. Reflecting do-
main structure (as mentioned above) by for example creat-
ing composite objects is not possible. Customisation does
appear to be addressed in PDDL with features such as
‘:requirements’ where fundamental assumptions about the
model of the domain can be set.

support for operational aspects: The PDDL manual
makes it clear that this area is not one that fits in with
PDDL’s aim - to model the physics of a domain. It does
recommend a convention by which such extensions can be
made in a controlled way, such that the model with the ex-
tensions stripped away will make sense to a pure PDDL in-
terpreter.

Summary
For a language whose initial purpose was one of domain
model communication, and which aspired to include only
feature which capture dynamics, PDDL has in fact several
features to help domain builders. These include HTN op-
erators, domain axioms, modularisation through the ‘ex-
tends’ keyword etc. On the other hand, it fails to meet
the criteria is in not being associated with a model build-
ing method, and in its lack of structure for objects, pred-
icates and states. Structuring devices are present in sev-
eral modelling languages (e.g. DDL.1 (Cesta & Oddi 1996;
McCluskey & Porteous 1997)); these allow the state-space
of objects to be modelled independently of the actions, and
hence are useful in removing errors from action representa-
tions.

Conclusions
Both to help the Planning field mature, and to help engi-
neers apply the technology, language conventions have to
be achieved. The requirements of the future Semantic Web
in particular will demand a common model for planning
knowledge. This paper has argued that before conventions
are devised there must first be an agreement on the purpose
of a language, and secondly a set of criteria to be used to
help form and develop the language.

Two broad purposes for an AI planning domain language
were outlined - one as a theoretical device, to be used for
exploring the properties of planning algorithms, and one as a
practical language, to be used to help an engineer efficiently
and accurately encode an application domain.

I performed an initial evaluation of PDDL with respect to
the criteria formed from both purposes, with mixed results.
The evaluation leads me to the following conclusions:

• in standardising a form of PDDL for theoretical purposes,
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more attention needs to be devoted to precisely defining
its semantics, and that of any of its extensions;

• in standardising a form of PDDL for practical domain
model building, then more structure, guidelines and tool
support is required.
For the future, I feel that the community needs to settle on

the purpose of PDDL, decide on the criteria that can be used
to evaluate PDDL’s quality, and perform a thorough evalua-
tion using the language’s most recent version. This will lead,
I believe, to a sound path for its future development.
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Abstract

One reason why autonomous processes have not been offi-
cially incorporated into PDDL is that there is no agreed-upon
semantics for them. I propose a semantics with interpreta-
tions grounded on a branching time structure. A model for a
PDDL domain is then simply an interpretation that makes all
its axioms, action definitions, and process definitions true. In
particular, a process definition is true if and only if over ev-
ery interval in which its condition is true, the process is active
and all its effects occur at the right times.

The Semantics Problem for PDDL
In (Fox & Long 2001a), Maria Fox and Derek Long pro-
posed extensions to PDDL for describing processes, that is,
activities that could go on independent of what the executor
of plans did. They also described a semantics for processes
in terms of hybrid automata (Henzinger 1996). Their pro-
posal was not adopted by the rules committee for the third
International Planning Competition, mainly because most of
the members preferred to focus on the narrower extension to
“durative actions,” actions that took a nonzero amount of
time. Another potential reason is that the semantics of pro-
cesses were so complex that no one really understood them.

A semantics for all of PDDL is hard to lay out, for a
couple of reasons. One is that the requirement-flag system
turns it into a family of languages with quite different be-
havior. For instance, the :open-world flag transforms the
language from one in which not is handled via “negation as
failure” into god-knows-what. To sidestep this complexity, I
will make a variety of simplifying omissions and deliberate
oversights:

� I will ignore the possibility of action :expansions.

� There will be no formalization of the fact that propositions
persist in truth value until some event changes them.

� :vars fields in action and process definitions will be left
out.

� I will assume effects are simple conjunctions of literals.
There are no secondary preconditions (“:whens”) or uni-
versally quantified effects.

� I won’t discuss durative actions. They can be defined in
terms of processes, as discussed by (Fox & Long 2001b)
and (McDermott 2003).

� Fox and Long (Fox & Long 2001b) allow for “events,”
which occur autonomously, like processes, but are instan-
taneous, like primitive actions. I won’t discuss these, al-
though they present no particular problem.

� Except for the presence of autonomous processes, we’ll
stay in the “classical milieu,” and in particular assume that
the planner knows everything about the initial situation
and the consequences of events and processes. There’s
no nondeterminism, and no reason to use sensors to query
the world.

The Structure of Time
It’s fairly traditional (McDermott 1982; 1985) to think of an
action term as denoting a set of intervals; intuitively, these
are the intervals over which the action occurs. To make this
precise, we have to specify what we mean by “interval.” A
date is a pair 〈r, i〉, where r is a nonnegative real number and
i is a natural number. A situation is a mapping from propo-
sitions to truth values. A date range function is a function
from real numbers to natural numbers. A situation contin-
uum is a pair 〈C, h〉, where h is a date range function and C
is a timeline, that is, a mapping from

{〈r, i〉 | r ∈ nonnegative reals and 0 ≤ i < h(r)}
to situations. If d1 = 〈r1, i1〉 and d2 = 〈r2, i2〉, then d1 <
d2 if r1 < r2 or r1 = r2 and i1 < i2. A date 〈r, d〉 is in
〈C, h〉 if r ≥ 0 and 0 ≤ d < h(r). A situation s is in 〈C, h〉
if there exists a date d in 〈C, h〉 such that C(d) = s.

The intuitive meaning of these definitions is that at any
point r in time there can be a series of zero or more actions
taken by the target agent (i.e., the hypothetical agent that
executes plans). The range function says how many actions
are actually taken at point r in that continuum. Each action
takes an infinitesimal amount of time, so that “just after”
time r there can be an arbitrary number h(r) of actions that
precede all time points with times r′ > r. (This picture is
reminiscent of nonstandard analysis (Robinson 1979).)

Using this framework, a purely classical plan might be
specified by giving an action A(i) for all dates 〈0, i〉 where
i < h(0), and h(0) is the length of the plan. The plan is
feasible if A(0) is feasible in the initial situation, and A(i +
1) is feasible in C(0, i). The plan achieves a goal G if G is
true in C(0, h(0)). It may sound odd to imagine the entire
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plan being executed in zero time, but time is not a factor in
classical planning, so a plan might as well take no time at all
to execute, or h(0)× dt if you prefer. In what follows, I will
use the dt notation to denote an infinitesimal time interval,
i.e., the time from 〈r, i〉 to 〈r, i + 1〉. If date d = 〈r, i〉, then
d + dt = 〈r, i + 1〉.

If we broaden our ontology to allow for autonomous pro-
cesses, then plans can have steps such as “turn on the faucet,”
and “wait until the bucket is full.” We can use situation con-
tinua to model bursts of instantaneous “classical” actions
separated by periods of waiting while processes run their
course. A plan may even call for the target agent to do noth-
ing, but simply wait for processes that are active in the initial
situation to solve a problem. In that case h(r) = 0 for all r.

A closed situation interval in continuum 〈C, h〉 is a pair of
dates [d1, d2]〈C,h〉 with d1 and d2 both in 〈C, h〉. (The sub-
script will be omitted when it is obvious which continuum
we’re talking about.) Informally, the interval denotes the set
of all situations in 〈C, h〉 with dates d such that d1 ≤ d ≤ d2.
The interval is nontrivial if d1 ≤ d2. We also have open
and half-open situation intervals defined and written in ex-
act analogy to the usual concepts of open and half-open in-
tervals on the reals.

A Notation for Processes
Fox and Long, in (Fox & Long 2001a), suggested a nota-
tion for autonomous processes. I propose a slightly different
one, which I believe is clearer and somewhat easier to for-
malize. A process is declared using a syntax similar to that
for actions. (This notation is part of an overall reform and
extension of PDDL called Opt. The Opt Manual (McDer-
mott 2003) lays out the whole language and describes other
features of processes that I’ve omitted in this discussion.)

<process-def>
::= (:process <name>
:parameters

<typed list (variable)>
<process-def body>)

<process-def body>
::=
[:condition <goal proposition>]
[:start-effect <effect proposition>]
[:effect <effect proposition>]
[:stop-effect <effect proposition>]

The syntax <typed list (variable)> refers to the
PDDL notation exemplified by (x y - Location r -
Truck), although here again the full Opt language allows
several extensions.

