
Exploiting First-Order Regression in Inductive Policy Selection

Charles Gretton and Sylvie Thiébaux
National ICT Australia &

Computer Sciences Laboratory
The Australian National University

Canberra, ACT 0200, Australia
{charlesg,thiebaux }@csl.anu.edu.au

Abstract

We consider the problem of computing optimal
generalised policies for relational Markov deci-
sion processes. We describe an approach com-
bining some of the benefits of purely inductive
techniques with those of symbolic dynamic pro-
gramming methods. The latter reason about the
optimal value function using first-order decision-
theoretic regression and formula rewriting, while
the former, when provided with a suitable hy-
potheses language, are capable of generalising
value functions or policies for small instances.
Our idea is to use reasoning and in particular
classical first-order regression to automatically
generate a hypotheses language dedicated to the
domain at hand, which is then used as input by an
inductive solver. This approach avoids the more
complex reasoning of symbolic dynamic pro-
gramming while focusing the inductive solver’s
attention on concepts that are specifically rele-
vant to the optimal value function for the domain
considered.

1 INTRODUCTION

Planning domains often exhibit a strong relational struc-
ture and are therefore traditionally represented using first-
order languages supporting the declaration of objects and
relations over them as well as the use of quantification
over objects [12]. Although Markov decision processes
(MDPs) are now widely accepted as the preferred model
for decision-theoretic planning, state of the art MDP algo-
rithms operate on either state-based or propositionally fac-
tored representations [14, 2, 15, 8], thereby failing to ex-
ploit the relational structure of planning domains. Due to
the size of these representations, such approaches do not
scale very well as the number of objects increases. Fur-
thermore, they do little in the way of addressing the long-
standing goal of generatinggeneralisedpolicies that are ap-
plicable to an arbitrary number of objects. Instead, MDP
planners usually replan from scratch when computing a
policy for an instance with marginally more or fewer states.

Recent research onrelational MDPshas started to address
these issues. Relational approaches fall mainly into two
classes. Approaches in the first class extend dynamic pro-
gramming methods to operate directly on first-order do-
main and value function descriptions [4]. Then-stage-to-
go value function, represented as a mapping from a set of
first-order formulae partitioning the state space to the reals,
is obtained by pure logical reasoning. This involves in par-
ticular reasoning about the domain dynamics using a first-
order version ofdecision-theoretic regression[3], and rea-
soning about maximisation using formula rewriting. While
this approach is theoretically attractive, a difficult challenge
is to implement effective formula simplification rules and
theorem proving techniques to keep the formulae consis-
tent and of manageable size. We are unaware of existing
implementations that successfully address this challenge.

Approaches in the second class avoid those problems by
employing inductive learning techniques: they generalise
good policies (or value functions) for instances with a
small number of objects to get a useful generalised pol-
icy [16, 7, 18, 23, 19]. In order to address domains whose
small instances are not representative of the general case,
they can be made to induce policies which are likely to gen-
eralise well if, for instance, training data in the form of a
policy trajectory, a list of propositional state action pairs,
generated by approximate policy iteration is used [10, 11].
Inductive learning proposals do not reason about the do-
main dynamics beyond generation of the training data. In
contrast to the dynamic programming approach above these
do not explicitly seek optimality (or in some cases correct-
ness). This feature is motivated by the fact that domains
arise where no practical representation of the optimal gen-
eralised value function or policy exists.

To keep the search space manageable, inductive approaches
require a suitablehypotheses language, sufficiently rich to
describe the control strategies of interest without wasting
the learner’s time on irrelevant planning concepts. This
can take the form of support predicates that express key
features of the domain in terms of the basic relations (e.g.
“above” and “in-position” in blocks world) [16, 7], or that
of a domain-independent language bias from which the im-

portant features can be discovered from scratch – for ex-
ample a concept language based on description or taxo-
nomic logics appears to be well suited to blocks world
and logistics benchmarks [18, 23, 10]. The main weakness
of inductive approaches is their reliance on a suitable hy-
potheses language. One can also question the fact that they
never explicitly reason about the known domain dynamics
or exploit it beyond the generation of training data. Al-
though this makes them more flexible and practical than the
decision-theoretic regression approach, this may be seen as
a failure to exploit useful information.

In this paper, we consider the problem of computing op-
timal generalised policies given a first-order domain and
reward descriptions. We investigate an approach aimed
at combining some of the strengths of dynamic program-
ming and inductive techniques. Our idea is to automati-
cally generate a suitable hypotheses language for the do-
main at hand, by reasoning about the dynamics of this do-
main using first-order regression. This language is guaran-
teed to cover all concepts relevant to the optimaln-stage-
to-go value function for a givenn, and can be used as in-
put by any inductive solver. More explicitly, we repeatedly
applyclassicalfirst-order regression (see e.g. [21]) to the
first-order formulae involved in the reward description to
generate candidate formulae for inclusion in then-stage-to-
go generalised value function. The inductive solver selects
among those formulae to build a decision tree generalising
small value functions generated by a state of the art MDP
solver. Because we avoid much of the most expensive rea-
soning performed by dynamic programming approaches,
we are able to retain acceptable performance. Because our
hypotheses language is targeted at the domain of interest,
we are often able to obtain optimal generalised policies us-
ing very few training examples.

The paper is organised as follows. We start with back-
ground material on MDPs, relational MDPs, first-order re-
gression, and previous approaches. We follow by a de-
scription of our approach, together with a discussion of its
strengths and weaknesses. We then present experimental
results before concluding with some remarks about related
and future work.

