Exploiting First-Order Regression in Inductive Policy Selection

1

Charles Gretton and Sylvie Thiebaux
National ICT Australia &
Computer Sciences Laboratory
The Australian National University
Canberra, ACT 0200, Australia

{charlesg,thiebaux

Abstract

We consider the problem of computing optimal
generalised policies for relational Markov deci-
sion processes. We describe an approach com-
bining some of the benefits of purely inductive
techniques with those of symbolic dynamic pro-
gramming methods. The latter reason about the
optimal value function using first-order decision-
theoretic regression and formula rewriting, while
the former, when provided with a suitable hy-
potheses language, are capable of generalising
value functions or policies for small instances.
Our idea is to use reasoning and in particular
classical first-order regression to automatically
generate a hypotheses language dedicated to the
domain at hand, which is then used as input by an
inductive solver. This approach avoids the more
complex reasoning of symbolic dynamic pro-
gramming while focusing the inductive solver’s
attention on concepts that are specifically rele-
vant to the optimal value function for the domain
considered.

INTRODUCTION

}@csl.anu.edu.au

Recent research alational MDPshas started to address
these issues. Relational approaches fall mainly into two
classes. Approaches in the first class extend dynamic pro-
gramming methods to operate directly on first-order do-
main and value function descriptions [4]. Thestage-to-

go value function, represented as a mapping from a set of
first-order formulae partitioning the state space to the reals,
is obtained by pure logical reasoning. This involves in par-
ticular reasoning about the domain dynamics using a first-
order version oflecision-theoretic regressidf], and rea-
soning about maximisation using formula rewriting. While
this approach is theoretically attractive, a difficult challenge
is to implement effective formula simplification rules and
theorem proving techniques to keep the formulae consis-
tent and of manageable size. We are unaware of existing
implementations that successfully address this challenge.

Approaches in the second class avoid those problems by
employing inductive learning techniques: they generalise
good policies (or value functions) for instances with a
small number of objects to get a useful generalised pol-
icy [16, 7, 18, 23, 19]. In order to address domains whose
small instances are not representative of the general case,
they can be made to induce policies which are likely to gen-
eralise well if, for instance, training data in the form of a
policy trajectory, a list of propositional state action pairs,

Planning domains often exhibit a strong relational struc-generated by approximate policy iteration is used [10, 11].
ture and are therefore traditionally represented using firstinductive learning proposals do not reason about the do-
order languages supporting the declaration of objects anthain dynamics beyond generation of the training data. In
relations over them as well as the use of quantificatiorcontrast to the dynamic programming approach above these
over objects [12]. Although Markov decision processesdo not explicitly seek optimality (or in some cases correct-
(MDPs) are now widely accepted as the preferred modeness). This feature is motivated by the fact that domains
for decision-theoretic planning, state of the art MDP algo-arise where no practical representation of the optimal gen-
rithms operate on either state-based or propositionally faceralised value function or policy exists.

tored representations [14, 2, 15, 8], thereby failing to 1o keep the search space manageable, inductive approaches

ploit the relational structure of planning domains. Due to
the size of these representations, such approaches do Nt
scale very well as the number of objects increases. Fu

require a suitabléypotheses languagsufficiently rich to
scribe the control strategies of interest without wasting
'the learner’s time on irrelevant planning concepts. This

thermore, they do little in the way of addressing the Io”g'can take the form of support predicates that express key

standing goal of generatingeneralisegolicies that are ap-
plicable to an arbitrary number of objects. Instead, MDP.

features of the domain in terms of the basic relations (e.g.
above” and “in-position” in blocks world) [16, 7], or that

pla_nners usgally repla_n from s_cratch when computing %f a domain-independent language bias from which the im-
policy for an instance with marginally more or fewer states.

portant features can be discovered from scratch — for exR(e) is the immediate reward for being in state A sta-
ample a concept language based on description or taxdionary policy for an MDP is a functiorr : £ — A, such
nomic logics appears to be well suited to blocks worldthat7(e) € A(e) is the action to be executed in state
and logistics benchmarks [18, 23, 10]. The main weaknes$he valueV (¢e) of statee under the policy is the sum of
of inductive approaches is their reliance on a suitable hythe expected future rewards, discounted by how far into the
potheses language. One can also question the fact that théyture they occur:

never explicitly reason about the known domain dynamics "

or exploit it beyond the generation of training data. Al- Va(e) = lim E [Zﬁtn(et) | me0 =€

though this makes them more flexible and practical than the =0

decision-theoretic regression approach, this may be seen aéere0 < 3 < 1 is the discounting factor controlling the

a failure to exploit useful information. contribution of distant rewards ard is the state at time.
: . , Policy 7 is optimal iff V. (e) > V. (e) for all e € € and all
In this paper, we consider the problem of computing op- icias

timal generalised policies given a first-order domain an
reward descriptions. We investigate an approach aime
at combining some of the strengths of dynamic program—g'2 RELATIONAL MDPs

ming and inductive techniques. Our idea is to automatiyypiie the above state-based definition of MDPs is suit-
cally generate a suitable hypotheses language for the d%ble as a general mathematical model, it fails to empha-

main at hand, by reasoning about the dynamics of this doéise the relational structure of planning problems. For this

main using first-order regression. This language is guarary,50n recent research has focused on relational MDPs,
teed to cover all concepts relevant to the optimaitage- which make this structure explicit and open the way to

to-go value function for a given, and can be used as in- 5 45rithms capable of exploiting it. Under the relational
put by any '_”d“_c“"e solver. Morg explicitly, we repeatedly model, MDPs are often represented using a first-order for-
apply classicalfirst-order regression (see e.g. [21]) to the malism supporting relations, functions, and quantification

first-order formulae involved in the reward description to over objects. Some of the most famous formalisms used for

generate clgn(iljldatle fofr mule_le for wcl_uzlon !nﬂqetlage-to; that purpose are first order probabilistic STRIPS variants
go generalised value function. The inductive solver selecty) g 55 24] and the situation calculus [21, 4]. Our presen-

among those formulae to build a decision tree generalising.;, ses the situation calculus, as we believe it provides
small value functions generated by a state of the art MDPR,jaar logical foundations for our approach.