The informal semantics of a process are simple: When-
ever the :condition of the process is true, the process be-
comes active. It has immediate effects spelled out by its
:start-effect field and the :effect field. These take
time dt. The start-effects occur once, but the through-effects,
i.e., those specified by the :effect field, remain true as
time passes. As soon as the process’s condition becomes
false, the through-effects become false and the stop-effects

(described by the :stop-effects field) occur, again tak-
ing time dt.

The contents of :effect field of a process definition is a
conjunction of one or more propositions of the form

(derivative $x$ $d$)

where x and d are numerical fluents, that is, objects of type
(Fluent Number).1 So for a process’s effects to remain
true is for various quantities to change at the given rates.
The rates are not constants in general, so we can express any
set of differential equations in this notation.

A formal specification of the semantics of processes is
given by detailing the truth conditions of a process defini-
tion, that is, the constraints mandated by the definition on
situation intervals over which the process is active. This
specification must fit with an overall semantics for plans and
facts.

I said above that a plan might be described by listing the
times when actions occur, but I’m actually going to describe
plans in terms of the method language of Opt. The full
method language is rather different from PDDL’s, but I’m
going to stick to a subset that is close to what PDDL allows.
The grammar of plans is simply

P ::= A
| (seq P1 ...Pn)
| (parallel P1 ...Pn)

A ::= action term
| (wait-while p)
| (wait-for q p)

where p is a process term and q is an inequality that p pre-
sumably affects. An example plan is

Plan A =
(seq (parallel (turn-on faucet1)

(plug-up outlet1))
(wait-for (>= (level tub1)

(cm 30))
(filling tub1)))

Here filling is defined as a process thus:

(:process filling
:parameters (b - Tub)
:vars (f - Faucet l - Outlet)
:condition (and (faucet-of f b)

(outlet-of l b)
(faucet-on f))

:effect
(and (when (plugged-up l)

(derivative
(level b)
(constant (cm/sec 2))))

(when (not (plugged-up l))
(derivative

(level b)
(constant (cm/sec 1))))))

and the actions are defined thus:

1I capitalize types such as Number and type functions such as
Fluent.
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(:action turn-on
:parameters (f - Faucet)
:effect (faucet-on f))

(:action plug-up
:parameters (l - outlet)
:effect (plugged-up l))

Obviously, these are all simplified for expository purposes.
One apparent simplification is that we provide no method for
the target agent to test whether the level in tub1 has reached
30 cm. But in our classical framework, there is no need for
such a method; the agent knows exactly when the level will
get to that point.

What we want our formal semantics to tell us is that Plan
A is executed over any situation interval [〈r1, i1〉, 〈r2, 0〉]
in which (turn-on faucet1) and (plug-up outlet1)
occur at times 〈r1, i1〉 and 〈r1, i1 + 1〉 (in either order), and
the level of tub1 is < 30 cm at time r1 and reaches 30 cm
at time r2. It is also executed over any situation interval
[〈r1, i1〉, 〈r1, i1 +2〉], where the turn-on and plug-up ac-
tions are executed as before, and where (level tub1) ≥
30 cm at r1.

The Formal Semantics
Interpretations of Domains with Processes
An interpretation of a domain D is a tuple 〈U0, T, I0〉,
where U0 is a function from type symbols in D to sets of
objects called subuniverses; T is a set of situation continua;
and I0 is a function from the non-type symbols of D to ob-
jects in the subuniverses. If I0(s) = v, and s has type τ ,
then it must be the case that v ∈ U0(τ).

U0 must obey the following constraints:

U0(Void) = ∅
U0(Boolean) = {true, false}

U0(Integer) = the set of all integers

U0(Number) = the set of all real numbers. I treat
integers as a subset of the reals, not an alternative
data type

U0(Situation) =
{s | For some 〈C, h〉 ∈ Tand date d,C(d) = s}

We want to extend U0 to a function U that gives the mean-
ing of all type expressions, and I0 to a function I giving the
meaning of all formulas and terms. To extend U0, we need
the notion of a tuple, of which Opt distinguishes two vari-
eties, Tup-tuples and Arg-tuples. The former are like lists
in Lisp, the latter like ordered n-tuples in mathematics. The
difference is that Tup-tuples can be of any length, includ-
ing 0 and 1, while Arg-tuples have to have length at least
2. An Arg-tuple 〈x〉 of length 1 is identical to x. An empty
Arg-tuple is impossible, so we identify the type (Arg) with
Void, the empty type. In this paper we need only Arg-
tuples, so I concentrate on those.

Both kinds of tuples have designators with named fields,
as in

(Arg num - Integer &rest strings - String)

but in the Arg case the names are there only because
an Arg expression often does double duty as defining a
tuple and declaring local variables in an action or pro-
cess. The subuniverse denoted by (Arg num - Integer
&rest strings - String) is

{〈i, s1, . . . , sn〉 | i is an integer and each sj is a string}
which, not surprisingly, is the type of arguments to a an ac-
tion declared thus:

(:action name
:parameters (num - Integer

&rest strings - String)
...)

The labels are simply ignored when determining the deno-
tation of the type. We can replace each label with a “don’t
care” symbol (“ ”) or omit them entirely. Note that if τ is
a type, U((Arg τ)) = U(τ). (I will use the term Arg-
type for expressions such as the one following the keyword
:parameters even though the Arg flag is missing.)

We extend U to tuples by making U((Tup ...)) denote
a Tup-tuple and U((Arg ...)) denote an Arg-tuple as sug-
gested by these examples. I won’t try to fill in the messy
details.

Using Arg-tuples, we can give a meaning to the type no-
tation (Fun τr <- τd) of functions from domain type τd

to range type τr. The domain type τd is in general an Arg-
tuple, and U((Fun τr <- τd)) = U(τd) ⊗ U(τr).

The type (Fluent τ) is an abbreviation for (Fun τ <-
Situation). Prop, for “proposition,” is an abbreviation
for (Fluent Boolean). Predicates have types of the form
(Fun Prop <- ...).

Recall our intuition that action and process terms denote
sets of intervals. For this to be the case, the subuniverse that
the denotation resides in must be the powerset of a set of
intervals, written pow(S).

There are four kinds of event type, and hence four types
of sets of interval sets to contemplate: no-ops, skips, hops,
and slides:2

1. Skip: The type of all actions that take one infinitesimal
time unit:

U(Skip)= pow({[〈r, d〉, 〈r, d + 1〉]〈C,h〉
| 〈C, h〉 ∈ T and d + 1 ≤ h(r)})

= pow({[d, d + dt]〈C,h〉 | 〈C, h〉 ∈ T})
2. Hop: The type of all actions that take more time than a

Skip:

U(Hop) = pow({[〈d1, d2〉]〈C,h〉
| 〈C, h〉 ∈ T, d1, d2 are in 〈C, h〉,

and there is a d in 〈C, h〉
such that d1 < d < d2})

2In the full Opt implementation, events can have values as well
as effects, so we can distinguish, say, (Skip Integer) from
(Skip String). What I write as Skip in this paper would
actually be written (Skip Void) in Opt, meaning a Skip that
returns no value.
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3. no-op: A constant whose value is the only element of
subuniverse

U((Con no-op)) = {{[d, d]〈C,h〉 | d is in 〈C, h〉 ∈ T}}
that is, the singleton set whose only element is the set
of all zero-duration closed situation intervals in T . The
name of this type is (Con no-op). Unlike the others,
this subuniverse is not the powerset of anything.
I define U(Step) to be U((Con no-op)) ∪ U(Skip) ∪
U(Hop).

4. Slide: The type of autonomous processes. A process
must take noninfinitesimal time, so

U(Slide) = pow({[〈r1, i1〉, 〈r2, i2〉]〈C,h〉
| 〈C, h〉 ∈ T and r1 < r2})

We also assume that every expression in Opt is typed. In
all our examples imagine a superscript giving the type of
the expression, with the proviso that all the type labels are
consistent. For instance, the formula

(parallel (turn-on faucet1)
(plug-up outlet1))

with type annotations would be

(parallel(Fun Action <- (Arg &rest Action))

(turn-on(Fun Action <- Faucet)

faucet1Faucet)Action

(plug-up(Fun Action <- Outlet)

outlet1Outlet)Action)Action

The annotations in this example are consistent because
whenever f is labeled (Fun τ <- α), then in (f a) a
is of type α and (f a) is of type τ . The proper-typing
requirementavoids absurd formulas like (if 3 (= (not
"a"))). In the implementation, finding a consistent typ-
ing is a mostly automatic process, which is not relevant to
this paper.