2 BACKGROUND

2.1 MDPs

We take a Markov decision process to be a 4-tuple
〈E ,A,Pr,R〉, whereE is a possibly infinite set of fully
observable states,A is a possibly infinite set of (ground)
actions (A(e) denotes the subset of actions applicable in
e ∈ E), {Pr(e, a, •) | e ∈ E , a ∈ A(e)} is a family of
probability distributions overE such thatPr(e, a, e′) is the
probability of being in statee′ after performing actiona in
statee, andR : E → IR is a reward function such that

R(e) is the immediate reward for being in statee. A sta-
tionary policy for an MDP is a functionπ : E 7→ A, such
that π(e) ∈ A(e) is the action to be executed in statee.
The valueVπ(e) of statee under the policy is the sum of
the expected future rewards, discounted by how far into the
future they occur:

Vπ(e) = lim
n→∞

E
[n∑
t=0

βtR(et) | π, e0 = e

]
where0 ≤ β < 1 is the discounting factor controlling the
contribution of distant rewards andet is the state at timet.
Policyπ is optimal iff Vπ(e) ≥ Vπ′(e) for all e ∈ E and all
policiesπ′.

2.2 RELATIONAL MDPs

While the above state-based definition of MDPs is suit-
able as a general mathematical model, it fails to empha-
sise the relational structure of planning problems. For this
reason, recent research has focused on relational MDPs,
which make this structure explicit and open the way to
algorithms capable of exploiting it. Under the relational
model, MDPs are often represented using a first-order for-
malism supporting relations, functions, and quantification
over objects. Some of the most famous formalisms used for
that purpose are first order probabilistic STRIPS variants
[1, 9, 23, 24] and the situation calculus [21, 4]. Our presen-
tation uses the situation calculus, as we believe it provides
clear logical foundations for our approach.

The situation calculus has 3 disjoint sorts: actions, situa-
tions and objects. The alphabet includes variables of each
sort, function and predicate symbols of sortobjectn →
object andobjectn, respectively, used to denote situation-
independent functions and relations, as well as the usual
connectives and quantifiers¬, ∧, ∃ with the usual abbrevi-
ations∨,→, ∀, etc. Other elements of the language include
the following.

Actionsare first-order terms built from an action function
symbol of sortobjectn → action and its arguments. For
instance in the following,move(x, y) denotes the action of
moving object x onto object y. When the arguments are
ground, we sometimes speak of agroundaction. In what
follows, we shall only make the distinction between actions
and ground actions when that distinction matters.

Situation terms are built using two symbols: a constant
symbolS0 denoting the initial situation, and the function
symboldo : action × situation → situation, with the
interpretation thatdo(a, s) denotes the situation resulting
from performing deterministic actiona in situations.

Relationswhose truth values vary from situation to situ-
ation are built using predicate symbols of sortobjectn ×
situation called relational fluent symbols. For instance
On(x, y, s) is a relational fluent meaning that objectx is
on objecty in situations.

Additionally, there is a predicate symbolposs of sort
action × situation. The intended interpretation of
poss(a, s) is that it is possible to perform deterministic ac-
tion a in situations.

The situation calculus views stochastic actions as proba-
bility distributions over deterministic actions. Executing a
stochastic action amounts to letting “nature” choose which
deterministic action will be executed, this choice being
governed by given probabilities. Describing stochastic ac-
tions requires (1) a predicate symbolchoice : action ×
action, wherechoice(da, sa) denotes that executing deter-
ministic actionda is a possible nature choice when execut-
ing stochastic actionsa, and (2) a function symbolprob :
action× action× situation→ IR, whereprob(da, sa, s)
denotes the probability of that choice in situations.

Finally, function symbolR : situation → IR is used to
denote the immediate reward received in a situation.1

As in [4], we use the notion of astate formula, f(~x, s),
whose only free variables are non-situation variables~x and
situation variables, and in which no other situation term
occurs.2 Intuitively, a state formulaf(~x, s) only refers to
properties of situations. We say that an MDP statemodels
a state formula whose only free variable is situations iff
the properties ofs described by the formula hold in the
state.3 A set of state formulae{fi(~x, s)} partitionsthe state
space iff |= ∀~x∀s(∨ifi(~x, s)) and for all i and all j 6= i
|= ∀~x∀s(fi(~x, s)→¬fj(~x, s)) .

Modelling a relational MDP in the situation calculus in-
volves writing the following axioms.

1. Reward axiom:rewards in the current situation are con-
veniently expressed as a statement of the form:R(s) =
case[ρ1(s), r1; . . . ; ρn(s), rn], where theris are reals, the
ρis are state formulae partitioning the state space, and
where the notationt = case[f1, t1; . . . ; fn, tn] abbreviates
∨ni=1(fi ∧ t = ti). For instance, consider a blocks world
domain where we get rewarded when all blocks are in their
goal position, then:

R(s) ≡
case[∀b1 ∀b2 (OnG(b1, b2)→ On(b1, b2, s)), 100.0;

∃b1 ∃b2 (OnG(b1, b2) ∧ ¬On(b1, b2, s)), 0.0]

whereOnG(b1, b2) is a situation-independent relation rep-
resenting the goal configuration.

2. Nature’s choice and probability axioms:for each
stochastic actionA(~x), we must specify the deter-

1This can be extended to depend on the current action.
2In [21], such formulae are said to beuniform in s. Here we

also assume that state formulae do not contain statements involv-
ing predicatesposs andchoice, and functionsprob andR.

