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Abstract

A popular approach to solving a decision pro-
cess with non-Markovian rewards (NMRDP) is
to exploit a compact representation of the re-
ward function to automatically translate the NM-
RDP into an equivalent Markov decision pro-
cess (MDP) amenable to our favorite MDP so-
lution method. The contribution of this paper is
a representation of non-Markovian reward func-
tions and a translation into MDP aimed at mak-
ing the best possible use of state-based any-
time algorithms as the solution method. By
explicitly constructing and exploring only parts
of the state space, these algorithms are able to
trade computation time for policy quality, and
have proven quite effective in dealing with large
MDPs. Our representation extends future linear
temporal logic (FLTL) to express rewards. Our
translation has the effect of embedding model-
checking in the solution method. It results in
an MDP of the minimal size achievable with-
out stepping outside the anytime framework, and
consequently in better policies by the deadline.
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of the request being made, or even simply for the very
first achievement of a goal which becomes irrelevant af-
terwards. A decision process in which rewards depend on
the sequence of states passed through rather than merely
on the current state is called a decision process aath-
Markovian reward{NMRDP) (Bacchus et al., 1996).

A difficulty with NMRDPs is that the most efficient MDP
solution methods do not directly apply to them. The tradi-
tional way to circumvent this problem is to formulate the
NMRDP as an equivalent MDP, whose states are those of
the underlying system expanded to encode enough history-
dependent information to determine the rewards. Hand
crafting such arexpandedMDP (XMDP) can however be
very difficult in general. This is exacerbated by the fact
that the size of the XMDP impacts on the effectiveness of
many solution methods. Therefore, there has been interest
in automating the translation into an XMDP, starting from a
natural specification of non-Markovian rewards and of the
system’s dynamics (Bacchus et al., 1996; Bacchus et al.,
1997). This is the problem we focus on.

When solving NMRDPs in this setting, the central issue is
to define a non-Markovian reward specification language
and a translation into an XMDRBdaptedto the class of

MDP solution methods and representations we would like
to use for the type of problems at hand. The two previous
proposals within this line of research both rely on past lin-

Markov decision processes (MDPs) are now widely ac-ear temporal logic (PLTL) formulae to specify the behav-
cepted as the preferred model for decision-theoretic planiors to be rewarded (Bacchus et al., 1996; Bacchus et al.,
ning problems (Boutilier et al., 1999). The fundamental as-1997), but adopt two very different translations adapted to
sumption behind the MDP formulation is that not only the two very different types of solution methods and represen-
system dynamics but also the reward function Magko-  tations. The translation in (Bacchus et al., 1996) targets
vian. Therefore, all information needed to determine theclassicalstate-basedolution methods such as policy iter-
reward at a given state must be encoded in the state itselfation (Howard, 1960) which generatempletepolicies at

. . . the cost of enumerating all states in the entire MDP, while
This requirement is not always easy to meet for plan'that in (Bacchus et al., 1997) targetsucturedsolution

hing problems, as many desirable _behaviors are natura"}ﬁethods and representations, which do not require explicit
expressed as properties of executEBYUencessee €.9.  giate enumeration, see e.g. (Boutilier et al., 2000).
(Drummond, 1989; Haddawy and Hanks, 1992; Bacchus

and Kabanza, 1998; Pistore and Traverso, 2001). TypThe aim of the present paper is to provide a language and
ical cases include rewards for the maintenance of soma translation adapted to another class of solution methods
property, for the periodic achievement of some goal, forwhich have proven quite effective in dealing with large
the achievement of a goal within a given number of stepdVDPs, namelyanytimestate-based methods such as (Barto



et al., 1995; Dean et al., 1995; Hhaux et al., 1995, 2 BACKGROUND

Hansen and Zilberstein, 2001). These methods typically

start with a compact representation of the MDP based o2.1 MDPs

probabilistic planning operators, and search forward from

an initial state, constructing new states by expanding thés Markov decision process of the type we consider is a
envelope of the policy as time permits. They may produced-tuple(s, so, 4, Pr, ), wheresS'is a finite set of fully ob-

an approximate and even incomplete policy, but only ex-Servable states, € S is the initial state A is a finite set
plicitly construct and explore a fraction of the MDP. Nei- Of actions (A(s) denotes the subset of actions applicable in
ther of the two previous proposals is well-suited to such sos € 5), {Pr(s,a, ) | s€S,a€ A(s)} is a family of proba-
lution methods, the first because the cost of the translatiofility distributions overs, such thaPr(s, a, s') is the prob-
(most of which is performed prior to the solution phase)ability of being in states” after performing actiow in state
annihilates the benefits of anytime algorithms, and the secs, andR : S — R is areward function such thal(s) is the

ond because the size of the XMDP obtained is an obstaclénmediate reward for being in statelt is well known that

to the applicability of state-based methods. Since here botduch an MDP can be compactly represented using prob-
the cost of the translation and the size of the XMDP it re-abilistic extensions of traditional planning languages, see
sults in will severely impact on the quality of the policy €.9., (Kushmerick et al., 1995; Téhaux et al., 1995).
qbtainable by the deadline, we need an appropriate resolys stationary policy for an MDP is a function : S +— A,