We can now state very simply how to extend I0 to I ,
which assigns a denotation to every (properly typed) term
of the language. I takes two arguments, a term and an envi-
ronment, which is a total function from variables to ordered
pairs 〈v, y〉, where y is a subuniverse.

• If s is a symbol, I(sτ , E) = I0(s) ∈ U(τ).

• If x is a variable, I(xτ , E) = v iff E(x) = 〈v, U(τ)〉 .

• For a functional term,

I((f(Fun τ <- α)aα1
1 . . . aαn

n )τ , E) = v
iff

〈〈I(aα1
1 , E), . . . I(aαn

n , E)〉, v〉
∈ I(f(Fun τ <- α), E)
(which is possible only if

U(α1) ⊗ . . . ⊗ U(αn) ⊆ U(α))

Because f can be an arbitrary function symbol, we don’t
need special rules to give the meanings of (if p q), (= a
b), and such. We just need to stipulate that some symbols
have the same meaning in all interpretations:

• I0(if) = (λ (x, y)(λ (s) x(s) = false or y(s) = true))

• I0(=) = (λ (x, y)(λ(s) x = y))
• ... and so forth

In general, the type of a predicate symbol P is (Fun Prop
<- α) for some α, recalling that Prop is the type of func-
tions from situations to booleans. We can take if to be
just another predicate, whose argument type is (Arg Prop
Prop). I(if) must then be a function from situations to
Booleans, which yields true when its first argument yields
false or its second yields true in that situation. Although I
use λ here, it’s just a shorthand for a set of ordered pairs.
I could have said {〈〈x, y〉, {〈s, b〉 | b = true iff x(s) =
false or y(s) = true}〉}

The denotation of “=” is a constant function on situations;
two objects are equal only if they are always equal. The
equality tester that tests whether two fluents have the same
value in a situation is called fl=, with denotation

• I0(fl=) = (λ (f1, f2)(λ (s) f1(s) = f2(s)))
The denotation of an action term or a process term must

be a set of intervals:

For every primitive action function f , that is, every
symbol f defined by an :action definition I0(f) must
be of type (Fun Skip <- α).
For every process function f , that is, every symbol f
defined by a :process definition, I0(f) must be of
type (Fun Slide <- α).

In both cases, α is the Arg type from the :parameters
of the definition.

I’ll deal with domain-dependent functions in a later sec-
tion. The meanings of seq and parallel are defined in
every domain thus:

• I0(seq)

= (λ (a1, . . . , an)
{[d0, de]〈C,h〉
| 〈C, h〉 ∈ T

and there exist dates d1, . . . , dn

such that for j = 1, . . . , n,
[dj−1, dj ] ∈ aj

and dn = de})
• I0(parallel)

= (λ (a1, . . . , an)
{[db, de]〈C,h〉
| 〈C, h〉 ∈ T

there is a function s :[1, . . . , n]
→ situation intervals,

such that for j = 1, . . . , n,
s(j) = [dj1, dj2]〈C,h〉 ∈ aj

and db ≤ dj1 ≤ dj2 ≤ de

and for some jb, je ∈ [1, . . . , n],
s(jb) = [db, djb2]
and s(je) = [dje1, de])

Another symbol that must have a standard meaning is
derivative:

• U0(derivative)

= U((Fun (Fluent Number) <- (Fluent Number)))
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• I0(derivative) =

(λ (f)
(λ (s) if there is a d such that

( for all (r, i, C, h)
if 〈C, h〉 ∈ T, s = C(r, i), h(r) = i

and there is an r′
such that r < r′

and for all r′′, r < r′′ < r′
h(r′′) = 0

then f+(C)(r) = d),
then d
else 0))

where f+(C) is the “right derivative” of f in timeline C
measured at time r, that is, the function of time whose
value at t is the limit as ∆t → 0 of

f(C)(r + ∆t) − f(C)(r)
∆t

This will require a bit of explanation. The same situa-
tion can occur in more than one continuum of T . So we
first define the derivative at a “situation occurrence,” that is,
a date 〈r, i〉〈C,h〉. The derivative can be meaningfully de-
fined only if there is an open interval after 〈r, i〉 such that no
discrete events occur during that interval — i.e., h(r) = i
and h(r′′) = 0 for all times r′′ in that interval. In that case
(λ (t) f(C(t, 0))) is an ordinary function of time over that
interval, which may have a derivative. The derivative of that
function we denote by f+(C).

The remaining detail to fill in is to switch from situation
occurrences to situations by requiring f+(C)(r) to have the
same value for all occurrences of C(r, i). Actually, it might
be reasonable simply to require that this be the case, because
it follows from the Markov property, that what happens start-
ing in a situation depends only on what’s true in that situa-
tion, assuming the target agent doesn’t interfere. For now,
I don’t impose that requirement, but it will usually follow
trivially from the axioms of a domain.

Important note: Even though the numerical value of the
derivative in s is defined in terms of timelines in which no
actions happen, the derivative still has a value at a date 〈r, i〉
in a timeline 〈C, h〉 in which an action, or even a series of
actions, occurs at 〈r, i〉, so long as C(r, i) = s. You can
think of (derivative f) as the rate at which the quan-
tity f would change starting at s if it were undisturbed. In
some timelines, the disturbance may be sufficient to cause
the derivative to disappear ∆t after the current situation, that
is, at C(r, i + 1), but it is still well defined at s.

Truth and Models

As usual, we want to define a model to be an interpretation of
a domain’s language that makes all its axioms true. Because
propositions change truth value from situation to situation,
we must amend that to: A model of a PDDL domain is an
interpretation 〈U0, T, I0〉 that makes all axioms true in all
situations and environments.

For ordinary axioms, we simply translate an axiom A

from the :axiom syntax of PDDL to the traditional syntax,3

yielding A′, and then test whether I(A′, E)(s) is true for all
environments E and situtations s in 〈C, h〉. We use the tra-
ditional specification of the interpretation of quantified for-
mulas:

• I((forall (x - α) PProp), E) = p, an object from
subuniverse

situations (T ) ⊗ {true,false}
such that p(s) = true if and only if I(P,E′)(s) = true for
every environment E′ that differs from E, if at all, only in
assigning a different value, drawn from U(α), to variable
x. (That is, E′(xα) = 〈v, U(α)〉 for some v ∈ U(α).)

• Dual formula for exists left as an exercise for the reader.

In addition to axioms, we must require that an interpreta-
tion make action and process definitions true. I is extended
to an action definition thus:

• I((:action a(Fun Skip <- α)

:parameters rα

:precondition pProp

:effect eProp),
E)

= true
if and only if
for all 〈C, h〉 ∈ T ,

and every E′ that differs from E,
if at all, only in the assignments
of the variables in r,

and all d1 = 〈r, i〉 and d2 = 〈r, i + 1〉 in 〈C, h〉,
if I(pProp, E′)(C(r, i)) = true

and 〈I(rα, E′), [d1, d2]〈C,h〉〉 ∈ I0(a)
then I(eProp, E′)(C(r, i + 1)) = true

In other words, the action definition is true if whenever I
says the action occurs and that its preconditions are true,
the effect is true. In this definition, α is an Arg type, and
I(rα, E′) refers to an instance of the Arg-tuple obtained by
substituting its variables as specified by E′.

We also need the following condition

• For all pairs of action terms aSkip1 �= aSkip2 , all time-
lines 〈C, h〉 ∈ T , and all environments E1 and E2, if
[d1, d1 + dt]〈C,h〉 ∈ I(a1, E1) and [d2, d2 + dt]〈C,h〉 ∈
I(a2, E2), then d1 �= d2. In other words, no two actions
occur over precisely the same infinitesimal (“skip”) inter-
val.

This condition enforces an interleaving interpretation of
concurrency. Two actions can occur at the same time, but
they must still be ordered.

The truth condition on process definitions relies on the
following definition:

With respect to an interpretation 〈U, T, I〉
and an environment E,
an interval [d1, d2]〈C,h〉 is a
maximal slide in 〈C, h〉 over which p is true

3Opt allows you to use the traditional syntax for axioms, which
is a lot less cumbersome that PDDL’s.