3We would like to be able to say that MDP states are first-order
models of state formulae, but this is not strictly accurate because
of the presence of situation variables in fluents. We would have to
strip out state variables and reduce the arity of relations. Spelling
this out formally would be a waste of space.

ministic actionsD1(~x), . . . , Dk(~x) available for nature
to choose from, via the axiom: choice(a,A(~x)) ≡
∨kj=1(a = Dj(~x)). We must also define the proba-
bilities of the choices in the current situations, us-
ing axioms of the form: prob(Dj(~x), A(~x), s) =
case[φ1

j (~x, s), p
1
j ; . . . ;φ

m
j (~x, s), pmj], where theφijs are

state formulae partitioning the state space, and thepijs are
probabilities. For instance, suppose that in our blocks
world domain, themove(x, y) action is stochastic and
sometimes behaves like the deterministicmoveS(x, y) ac-
tion which succeeds in movingx to y, and otherwise be-
haves like the deterministicmoveF (x, y) action which
fails to change anything. Suppose furthermore that the
probability of a successful move is 0.9 when the weather
is fine, and 0.7 when it is rainy, we get the following ax-
ioms:

choice(a,move(b1, b2)) ≡
a = moveS(b1, b2) ∨ a = moveF (b1, b2)

prob(moveS(b1, b2),move(b1, b2), s) =
case[Rain(s), 0.7;¬Rain(s), 0.9]

prob(moveF (b1, b2),move(b1, b2), s) =
case[Rain(s), 0.3;¬Rain(s), 0.1]

3. Action precondition axioms:for each deterministic
action A(~x), we need to write one axiom of the form:
poss(A(~x), s) ≡ ΨA(~x, s), whereΨA(~x, s) is a state for-
mula characterising the preconditions of the action. E.g:

poss(moveS(b1, b2), s) ≡ poss(moveF (b1, b2), s) ≡
b1 6= table ∧ b1 6= b2∧ 6 ∃b3 On(b3, b1, s)∧
(b2 = table∨ 6 ∃b3 On(b3, b2, s))

4. Successor states axioms:they are the means by which
the deterministic dynamics of the system is described. For
each relational fluentF (~x, s), there is one axiom of the
form: F (~x, do(a, s)) ≡ ΦF (~x, a, s), whereΦF (~x, a, s) is
a state formula characterising the truth value ofF in the
situation resulting from performinga in s. For instance:

On(b1, b2, do(a, s)) ≡ a = moveS(b1, b2)∨
(On(b1, b2, s)∧ 6 ∃b3 (b3 6= b2 ∧ a = moveS(b1, b3)))

Rain(do(a, s)) ≡ Rain(s)

5. Finally, for each pair of distinct actions, we need a
unique name axiom of the form∀~x∀~y A(~x) 6= B(~y), and
for each action, there is an “all-different” axiom of the form
∀~x∀~y A(~x)=A(~y)↔ ~x=~y.

This completes our description of relational MDPs in the
situation calculus framework. Let us emphasise once more
that (1) the modelling retains the classical situation cal-
culus machinery for deterministic domains –stochastic ac-
tions only appear in an extra layer on top of this machinery–
and that (2), the axioms do not restrict the domain to a
pre-specified or even finite set of objects, which is why
a solution for an MDP axiomatised this way is a gener-
alised policy applying to an arbitrary object universe. Gen-
eralised value functions and policies can conveniently be

represented in the situation calculus as a case statement in-
volving state formulae partitioning the state space and real
or action terms, respectively.

2.3 FIRST-ORDER REGRESSION

As with many action formalisms,regressionis the corner
stone of reasoning about the dynamics of a deterministic
domain in the situation calculus. As usual, the regres-
sion of a formulaf through a deterministic actionα is a
formula that holds beforeα is executed if and only iff
holds after the execution. In the situation calculus, regres-
sion takes the following form. Consider a state formula
f(~x, s) and an action termA(~y). f holds of the situa-
tion do(A(~y), σ) resulting from executingA(~y) in σ iff
ΨA(~y, σ) ∧ Regr(f(~x, do(A(~y), σ))) holds, whereRegr
is defined as follows:

•Regr(F (~t, do(α, σ))) = ΦF (~t, α, σ) where
F (~x, do(a, s)) ≡ ΦF (~x, a, s) is a successor state axiom4

•Regr(¬f) = ¬Regr(f)
•Regr(f1 ∧ f2) = Regr(f1) ∧Regr(f2)
•Regr(∃x f) = ∃x Regr(f)
•Regr(f) = f in all other cases

E.g., regressing the formula∀b1∀b2(OnG(b1, b2) →
On(b1, b2, s)) in our reward description with action
moveS(x, y) yields:

x 6= table ∧ x 6= y∧ 6 ∃b3 On(b3, x, s) ∧
(y = table∨ 6 ∃b3 On(b3, y, s))∧
∀b1 ∀b2 (OnG(b1, b2)→ ((x = b1 ∧ y = b2)∨

(On(b1, b2, s) ∧ (y 6= b2→ x 6= b1))))

meaning that for the goal to be achieved after the
move, the move must be executable and for any subgoal
OnG(b1, b2), either the move achieves it, or the subgoal
was already true and the move does not destroy it.

2.4 FIRST-ORDER DYNAMIC PROGRAMMING

One of the very first approaches to solving relational MDPs
is first-order symbolic dynamic programming [4]. This
is a value iteration approach which directly operates on
the symbolic representation of the generalised value func-
tion as a case statement. It relies onfirst-order decision-
theoretic regression, an extension of regression, as defined
above, to stochastic actions. Given a stochastic actionA(~x)
and the logical description of the generalisedn-stage-to-go
value functionV n(s), first-order decision-theoretic regres-
sion is able to compute the logical description of the gen-
eralisedn + 1-stage-to-goQ functionQn+1(A(~x), s). At
each value iteration step, theQn+1 functions are computed
for the various actions, and a formula is built expressing

4Quantifiers inΦF (~x, a, s) should have their quantified vari-
able renamed as needed to make it different from the free vari-
ables inF (~t, do(α, σ)). A similar remark applies to quantifiers in
ΨA(~x, s) when substituting as above~y for ~x andσ for s.

thatV n+1 is the maximum of theQn+1 functions over the
actions.