tion of the tradeoff between the two. such thatr(s) € A(s) is the action to be executed in state
Our approach has the following main features. The translaS. We noteE(r) the envelope of the policy, that is the set
tion is entirely embedded in the anytime solution method Of states that are reachable (with a non-zero probability)
to which full control is given as to which parts of the from the initial statesy under the policy. Ifr is defined at
XMDP will be explicitly constructed and explored. While all s € E(r), we say that the policy is complete, and that it
the XMDP obtained is not minimal, it is of the minimal size iS incomplete otherwise. We nofé(r) the set of states in
achievable without stepping outside of the anytime frame-£ () at whichr is undefined.F() is called the fringe of
work, i.e., without enumerating parts of the state or ex-the policy. We stipulate that the fringe states are absorbing.
panded state spaces that the solution method would not ne€¢he value of a policyr at any state € E(r), notedV,(s)
essarily explore. This relaxed notion of minimality, which is the sum of the expected rewards to be received at each
we callblind minimalityis the most appropriate in the con- future time step, discounted by how far into the future they

text of anytime state-based solution methods. occur. That s, for a non-fringe statec E(r) \ F(7):
When the rewarding behaviors are specified in PLTL, there ~ Vx(s) = R(s) + 3 Z Pr(s,m(s),s" ) Vx(s)
does not appear to be a way of achieving a relaxed no- s'€E(m)

tion of minimality as powerful as blind minimality with-

outa proh|b|t|v¢ translahoq. Therefore mstegd of PLTL, the contribution of distant rewards. For a fringe state
we adopt a variant dfuture linear temporal logic (FLTL) F(m), Vi (s) is heuristic or is the value atof a complete

as our specification language, which we extend to handl%efault policy to be executed in absence of an explicit one.

rgwards. While. the language has a more .CO”.‘p'eX Sémafky; the type of MDP we consider, the value of a policis
tics than PLTL, it enables a natural translation into a bllnd-the valueV;, (so) of 7 at the initial stateso, and the larger

minimal XMDP by simpleprogressionof the reward for- this value, the better the policy.
mulae. Moreover, search control knowledge expressed in

FLTL (Bacchus and Kabanza, 2000) fits particularly nicely
in this model-checking framework, and can be used to dra-2'2 STATE-BASED ANYTIME ALGORITHMS

matically reduce the fraction of the search space exploreg,itional state-based solution methods such as policy it-
by anytime solution methods. eration (Howard, 1960) can be used to produce an optimal
The paper is organised as follows. Section 2 begins witttomplete policy. Policy iteration can also be viewed as an
background material on MDPs, NMRDPs, XMDPs, andanytime algorithm, which returns a complete policy whose
anytime state-based solution methods. Section 3 describ&élue increases with computation time and converges to op-
our language for specifying non-Markovian rewards andtimal. The main drawback of policy iteration is that it ex-
the progression algorithm. Section 4 defines our translatiolicitly enumerates all states that are reachable fsgrim

into an XMDP along with the concept of blind minimal- the entire MDP. Therefore, there has been interest in other
ity it achieves, and presents our approach to the embeddetnytime solution methods, which may produce incomplete
construction and solution of the XMDP. Finally, Section 5, policies, but only enumerate an increasing fraction of the
provides a detailed comparison with previous approachestates policy iteration requires.

and concludes with some remarks about future work. Thg-q ingtance, (Dean et al., 1995) describes methods which
proofs of the theorems appear in (8haux et al., 2002). deploy policy iteration on judiciously chosen larger and

where0 < g < 1 is the discounting factor controlling



In the initial statesg, p is false and two
actions are possiblea causes a transition
to s1 with probability 0.1, and no change
with probability 0.9, while forb the transi-
tion probabilities are 0.5. In state, p is
true, and actiong andd (“stay” and “go”)
lead tos; ands( with probability 1.
A reward is received the first timeis true,
but not subsequently. That is, the rewarded
state sequences are:

(s0,51)

(s0, 50, 81)

(50, 50,50, 51)

etc.

Figure 1: A simple NMRDP

larger envelopes. Another example is (@haux et al.,

A decision process with non-Markovian rewards is identi-
cal to an MDP except that the domain of the reward func-
tion is.S*. The idea is that if the process has passed through
state sequence(s) up to stage, then the reward?(I'(4))

is received at stage Figure 1 gives an example. Like the
reward function, a policy for an NMRDP depends on his-
tory, and is a mapping fror8* to A. As before, the value

of policy 7 is the expectation of the discounted cumulative
reward over an infinite horizon:

Vilso) = Jim €| Y-SRI .00 = s
=0

The clever algorithms developed to solve MDPs cannot be

1995), in which a backtracking forward search in the Spac%irectly applied to NMRDPs. One way of dealing with this

of (possibly incomplete) policies rooted &t is performed

until interrupted, at which point the best policy found so

problem is to formulate the NMRDP as an equivalent MDP
with an expanded state space (Bacchus et al., 1996). The

far is returned. Real-time dynamic programming (RTDP) gy nanded states in this XMDR-gtatesfor short) augment
(Barto et al., 1995), is another popular anytime algorithmype gtates of the NMRDP by encoding additional informa-

which is to MDPs what learning real-time*AKorf, 1990)

is to deterministic domains. It can be run on-line, or off-
line for a given number of steps or until interrupted. A

more recent example is the LAGalgorithm (Hansen and

tion sufficient to make the reward history-independent. An
e-state can be seen as labeled by a state of the NMRDP
(via the functionr in Definition 1 below) and by history
information. The dynamics of NMRDPs being Markovian,