91



if and only if

[d1, d2] is a slide,
and for all d, d1 < d < d2

I(p,E)(C(d)) = true,
and there is a d0 < d1 such that

for all d, d0 < d < d1

I(p,E)(C(d)) = false,
and there is a d3 > d2 such that

for all d, d2 < d < d3

I(p,E)(C(d)) = false

To preserve flexibility, the definition doesn’t say what the
truth value of p is at d1 or d2. So the interval over which p
is true can be open or closed.

Finally, figure 1 shows truth condition for processes. This
condition may appear more complex than one would expect,
because a conceptual “if and only if”:

A process occurs over an interval if and only if that
interval is a maximal slide over which its :condition
is true.

has had to be broken into an “if” clause and an “only if”
clause, to allow the process’s boundaries to differ infinitesi-
mally from the boundaries of the maximal slide. The reason
for this slop is to enforce another interleaved-concurrency
constraint:

• For all pairs of process terms p1 �= p2, all time-
lines 〈C, h〉 ∈ T and all environments E1 and E2, if
I(p1, E) = [db1, de1]〈C,h〉 and I(p2, E) = [db2, de2]〈C,h〉
then db1 �= db2 and de1 �= de2. In other words, no two
processes begin or end at precisely the same moment.

The interpretation of the “wait” actions can now be spec-
ified:

• I0(wait-while) =

(λ (p) {[d1, d2]〈C,h〉
| either there is a slide [pb, pe] ∈ p

such that pb ≤ d1 < pe and d2 = pe

or there is no such slide and d1 = d2})
• I0(wait-for) =

(λ (q, p) {[d1, d2]〈C,h〉
| there is a slide [pb, pe] ∈ p

such that pb ≤ d1 ≤ d2 < pe

and d2 is the first date in [d1, pe]〈C,h〉
such that q(C(d)) = true})

Although there are many details to be fleshed out, we can
summarize with this definition:

A model of a PDDL domain D is an interpretation
〈U0, T, I0〉 of the symbols in D such that for every
variable-binding environment E

� For every axiom A and every date 〈r, i〉 in 〈C, h〉 ∈
T , I(A,E)(s) = true.

� and For every process or action definition P , I(P,E)
= true.

where I is the extension of I0 outlined above, respect-
ing the interleaving constraints and the required defini-
tions of symbols such as derivative and seq.

Assessment
I have been thinking about the logic of processes for a long
time (McDermott 1982). The contents of this paper are ba-
sically a further refinement of those ideas.

The only other attempt I know of to add autonomous pro-
cesses to PDDL is the proposal by Fox and Long (Fox &
Long 2001a) for the AIPS 2002 Planning Competition. The
syntax of their notation differs from mine only in detail.4

The semantics they propose is very different. They base
it on the theory of hybrid automata (Henzinger 1996), so
that to every domain and initial situation there corresponds
an automaton. Finding a plan is finding a path through the
states of the automaton. The main virtue of their approach is
also its main defect: They are determined to preserve finite-
ness properties exploited by many planning algorithms, es-
pecially that there are only a finite number of plan states,
and that the branching factor at each plan state is finite. The
states of the hybrid automaton are all possible sets of ground
atomic formulas in the language. For the state set to be fi-
nite, atomic formulas with numeric arguments must be sep-
arated out and treated in a special way. The whole apparatus
becomes quite unwieldy.5

I believe that maintaining finiteness properties required
by some current planners should be rejected as a constraint
on domain-description languages. If some problems cannot
be solved by some planners, so be it. It would be better
to make it the responsibility of any planning system to de-
cide whether a problem is beyond its scope. Of course, re-
quirements flags can provide a broad-brush portrait of what
a planner must be able to handle in order to solve a prob-
lem, so it’s important to keep the set of flags up to date as
the language evolves. But it’s asking too much for PDDL to
fit the capabilities of some set of existing planners exactly.
In the first planning competition, there were loud votes for a
:length field to be included in every problem description,
specifying a bound on the length of a solution, because sev-
eral systems had to guess a length in order to get started. We
reluctantly acceded to that demand, but the :length field
has since been taken out on the grounds that it’s an arbitrary
hint to a special class of planners. Trying to base the se-
mantics of PDDL processes on finite-state hybrid automata
strikes me as an even worse accommodation to the needs of
a “special-interest group.”

There is an important issue raised by (Fox & Long 2001a),
namely, how do you check the correctness of a problem so-
lution when real numbers are involved? A complete answer
is beyond the scope of this paper, but I believe the semantic
framework laid out here lends itself to the idea of “approxi-

4Which means it will be the subject of bitter and unending de-
bate before the next competition!

5I should acknowledge the regrettable fact that a specification
of the formal semantics of anything is generally clear only to the
person that wrote it, so my proposal is probably as opaque to Maria
and Derek as theirs is to me.
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• I((:process a(Fun Slide <- α)

:parameters rα

:condition pProp

:start-effect bProp

:effect eProp

:stop-effect wProp),
E)

= true
if and only if
for all 〈C, h〉 ∈ T ,

and every E′ that differs from E,
if at all, only in the assignments
of the variables in r,

and every interval [d1, d2] in 〈C, h〉
where d1 = 〈r1, i1〉 and d2 = 〈r2, i2〉,

(a) If 〈I(rα, E′), [d1, d2]〈C,h〉〉 ∈ I0(a)
then there is a maximal slide [〈r1, is1〉, 〈r2, is2〉]〈C,h〉 over which p is true

with respect to 〈U, T, I〉 and E′
such that is1 ≤ i1 and is2 ≤ i2

and I(bProp, E′)(C(r1, i1 + 1)) = true
and I(wProp, E′)(C(r2, i2 + 1)) = true

and
(b) If [d1, d2] is a maximal slide over which p is true

with respect to 〈U, T, I〉 and E′
then there are dates d′1 = 〈r1, ip1〉 and d′2 = 〈r2, ip2〉,

such that 〈I(rα, E′), [d′1, d
′
2]〈C,h〉〉 ∈ I0(a)

and ip1 ≥ i1 and ip2 ≥ i2
and 〈I(rα, E′), [d′1, d

′
2]〉 ∈ I0(a)

and I(bProp, E′)(C(r1, ip1 + 1)) = true
and I(wProp, E′)(C(r2, ip2 + 1)) = true

Figure 1: Truth Condition for Process Definitions
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mate simulation” of a plan. The exact dates at which events
occur is not important as long as every step the planner takes
is feasible when it takes it, and the plan simulator stops in a
state where the goal condition is true. If a problem includes
an objective function, we evaluate it in that final state. The
value may be slightly different from the true mathematically
attainable minimum, but all we require is that it be compara-
ble to the results obtained by other planners. The only tricky
part is how to deal with equalities in process specifications.
If the :condition of a process includes a formula (not
(= x y)), then the process stops when x equals y. Finding
the precise instant when that occurs is usually impossible.
To fix this problem, all the planner has to do is convert the
“=” goal relationship to a “≥” or “≤” by observing whether
x < y or x > y when the process starts, and do the best
job it can of finding the earliest time when the new inequal-
ity becomes true. A similar trick will work for determining
when the action (wait-for (= x y) p) ends.

There is also the easily overlooked issue of plan execu-
tion. The assumption that actions take infinitesimal time is
of course absurd when applied to a physically possible ac-
tion. Obviously, there must be some temporal grain size ε
specified to the executor such that any action must take less
than ε, and every process must take more than ε. Otherwise,
the domain model is simply inappropriate.

Finally, it should be noted that, because action and pro-
cess definitions have truth conditions, they can be “reverse
engineered” to yield formulas with the same truth condi-
tions. These would not be legal PDDL axioms, because
they would have to mention multiple situations explicitly,
whereas PDDL axioms refer implicitly to one and only one
situation. However, to translate PDDL to Kif (?), which has
no built-in action-definition syntax, these axioms could be
very useful. There existence also makes it clear that PDDL
is not “predicate calculus + actions”; it’s just “predicate cal-
culus + useful macros for writing action-definition axioms.”
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Abstract

We present an extension of PDDL for modeling stochastic
decision processes. Our domain description language allows
the specification of actions with probabilistic effects, exoge-
nous events, and actions and events with delayed effects. The
result is a language that can be used to specify stochastic de-
cision processes, both discrete-time and continuous-time, of
varying complexity. We also propose the use of established
logic formalisms, taken from the model checking community,
for specifying probabilistic temporally extended goals.