A drawback of first-order dynamic programming is the
practicality of retaining manageable case expressions of
value functions: the length and number of formulae in-
cluded in the case statements rapidly becomes impracti-
cally large. This is especially exacerbated by the sym-
bolic maximisation of theQ functions which requires com-
bining already complex formulae obtained through first-
order decision-theoretic regression. Another complication
is the need for detecting inconsistent expressions which
may form, e.g., as a result of such combinations.

By implementing logical simplification rules and enlisting
the theorem prover Otter [20] we were able to significantly
reduce case bloat and eliminate some forms of redundan-
cies and contradictions. Unfortunately all this comes at a
cost. Essentially we find that dynamic programming re-
mains impractical for as little as 3 or 4 value iteration steps
for standard planning benchmarks such as blocks world or
logistics.

3 THE APPROACH

Having examined the shortcomings of the dynamic pro-
gramming approach, we now seek to extract and apply
its essence that is reasoning, using first-order regression,
in a different context, namely that of inductive learning.
Briefly, our approach usesclassicalfirst-order regression,
as defined in Section 2.3, to generate a hypotheses language
for the inductive learner. This language consists of state
formulae from which the inductive learner selects to build
a decision-tree generalising small instances generated by a
conventional MDP solver.

3.1 HYPOTHESES LANGUAGE

Supposeφ is any state-formula in the situation calculus
whose only free variable is of sort situation5. Here pow-
ers ofφ, for exampleφi, indicate that post-action formula
φi−1 is related by an application of regression to some pre-
action formulaφi. More explicitly,φi(s) ≡ ∃~xΨA(~x, s)∧
Regr(φi−1(do(A(~x), s))) for someA(~x). Thus we have
that φn, ann-step-to-go derivationfrom φ0, corresponds
to the start of a formula-trajectory of lengthn + 1 leading
to φ0.

Consider the set{φ0
j} consisting of the state formulae in

the reward axiom case statement. We can compute{φ1
j}

from {φ0
j} by regressing theφ0

j over all the domain’s de-
terministic actions. Any subset of MDP statesI ⊆ S that
are one action application from a rewarding state, model∨
j φ

1
j . More usefully, a state formula characterising pre-

5We abstain from making the situation variable explicit where
doing so is superfluous.

action states for each stochastic action, can be formed by
considering disjunctions over{φ1

j}. In a similar fashion we
can encapsulate longer trajectories facilitated by stochas-
tic actions, by computing{φnj } for n larger than1. More
specifically the set of state-formulae sufficient to encapsu-
late such trajectories are members of the set:

Fn ≡
⋃

i=0...n

{φij}

It follows that we shall always be able to induce a classifi-
cation of state-space regions by value and/or policy using
state-formulae computed by regression. This is of course
provided these functions have finite range6. If that pro-
vision is violated, we remain able to consider relational
MDPs whose object universe is finitely bounded.

Our approach is based on the fact that it is much cheaper
to computeFn than to performn first-order dynamic pro-
gramming steps. For instance, in blocks world, we are able
to computeF 100 in under a minute. Typically, not all state
formulae inFn are interesting. Only a few will be relevant
to an optimal or even useful value function. We propose
that the usefulφs be identified using inductive learning.

3.2 INDUCTIVE LEARNING

In what follows we provide details of our inductive algo-
rithm supposing it willlearn both a generalised policy and
value function as a single object. So that it can learn a pol-
icy, we record for allφ ∈ Fn, the deterministic action from
whichφ was derived as well as the aggregate stochastic ac-
tion of which the deterministic action forms a part.

As a starting point, we assume a set of training examples.
Each is tripleη = 〈e, v,B(~t)〉, wheree is an MDP state,v
is the optimal value fore, andB(~t) is the optimal ground
stochastic action fore. The value and first-order policy pre-
scribed by the induced function must agree with both the
value and policy entry of our training examples. For the
learning algorithm, we need the notion of an examplesat-
isfyingsomeφi(s) ∈ Fn. φi(s) is of the form∃~x φ′(~x, s)
whereφ′(~x, s) ≡ ΨA(~x, s) ∧ Regr(φi−1(do(A(~x), s))).
We say that a training exampleη = 〈e, v,B(~t)〉 satis-
fiesφi(s) iff B is the composite stochastic action symbol
recorded forφi(s) ande modelsφ′(~t, s). This captures the
intuition that the state and ground action in the example
match the constraints expressed by the formula.

Initially we enlisted Alkemy[17], a generic inductive logic
programming utility which learns comprehensive theories
from noisy structured data. Alkemy takes as input a hy-
potheses language described in higher order logic and a
set of examples, and is able togreedily induce a decision
tree classifying the examples. Preliminary experiments
using Alkemy demonstrated that an inductive technique

6Value functions and/or policies for relational MDPs may have
an infinite range and require infinite representations.