Zilberstein, 2001) which combines dynamic programmingy,e actions and their probabilistic effects in the XMDP

with heuristic search.

are exactly those of the NMRDP. The following definition,

All these algorithms eventually converge to the optimaladapted from (Bacchus et al., 1996), makes this concept of
policy but need not necessarily explore the entire stat@quivalent XMDP precise. Figure 2 gives an example.

space to guarantee optimalityWhen interrupted before

convergence, they return a possibly incomplete but ofterP€finition 1 MDP D'=
useful policy. Another common point of these approache§

is that they perform a forward search, starting fregrand

(S’ sy, A’, Pr', R') is an equivalent
xpansion (or XMDP) for NMRD® = (S, s¢, A, Pr, R)
if there exists a mapping: S’ — S such that:

repeatedly expanding the envelope of the current policy one 1,
step forward. Since planning operators are used to com-
pactly represent the state space, these methods will only2'
explicitly construct a subset of the MDP. In this paper, we 3,
will use these solution methods to solve decision processes

7(s4) = So-
Foralls’ € &/, A'(s') = A(7(s)).
For all s1,s2 €S, if there isa € A(sy1) such that

with non-Markovian rewards which we define next.

2.3 NMRDPs AND EQUIVALENT XMDPs

We first need some notation. L&t be the set of finite
sequences of states ougy and S be the set of possibly
infinite state sequences. In the following, whdréstands
for a possibly infinite state sequenceSti andi is a natural
number, byI';’ we mean the state of indexn I, by ‘T'(¢)’
we mean the prefixly, ..., ;) € S* of ', and bypre(T")
we mean the set of finite prefixes bf I'y; I'; denotes the
concatenation of'; € S* andI'; € S“. For a decision
processD = (S, sp, A,Pr,R) and a states € S, D(s)
stands for the set of state sequences rootedthat are
feasibleunder the actions irD, that is: D(s) = {T' €
i | I'y = sandVi Jda € A(FZ) Pr(Fi,a,FHl) > 0}
Note that the definition oP(s) does not depend oR and

Pr(s1,a,s2) > 0, then for alls; € S’ such that
7(s})=s1, there exists a uniqu&es’, 7(s})=s2, such
that for alla € A'(s}), Pr'(s}, a, sb) =Pr(s1,a, s2).

4. For any feasible state sequente € D(sy) and
I'" € D'(sp) such thatr(T';) = T'; for all ¢, we have:
R/(T) = R(T'(4)) for all 4.

Items 1-3 ensure that there is a bijection between feasi-
ble state sequences in the NMRDP and feasible e-state se-
guences inthe XMDP. Therefore, a stationary policy for the
XMDP can be reinterpreted as a non-stationary policy for
the NMRDP. Furthermore, item 4 ensures that the two poli-
cies have identical values, and that consequently, solving
an NMRDP optimally reduces to producing an equivalent
XMDP and solving it optimally (Bacchus et al., 1996):

Proposition 1 Let D be an NMRDP,D’ an equivalent
XMDRP for it, and=’ a policy for D’. Letrw be the func-

therefore also stands for NMRDPs which we describe NOWiion defined on the sequence prefifes) e 5(80) by

1This is also true of the basic envelope expansion algorithm irf (I'(2)) = 7'(T';), where for allj < i 7(I'}) = T';. Thenr

(Dean et al., 1995), under the same conditions as for LAO

is a policy forD such thatV; (sg) = Vi (sp).



from now on). We also adopt the notation f for & iter-
ations of theO modality (f will be true in exactly steps),
O=Ff for the disjunction of0? for 1 < i < k (f will be
true within the nexk steps), and«,, f for the conjunction
of O'f for 1 < i < k (f will be true at all the nexk steps).

Although negation officially occurs only in literals, i.e., the
formulae are in negation formal form (NNF), we allow our-
selves to write formulae involving it in the usual way, pro-
vided that they have an equivalent in NNF. Not every for-
mula has such an equivalent, because there is no such literal
as—$ and because eventualities (‘f will be true some time’)

Figure 2: An XMDP equivalent to the NMRDP in Figure are not expressible. These restrictions are deliberate.
1. 7(sp) = 7(sy) = so. 7(s]) = 7(s5) = s1. States} is  The semantics of this language is similar to that of FLTL,
rewarded; the other three states are not. with an important difference: unlike the interpretation of

) ) ) ) . the propositional constants 4, which is fixed (i.e. each
When solving NMRDPs in this setting, the two key is- gate is a fixed subset 6F), the interpretation of the con-
sues are how to specify non-Markovian reward functionsiant ¢ is not. Remember that $ means ‘The behavior we
compactly, and how to exploit this compact representationyant 1o reward has just happened’. Therefore the interpre-
to automatically translate an NMRDP into an equivalentyaiion of $ depends on the behaviBrwe want to reward
XMDP amenable to our favorite solution methods. Thehatever that is), and consequently the modelling relation
goal of this paper is to provide a reward function specn‘lca—’: stating whether a formula holds at th¢h stage of an
tion language and a translation that are adapted to the aN%rhitrary sequencE € S« is indexed byB. Defining IZB

time state-based solution methods previously mentionedg ihe first step in our description of the semantics:
We take these problems in turn in the next two sections.