solver. Because we avoid much of the most expensive rea-

soning performed by dynamic programming approaches]he situation calculus has 3 disjoint sorts: actions, situa-
we are able to retain acceptable performance. Because oti@ns and objects. The alphabet includes variables of each
hypotheses language is targeted at the domain of interestort, function and predicate symbols of sebgject” —

we are often able to obtain optimal generalised policies usebject andobject™, respectively, used to denote situation-
ing very few training examples. independent functions and relations, as well as the usual

connectives and quantifiers A, 3 with the usual abbrevi-

The paper is organised as follows. We start with back-yigng, _, v etc. Other elements of the language include
ground material on MDPs, relational MDPs, first-order re-

the following.
gression, and previous approaches. We follow by a de- g

scription of our approach, together with a discussion of itsActionsare first-order terms built fron_1 an action function
strengths and weaknesses. We then present experimengmbol of sortobject™ — action and its arguments. For

results before concluding with some remarks about relateéhstance in the followingmove(z, y) denotes the action of
and future work. moving object x onto object y. When the arguments are

ground, we sometimes speak ofjeoundaction. In what
follows, we shall only make the distinction between actions
2 BACKGROUND and ground actions when that distinction matters.

Situationterms are built using two symbols: a constant
symbol Sy denoting the initial situation, and the function

We take a Markov decision process to be a 4_tuplesymbolclo : action X situation — situation, with the

(€, A, Pr,R), where€ is a possibly infinite set of fully :c”terpret:‘“"”. th"’fot(a’s.) .df.”mets. the S'.tt“ai'."” resulting
observable states4 is a possibly infinite set of (ground) rom periorming deterministic actionin situations.

actions (A(e) denotes the subset of actions applicable inRelationswhose truth values vary from situation to situ-
e € &), {Pr(e,a,0) | e € £,a € A(e)} is a family of ation are built using predicate symbols of sebject™ x
probability distributions ovef such thafr(e, a,¢’) isthe situation called relational fluent symbols. For instance
probability of being in state’ after performing actiom in On(z,y, s) is a relational fluent meaning that objects
statee, andR : £ — R is a reward function such that on objecty in situations.

2.1 MDPs

Additionally, there is a predicate symbebss of sort ministic actions D;(Z),..., Dy(%) available for nature
action X situation. The intended interpretation of to choose from, via the axiom:choice(a, A(Z)) =
poss(a, s) is that it is possible to perform deterministic ac- \/é?’:l(a = D;(#)). We must also define the proba-
tion a in situations. bilities of the choices in the current situation us-

The situation calculus views stochastic actions as proba'pg axioms of the form: prob(D;(x), A(7),s) =

17 1. L Ahm(P m i
bility distributions over deterministic actions. Executing a case[q;j (2, SI)’pj’ N '.’.¢J .(x’ Sg’pf |, where the%i are
stochastic action amounts to letting “nature” choose whictttate formulae partitioning the state space, andfseare

deterministic action will be executed, this choice beingprObab'“t'eS' For instance, suppose that in our blocks

governed by given probabilities. Describing stochastic acWorld domain, themove(z,y) action is stochastic and

tions requires (1) a predicate symhgioice : action x s:omet:_m;s behaveds like the _determlnlmdcveﬁ (z,y) ag—
action, wherechoice(da, sa) denotes that executing deter- tion which succeeds in moving to y, and otherwise be-

ministic actionda is a possible nature choice when execut-?a}lves l'kﬁ the deterhn.m'St'ngeF(x’fy) sctmn wh;}ch h
ing stochastic actiona, and (2) a function symbairob : alls to'f: ange anything. uppose urthermore that the
action x action x situation — R, whereprob(da, sa, s) probability of a successful move is 0.9 when the weather

denotes the probability of that choice in situation is fine, and 0.7 when it is rainy, we get the following ax-

ioms:
Finally, function symbolR : situation — R is used to choice(a, move(bl,b2)) =
denote the immediate reward received in a situation. o= 77,101)65(1)1’1)2) V a = moveF (b1, b2)
As in [4], we use the notion of atate formula f(Z, s), prob(moveS(bl, b2), move(bl,2), s) =
whose only free variables are non-situation variablesd case[Rain(s),0.7; ~Rain(s), 0.9]
situation var!gbles, and in which no other situation term prob(moveF (b1,b2), move(bl,b2), s) =
occurs? Intuitively, a state formulaf (z, s) only refers to case[Rain(s),0.3; ~Rain(s),0.1]

properties of situation. We say that an MDP stateodels] o . S
a state formula whose only free variable is situatioff ~ 3- Action precondition axioms:for each deterministic
the properties of described by the formula hold in the action A(Z), we need to write one axiom of the form:
state? A set of state formulagf; (z, s)} partitionsthe state ~ P0s5(A(Z), s) = Wa(T, 5), whereW (7, s) is a state for-
space iffl= VaVs(Vif;(,s)) and for alli and all j # i mula characterising the preconditions of the action. E.g:
= Vs (fi(, s)—>f5(Z,5)) - poss(moveS(bl,b2), s) = poss(moveF(bl,02),s) =

bl # table A bl # b2A Ab3 On(b3,b1, s)A

(b2 = tablev Ab3 On(b3,02,s))
4. Successor states axiomiey are the means by which
the deterministic dynamics of the system is described. For
each relational fluenF'(Z, s), there is one axiom of the
rm: F(Z,do(a,s)) = ®r(Z, a,s), where®r(Z, a, s) is
state formula characterising the truth valuefoin the
situation resulting from performing in s. For instance:

Modelling a relational MDP in the situation calculus in-
volves writing the following axioms.