Introduction
A standard domain description language, PDDL (McDer-
mott 2000; Fox & Long 2002b), for deterministic planning
domains and the biannual International Planning Competi-
tion, first held in 1998, have resulted in a large library of
benchmark problems enabling direct comparisons of differ-
ent deterministic planners. For the 4th International Plan-
ning Competition to be held in 2004, there are plans to in-
clude a track for probabilistic planners. This will require
a domain description language for specifying probabilistic
planning domains. In this paper, we propose such a domain
description language that in many ways can be seen as an
extension of PDDL.

We start by introducing a PDDL-like syntax for spec-
ifying actions with probabilistic effects, which allows us
to define Markov decision processes (MDPs). We then
go on to introduce exogenous events, as well as actions
and events with random delay. The result is a domain de-
scription language that can be used for specifying a wide
range of stochastic decision processes, from MDPs to gen-
eralized semi-Markov decision processes (GSMDPs). A
GSMDP can be viewed as the composition of concurrent
semi-Markov decision processes (SMDPs), and captures the
essential dynamical structure of a discrete event system
(Glynn 1989).

A discrete event system consists of a set of states S and
a set events E. At any point in time, the system occupies
some state s ∈ S. The system remains in state s until the
occurrence of an event e ∈ E, at which point the system
instantaneously transitions to a state s′ (possibly the same
state as s). Our domain description language can be used
to specify both continuous-time and discrete-time discrete
event systems. By including the process concept from level

5 of PDDL+ (Fox & Long 2002a), we could also specify
stochastic hybrid systems, but that is beyond the scope of
this paper.

As a formalism for specifying probabilistic goal con-
ditions we propose PCTL (Hansson & Jonsson 1994) for
discrete-time domains and CSL (Baier, Katoen, & Her-
manns 1999) for continuous-time domains. This permits
the specification of planning deadlines and maintenance and
prevention goals, in addition to the traditional achievement
goals. The benefit of using established logic formalisms for
goal specification is that we can take advantage of recent
developments in probabilistic model checking for efficient
plan verification.

We leave the representation of plans open. The sole focus
of this paper is the representation of probabilistic planning
domains.

Actions with Probabilistic Effects
An important aspect of stochastic decision processes is that
actions can have probabilistic effects. We adopt a model
of stochastic actions that is a variation of factored proba-
bilistic STRIPS operators proposed by Dearden & Boutilier
(1997). A stochastic action a consists of a precondition φ
and a consequence set C = {c1, . . . , cn}. Each consequence
ci has a trigger condition φi with a corresponding effects list
Ei = 〈pi

1, E
i
1; . . . ; pi

ki
, Ei

ki
〉, where Ei

j is a set of literals and
pi

j ∈ [0, 1] is a probability associated with the jth literal set.

We require that
∑ki

j=1 pi
j = 1.

Semantics
In order for an action with precondition φ to be applicable
in a state s, φ must hold in s. A state is a set of atoms
that hold and bindings of functional expressions to rational
values. We propose that executing an action a whose pre-
condition is not satisfied be given the meaning that a has no
effects (cf. Kushmerick, Hanks, & Weld 1995), instead of
this being a violation as is the case for deterministic actions
in PDDL. The precondition φ can in this way be viewed as
a factored trigger condition common to all consequences in
C. The semantics of stochastic actions can then be stated as
follows.

When applying a stochastic action a = 〈φ, C〉 to a state
s, an effect set is selected for each consequence ci ∈ C.
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Let x(i) ∈ [1, ki] denote the index of the selected effect set
for ci, with x(i) being a sample of a random variable Xi

such that Pr[Xi = j] = pi
j . Let the acting effect set for a

consequence ci be

Ẽi
x(i) =

{
Ei

x(i) if s |= φ ∧ φi

∅ otherwise
.

The acting effect set for action a is then the union of acting
effect sets for the consequences:

Ẽ =
n⋃

i=1

Ẽi
x(i)

We divide Ẽ into disjoint sets: Ẽ+ representing positive lit-
erals, Ẽ− representing negative literals, and Ẽu representing
effects updating value bindings for functional expressions.
The result of applying the stochastic action a to the state s
is a state s′ with atoms

(
atoms(s) \ {p : ¬p ∈ Ẽ−}) ∪ Ẽ+

and bindings of functional expressions to values updated in
accordance with Ẽu.

We require that consequences with mutually consistent
trigger conditions have commutative effects. This means
that the successor state is the same after applying an action
to a state s regardless of the order in which the acting effect
sets of enabled consequences are applied to s.

Consequences in our stochastic action model is closely re-
lated to action aspects in the model of Dearden & Boutilier.
Each consequence ci = 〈φi, Ei〉 of an action with precondi-
tion φ corresponds to an action aspect with discriminant set
{φ ∧ φi,¬(φ ∧ φi)} and effects lists Ei and 〈1, ∅〉. The con-
dition that mutually consistent discriminants taken from dis-
tinct aspects of an action have effects lists with no common
atoms corresponds to our requirement of commutative ef-
fects for consequences with mutually consistent trigger con-
ditions.

Syntax
Stochastic actions can be specified by extending the PDDL
syntax for action effects with a probabilistic construct in-
spired by Bonet & Geffner (2001). Figure 1 shows the pro-
posed extension. The syntax we propose does not allow
nested probabilistic statements in effects lists or conditional
effects inside probabilistic statements, which is in line with
the design decision for PDDL2.1 to disallow nesting of con-
ditional effects. Such language constructs would not add any
expressiveness.

As it stands, there is a clear correspondence between the
syntax and the representation of stochastic actions intro-
duced above. An effects list is specified as

(probabilistic pi
1 Ei

1 . . . pi
ki

Ei
ki
).

The above statement also represents a consequence with a
trigger condition φi = true . Consequences with non-trivial
trigger conditions are specified using conditional effects:

(when φi (probabilistic pi
1 Ei

1 . . . pi
ki

Ei
ki
))

Figure 2 gives a specification in the extended PDDL of
the stochastic move action used by Dearden & Boutilier as
an example. A statement such as

<effect> ::= <d-effect>
<effect> ::= (and <effect>*)
<effect> ::= (forall (<typed list(variable)>) <effect>)
<effect> ::= (when <GD> <d-effect>)
<d-effect> ::= (probabilistic <prob-eff>+)
<d-effect> ::= <a-effect>
<prob-eff> ::= <probability> <a-effect>
<a-effect> ::= (and <p-effect>*)
<a-effect> ::= <p-effect>
<p-effect> ::= (not <atomic formula(term)>)
<p-effect> ::= <atomic formula(term)>
<p-effect> ::= (<assign-op> <f-head> <f-exp>)
<probability> ::= Any rational number in the interval [0, 1].

Figure 1: PDDL extension for probabilistic effects.

(:action move
:parameters ()
:effect (and (when (office)

(probabilistic 0.9 (not (office))))
(when (not (office))

(probabilistic 0.9 (office)))
(when (and (rain) (not (umbrella)))

(probabilistic 0.9 (wet)))))

Figure 2: Specification of stochastic move action in proba-
bilistic PDDL.

(probabilistic 0.9 (wet))

with the probabilities not adding up to 1 is meant as a syn-
tactic sugar for

(probabilistic 0.9 (wet) 0.1 (and)),

where (and) represents an empty effect set.
Numeric effects can be used in combination with prob-

abilistic effects, although this could result in a stochastic
process with an infinite state space. We therefore propose
the introduction of a bounded integer type, (integer low
high), in addition to the standard PDDL type, number, for
functional expressions. This provides a straightforward way
of ensuring a finite state space. For example,

(:functions (power ?x) - (integer 0 10))

effectively defines an integer state variable powerx ∈ [0, 10]
for each object x in the domain.

Expressiveness
For now, we assume a simple discrete model of time, where
time is progressing in unit steps with each state transi-
tion (execution of an action). We can model discrete-time
Markov decision processes (MDPs) using stochastic actions
as defined in this section. Later on we will consider richer
time and action models that will allow us to model more
complex stochastic decision processes.

Exogenous Events
Boutilier, Dean, & Hanks (1999) make a distinction between
implicit-event models where the effects of the environment
are factored into the representation of stochastic actions, and
explicit-event models where change caused by the environ-
ment is modeled separately from change caused by actions
selected for execution by the decision maker. We have so far
only provided the means for specifying implicit-event mod-
els. It is sometimes convenient, however, to model environ-
mental effects separate from effects of consciously chosen
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actions. For this purpose we introduce the notion of an ex-
ogenous event, e = 〈φ, C〉, having the same structure as a
stochastic action.