i)k, $iff (i) € B
)1 j:BT
L

. . . ,forpe P,iff peT;
Representing non-Markovian reward functions compactly ):B b b pEti

(r
(r
(
(
reduces to compactly representing the behaviors of in- e (I'.i) |5, —p,forp e P,iff p £ T
(
(
(
(

3 REWARDING BEHAVIORS

T,i
T,i

3.1 LANGUAGE AND SEMANTICS

terest, where bybehavior we mean a set of fi- . . . .
nite sequences of states (a subset $), e.g. the A A S i (T4) 5 frand(T o), fo
i) v e it (Ti) s firor(Thi) 5, f2

{<So, Sl>, <50, S0, 51>, <80, S0, S0, 81> .. } in Figure 1. Re- .
call that we get rewarded at the end of any préfix) in , . )

that set. Once behaviors are compactly represented, it is b ):B Of iff (I'i+1) ):B f
straightforward to represent non-Markovian reward func- e (T',4) = iU fy iff VE>i

tions as mappings from behaviors to real numbers —we  jf (v; 5 < j < k (T, j f2) then(T', k f
shall defer looking at this until Section 3.5. ( <i<ki)W f (k) 1

)
)
)
)
)
)
)
e (I9)

) ) Note that except for subscript and for the first rule, this is
To represent behaviors compactly, we adopt a version of fuy; the standard FLTL semantics, and that therefore $-free
ture linear temporal logic (FLTL) augmented with & propo- tormyae keep their FLTL meaning. As with FLTL, we say

sitional constant '$’, intended to be read ‘The behavior wep iff (T.0 and iff T forallT € S«.
want to reward has just happened’ or ‘The reward is re- }:B S (T, )':B f % f % f

ceived now'. The language $FLTL begins with a set of The modelling relatior}=, can be seen as specifying when
basic proposition® giving rise to literals: a formula holds, on which reading it tak&sas input. Our
L next and final step is to use tfjg, relation to define, for a
La=P[-PITIL]$ _ formula f, the behavioB; that it represents, and for this
where T and L stand for ‘true’ and ‘false’, respectively. e must ratheassumehat f holds, and thesolvefor B.
The connectives are classicaland v, and the temporal For instance, letf be(p — $), i.e., we get rewarded
modalitiesO (next) andU (weakuntil), giving formulae:  every timep is true. We would likeB; to be the set of all
Fu=L|FANF|FVF|OF|FUF finite sequences ending with a state containing~or an
arbitrary f, we takeBy to be the set of prefixes thative

Because our ‘until’ is weakf{ U fo meansf; will be true 0 be rewarded iff is to hold in all sequences:

from now on until f5 is, if ever), we can define the useful
operatort] (always):LUf = fU.L (f will always be true  Definition2 By = (\{B| |5, f}



To understand Definition 2, recall th&t contains prefixes 3.3 REWARD NORMALITY

at the end of which we get a reward and $ evaluates to true.

Sincef is supposed to describe the way rewards will be reBFLTL is so expressive that it is possible to write formulae
ceived in ararbitrary sequence, we are interested in behav-which describe “unnatural” allocations of rewards. For in-
iors B which make $ true in such a way as to makhold ~ stance, they may make rewards depend on future behaviors
regardless of the sequence considered. However, there mégther than on the past, or they may leave open a choice
be many behaviors with this property, so we take their inter2$ to which of several behaviors is to be rewardiedn
section? ensuring tha3; will only reward a prefix ifithas ~ €xample of the former i©p — $, which stipulates a re-

to because that prefix is @verybehavior satisfyingf. In ~ wardnowif p is going to holdnext We call such formula

all but pathological cases (see Section 3.3), this makes reward-unstableWhat a reward-stablg amounts to is that
coincide with the (set-inclusion) minimal behaviBrsuch whether a particular prefix needs to be rewarded in order to
that |:B f. The reason for this ‘stingy’ semantics, making makef true does not depend on the future of the sequence.
rewards minimal, is thaf does not actually say that re- An example of the latter iSl(p — $) v O(-p — $) which
wards are allocated to more prefixes than are required fo¥ays we shouleitherreward all achievements of the goal

its truth. For instance,](p — $) saysonly that a reward P Or reward achievements ofp but does not determine
is given every t|m@ is true, even though a more generousWthh. We call such formuleeward-indeterminateWhat

distribution of rewards would beonsistentvith it. a reward-determinatg amounts to is that the set of behav-
iors modellingf, i.e. {B | #B f1}, has a unique minimum.
3.2 EXAMPLES If it does not,B; is insufficient (too small) to make true.

It is intuitively clear that many behaviors can be specifiedin (Thiébaux et al., 2002), we show that formulae that are
by means of $FLTL formulae. There is a list in (Bacchusboth reward-stable and reward-determinate — we call them
et al., 1996) of behaviors expressible in PLTL which it reward-normal- are precisely those that capture the notion
might be useful to reward. All of those examples are ex-of “no funny business”. This is this intuition that we ask the
pressible naturally in $FLTL, as follows. reader to note, as it will be needed in the rest of the paper.