1. Reward axiomrewards in the current situation are con-
veniently expressed as a statement of the fofs) =
caselp1(s),r1;...;pn(8),], Where ther;s are reals, the f
p;S are state formulae partitioning the state space, angO
where the notation = case[f1,t1; .. .; fn, tn] abbreviates
v (fi Nt = t;). For instance, consider a blocks world
domain where we get rewarded when all blocks are in their On(b1,b2,do(a, s)) = a = moveS(bl, b2)V
goal position, then: (On(b1,b2,)\ Ab3 (b3 # b2 A a = moveS(b1,b3)))

R(s) = Rain(do(a, s)) = Rain(s)

case| Vb1 Vb2 (OnG(bl,b2) — On(bl, b2, s)),100.0;

5. Finally, for each pair of distinct actions, we need a
361 362 (OnG(b1,02) A =On(bl, b2 0.0
(OnG(b1,52) n(b1,52,5)), 0.0} unique name axiom of the formzVy A(%) # B(%), and

whereOnG (b1, b2) is a situation-independent relation rep- for each action, there is an “all-different” axiom of the form
resenting the goal configuration. VvV A(Z) = A(Y) < Z=7.

2. Nature's choice and probability axiomsfor each This completes our description of relational MDPs in the

stochastic actionA(Z), we must specify the deter- sjtuation calculus framework. Let us emphasise once more
This can be extended to depend on the current action. that (1) the modelling retains the classical situation cal-
2In [21], such formulae are said to bmiformin s. Here we culus machinery for deterministic domains —stochastic ac-

also assume that state formulae do not contain statements involtions only appear in an extra layer on top of this machinery—

ing predicateposs andchoice, and functiongrob andR. and that (2), the axioms do not restrict the domain to a
3We would like to be able to say that MDP states are first-order,

> . gre—specified or even finite set of objects, which is why
models of state formulae, but this is not strictly accurate becaus -
of the presence of situation variables in fluents. We would have & _SOIUI'On_ for an MDP aX|oma}t|sed th!S Way_ IS a gener-
strip out state variables and reduce the arity of relations. Spellinglised policy applying to an arbitrary object universe. Gen-
this out formally would be a waste of space. eralised value functions and policies can conveniently be

represented in the situation calculus as a case statement ithat1’”*! is the maximum of th€™ " functions over the
volving state formulae partitioning the state space and reactions.

or action terms, respectively. A drawback of first-order dynamic programming is the

practicality of retaining manageable case expressions of
value functions: the length and number of formulae in-
cluded in the case statements rapidly becomes impracti-

As with many action formalismgggressionis th rner S)
any action 1o SMILYressio © come cally large. This is especially exacerbated by the sym-

stone of reasoning about the dynamics of a deterministi%mic maximisation of th&) functions which requires com-
domain in the situation calculus. As usual, the regres- q

. L S bining already complex formulae obtained through first-
sion of a formulaf through a deterministic action is a o i . L
. . . order decision-theoretic regression. Another complication
formula that holds before: is executed if and only iff

holds after the execution. In the situation calculus, regres'—S the need for detecting inconsistent expressions which

sion takes the following form. Consider a state formula™®Y form, e.g., as a result of such combinations.
f(&,s) and an action termA(y). f holds of the situa- By implementing logical simplification rules and enlisting
tion do(A(¥), o) resulting from executingd(y) in o iff the theorem prover Otter [20] we were able to significantly
U 4(¢,0) A Regr(f(#,do(A(y),0))) holds, whereRegr reduce case bloat and eliminate some forms of redundan-
is defined as follows: cies and contradictions. Unfortunately all this comes at a
o Regr(F(E. do(a, 7)) = B (F,a, o) where co;t. !Essentlglly we f|nq that dynamic programming re-

i, N - : . mains impractical for as little as 3 or 4 value iteration steps
F(&,do(a,s)) = ®r(Z,a, s) is a successor state axiém .

for standard planning benchmarks such as blocks world or

eRegr(—f) = ~Regr(f)

eRegr(fi A f2) = Regr(f1) A Regr(f2) logistics.
eRegr(3x f) = Jx Regr(f)
eRegr(f) = f in all other cases 3 THE APPROACH

E.g., regressing the formul&blVvb2(OnG(b1,b2) —
On(b1,b2,s)) in our reward description with action
moveS(x,y) yields:

2.3 FIRST-ORDER REGRESSION

Having examined the shortcomings of the dynamic pro-
gramming approach, we now seek to extract and apply
its essence that is reasoning, using first-order regression,

x # table Nz # yA Ab3 On(b3, x,s) A in a different context, namely that of inductive learning.
(y = tablev Ab3 On(b3,y, s))A Briefly, our approach usesassicalfirst-order regression,
Vb1 Vb2 (OnG(b1,02) — ((x = bl Ay = b2)V as defined in Section 2.3, to generate a hypotheses language

(On(b1,02,s) A (y # b2 — x # b1)))) for the inductive learner. This language consists of state
meaning that for the goal to be achieved after theformulae from which the inductive learner selects to build

move, the move must be executable and for any subgoQ decision-tree generalising small instances generated by a
OnG(b1,b2), either the move achieves it, or the Subgoa|convent|onal MDP solver.