Semantics

An exogenous event e is given the same semantics as a
stochastic action, except that the triggering of e is beyond
the control of the decision maker. When in a state s, any
action chosen for s and all events with a precondition φ that
holds in s are applied to s, producing a successor state s′ at
the next time step.

With exogenous events in the domain model it becomes
possible to have an action and one or more exogenous events
triggering within the same unit time interval, and the succes-
sor state s′ can then depend on the order in which the action
and the events are applied to the current state s. We could
require events and actions that can be enabled simultane-
ously to be commutative, meaning that the successor state
is independent of the order in which the events and actions
are applied to s, but it would be hard for a domain designer
to adhere to this requirement when constructing a large do-
main with many exogenous events. Instead we choose to
assign an equal probability to all orderings of enabled event
and actions in a state. So, for example, if an action adding
the atomic proposition a and an event deleting a is enabled
in a state s, then there is a 0.5 probability of a holding in the
next state.

Boutilier, Dean, & Hanks (1999) consider other ways of
dealing with simultaneity, but these typically requiring ad-
ditional information from the domain designer. The fact,
though, is that simultaneity almost always is an artifact of
using a discrete-time model for an inherently continuous-
time stochastic process, and the probability of two events
triggering at exactly the same time becomes zero if we work
directly with a continuous-time model.

Syntax

We propose using the same syntax for specifying exoge-
nous events as stochastic actions, except that the keyword
:event is used instead of :action. The :event keyword
was introduced in level 5 of PDDL+ (Fox & Long 2002a) for
the specification of deterministic events, and our exogenous
events can be viewed as stochastic extensions of PDDL+
level 5 events.

We can break the stochastic move action in Figure 2 into
an action modeling intended effects and an exogenous event
modeling environmentally triggered effects. Figure 3 shows
how this would be done.

Expressiveness

The addition of exogenous events does not add to the ex-
pressiveness of our specification language: we can still only
model discrete-time MDPs. At this point it is merely added
for the convenience of the modeler, but once we consider
more complex processes we will see that the effects of ex-
ogenous events cannot in a reasonable way be factored into
the effects of actions.

(:action move
:parameters ()
:effect (and (when (office)

(probabilistic 0.9 (not (office))))
(when (not (office))

(probabilistic 0.9 (office)))))

(:event make-wet
:parameters ()
:precondition (and (rain) (not (umbrella)))
:effect (probabilistic 0.9 (wet)))

Figure 3: Partial specification of explicit-event model in
probabilistic PDDL.

¬officeoffice 0.10.1

0.9

0.9

Figure 4: State-transition model for executing the stochastic
move action of Figure 3.

Delayed Actions and Events
Consider the stochastic move action of Figure 3 in isolation.
Figure 4 shows the state-transition model for executing this
action both when in the office and when not in the office.
The stochastic move action is executed at every time step
and has a 0.9 probability of succeeding each time. The time
spent in a state before the action succeeds is a random vari-
able with a geometric distribution G(0.9). Instead of think-
ing of the stochastic move action as being executed at every
time step, we can think of it as being executed once in each
state but with a delayed effect. The delay is in this case a
random variable with distribution G(0.9). Figure 5 shows
the state-transition model for a delayed move action, where
probability distributions instead of probabilities are associ-
ated with each state transition.

A delayed action a is a triple 〈φ, C, F (t)〉, where φ is the
enabling condition of a, C is the consequence set of a de-
fined in the same way as for stochastic actions, and F (t)
is the cumulative distribution function (cdf) for the delay
from when a is enabled until it triggers. We require that
F (0) = 0, meaning that an action must trigger strictly after
it becomes enabled. Delayed exogenous events are defined
analogously. A regular stochastic action (exogenous event)
can be viewed as a delayed action (event) with a cdf satis-
fying the condition F (1) = 1, i.e. it always triggers within
one time unit from when it is enabled,but with no additional
assumptions being made regarding the shape of F (t).

(0.9)G

(0.9)G

¬officeoffice

Figure 5: State-transition model for executing a delayed
move action.
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<delayed-action-def> ::= (:delayed-action <name>
:parameters (<typed list<variable>)
:delay <delay-distribution>
[:condition <GD>]
[:effect <effect>])

<delayed-event-def> ::= (:delayed-event <name>
:parameters (<typed list<variable>)
:delay <delay-distribution>
[:condition <GD>]
[:effect <effect>])

<delay-distribution> ::= Any distribution s.t. Pr[delay ≤ 0] = 0.

Figure 6: PDDL extension for delayed actions and events.

Semantics
For now, let us assume that all delay distributions are mem-
oryless. We will consider general delay distribution in the
next section. The probability distribution of a random vari-
able X is memoryless if Pr[X > t + ∆t|X > t] = Pr[X >
∆t] for all t, ∆t ≥ 0. For an action a with a memory-
less delay distribution this means that if a has been enabled
for t time units without triggering, then the remaining de-
lay has the same distribution as if a had just been enabled.
The geometric distribution mentioned earlier in this section
is a memoryless distribution, and so is its continuous ana-
log: the exponential distribution. The semantics of delayed
actions and events with memoryless delay distributions is as
follows.

Assume we are entering state s at time t. Any action cho-
sen by the decision maker to be enabled in s and all events
with a condition φ holding in s race to trigger first. Let e∗
be the event or action with the shortest delay in s and let d∗
be the delay of e∗ in s. We then get the successor state s′ at
time t + d∗ by applying e∗ to s. An action or event enabled
in s may still be enabled in s′, but this is inconsequential
when all delay distributions are memoryless. If an action or
event did not trigger in s and is not enabled in s′, then that
action or event is simply canceled. If multiple events or ac-
tions have minimum delay d∗ in s, then all those events and
actions are simultaneously applied to s to produce s′ at time
t + d∗.

Syntax
The proposed syntax for specifying delayed actions and
events is given in Figure 6. Delayed actions can be viewed
as a stochastic variation of the deterministic durative actions
available in PDDL+. A delayed action with a determinis-
tic delay distribution D(x) and enabling condition φ corre-
sponds to a durative action with duration x, invariant con-
dition φ, and effects associated with the end of the durative
action.

Figure 7 shows the partial specification of an explicit-
event model with delayed actions and events.

Expressiveness
By just considering memoryless delay distributions, we are
nevertheless only able to model MDPs. With geometric de-
lay distributions we have a discrete-time MDP, while with
exponential delay distributions we have a continuous-time
MDP. Moreover, exogenous events still do not add expres-
siveness as they can easily be factored into the representation

(:delayed-action move
:parameters ()
:delay (geometric 0.9)
:effect (and (when (office)

(not (office)))
(when (not (office))

(office))))

(:delayed-event make-wet
:parameters ()
:delay (geometric 0.9)
:precondition (and (rain) (not (umbrella)))
:effect (wet))

Figure 7: Partial specification of explicit-event model with
delayed actions and events.

(:delayed-action move
:parameters ()
:delay (geometric 0.99)
:effect (and (when (office)

(probabilistic 10/11
(not (office))))

(when (not (office))
(probabilistic 10/11 (office)))

(when (and (rain) (not (umbrella)))
(probabilistic 10/11 (wet))

Figure 8: Partial specification of implicit-event model with
delayed move action.

of actions. We can combine all actions and events enabled
in a state s into one single action.

For a discrete-time model, let G(pi) be the distribution of
the ith action or event enabled in a state s. The probability of
at least one action or event triggering in s after one time unit
is p = 1 − ∏

i(1 − pi), and the probability of the ith action
or event triggering after one time unit given that something
triggers is pi/p. We can therefore represent all actions and
events enabled in s with a single action having delay distri-
bution G(p), and with the effects of the ith action or event
weighted by pi/p. Figure 8 shows the implicit-event repre-
sentation of the action and event in Figure 7.

A similar transformation of an explicit-event model to an
implicit-event model can be made for continuous-time mod-
els. Let E(λi) be the delay distribution of the ith action or
event enabled in a state s, with λi being the rate of the ex-
ponential delay distribution. The rate at which some action
or event triggers in s is λ =

∑
i λi, and the probability of

the ith action or event triggering before any other action or
event is λi/λ. We can use this information to construct a
single action representing all actions and events enabled in
s. Part of a continuous-time explicit-event model is given
in Figure 9 and the corresponding implicit-event model is
given in Figure 10.