A simple example is the classical goal formulasaying Just for reference then, we define:

that a goap is rewarded whenever it happens(p — $).  pefinition 3 f is reward-normalff for everyl' € S and

As mentioned earlleng_ is the set of finite sequences of everyB C S*T' k= fiff By Npre(T') C B.

states such thai holds in the last state. If we only care B

thatp is achieved once and get rewarded at each state from/hile reward-abnormal formulae may be interesting, for
then on, we writéJ(p — O$). The behavior that this for- present purposes we restrict attention to reward-normal
mula represents is the set of finite state sequences havingates. Naturally, all formulae in Section 3.2 are normal.
least one state in which holds. By contrast, the formula

—pU (p A $) stipulates that only the first occurrencef 34 $ELTL FORMULA PROGRESSION

is rewarded (i.e. it specifies the behavior in Figure 1). To

reward the occurrence gfat most once everk steps, we Having defined a language to represent behaviors to be re-
write O((O*F1p A ~O=kp) — OFFlg), warded, we now turn to the problem of computing, given a
reward formula, a minimum allocation of rewards to states
actually encountered in an execution sequence, in such a
way as to satisfy the formula. Because we ultimately wish

. to use anytime solution methods which generate state se-
of the command. To reward only the first occurrepadter ; . .
guences incrementally via forward search, this computa-

each command, we writé(c — O(~pU (p A §))). As for tion is best done on the fly, while the sequence is being

bounded variants for which we only reward goal achieve- d h devi : | algorith
ment withink steps of the command, we write for example generated. We therefore devise an incremental algorithm

. . inspired from a model-checking technique normally used
thEICd: O<k(p — 9)) to reward all such states in whigh to check whether a state sequence is a model of an FLTL

formula (Bacchus and Kabanza, 1998). This technique is
It is also worth noting how to express simple behaviorsknown as formulgprogressionbecause it ‘progresses’ or
involving past tense operators. To stipulate a rewana if ‘pushes’ the formula through the sequence.
has always been true, we writdJ$p. To say that we
are rewarded ifp has been true since was, we write

O(g — ($U-p)). - — B _ _ _ _

— o These difficulties are inherent in the use of linear-time for-
If there is noB such thatls; f, which is the case for any malisms in contexts where the principle of directionality must be

$-free f which is not a logical theorem, theBs is( 0 —i.e.S™. enforced. They are shared for instance by formalisms developed

This limiting case is a little artificial, but since such formulae do for reasoning about actions such as the Event Calculus and LTL

not describe the attribution of rewards, it does no harm. action theories, see e.g. (Calvanese et al., 2002).

For response formulae, where the achievementisftrig-
gered by the command we writeC(¢c — OO(p — $)) to
reward every state in whighis true following the firstissue

In essence, our progression algorithm computes the mod-
elling relation |:B given in Section 3.1, but unlike the def-



inition of |=, , it is designed to be useful when states in(I',0) |, f iff (I',1) |, Progbo, o, fo), where fo = f
the sequence become available one at a time, in that it demnd b, stands forl'(0) € B. So B must be such that
fers the evaluation of the part of the formula that refers to(T", 1) =, Prog(by, T, fo). To ensure minimality, we first
the future to the point where the next state becomes avaihssyme thal'(0) ¢ B, i.e. b is false, and compute
able. Letl'; be a state, say the last state of the sequencproqfalse Iy, fo). If the result isL, then since no mat-
prefix I'(7) that has been generated so far, anhlbe @ ter whatr", turns out to beT', 1) f, L, we know that the
boolean true |ﬁF<Z) is in the behavioB to be rewarded. assumption abOLﬂo being false does not suffice to sat-
The prOgreSSion of the $FLTL formulﬁlthroughfi given |Sfy f. The 0n|y way to gey" to hold is to assign are-
b, written Progb,I';, f), is a newformula satisfying the  ward toI'(0), so we take(0) to be inB, i.e. b is true,

following property. Wheré < (I'(i) € B), we have: and set the formula to be considered in the next state to
) . ) f1 = Prodtrue Ty, fo). If on the other hand the result is
Property 1 (I',é) |5, f iff (I',i + 1) |5, Prog®, I';, f) not L, then we need not rewait(0) to makef hold, so we

That is, given thab tells us whether or not to rewaid(i), takel'(0) notto be i and setf, = Progfalse I'o, fo).

f holds atT’; iff the new formula Pro, T';, f) holds at WhenI'; becomes available, we can iterate this reasoning
the next (yet unavailable) stafg, ; in the sequence. The to compute the smallest value bf such thatT', 1) |:B f

function Prog is defined below: and that of the correspondinfg = Progb,,T'y, f1). And
S0 on: progression through a sequence of states defines a
Algorithm 1 $FLTL Progression sequence of booleari&, b1, . . .) and a sequence of formu-
Progtrue s, $) =T lae{fo, f1,-..). WhenT'; becomes available, we can com-
Progfalse s, $) = | pute the smallest value &f such that(T", 7) i:B /i and the
Progb, s, T) =T correspondingf;;1. The value ob; represent§'(i) € By
Progb, s, 1) = 1 and tells us whether we should allocate a reward at that
Progb, s, p) = Tiff p € s and_L otherwise stage, whilef;  ; is the new formula with which to iterate
Progb, s, —p) = Tiff p ¢ s andL otherwise the process. In Algorithm 1, the function Rew takkgsand
Progb, s, fi A f2) = Prodb, s, fi) A Progb, s, f2) fi as parameter, and returbsby computing the value of
Progb, s, f1 V fo) = Prodb, s, fi1)V Progb, s, f2) Progfalse I';, f;). The function $Prog takek; and f; as
Progb, s,Of) = f parameters and returifis, ; by calling Prodb;, I';, f;) with
Progb, s, fiU f2) = Prodb, s, f2) V the value o, is given by RevT';, f;).
(Progb, s, f1) A J1U f2) The following theorem states that under weak assumptions,