IF ∃b (Box(b) ∧Bin(b, Syd))
THEN act = NA, val = 2000

ELSE
IF ∃b∃t (Box(b) ∧ Truck(t) ∧ Tin(t, Syd) ∧On(b, t))

THEN act = unload(b, t), val = 1900
ELSE
IF ∃b∃t∃c (Box(b) ∧ Truck(t) ∧ City(c)∧

Tin(t, c) ∧On(b, t) ∧ c 6= Syd)
THEN act = drive(t, Syd), val = 1805

ELSE
IF ∃b∃t∃c (Box(b) ∧ Truck(t) ∧ City(c)∧

Tin(t, c) ∧Bin(b, c) ∧ c 6= Syd)
THEN act = load(b, t), val = 1714.75

ELSE
IF ∃b∃t∃c (Box(b) ∧ Truck(t) ∧ City(c)∧

¬Tin(t, c) ∧Bin(b, c))
THEN act = drive(t, c), val = 1629.01

Table 1: Decision-tree representation of an Alkemy pol-
icy/value function for logistics (after mild simplifications).
Situation variables are omitted.

holds promise. We were able to generate an encoding of
Fn in Alkemy’s input language and let Alkemy produce a
decision-tree representation of a first-order value function.
For example, consider the logistics domain described e.g.
in [4], where a reward is given when at least one pack-
age is in Sydney. Provided with the hypotheses language
F 4 and about a hundred training examples, Alkemy is able
to induce the optimal generalised value function shown in
Table 1 in a matter of seconds. Due to the greedy nature
of its search through a self imposedincompletehypothe-
ses space, in its present form Alkemy is unable to build a
generalised value function for other domains that we ex-
perimented on, even when provided with anFn perfectly
sufficient for that purpose.7 This, coupled with some re-
dundancy that was not required in our planner, led us to
develop our own learner specific to a planning context.
Algorithm 1 provides a listing of the pseudo code for
our learner. It computes a binary tree representation of
the value/policy functions where nodes correspond to re-
gressed formulae, each connected to its children by a neg-
ative and positive arc. We can build a formulaf by tracing
from the root node to a leaf, conjoining the formula, resp.
negated formulae, at each node tof depending on whether
we take the positive, resp. negative, arc to that node’s suc-
cessors. States at the resultant leaf are those that modelf .
There are three main aspects to our algorithm. The first
is the selection of the next formula for inclusion in the
decision-tree (lines 5-8), the second is the generation of
the hypotheses spaceFn (lines 9-15), and the third is the
actual construction of the tree representing the first-order
policy/value function (lines 16-23).

Of these three aspects, only the first requires comment. The
rest should be straightforward from the description in Al-

7The authors of Alkemy are currently adding support for a
complete search.

Algorithm 1 Inductive policy construction.

1: Initialise{max n, {φ0}, F 0};
2: Compute set of examplesE
3: Call BUILD TREE(0, E)

4: function BUILD TREE(n : integer,E : examples)
5: if PURE(E) then
6: return success leaf
7: end if
8: φ← good classifier inFn for E. NULL if none exists
9: if φ ≡ NULL then

10: n← n+ 1
11: if n > max n then
12: return failure leaf
13: end if
14: {φn} ← UPDATE HYPOTHESESSPACE({φn−1})
15: Fn ← {φn} ∪ Fn−1

16: return BUILD TREE(n,E)
17: else
18: positive← {η ∈ E | η satisfiesφ}
19: negative← E\positive
20: positive tree← BUILD TREE(n, positive)
21: negative tree← BUILD TREE(n, negative)
22: return TREE(φ, positive tree, negative tree)
23: end if

gorithm 1. The algorithm starts by checking whether the
examplesηk = 〈ek, vk, Bk(~tk)〉 at the current tree node
are pure (lines 5-7), that is, whether they all prescribe the
same stochastic action (theBk are the same)andall have
the same value (thevk are the same). If the examples
are not pure, we select, among the state-formulae gener-
ated at this point, theφ which best discriminates between
the examples (line 8). Our description in Algorithm 1 re-
mains voluntarily non-commitent about the concrete im-
plementation of this choice. Possibilities include accept-
ing aφ that yields sufficientinformation gaini.e., expected
reduction in entropy. Alternatively, this step could yield
NULL until n = max n, at which point information gain
or some weaker measure8 could be used to pick up aφ from
Fmax n. The tradeoff is between prematurely adding re-
dundant nodes to the tree and needlessly generating candi-
date concepts.

In any case, during the process of selection of an acceptable
φ, we prune fromFn the formulae which are not satisfied
by any example inE to avoid regressing them further. In
general, this may lead to removing formula-trajectories that
are necessary to correctly classify training data which is not
graphically connected. However, we have that such prun-
ing is admissible when the training examples correspond to
state-trajectories or policies for domain instances.

8In our implementation we use the inadmissible heuristic
“number of elements inE satisfyingφ” divided by the “number
of distinct state values in the subset ofE which satisfyφ”.

3.3 DISCUSSION

As with other learning approaches, ours operates well given
training examples in the form of state-trajectories. How-
ever, due to the nature of the state formulae present inFn,
we should be able to learn from far fewer state-trajectories
than other learning proposals to date. We see this as an im-
portant strength of our approach. At one extreme, we can
take the case of a domain for which, given training data in
the form ofa singlestate-trajectory, our approach is able to
induce an optimal policy which generalises toall problem
states whose values were present during training. For in-
stance, consider a deterministic blocks world with a single
action,move(x, y), where we seek to minimize the number
of moves to the goal. The reward case statement consists of
two formulae. Say that the learner is givenF 8 (which here
consists of 16 formulae) and a single trajectory of length 8
(for instance a trajectory which changes the bottom block
in a tower of 5 blocks). Suppose states along the trajec-
tory have values ranging from 8 to 0. The learner is able
to learn the optimal policy covering all instances of blocks
world that are of distance 8 or less to the goal. In particu-
lar, this includes all 5 blocks instances, since 8 is the length
of the longest optimal 5 blocks plan. Intuitively, the pol-
icy generated says “if we are at a distance of 8 to the goal,
find two arguments tomove which bring us to a state at a
distance of 7; Otherwise, if we are at a distance of 7 to the
goal, find two arguments tomove which bring us to a state
at a distance of 6; . . . ”

Moreover, our method can induce a policy which is op-
timal in 100% of the domain instances when there is no
explicit or implicit universal quantification in the reward
axiom. This is because, for domains with such rewards,
optimal generalised value functions have a finite range.
For instance, if our blocks world goal is to have at least
4 blocks on the table, and/or4 free blocks, then the train-
ing data need only comprise a longest optimal trajectory to
the goal/s, which is of length 3, and the hypotheses lan-
guage considered need only beF 3. It is also important
to note that generalised policies computed using our algo-
rithm maximise expected utility thus making it more gen-
eral than simple goal driven learning.