was already true and the move does not destroy it.
3.1 HYPOTHESES LANGUAGE

2.4 FIRST-ORDER DYNAMIC PROGRAMMING . . o
Supposep is any state-formula in the situation calculus

One of the very first approaches to solving relational MDPgVhose only free variable is of sort situationHere pow-

is first-order symbolic dynamic programming [4]. This ers of¢, for exampley’, indicate that post-action formula
is a value iteration approach which directly operates ore?’ ' is related by an application of regression to some pre-
the symbolic representation of the generalised value funcaction formulag’. More explicitly, ¢’ (s) = 37 U 4(Z, s) A

tion as a case statement. It relies fost-order decision- Regr(¢'~ ' (do(A(Z), s))) for someA(Z). Thus we have
theoretic regressioran extension of regression, as definedthat ¢, ann-step-to-go derivatiorirom ¢°, corresponds
above, to stochastic actions. Given a stochastic actighy 10 the start of a formula-trajectory of length+ 1 leading
and the logical description of the generalisedtage-to-go 10 ¢°.

value functionV’"(s), first-order decision-theoretic regres- cgonsider the se{gb?} consisting of the state formulae in

sion is able to compute the Ioglc_al desc?ptloiw of the gensyo reward axiom case statement. We can coml{mﬁe}

eralisedn + 1-stage-to-gay function Q" (A(Z), s). At 0 . 0 L

each value iteration step, tigg*+! functions are computed from.{_gbj.} by regressing the); over all the domain’s de-
’ terministic actions. Any subset of MDP states S that

for the various actions, and a formula is built expressing . T .
_ - are one action application from a rewarding state, model

4Quantifiers in® = (Z, a, s) should have their quantified vari- \/j (;sjl._ More usefully, a state formula characterising pre-
able renamed as needed to make it different from the free vari- -~ ~
ables inF (i, do(a, o)). A similar remark applies to quantifiers in SWe abstain from making the situation variable explicit where
W 4 (&, s) when substituting as aboygfor & ando for s. doing so is superfluous.

action states for each stochastic action, can be formed by!'F 3b (Box(b) A Bi"(lf’—s%()))o
considering disjunctions ovér! }. In a similar fashion we THEN act=NA, val =

can encapsulate longer trajectories facilitated by stochas-|g 363t (Box(b) A Truck(t) A Tin(t, Syd) A On(b, t))
tic actions, by computing¢? } for n larger thanl. More THEN act = unload(b, t), val = 1900
specifically the set of state-formulae sufficient to encapsu- ELSE
late such trajectories are members of the set: IF 3b3t3c (Box(b) A Truck(t) A City(c)A
Tin(t,c) A On(b,t) A c # Syd)
n _— i THEN act = drive(t, Syd), val = 1805
e e
IF 3b3t3c (Box(b) A Truck(t) A City(c)A

It follows that we shall always be able to induce a classifi- Tin(t, c) A Bin(b, c) A c # Syd)
cation of state-space regions by value and/or policy using THEN act = load(b, t), val = 1714.75
state_—formulae compgted by reg.re_ssion. This is of course E:LSE T63t3c (Box(b) A Truck(t) A City(c)A
provided these functions have finite rahgef that pro- ~Tin(t,) A Bin(b, c))
vision is violated, we remain able to consider relational THEN act = drive(t, c), val = 1629.01

MDPs whose object universe is finitely bounded.

Our approach is based on the fact that it is much cheapefaPlé 1. Decision-tree representation of an Alkemy pol-
to computeF™ than to performn first-order dynamic pro- icy/value function for logistics (after mild simplifications).
gramming steps. For instance, in blocks world, we are abl&ituation variables are omitted.

to computeF%0 in under a minute. Typically, not all state

formulae inF™ are interesting. Only a few will be relevant p54s promise. We were able to generate an encoding of
to an optimal or even us_e_ful va_lue _functi(_)n. We proposerm in Alkemy’s input language and let Alkemy produce a
that the usefubs be identified using inductive learming. gecision-tree representation of a first-order value function.
For example, consider the logistics domain described e.g.
3.2 INDUCTIVE LEARNING in [4], where a reward is given when at least one pack-
age is in Sydney. Provided with the hypotheses language
In what follows we provide details of our inductive algo- p4 gnd about a hundred training examples, Alkemy is able
rithm supposing it willearn both a generalised policy and 1 induce the optimal generalised value function shown in
value function as a single object. So that it can learn a polTgple 1 in a matter of seconds. Due to the greedy nature
icy, we record for alp € I, the deterministic action from ¢ its search through a self imposestompletehypothe-
which ¢ was derived as well as the aggregate stochastic agseg space, in its present form Alkemy is unable to build a
tion of which the deterministic action forms a part. generalised value function for other domains that we ex-

As a starting point, we assume a set of training exampleg?€rimented on, even when provided with Af perfectly
Each is triplen = (e, v, B(f)), wheree is an MDP statey sufficient for that purposé.Th|s, goupled with some re-

is the optimal value foe, and B(Z) is the optimal ground dundancy that was not reqwre@ in our plgnner, led us to
stochastic action far. The value and first-order policy pre- deévelop our own learner specific to a planning context.
scribed by the induced function must agree with both theAlgorithm 1 provides a listing of the pseudo code for
value and policy entry of our training examples. For theour learner. It computes a binary tree representation of
learning algorithm, we need the notion of an exangale the value/policy functions where nodes correspond to re-
isfyingsomegi(s) € F™. ¢'(s) is of the form3z ¢/ (&, s) gressed formulae, each connected to its children by a neg-
where¢/(Z,s) = W4(Z,s) A Regr(¢~'(do(A(Z),s))). ative and positive arc. We can build a formyldy tracing