General Delay Distributions
Although memoryless distributions can be used to ade-
quately model many real-world phenomena, they are many
times insufficient for accurately capturing certain aspects of
stochastic processes. Hardware failure, for example, is often
more accurately modeled using a Weibull distribution rather
than an exponential distribution (Nelson 1985).

Figure 11 shows an example domain with general de-
lay distributions for actions and events. Here, we have
associated a uniform delay distribution with the move ac-
tion and a Weibull distribution with the make-wet event.
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(:delayed-action move
:parameters ()
:delay (exponential 3)
:effect (and (when (office)

(not (office)))
(when (not (office))

(office))))

(:delayed-event make-wet
:parameters ()
:delay (exponential 2)
:precondition (and (rain) (not (umbrella)))
:effect (wet))

Figure 9: Partial specification of continuous-time explicit-
event model with delayed actions and events.

(:delayed-action move
:parameters ()
:delay (exponential 5)
:effect (and (when (and (office)

(rain) (not (umbrella)))
(probabilistic 0.6 (not (office))

0.4 (wet)))
(when (and (office)

(or (not (rain))
(umbrella)))

(probabilistic 0.6
(not (office))))

(when (and (not (office))
(rain) (not (umbrella)))

(probabilistic 0.6 (office)
0.4 (wet)))

(when (and (not (office))
(or (not (rain))

(umbrella)))
(probabilistic 0.6 (office)))))

Figure 10: Partial specification of continuous-time implicit-
event model with delayed move action.

The state-transition model for the action and event con-
sidered separately is depicted in Figure 12. Each state-
transition model corresponds to a semi-Markov process
(SMP; Howard 1971). However, when viewing the domain
model as a whole—as the composition of concurrent SMPs
(Figure 13)—we have what is called a generalized semi-
Markov process (GSMP; Glynn 1989).

GSMPs differ from SMPs in that the delay distribution of
an enabled event can depend not only on the current state
but on the entire path taken to that state. Consider the state-
transition model in Figure 13. Assume that we start out not
being in the office and not being wet (upper right state). The
move action and the make-wet event are both enabled. Say
that the make-wet event happens to trigger before the move
action after having been in the current state for 3 time units,
causing a transition to the lower right state where the move

(:delayed-action move
:parameters ()
:delay (uniform 0 6)
:effect (and (when (office)

(not (office)))
(when (not (office))

(office))))

(:delayed-event make-wet
:parameters ()
:delay (weibull 2)
:precondition (and (rain) (not (umbrella)))
:effect (wet))

Figure 11: Partial specification of continuous-time explicit-
event model with general delay distributions.

(0, 6)U

(0, 6)U

office ¬office

¬wet wet
(2)W

Figure 12: State-transition model for move action (above)
and make-wet event (below).

office ¬office
¬wet¬wet

(2)W (2)W

(0, 6)U

(0, 6)U

(0, 6)U

(0, 6)U

¬officeoffice
wet wet

Figure 13: Composite state-transition model for move action
and make-wet event.

action is still enabled. Because the move action already has
been enabled for 3 time units in the previous state without
triggering, the delay distribution for the move action in the
new state is in effect U(0, 3). If, on the other hand, we had
entered the lower right state by executing the move action
when being wet in the office (lower left state), then the delay
distribution of the move action would have been U(0, 6).
This history dependence occurs because we are not using
memoryless distributions.

Generalized Semi-Markov Processes

GSMPs, first introduced by Matthes (1962), have the follow-
ing components:

• A set S of states.

• A set E of events.

• For each state s ∈ S, a set E(s) ⊂ E of events enabled in
s.

• For each pair 〈s, e〉 ∈ S×E(s), a probability distribution
p(s′; s, e) over S giving the probability of the next state
being s′ if event e triggers in state s.

• For each event e, a cdf F (t; e), s.t. F (0; e) = 0, giving the
probability that e has triggered t time units after it was last
enabled.
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A generalized semi-Markov decision process (GSMDP) is
a GSMP with a subset of E being controllable events (i.e.
actions).

By allowing general delay distributions, we can specify
GSMDPs using the proposed extensions of PDDL. The pre-
conditions of actions and events determine the sets E(s), the
probability distributions p(s′; s, e) can be derived from con-
ditional probabilistic effects, and the distributions F (t; e)
correspond directly to the delay distributions of actions and
events.

The semantics of a GSM(D)P is best described in terms
of discrete event simulation (Shedler 1993). We associate a
real-valued clock c(e) with each event e ∈ E that indicates
the time remaining until e is scheduled to occur. The system
starts in some initial state s with events E(s) enabled. For
each enabled event e ∈ E(s), we sample a duration accord-
ing to the cdf F (t; e) and set c(e) to the sampled value. Let
e∗ be the event in E(s) with the shortest duration, and let
c∗ = c(e∗). The event e∗ becomes the triggering event in s.
When e∗ triggers, we sample a next state s′ according to the
probability distribution p(s′; s, e∗) and update the clock for
each event e ∈ E(s′) enabled in the next state as follows:

• If e ∈ E(s) \ {e∗}, then subtract c∗ from c(e).
• If e 	∈ E(s) \ {e∗}, then sample a new duration according

to the cdf F (t; e) and set c(e) to the sampled value.

An event enabled in s but not in s′ will have its clock re-
set next time it becomes enabled. The first condition above
highlights the fact that GSM(D)Ps are non-Markovian, as
the durations for events are not independent of the history.
The system evolves by repeating the process of finding the
triggering event in the current state, and updating clock val-
ues according to the scheme specified above.

Summary of Expressiveness
Figure 14 shows the hierarchy of stochastic decision pro-
cesses that can be specified using our proposed probabilis-
tic extension of PDDL. The most general class is GSMDPs,
which allow for concurrency, general delay distributions,
and probabilistic effects. A GSMDP is an SMDP if no ac-
tion or event can be enabled in consecutive states without
triggering, and it is an MDP if all delay distributions are
memoryless (Glynn 1989).

With general delay distributions, there is no longer an
easy way to factor the effects of exogenous events into the
effects of actions. The delay distribution of the combined
action would be the distribution of the minimum of the in-
dividual delay distributions. The minimum of exponential
distributions with rates λi is simply an exponential distribu-
tion with rate

∑
i λi, but for general distributions there is

typically no simple distribution for the minimum. Neither is
it in general possible to obtain a closed-form expression for
the probability of a specific event triggering first. Exogenous
events is therefore more than just a modeling convenience
once we allow general delay distribution.

A GSMDP can be approximated with an MDP by approx-
imating each general delay distribution with a phase-type
distribution. Figure 15 shows two commonly used phase-
type distributions. The phase of each approximating distri-

general delay distributions
probabilisitc effects

general delay distributions
probabilistic effects

concurrency

MDP

SMDP

GSMDP

probabilistic effects
memoryless delay distributions

Figure 14: A hierarchy of stochastic decision processes.

...λ λ λ1 2 n
λ

(a) An n-phase Erlang distribution.

1 1λ
2

λ2

−p1

p

(b) A two-phase Coxian distribution.

Figure 15: Examples of phase-type distributions.

bution becomes part of the state-space for the MDP, which
potentially can lead to state-space explosion. It is therefore
desirable to approximate a general distribution with a phase-
type distribution having few phases, while still matching at
least the first three moments of the general distribution (Os-
ogami & Harchol-Balter 2003).

We can model both discrete-time and continuous-time
stochastic decision processes. German (2000) discusses
techniques for approximating a continuous-time Markov
process with a discrete-time Markov process that can be
used in case a discrete-time model is preferred.

Probabilistic Planning Problems
A probabilistic planning problem is commonly specified as
an initial state s0 (or initial distribution over states), a set
of goal states G, and a probability threshold p. A plan
is considered a solution to a problem if the set of paths
from s0 to states in G has probability p′ ≥ p (Farley 1983;
Blythe 1994; Goldman & Boddy 1994; Kushmerick, Hanks,
& Weld 1995; Lesh, Martin, & Allen 1998). Drummond &
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Bresina (1990) suggest the need for maintenance and pre-
vention goals, in addition to goals of achievement tradi-
tionally considered in probabilistic planning, and propose
a branching temporal logic for specifying temporally ex-
tended goals. Dean et al. (1995) embrace a similar view,
but take a decision-theoretic approach with goals encoded
using utility functions.