As pointed out in [23], it is often the case that the range
of the value function increases with the number of objects
in the domain, yielding generalised value functions with
infinite range. This is typical of domains where reward rel-
evant to the optimal policy is received whenall objects of a
given type satisfy some condition, e.g. consider the blocks
world and logistics domains where we ask that all blocks
be in their goal position and all packages reach their des-
tination. A negative side of our approach is that it is still
value-function driven, and as such, is not suited to infer
completelygeneralised policies when the range of the gen-
eralised value function is infinite. Indeed, our learner is
unable to induce a policy for states whose values were not

represented in the training examples. On the same note, our
approach is only suited to generatingoptimalpolicies, thus
would never conceive approximately optimal policies such
as the GN policies for blocks world [22]. Generating opti-
mal policies may be impractical, which is why suboptimal
solutions are often sought [18, 23].

Compared to purely inductive methods, our hybrid ap-
proach requires an axiomatisation of the actions in the do-
main. We do not feel that this is an excessive demand, espe-
cially in comparison with what a pure reasoning approach
such as first-order symbolic dynamic programming would
require to have any chance of being practical. Recall that
the performance of symbolic dynamic programming relies
on the ability of making the most out of a theorem prover
to prune inconsistent formulae from the generalised value
function description. We found that the theorem prover
could not possibly be effective unless it was provided with
the domain state constraints (e.g., constraints stating that
an object cannot be two places at once, that a box is not
a truck, etc ...). From our experience, axiomatising those
static constrains is more time-consuming than axiomatis-
ing the domain dynamics.

Finally, one of the main motivations behind our approach
was to avoid much of the most complex reasoning per-
formed by dynamic programming. While we have suc-
ceeded in taking formula rewriting and theorem proving
out of the loop, we still need model-checking to match
examples with the state formulae they satisfy. Although
model checking is substantially faster than automated the-
orem proving, it is not free. When the number of formulae
remaining inFn after prunning increases rapidly withn,
our approach becomes impractical. As shown in the experi-
ments below, we find that model-checking is the bottleneck
of our approach.

4 RESULTS

Our approach is substantially different from most, not the
least so because it generates optimal policies and is an un-
orthodox combination of knowledge representation, rea-
soning in the form of first-order regression and induction
given noise free training examples. Therefore, while pa-
pers reporting results on relational MDPs typically focus
on evaluating the coverage of suboptimal generalised pol-
icy discovered by some inductive method, we find it more
interesting to study the factors affecting the performance
of our approach on a number of domains. Our approach
is implemented in C++. The results reported were ob-
tained on Pentium4 2.6GHz GNU/Linux 2.4.21 machine
with 500MB of RAM.

Interesting characteristics of our approach which presented
themselves during experimentation were apparent for both
the stochastic and deterministic domains. We present re-
sults for4 deterministic and4 stochastic variants of the lo-

gistics and blocks world domains:LG-ALL, LG-EX, BW-
ALL, BW-EX and, LG-ALLs, LG-EXs, BW-ALLs, BW-
EXs respectively. LG-ALL is a deterministic version of
the logistics domain in [4] such that the reward is received
where all packages are in Sydney.LG-EX is similar toLG-
ALL only the reward is received where at least one pack-
age is in Sydney. The stochastic versions of these, which
we have calledLG-EXs andLG-ALLs, have an additional
property that trucks have a0.2 chance of mistakenly driv-
ing to the wrong city.BW-ALL is the standard blocks world
domain with a single move operator, such that the reward
is received when all blocks are in their goal position.BW-
EX is a blocks world where the reward is received when
at least three blocks are on the table. The stochasticBW
domains,BW-ALLs andBW-EXs, have a faulty move ac-
tion, which has a0.2 chance of dropping the box on the
table regardless of its intended destination. The only dif-
ference between these domains and those used in the de-
terministic and probabilistic international planning compe-
titions are the absence of planes and the use of a single
“wrong city” per drive action for logistics, and the use of
a single move action rather than pickup, putdown, etc for
Blocks World.

Tables 2 and 3 report results obtained during experimenta-
tion with the deterministic and stochastic domains respec-
tively. Entries contain the name of thedomain, the maxi-
mal depthmax n of regression, which we set to the num-
ber of distinct values appearing in the training data, the
size (number of blocks, or number of boxes/trucks/cities)
of the instances in the training data, the number|E| of ex-
amples used, and thetype of the training data: typeP in-
dicates that the examples have been extracted from an op-
timal policy covering all states of the given size — these
policies where generated using the NMRDPP system [13]
— while typeT indicates that the examples have been ex-
tracted from optimal plans (trajectories) returned by an op-
timal Blocks World solver [22] for selected instances of
the given size. The column labelledtime reports the time
in seconds it takes our implementation to induce a policy.
This column is annotated with * if pruning was used, and
with # if we interrupted the algorithm before termination.
The last column reports thescopeor applicability of the in-
duced policy. Possible entries are either∞ if our algorithm
induced a completely generalised policy, or an integerk,
in which case the policy has generalised to states whose
optimal value is one of thek largest values in the training
set.