We say that a training example = (e, v, B(t)) satis- from the root node to a leaf, conjoining the formula, resp.
fies ¢’(s) iff B is the composite stochastic action symbol negated formulae, at each nodeftdepending on whether
recorded fow’ (s) ande models¢’ (t, s). This captures the We take the positive, resp. negative, arc to that node’s suc-
intuition that the state and ground action in the examplecessors. States at the resultant leaf are those that ryiodel
match the constraints expressed by the formula. There are three main aspects to our algorithm. The first

Initially we enlisted Alkemy[17], a generic inductive logic is the selection of the next formula for inclusion in the
Y yiril.ag 9€ Gecision-tree (lines 5-8), the second is the generation of

programming utility which learns comprehensive theonesthe hypotheses spade” (lines 9-15), and the third is the

from noisy structured data. Alkemy takes as input a hy- ; :)
. o . actual construction of the tree representing the first-order
potheses language described in higher order logic and a

set of examples, and is able goeedilyinduce a decision policy/value function (lines 16-23).
tree classifying the examples. Preliminary experimentOfthese three aspects, only the first requires comment. The
using Alkemy demonstrated that an inductive techniqueest should be straightforward from the description in Al-

SValue functions and/or policies for relational MDPs may have ~ "The authors of Alkemy are currently adding support for a
an infinite range and require infinite representations. complete search.

Algorithm 1 Inductive policy construction. 3.3 DISCUSSION
1: Initialise {maxn, {¢°}, FY};

2. Compute set of examplds As_vv_ith other Iearni_ng approaches, ours op_erate_s well given
3: Call BUILD _TREE(0, E) training examples in the form of state-trajectories. How-
ever, due to the nature of the state formulae preseht'in
4: function BUILD TREE(n : integer,E : examples) we should be aple to learn from far fewer state—trajectorigs
5: if PURE(E) then than other learning proposals to date. We see this as an im-
6: return success _leaf portant strength of our approach. At one extreme, we can
7 end if take the case of a domain for which, given training data in
8: ¢ « good classifier inF™ for £. NULL if none exists Fhe form ofa singlestat_e-trajgctory, our approach is able to
9: if ¢ = NULL then induce an optimal policy which generalisesatb problem
100 nen+l states whose values were present during training. For in-
11: if n > maxnthen stance, consider a deterministic blocks world with a single
12: return failure leaf action,move(z, y), where we seek to minimize the number
13- endif of moves to the goal. The reward case statement consists of
14: {¢"} — UPDATE_HYPOTHESESSPACK{¢"'}) two fprmulae. Say that the Iearngr is g|v§ﬁ (which here
15: F" e {¢"} U Fn-! conglsts of 16 formulae) and'a single trajectory of length 8
16: return BUILD_TREE(n, E) _(for instance a trajectory which changes the bottom blqck
17: else in a tower of 5 blocks). Suppose states along the trajec-
18: positive «— {n € E | n satisfiesp} tory have values ranging from 8 to 0. The learner is able

to learn the optimal policy covering all instances of blocks
20: positive_tree «— BUILD_TREE(n, positive) World'th_at are of distance 8 or less to th_e goal.' In particu-
21: negative_tree « BUILD_TREE(n, negative) lar, this includes all 5 blocks instances, since 8 is the length
22: return TREE(¢, positive_tree, negative tree) of the longest optimal 5 blocks plan. Intuitively, the pol-

) ; icy generated says “if we are at a distance of 8 to the goal,
23 end if ted “if t a dist f 8 to th I
find two arguments tenove which bring us to a state at a
distance of 7; Otherwise, if we are at a distance of 7 to the

gorithm 1. The algorithm starts by checking whether thed0@l, find two argumeﬂnts tmove which bring us to a state
examplesy, = (ex,vr, Bi(fk)) at the current tree node atadistance of6; ...

are pure (lines 5-7), that is, whether they all prescribe thyoreover, our method can induce a policy which is op-
same stochastic action (tti#, are the samegndall have timal in 100% of the domain instances when there is no
the same value (the,. are the same). If the examples explicit or implicit universal quantification in the reward
are not pure, we select, among the state-formulae genegyjom. This is because, for domains with such rewards,
ated at this point, the which best discriminates between gptimal generalised value functions have a finite range.
the examples (line 8). Our description in Algorithm 1 re- For instance, if our blocks world goal is to have at least
mains voluntarily non-commitent about the concrete im-4 pjocks on the table, and/drfree blocks, then the train-
plementation of this choice. Possibilities include accepting data need only comprise a longest optimal trajectory to
ing a¢ that yields sufficieninformation gaini.e., expected the goal/s, which is of length 3, and the hypotheses lan-
reduction in entropy. Alternatively, this step could yield guage considered need only B8. It is also important
NULL until n. = max_n, at which point information gain to note that generalised policies computed using our algo-

or some weaker meas@.maould be used to pick up@from rithm maximise expected utility thus making it more gen-
Frmaz-n. The tradeoff is between prematurely adding re-era| than simple goal driven learning.