Rew(s, ) rewards are correctly allocated by progression:
$Progds, f)

true iff Progfalse s, f) = L
ProgRew(s, f), s, f) Theorem 1 Let f be reward-normal, and letfo, f1,...)

be the result of progressing it through the successive states
of a sequencd’. Then, provided nof; is L, for all ¢

This is to be matched with the definition ¢% in Sec-
tion 3.1. WheneverlzB evaluates a subformula whose
truth only depends on the current state, Prog does the sanTde premiss of the theorem is thAtdoes not eventually
and return the formuld (resp..L) accordingly. Whenever progress tal. Indeed if f; = L for somei, it means that

i:B evaluates a subformula whose truth depends on futureven rewardind’(:) does not suffice to mak¢ true, so
states, Prog defers the evaluation by returning a new sutsomething must have gone wrong: at some earlier stage,
formula to be evaluated in the next state. Note that Prog ishe boolearb was made false where it should have been
computable in linear time in the length ¢f and that for made true. The usual explanation is that the origifial
$-free formulae, it collapses to FLTL formula progressionwas not reward-normal. For instan€ — $, which is
(Bacchus and Kabanza, 1998), regardless of the valte of reward unstable, progresses_toin the next state if p is
true there: regardless @, fo = Op — $ = O—-p V §,

by = false, andf; = —p, soifp € I'; thenfy, = L.
However, other (admittedly bizarre) possibilities exist: for
example, althouglop — $ is reward-unstable, its substi-

Like FB, the function Prog assumes that is known,
but of course we only havg and one new state at a
time of I', and what we really want to do isompute

the appropriateB3, namely that represented bf. - So, tution instanceDOT — $, which also progresses toin a

similarly as in Section 3.1, we now turn to the secondfew steps, is logically equivalent to $ and is reward-normal
step, which is to use Prog to decide on the fly whether PS, glcalyeq '

a newly generated sequence prdfi) is in By and so  If the progression method is to deliver the correct minimal
should be allocated a reward. This amounts to incremenbehavior in all cases (even in all reward-normal cases) it has
tally computingB N pre(T"), which providedf is reward  to backtrack on the choice of values for the. In the inter-
normal, is the minimal behaviaB such that(I',0) |, f.  est of efficiency, we choose not to allow backtracking. In-
We can do this as follows. According to Property 1, stead, our algorithm raises an exception whenever a reward



formula progresses ta, and informs the user of the se- 4 SOLVING NMRDPs

guence which caused the problem. The onus is thus placed

on the domain modeller to select sensible reward formulad.1 TRANSLATION INTO XMDP

S0 as avoid possible progressionto It should be noted

that in the worst case, detecting reward-normality canno¥Ve now exploit the compact representation of a non-
be easier than the decision problem for $FLTL so it is notMarkovian reward function as a reward function specifi-
to be expected that there will be a simple syntactic criteriorfation to translate an NMRDP into an equivalent XMDP
for reward-norma”ty_ In practice, however, Commonsense’:lmenab|e to state-based anytime solution methods. Recall
precautions such as avoiding making rewards depend e)tfom Section 2.3 that each e-state in the XMDP is labeled
plicitly on future tense expressions suffice to keep thingy a state of the NMRDP and by history information suf-

normal in all routine cases. ficient to determine the immediate reward. In the case of
a compact representation as a reward function specification
3.5 REWARD FUNCTIONS ¢o, this additional information can be summarized by the

progression ofp, through the sequence of states passed
With the language defined so far, we are able to compactijhrough. So an e-state will be of the for(s, ¢), where
represent behaviors. The extension to a non-Markovian res € S is a state, angg C $FLTL x R is a reward function
ward function is straightforward. We represent such a funcspecification (obtained by progression). Two e-states)
tion by a setp C $FLTL x R of formulae associated with and(t, ) are equal ifs = ¢, the immediate rewards are the
real valued rewards. We call a reward function specifi- same, and the results of progressingndy throughs are
cation Where formulaf is associated with rewardin ¢, ~ semantically equivalent.
we write ‘(f : r) € ¢'. The rewards are assumed to be
independent and additive, so that the reward funcfign
represented by is given by:

Definition 5 Let D = (S, sg, A, Pr, R) be an NMRDP,
and ¢y be a reward function specification representifRg
(i.e., Ry, = R, see Definition 4). We translat@ into the

Definition 4 Ry (T'(i)) = Z {r | T(i) € By} XMDP D' = (S’,s), A', Pr’, R') defined as follows:
(s 1§ C g xoSFLTL xR