Rows 1 to 5 in Tables 2 and 3 demonstrate the best case be-
haviour of our approach. For these domains a completely
generalised policy, that is a first-order policy which is op-
timal in 100% of the domain instances, is computed given
training examples which correspond to a complete MDP
policy. Even though a few examples of small size (56 ex-
amples of size 2) are sufficient to induce the generalised

Domain max n size |E| type time scope
LG-EX 4 2 56 P 0.2 ∞
LG-EX 4 3 4536 P 14.41 ∞
BW-EX 2 3 13 P 0.2 ∞
BW-EX 2 4 73 P 2.2 ∞
BW-EX 2 5 501 P 23.5 ∞
BW-ALL 5 4 73 T 33.9 5
BW-ALL 6 4 73 T 136.8 6
BW-ALL 5 10 10 T 131.9 5
BW-ALL 6 10 10 T 2558.5 6
LG-ALL 8 2 56 P *1.8 8
LG-ALL 8 2 56 P 0.5 8
LG-ALL 12 3 4536 P #17630.3 5
LG-ALL 12 3 4536 P #*263.4 6
LG-ALL 12 3 4536 P #*1034.2 9

Table 2: Experimental Results (Deterministic)

policy, these results are presented for progressively larger
sizes and training sets so as to study the cost of model-
checking. The impressive speed with which the algorithm
induces a completely generalised policy is due to both the
small size of the requiredFn and the speed with which
satisfiability of elements in this set is verified against train-
ing examples. We observe that the cost of model-checking
increases much faster for blocks world than for logistics.
This is because in blocks world, both the formulae inFn

and state model descriptions in the training data are longer.

The results tabulated forBW-ALL andBW-ALLs validate
some of the comments we made during our discussion. We
already know that a complete generalised policy is out of
the question, so here we make explicit the cost of match-
ing training examples to state formulae which they sat-
isfy. These results show that the size of the state models in
the training data, the complexity of the state formulae be-
ing considered, and the length of trajectories being consid-
ered can greatly effect the practicality of model checking.
Take the deterministic case for instance, due to the cost of
model-checking, we achieve better time performance with
73 examples of size 4 (a complete 4 blocks policy for a
fixed goal state) than with a single 10 blocks trajectory of
length 10. This is also true ofLG-ALL, only in this case it
is the growth inFn in addition to time consuming model
checking, which contributes the most to learning time. For
instance, it takes a lot longer to infer a policy with larger
scope from examples of size 3 andmax n = 12 than with
examples of size 2 andmax n = 8.

Before we conclude, we should draw the reader’s attention
to the last 5 entries in the tables. In particular to the time our
algorithm takes to induce a policy with and without prun-
ing. If we do not prune fromFn the formulae which are
not satisfied by any example inE, our algorithm takes con-
siderably longer to induce the optimaln-stage-to-go policy
for LG-ALL. This is because growth inFn without prun-
ing, given logistic’s three domain actions with lenient pre-
conditions, is too fast for model checking to keep up.

Domain max n size |E| type time scope
LG-EXs 5 2 56 P 0.2 ∞
LG-EXs 5 3 4536 P 16.19 ∞
BW-EXs 3 3 13 P 0.3 ∞
BW-EXs 3 4 73 P 2.8 ∞
BW-EXs 3 5 501 P 29.3 ∞
BW-ALLs 4 4 73 P *0.4 4
BW-ALLs 7 4 73 P *11.5 7
BW-ALLs 8 4 73 P *58.0 8
BW-ALLs 9 4 73 P *1389.6 9
LG-ALLs 12 2 56 P 2.1 12
LG-ALLs 12 2 56 P *0.7 12
LG-ALLs 22 3 4536 P #1990.8 12
LG-ALLs 22 3 4536 P #*574.4 14
LG-ALLs 22 3 4536 P #*1074.5 15

Table 3: Experimental Results (Stochastic)

5 RELATED & FUTURE WORK

Previous work in relational reinforcement learning has con-
sidered exact calculation of the optimal first-order value
function using symbolic dynamic programming [4], ma-
chine learning with hand-coded background knowledge
[16, 7, 5] or with a general-purpose hypotheses space for
representing policies [18, 23, 10, 11], or again optimisa-
tion of a value-function approximation based on combining
object-local value functions assuming that each object’s lo-
cal behaviour depends only on its class [6].

Of these three types of approaches, the last [6] is the least
directly relevant to the work presented here. Although the
language used to express regularities in the value function
is rich even in comparison with those used by other rela-
tional approaches, the hypotheses space supported by the
learning algorithm is rather constrained in comparison to
the other learning methods. The domain specification is
not exploited to the extent which the adoption of reasoning
permits. In the end this is substantially different from first-
order dynamic programming and to the inductive approach
we propose.

Our proposal is more closely related to the first two tech-
niques above. Taking inspiration from first-order dynamic
programming, we were able to exploit first-order regres-
sion to generate a hypotheses language which is sufficient
to encode optimal generalisedn-stage-to-go policies for re-
lational MDPs. We then proposed and experimented with
a method of inducing such policies from training examples
drawn from domain instances. Much of the expensive rea-
soning required by first-order symbolic dynamic program-
ming is avoided by doing this. We observed that some
drawbacks of our parent, in particular growth in the num-
ber and the length of regressed formulae, carry over to our
technique but to a much lesser degree. Some other pitfalls
remain, such as the difficulty of generalising from value
functions only. Finally we demonstrated cases where our
approach was able to succeed and excel in contexts where
previous proposals would not.