We propose a definition of probabilistic planning prob-
lems closely related to that of Drummond & Bresina, adopt-
ing PCTL (Hansson & Jonsson 1994) and its continuous-
time analog CSL (Baier, Katoen, & Hermanns 1999) as a
logic for specifying probabilistic temporally extended goals.
We define a planning problem as an initial state s0 and a CSL
(PCTL) formula φ, and a solution is a plan that makes φ true
in s0.

Probabilistic Temporally Extended Goals
The syntax of CSL (PCTL) is defined as

φ ::= true
∣∣a∣∣φ ∧ φ

∣∣¬φ
∣∣P�� p

(
φ U≤t φ

) ∣∣P�� p (φ U φ) ,

where a is an atomic proposition, p ∈ [0, 1], t ∈ R≥0 (t ∈
Z≥0 for PCTL), and ��∈ {≥, >}.

Regular logic operators have their usual semantics. A
probabilistic formula P�� p (ρ) holds in a state s if and only
if the set of paths starting in s and satisfying the path for-
mula ρ is p′ and p′ �� p. A path of a stochastic process is a
sequence of states and holding times:

σ = s0
t0−→ s1

t1−→ s2
t2−→ . . .

A path formula φ1 U≤t φ2 (“time-bounded until”) holds
over a path σ if and only if φ2 holds in some state si such
that

∑i−1
j=0 tj ≤ t and φ1 holds in all state sj for j < i. The

formula φ1 U φ2 (“until”) holds over a path σ if and only if
φ1 U≤t φ2 holds over σ for some t ≥ 0.

We can derive other common logic and path operators, for
example:

false ≡¬true
φ1 ∨ φ2 ≡¬(¬φ1 ∧ ¬φ2)

P�� p

(
�≤t φ

) ≡P�� p

(
true U≤t φ

)
P≥ p

(
φ1 W≤t φ2

) ≡¬P> 1−p

(¬φ2 U≤t ¬(φ1 ∨ φ2)
)

P> p

(
φ1 W≤t φ2

) ≡¬P≥ 1−p

(¬φ2 U≤t ¬(φ1 ∨ φ2)
)

P�� p

(
�≤t φ

) ≡P�� p

(
φ W≤t false

)
Intuitively, �≤t φ (“eventually”) holds if φ becomes true
within t time units, φ1 W≤t φ2 (“weak until”) holds if either
φ1 remains true for t time units or φ2 becomes true within t
time units with φ1 holding until then, and �≤t φ (“continu-
ously”) holds if φ continuously holds for t time units. These
path operators can be defined without a time-bound in an
analogous way.

Table 1 gives a few examples of goals that we can ex-
press using PCTL/CSL. In addition to regular achievement
goals, we are able to specify goals with deadlines, safety
constraints over execution paths, maintenance goals, and
prevention goals.

Relation to Decision-Theoretic Planning

We can encode a probabilistic goal P�� p (φ1 U φ2) for a de-
cision process M as a Markovian reward function for a mod-
ified decision process M ′. This is done by making every
state for which ¬φ1 ∨ φ2 holds in M absorbing in M ′ and
assigning reward one in M ′ to those states that satisfy φ2 in
M . All other states are assigned reward zero. The expected
total undiscounted reward for M ′ then equals the probabil-
ity of φ1 U φ2 holding in M . For a time-bounded formula
P�� p

(
φ1 U≤t φ2

)
, the time-bound serves as a planning hori-

zon.
Bacchus, Boutilier, & Grove (1996; 1997) use PLTL, a

past-tense variation of the linear temporal logic (LTL; Emer-
son et al. 1990), to specify desired plan behavior, and asso-
ciate rewards with PLTL formulas. This enables the speci-
fication of non-Markovian rewards. A similar approach is
suggested by Thiébaux, Kabanza, & Slaney (2002), who
present a formalism for expressing non-Markovian rewards
adapted to anytime solution methods.

Decision Epochs

For discrete-time MDPs decision epochs occur at every time
point, meaning that the decision maker is allowed to select
an action for execution at regular intervals of unit length. If
we count movements from a state to itself as state transi-
tions (caused by the triggering of an event with no effects on
the current state), then we can say that decision epochs for
discrete-time MDPs occur after every state transition.

A natural extension of this decision model to continuous-
time and non-Markovian decision processes is to have deci-
sion epochs occur only at state transitions. This is the typical
decision model for SMDPs (Howard 1971), and is also the
model used by Younes, Musliner, & Simmons (2003) for
GSMDPs.

Alternatively, we could allow policies that associate with
each state s an action selection function π(s, t), with the
currently enabled action being a function of the time since
the last state transition. This decision model is, for exam-
ple, used by Doshi (1979). Decision epochs occur at every
point in time with this model, making the number of deci-
sion epochs uncountable for continuous-time decision pro-
cesses.

Plan Verification

Given a plan π, a stochastic domain model M, and a plan-
ning problem 〈s0, φ〉, we accept π as a solution if φ holds
in s0 for the stochastic process M controlled by π. We can
take advantage of recent developments in probabilistic veri-
fication to verify if a plan is a solution to a planning problem.

Interest in verification of probabilistic systems has been
on the rise in the last ten years. Symbolic methods for
probabilistic verification of discrete-time (Hansson & Jons-
son 1994) and continuous-time (Baier, Katoen, & Hermanns
1999; Baier et al. 2000; Katoen et al. 2001) Markov pro-
cesses have been proposed. PRISM (Kwiatkowska, Nor-
man, & Parker 2002a; 2002b) is a fast symbolic probabilistic
model checker for both PCTL and CSL formulae.
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Goal description Formula
reach office with probability at least 0.9 P≥ 0.9 (� office)
reach office within 5 time units with probability at least 0.9 P≥ 0.9

(
�≤5 office

)
reach office with probability at least 0.9 along paths where the recharging P≥ 0.9

(P≥ 0.5

(
�≤17 recharging

) U office
)

station can be reached within 17 time units with probability at least 0.5
maintain stability for at least 8.2 time units with probability at least 0.7 P≥ 0.7

(
�≤8.2 stable

)
avoid becoming wet with probability at least 0.8 P≥ 0.8 (�¬wet)

Table 1: Probabilistic goals expressible in CSL and PCTL.

Model checking algorithms for more complex models
have been proposed by Infante López, Hermanns, & Katoen
(2001) (SMPs) and Kwiatkowska et al. (2000) (stochas-
tic timed automata with clocks governed by general distri-
butions). While verification of CSL properties without a
time-bound is no harder for SMPs than for Markov pro-
cesses, the proposed symbolic methods for verifying time-
bounded properties of more general processes rely on tech-
niques that are prohibitively complex, and for GSMPs no
symbolic methods exist at all.

Younes & Simmons (2002) have developed an efficient
sampling-based approach to verifying time-bounded prob-
abilistic properties of general discrete event systems. For
GSMPs without any restrictions on the class of delay distri-
butions that can be used, there are currently no alternatives
to sampling-based approaches. Without exhaustive sam-
pling, we can never be certain that the result returned by
a sampling-based approach is correct, but Younes & Sim-
mons use statistical hypothesis testing techniques to bound
the probability of an incorrect verification result.

Discussion
We have presented an extension of PDDL for modeling
stochastic decision processes of varying complexity. Our
representation of actions with probabilistic effects is in
essence the same as that of Dearden & Boutilier (1997). In
this paper we have tied this representation to a PDDL-like
syntax. We have also extended the representation of stochas-
tic actions to include actions with random delay, which al-
lows us to specify SMDPs and GSMDPs.

We have extended the classical representation of proba-
bilistic planning problems by using PCTL and CSL for spec-
ifying goals. This allows us to express, for example, dead-
lines and maintenance and prevention goals in addition to
the traditional achievement goals. We have discussed work
in probabilistic model checking that could be utilized for ef-
ficient plan verification.

The focus of this paper has been on the representa-
tion of planning problems and not on the representation
or generation of plans. Much of the work in proba-
bilistic and decision theoretic planning assumes an MDP
model. Boutilier, Dean, & Hanks (1999) provides an ex-
cellent overview of planning with MDP models. Howard
(1971) provides a good introduction to SMPs and SMDPs,
and presents dynamic programming algorithms for solving
decision-theoretic SMDP planning problems. Probabilistic
planning with GSMDP domain models have been consid-

ered recently by Younes, Musliner, & Simmons (2003) who
propose a sampling-based algorithm for generating station-
ary policies for GSMDPs, and decision-theoretic extensions
of this work is discussed by Ha & Musliner (2002).
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