E.g,ifpis{-pUpAS$:52 (g — 09 : 7.3}, we get N

a reward of 5.2 the first time thatholds, a reward of.3 2. 55 = (30, o)

from the first time that; holds onwards, a reward aR.5 3. A'((s,¢)) = A(s)

when both conditions are met, and 0 in otherwise.
4. Ifa € A'((s,¢)), thenPr'((s, ¢),a, (s',¢')) =
Again, we can progress a reward function specification

to compute the reward at all stages ilof As before, pro- { Pr(s,a,s") if ¢' = SProgs, ¢)
gression defines a sequenigg, ¢1, . . .) of reward function 0 otherwise
specifications, withy; ; = SProdl';, ¢;), where SProg is , ' . .
the function that applies Prog to all formulae in a reward It a & A'{s, #)), thenPr((s, ¢), a, o) is undefined.
function specification: 5 R'((s,0)) = Y {r|Rew(s, f)}

SProds, ¢) = {(Prodgs, f) : ) | (f : r) € ¢} (frr)€g
Then, the total reward received at stage simply the sum Item 1 says that the e-states are labeled by a state and a

of the real-valued rewards granted by the progression fund€ward function specification. Item 2 says that the initial
tion to the behaviors represented by the formulag;in e-state is labeled with the initial state and with the original
reward function specification. Iltem 3 says that an action is

> {r|RewT, f)} applicable in an e-state if it is applicable in the state label-
(fir)€d ing it. Item 4 explains how successor e-states are and their

By proceeding that way, we get the expected analog of Theprobabilities are computed. Given an actiompplicable
orem 1, which states progression correctly computes norn an e-statd's, ¢), each successor e-state will be labeled
Markovian reward functions: by a successor staté of s via a in the NMRDP and by
the progression ob throughs. The probability of that e-
state isPr(s, a, s’) as in the NMRDP. Note that the cost of
computingP1’ is linear in that of computing’r and in the
Sum of the lengths of the formulae i Item 5 has been
motivated before (see Section 3.5).

Theorem 2 Let ¢ be a reward-normdl reward function
specification, and let¢o, 1 ...) be the result of pro-
gressing it through the successive states of a sequen
. Then, provided(L : r) ¢ ¢; for any i, then
> {r|RewT;, f)} = Ry(T'()). . . . :
(fress Itis easyto sh_ow that th|§ t.rgnslatlon Igads toan equwglent
“We extend the definition of reward-normality to reward spec-XMDP’ as defined in Definition 1. Obviously, the function

ification functions the obvious way, by requiring that all reward 7 required for Definition1 is given by((s,#)) = s, and
formulae involved be reward normal. then the proof is a matter of checking conditions.



4.2 BLIND MINIMALITY

The size of the XMDP obtained, i.e. the number of e-states r(A) = { R(I(i—1);4) ifAe ,D(S)
it contains is a key issue for us, as it has to be amenable 0 otherwise
to state-based solution methods. Ideally, we would like theBlind minimality is similar, except that, since there is no
XMDP to be of minimal size. However, we do not know looking ahead, no distinction can be drawn between feasi-
of a method building theninimalequivalent XMDP incre-  ble trajectories and others in the futuresof
mentally, adding parts as required by the solution methodpfinition 6 Let S’ be the set of e-states in an equivalent
And since in the worst case even the minimal XMDP cany\pp p' for an NMRDPD = (S, s0, A, Pr,R). D' is
lbe IaLgefr tr?an the g‘?"RDPl by S fac;or expolnegga(ls N theyjing minimaliff for each e-statds, ) € S’ there exists a
ength of the reward formulae .( acchus etal,, )Z Con'prefixF(z') € D(sp) such thafl’; = s and for all A € S*:
structing it entirely would nullify the interest of anytime _ .
. RT(i—1);A) ifAg=s

solution methods. r(A) = .

0 otherwise

However, as we now explain, Definition 5 leads to an equiv- , i , .
alent XMDP exhibiting a relaxed notion of minimality, and 'I_'heorerr)_4 Let D' be the translation oD as in Defini-
which is amenable to incremental construction. By inspection S D' is a blind minimal equivalent XMDP fab.
tion, we may observe that wherever an e-stateb) has

a successofs’, ¢') via actiona, this means that in order 4.3 EMBEDDED SOLUTION/CONSTRUCTION

to succeed in rewarding the behaviors described ioy

means of execution sequences that start by going fréan Blind minimality is essentially the best achievable with

s’ via a, it is necessary that the future starting withsuc- ?ny(;m:r(]e §tate—bellsed SOIUUO? mefthods (;Nh'(.:tn ty?'?a”i.ex'
ceeds in rewarding the behaviors described'inlf (s, ¢) en eIr envelope one step forward without looking
deeper into the future. Our translation into a blind-minimal

is in the minimal equivalent XMDP, and if there really are o . .
such execution sequences succeeding in rewarding the b)e(-MDP can be trivially embedded in any of these solution

haviors described i, then(s’, ¢') must also be in the min- methods. This will result in an ‘on-line construction’ of the

imal XMDP. That is, construction by progression can onlyXMDP: the method will entlrely_drlve the construction of

introduce e-states which agepriori needed. Note that an those parts of the XMDP which it feels the need to explore,
e-state that is priori needed may noteally be needed: and leave the others implicit. If time is short, a subopti-
there may in fact be no execution sequence using the avai[I1a| or even incomplete policy may be returned, but only

able actions that exhibits a given behavior. For instance",Jl fraction of the state and expanded state spaces will be

consider the response formulp — Okg — Ok$), ie. constrtl_Jcted. Note that the ?(t)rllunon m((ajt?od srlmuld raise an
every time commang is issued, we will be rewardedd exception as soon as one of the reward formulae progresses

steps later provided s true then. Obviously, whetheris ~ L© 1 I-€-» @S soon as an expanded state) is built such
true at some stage affects the way future states should &gatu :7) < ¢ since _th|s_ acts as a detector of unsuitable
rewarded. However, if steps from there a state satisfying reward function specifications.