In contrast to previous inductive approaches where reason-
ing about the domain dynamics is confined to the gener-
ation of suitable training data, we use reasoning to gen-
erate an hypotheses space suitable to represent the opti-
mal n-stage-to-go policy. Our approach achieves a mid-
dle ground between learning techniques that rely on a
general-purpose hypotheses language for representing poli-
cies [18, 23, 10, 11] and those relying on hand-coded back-
ground knowledge [16, 7, 5]. As in the former, human in-
tervention is not required to define the hypotheses space,
but as in the latter, the resulting space is targeted at the do-
main of interest. Finding general-purpose hypotheses lan-
guages which are expressive enough to represent good poli-
cies while restricting the attention of the learner to relevant
concepts is an important challenge. We see our work as a
first step towards addressing this issue. Like the majority
of these approaches, our proposal learns from domain in-
stances with a small number of objects to get a useful gen-
eralised policy and value function. Unlike such techniques,
ours is not suitable where no practical representation of the
optimal generalised value function or policy exists.

The most pressing item for future work is to investigate
ways of mitigating poor performance in the presence of
universal quantification in the reward axiom, by distanc-
ing ourselves from the purely value-driven framework. A
further consideration for future work is to make use of user-
provided control-knowledge to pruneFn quickly during
regression. Finally, we would like to experiment with the
practicability of concatenating optimaln-stage-to-go poli-
cies induced by our approach to solve problems requiring
longer planning horizons.

Acknowledgements

Thanks to Doug Aberdeen, Joshua Cole, Bob Givan, John
Lloyd, Kee Siong Ng, and John Slaney for useful discus-
sions, and to the anonymous reviewers for their suggestions
on how to improve the paper. We would like to acknowl-
edge the support of National ICT Australia. NICTA is
funded through the Australian Government’sBacking Aus-
tralia’s Ability initiative, in part through the Australian Re-
search Council.

References

[1] A. Blum and J. Langford. Probabilistic Planning in the
Graphplan Framework. InProc. ECP, 1999.

[2] B. Bonet and H. Geffner. Labeled RTDP: Improving the
Convergence of Real-Time Dynamic Programming. InProc.
ICAPS, 2003.

[3] C. Boutilier, R. Dearden, and M. Goldszmidt. Stochastic dy-
namic programming with factored representations.Artificial
Intelligence, 121(1-2):49–107, 2000.

[4] C. Boutilier, R. Reiter, and B. Price. Symbolic Dynamic
Programming for First-Order MDPs. InProc. IJCAI, 2001.

[5] J. Cole, J.W. Lloyd, and K.S. Ng. Symbolic Learning for
Adaptive Agents. InProc. Annual Partner Conference,
Smart Internet Technology Cooperative Research Centre,
2003. http://csl.anu.edu.au/ jwl/crcpaper.pdf

[6] C. Guestrin, D. Koller, C. Gearhart, and N. Kanodia Gener-
alizing Plans to New Environments in Relational MDPs. In
Proc. IJCAI, 2003.

[7] S. Dzeroski, L. De Raedt, and K. Driessens. Relational re-
inforcement learning.Machine Learning, 43:7–52, 2001.

[8] Z. Feng and E. Hansen. Symbolic LAO∗ Search for Factored
Markov Decision Processes. InProc. AAAI, 2002.

[9] N. Gardiol and L. Kaelbling. Envelope-based Planning in
Relational MDPs. InProc. NIPS, 2003.

[10] A. Fern, S. Yoon, and R. Givan Approximate Policy Itera-
tion with a Policy Language Bias. InProc. NIPS, 2003.

[11] A. Fern, S. Yoon, and R. Givan Learning Domain-Specific
Knowledge from Random Walks. InProc. ICAPS, 2004.

[12] M. Ghallab, D. Nau, and P. Traverso.Automated Planning:
Theory and Practice. Morgann Kaufmann, 2004.

[13] Charles Gretton, David Price, and Sylvie Thiébaux. Imple-
mentation and comparison of solution methods for decision
processes with non-markovian rewards. InProc. UAI, 2003.

[14] E. Hansen and S. Zilberstein. LAO∗: A heuristic search
algorithm that finds solutions with loops.Artificial Intelli-
gence, 129:35–62, 2001.

[15] J. Hoey, R. St-Aubin, A. Hu, and C. Boutilier. SPUDD:
Stochastic Planning using Decision Diagrams. InProc. UAI,
1999.

[16] R. Khardon. Learning action strategies for planning do-
mains.Artificial Intelligence, 113(1-2):125–148, 1999.

[17] J.W. Lloyd. Logic for Learning: Learning Comprehensible
Theories from Structured Data. Springer, 2003.

[18] M. Martin and H. Geffner. Learning generalized policies in
planning using concept languages. InProc. KR, 2000.

[19] Mausam and D. Weld. Solving Relational MDPs with First-
Order Machine Learning. InProc. ICAPS Workshop on
Planning under Uncertainty and Incomplete Information,
2003.

[20] W. McCune. Otter 3.3 Reference Manual. Technical Report
ANL/MCS-TM-263, Argonne National Laboratory, Illinois,
2003.

[21] R. Reiter. Knowledge in Action: Logical Foundations for
Specifying and Implementing Dynamical Systems. MIT
Press, 2001.

[22] J. Slaney and S. Thiébaux. Blocks world revisited.Artificial
Intelligence, 125:119–153, 2001.

[23] S.W. Yoon, A. Fern, and R. Givan. Inductive Policy Selec-
tion for First-Order MDPs. InProc. UAI, 2002.

[24] H. Younes and M. Littman. PPDDL1.0: An extension to
PDDL for Expressing Planning Domains with Probabilistic
Effects, 2004.http://www.cs.cmu.edu/˜lorens/
papers/ppddl.pdf .