dundant nodes to the tree and needlessly generating candi-) o
date concepts. As pointed out in [23], it is often the case that the range

of the value function increases with the number of objects
Inany case, during the process of selection of an acceptablg the domain, yielding generalised value functions with
¢, we prune fromF™ the formulae which are not satisfied jnfinite range. This is typical of domains where reward rel-
by any example inf to avoid regressing them further. In - eyant to the optimal policy is received whalh objects of a
general, this may lead to removing formula-trajectories thagjyen type satisfy some condition, e.g. consider the blocks
are necessary to correctly classify training data which is nojyorid and logistics domains where we ask that all blocks
graphically connected. However, we have that such prunpe in their goal position and all packages reach their des-
ing is admissible when the training examples correspond t@nation. A negative side of our approach is that it is still
state-trajectories or policies for domain instances. value-function driven, and as such, is not suited to infer
mlementaﬂon we use the inadmissible heuristicCOm_pletel)gener""liS(_ad p_oligigs_when the range of the gep—
“number of elements iE satisfyinge” divided by the “number ~ €ralised value function is infinite. Indeed, our learner is
of distinct state values in the subsetifvhich satisfyg”. unable to induce a policy for states whose values were not

19: negative «— E\positive

represented in the training examples. On the same note, ogistics and blocks world domainkG-ALL, LG-EX, BW-
approach is only suited to generatiogtimalpolicies, thus ALL, BW-EX and, LG-ALL,, LG-EX,, BW-ALL,, BW-
would never conceive approximately optimal policies suchEX, respectively. LG-ALL is a deterministic version of
as the GN policies for blocks world [22]. Generating opti- the logistics domain in [4] such that the reward is received
mal policies may be impractical, which is why suboptimal where all packages are in Sydné&¢-EX is similar toLG-
solutions are often sought [18, 23]. ALL only the reward is received where at least one pack-
. . . age is in Sydney. The stochastic versions of these, which
Compared t.o purely !nducyve' methods, our hybrld aP"\ve have called G-EX; andLG-ALL,, have an additional
proach requires an axiomatisation of the actions in the do- . .
roperty that trucks have @2 chance of mistakenly driv-

main. _We do not_ feel th_at this is an excessive Qemand, esp ing to the wrong cityBW-ALL is the standard blocks world
cially in comparison with what a pure reasoning approach S .

i . . . domain with a single move operator, such that the reward
such as first-order symbolic dynamic programming would.

) . . is received when all blocks are in their goal positi@VV-
require to have any chance of being practical. Recall th . ; .
; g . . EX is a blocks world where the reward is received when
the performance of symbolic dynamic programming relies

o : at least three blocks are on the table. The stoch&tic
on the ability of making the most out of a theorem prover .

. . . domains BW-ALL, andBW-EX, have a faulty move ac-
to prune inconsistent formulae from the generalised valu

. o ?ion which has &.2 chance of dropping the box on the
function description. We found that the theorem PTOVET, ble regardless of its intended destination. The only dif-

could not possibly be effective unless it was provided Wlthf?rence between these domains and those used in the de-

the dqmam state constraints (€.g., constraints statmg th"fl{arministic and probabilistic international planning compe-
an object cannot be two places at once, that a box is nQr

: : . itions are the absence of planes and the use of a single
a truck, etc ...). From our experience, axiomatising those

. s "wrong city” per drive action for logistics, and the use of
static constrains is more time-consuming than axiomatis- . . 4
. . . a single move action rather than pickup, putdown, etc for
ing the domain dynamics.

Blocks World.

Finally, one of the main motivations behind our am)ro""ChTables 2 and 3 report results obtained during experimenta-
was to avoid much of the most complex reasoning per-

.) ; tion with the deterministic and stochastic domains respec-
formed by dynamic programming. While we have suc-

. . . .~ tively. Entries contain the hame of tld®main, the maxi-
ceeded in taking formula rewriting and theorem proving . .
X ; mal depthmax_n of regression, which we set to the num-
out of the loop, we still need model-checking to match

examples with the state formulae they satisfy. AI'[houghb.e r of distinct values appearing in the training data'l,. the
o . size (number of blocks, or number of boxes/trucks/cities)
model checking is substantially faster than automated the

e of the instances in the training data, the numfgrof ex-
orem proving, it is not free. When the number of formulaeam les used, and thgpe of the training data: typ@ in-
remaining inF™ after prunning increases rapidly with P : P 9 - P

. .) dicates that the examples have been extracted from an op-
our approach becomes impractical. As shown in the experiz . . . i
ments below, we find that model-checking is the bottleneckt'mf”ll. policy covering all statgs of the given size — these
of our approach. pohcps where geqerated using the NMRDPP system [13]
— while typeT indicates that the examples have been ex-
tracted from optimal plans (trajectories) returned by an op-
4 RESULTS timal Blocks World solver [22] for selected instances of
the given size. The column labell¢éidhe reports the time
Our approach is substantially different from most, not thein seconds it takes our implementation to induce a policy.
least so because it generates optimal policies and is an UrFhis column is annotated with * if pruning was used, and
orthodox combination of knowledge representation, reawith # if we interrupted the algorithm before termination.
soning in the form of first-order regression and inductionThe last column reports treeopeor applicability of the in-
given noise free training examples. Therefore, while paduced policy. Possible entries are eitheiif our algorithm
pers reporting results on relational MDPs typically focusinduced a completely generalised policy, or an integer
on evaluating the coverage of suboptimal generalised polin which case the policy has generalised to states whose
icy discovered by some inductive method, we find it moreoptimal value is one of thé largest values in the training
interesting to study the factors affecting the performanceset.

of our approach on a number of domains. Our approach , bl 43d he b b
is implemented in C++. The results reported were opROWs 1105 in Tables 2 and 3 demonstrate the best case be-

tained on Pentium4 2.6GHz GNU/Linux 2.4.21 machineh‘"‘\/iour_Of our a}pproach'. For these domqins a (.:om'pletely
with 500MB of RAM. gener_allsed policy, that is gf!rst-order p_ol|cy which is op-

timal in 100% of the domain instances, is computed given
Interesting characteristics of our approach which presentegtaining examples which correspond to a complete MDP
themselves during experimentation were apparent for botholicy. Even though a few examples of small size (56 ex-
the stochastic and deterministic domains. We present reamples of size 2) are sufficient to induce the generalised
sults for4 deterministic and stochastic variants of the lo-

| Domain | maxn | size| [E] [type | time [scope| [Domain | maxn | size] [E] |[type | time [scope]

LG-EX 4 2 56 P 0.2 00 LG-EX; 5 2 56 P 0.2 o0
LG-EX 4 3 4536 P 14.41 o0 LG-EX, 5 3 4536 P 16.19 o0
BW-EX 2 3 13 P 0.2 00 BW-EX, 3 3 13 P 0.3 o0
BW-EX 2 4 73 P 2.2 o0 BW-EX, 3 4 73 P 2.8 o0
BW-EX 2 5 501 P 23.5 00 BW-EX, 3 5 501 P 29.3 o0
BW-ALL 5 4 73T 33.9 5 BW-ALL 4 4 73] P *0.4 4
BW-ALL 6 4 73 T 136.8 6 BW-ALL, 7 4 73 P *11.5 7
BW-ALL 5 10 0 T 131.9| 5 BW-ALL 8 4 73| P *58.0 8
BW-ALL 6 10 10 T 2558.5 6 BW-ALL, 9 4 73 P *1389.6 9
LG-ALL 8 2 56 P *1.8 8 LG-ALL, 12 2 56 P 2.1 12
LG-ALL 8 2 56 P 0.5 8 LG-ALL, 12 2 56 P *0.7 12
LG-ALL 12 3 4536 P #17630.3 5 LG-ALL 22 3 4536 P #1990.8| 12
LG-ALL 12 3 4536 P #*263.4 6 LG-ALL, 22 3 4536 P #*574.4 14
LG-ALL 12 3 4536 P #*1034.2 9 LG-ALL 22 3 4536 P #*1074.5 15
Table 2: Experimental Results (Deterministic) Table 3: Experimental Results (Stochastic)

5 RELATED & FUTURE WORK

policy, these results are presented for progressively larger

sizes and training sets so as to study the cost of modePrevious work in relational reinforcement learning has con-
checking. The impressive speed with which the algorithmsidered exact calculation of the optimal first-order value
induces a completely generalised policy is due to both théunction using symbolic dynamic programming [4], ma-
small size of the required™ and the speed with which chine learning with hand-coded background knowledge
satisfiability of elements in this set is verified against train-[16, 7, 5] or with a general-purpose hypotheses space for
ing examples. We observe that the cost of model-checkingepresenting policies [18, 23, 10, 11], or again optimisa-
increases much faster for blocks world than for logistics.tion of a value-function approximation based on combining
This is because in blocks world, both the formulaerii object-local value functions assuming that each object’s lo-
and state model descriptions in the training data are longecal behaviour depends only on its class [6].

The results tabulated faW-ALL andBW-ALL validate Of these three types of approaches, the last [6] is the least
some of the comments we made during our discussion. Wairectly relevant to the work presented here. Although the
already know that a complete generalised policy is out ofanguage used to express regularities in the value function
the question, so here we make explicit the cost of matchis rich even in comparison with those used by other rela-
ing training examples to state formulae which they sattional approaches, the hypotheses space supported by the
isfy. These results show that the size of the state models ilearning algorithm is rather constrained in comparison to
the training data, the complexity of the state formulae bethe other learning methods. The domain specification is
ing considered, and the length of trajectories being considnot exploited to the extent which the adoption of reasoning
ered can greatly effect the practicality of model checking.permits. In the end this is substantially different from first-
Take the deterministic case for instance, due to the cost afrder dynamic programming and to the inductive approach
model-checking, we achieve better time performance withwe propose.

73 examples of size 4 (a complete 4 blocks policy for a

fixed goal state) than with a single 10 blocks trajectory of;)iu[jggoggj\i IST;rank(i)r:e (i:rizsfrlgtifrta;reo%t?irg?o?crisetrt;von;erﬁ:::-
length 10. This is also true &fG-ALL, only in this case it q ' g 1nsp y

is the growth inF™ in addition to time consuming model programming, we were able to exploit first-order regres-

checking, which contributes the most to learning time. For> " to generate a hypothgses language Wh'.ch Is sufficient
. . . : . to encode optimal generalisadstage-to-go policies for re-
instance, it takes a lot longer to infer a policy with larger

scope from examples of size 3 andiz_n = 12 than with lational MDP.S' W_e then prop(_)s_ed and exp_e_nmented with
. a method of inducing such policies from training examples
examples of size 2 anthax_n = 8.

drawn from domain instances. Much of the expensive rea-
Before we conclude, we should draw the reader’s attentioisoning required by first-order symbolic dynamic program-
to the last 5 entries in the tables. In particular to the time ouming is avoided by doing this. We observed that some
algorithm takes to induce a policy with and without prun- drawbacks of our parent, in particular growth in the num-
ing. If we do not prune fromf™ the formulae which are ber and the length of regressed formulae, carry over to our
not satisfied by any example i, our algorithm takes con- technique but to a much lesser degree. Some other pitfalls
siderably longer to induce the optimalstage-to-go policy remain, such as the difficulty of generalising from value
for LG-ALL. This is because growth if™ without prun- functions only. Finally we demonstrated cases where our
ing, given logistic’s three domain actions with lenient pre- approach was able to succeed and excel in contexts where
conditions, is too fast for model checking to keep up. previous proposals would not.

In contrast to previous inductive approaches where reason{5] J. Cole, J.W. Lloyd, and K.S. Ng. Symbolic Learning for

ing about the domain dynamics is confined to the gener-

ation of suitable training data, we use reasoning to gen-

erate an hypotheses space suitable to represent the opti-
mal n-stage-to-go policy. Our approach achieves a mid- 6
dle ground between learning techniques that rely on a
general-purpose hypotheses language for representing poli
cies [18, 23, 10, 11] and those relying on hand-coded back-
ground knowledge [16, 7, 5]. As in the former, human in-

tervention is not required to define the hypotheses space
but as in the latter, the resulting space is targeted at the do
main of interest. Finding general-purpose hypotheses lan-
guages which are expressive enough to represent good p
cies while restricting the attention of the learner to relevan
concepts is an important challenge. We see our work as
first step towards addressing this issue. Like the majorit
of these approaches, our proposal learns from domain i
stances with a small number of objects to get a useful ge
eralised policy and value function. Unlike such techniques
ours is not suitable where no practical representation of th

optimal generalised value function or policy exists.

The most pressing item for future work is to investigate[14]
ways of mitigating poor performance in the presence of
universal quantification in the reward axiom, by distanc-
ing ourselves from the purely value-driven framework. A
further consideration for future work is to make use of user-

provided control-knowledge to prung™ quickly during

regression. Finally, we would like to experiment with the

practicability of concatenating optimalstage-to-go poli-

cies induced by our approach to solve problems requirin

longer planning horizons.

Acknowledgements

Thanks to Doug Aberdeen, Joshua Cole, Bob Givan, John
Lloyd, Kee Siong Ng, and John Slaney for useful discu
sions, and to the anonymous reviewers for their suggestio
on how to improve the paper. We would like to acknowl-
edge the support of National ICT Australia. NICTA is [21]

funded through the Australian Governmeracking Aus-

tralia’s Ability initiative, in part through the Australian Re-

search Council.

References

[1] A. Blum and J. Langford. Probabilistic Planning in the [24]

Graphplan Framework. IRroc. ECP, 1999.

[2] B. Bonet and H. Geffner. Labeled RTDP: Improving the

Convergence of Real-Time Dynamic Programming?tac.
ICAPS 2003.

[3] C.Boutilier, R. Dearden, and M. Goldszmidt. Stochastic dy-

namic programming with factored representatichificial
Intelligence 121(1-2):49-107, 2000.

[4] C. Bouitilier, R. Reiter, and B. Price. Symbolic Dynamic

Programming for First-Order MDPs. Proc. IJCAl 2001.

Adaptive Agents. InProc. Annual Partner Conference,
Smart Internet Technology Cooperative Research Centre
2003. http://csl.anu.edu.au/ jwl/cpaper.pdf

] C. Guestrin, D. Koller, C. Gearhart, and N. Kanodia Gener-

alizing Plans to New Environments in Relational MDPs. In
Proc. IJCA| 2003.

S. Dzeroski, L. De Raedt, and K. Driessens. Relational re-
inforcement learningMachine Learning43:7-52, 2001.

[8] Z.Fengand E. Hansen. Symbolic LAGearch for Factored

Markov Decision Processes. Rroc. AAA| 2002.

N. Gardiol and L. Kaelbling. Envelope-based Planning in
Relational MDPs. IrProc. NIPS 2003.

0] A. Fern, S. Yoon, and R. Givan Approximate Policy Itera-

tion with a Policy Language Bias. Iroc. NIPS 2003.

A. Fern, S. Yoon, and R. Givan Learning Domain-Specific
Knowledge from Random Walks. Broc. ICAPS 2004.

M. Ghallab, D. Nau, and P. TraversAutomated Planning:
Theory and PracticeMorgann Kaufmann, 2004.

Charles Gretton, David Price, and Sylvie &baux. Imple-
mentation and comparison of solution methods for decision
processes with non-markovian rewardsPhoc. UAI, 2003.

E. Hansen and S. Zilberstein. LAO A heuristic search
algorithm that finds solutions with looptrtificial Intelli-
gence 129:35-62, 2001.

] J. Hoey, R. St-Aubin, A. Hu, and C. Boutilier. SPUDD:

Stochastic Planning using Decision DiagramsPtac. UA|,
1999.

R. Khardon. Learning action strategies for planning do-
mains.Artificial Intelligence 113(1-2):125-148, 1999.

J.W. Lloyd. Logic for Learning: Learning Comprehensible
Theories from Structured Dat&pringer, 2003.

M. Martin and H. Geffner. Learning generalized policies in
planning using concept languages.Froc. KR 2000.

Mausam and D. Weld. Solving Relational MDPs with First-
Order Machine Learning. IfProc. ICAPS Workshop on

Planning under Uncertainty and Incomplete Information
2003.

W. McCune. Otter 3.3 Reference Manual. Technical Report
ANL/MCS-TM-263, Argonne National Laboratory, lllinois,
2003.

R. Reiter. Knowledge in Action: Logical Foundations for
Specifying and Implementing Dynamical System#lIT
Press, 2001.

J. Slaney and S. Tebaux. Blocks world revisitedhrtificial
Intelligence 125:119-153, 2001.

S.W. Yoon, A. Fern, and R. Givan. Inductive Policy Selec-
tion for First-Order MDPs. IiProc. UAI, 2002.

H. Younes and M. Littman. PPDDL1.0: An extension to
PDDL for Expressing Planning Domains with Probabilistic
Effects, 2004 http://www.cs.cmu.edu/"lorens/
papers/ppddl.pdf