g can never be reached, theposteriorip is irrelevant, and  To the extent enabled by blind minimality, our approach al-
there was no need to label e-states differently according ttbws for a dynamic analysis of the reward formulae, much
whetherp was true or not. To detect such cases, we wouldas in (Bacchus et al., 1997). Indeed, only the execution
have to look perhaps quite deep into feasible futures. Hencsequences realisable under a particular policy actually ex-
the relaxed notion which we callind minimalitydoes not  plored by the solution method contribute to the analysis of
always coincide with absolute minimality. rewards for that policy. Specifically, the reward formulae

We now formalise the difference between true and b“ndgenerated _by progression fo_ragiven policy are Qetermined
minimality. To simplify notation (avoiding functions like by the prefixes of the execution sequences realisable under

the 7 of Definition 1), we represent each e-state as a paiFhiS policy. This dynamic analysis is partic_ularly use_fL_JI,
(s, 7) wheres € § andr is a function fromsS* to R intu- since releva_nce of r_eward formulae to partlculz_ir !ooI|C|es
itively assigning rewards to sequences in the NMRDP startge'g‘ the optimal policy) cannot be detected a priori.

ing froms. A givens may be paired with several functions The forward-chaining planner TLPlan (Bacchus and Ka-
r corresponding to relevantly different historiessofThe  banza, 2000) introduced the idea of using FLTL to spec-
XMDP is minimal if every suchr is neededo distinguish  ify domain-specificsearch control knowledgand formula
between reward patterns in tfeasiblefutures ofs: progression to prune unpromising sequential plans (plans

Theorem 3 LetS’ be the set of e-states in a minimal equiv- violating this knowledge) from deterministic search spaces.

alent XMDP D' for D = (S, s, A, Pr, R). Then for each This has been shpwn to provide enormous timg gains, lead-
ing TLPlan to win the 2002 planning competition hand-

tailored track. Because our approach is based on progres-
sion, it provides an elegant way to exploit search control

e-state(s, r) € S’ there exists a prefik(i) € D(sy) such
thatT'; = s and for all A € S*:



knowledge, yet in the context of decision-theoretic plan-formulae. For the labeling, two extreme cases are consid-
ning. Here this results in a dramatic reduction of the frac-ered: one very simple and the other elaborate. In the sim-
tion of the XMDP to be constructed and explored, andple case, an e-state is labeled by the set of all subformu-
therefore in substantially better policies by the deadline. lae which are true at it. The computation of such simple
We achieve this as follows. We specify, via a $-free formulalabels can be done forward starting from the initial state,

¢o, properties which we know must be verified by paths fea-and so could be embedded in an anytime solution method.

; . - : However, because the structure of the original reward for-
sible undempromisingpolicies. Then we simply progress

e alonaside the reward function specification. makin e_mulae is lost when considering subformulae individually,
0 9 : P ' N9 €ine distinctions between histories are drawn which are to-
states tripless, ¢, ¢) wherec is a $-free formula obtained

by progression. To prevent the solution method to apply art]ally irrelevant to the reward function. Consequently, the

action that leads to the control knowledge being violated expanded state space easily becomes exponentially bigger

. o " ) . S than the blind-minimal one. This is problematic with the
the action applicability condition (item 3 in Definition 5) solution methods we consider, because size severely affects
becomesa € A'({s,®,c)) iff a € A(s) andc # L (the ' y

other changes are straightforward). For instance, the eﬁeépelr performance in solution quality.

of the control knowledge formula(p — Og) istoremove In the elaborate case, a pre-processing phase uses PLTL
from consideration any feasible path in whigls not fol-  formula regression to find sets of subformulae as poten-
lowed bygq. This is detected as soon as violation occurs tial labels for possible predecessor states, so that the sub-
when the formula progresses fo. Although this paper sequent generation phase builds an XMDP representing all
focuses on non-Markovian rewards rather than dynamicsand only the histories which make a difference to the way
it should be noted that $-free formulae can also be used tactually feasibleexecution sequences should be rewarded.
express non-Markovian constraints on the system’s dynamFhe XMDP produced is minimal, and so in the best case ex-
ics, which can be incorporated in our approach exactly aponentially smaller than the blind-minimal one. However,

we do for the control knowledge. the prohibitive cost of the pre-processing phase makes it
unusable for anytime solution methods (it requires expo-
5 RELATED AND FUTURE WORK nential space and a number of iterations through the state

space exponential in the size of the reward formulae). We
It is evident that our thinking about solving NMRDPs and do not consider that any method based on PLTL and regres-
the use of temporal logic to represent them draws on (Bacsion will achieve a meaningful relaxed notion of minimality
chus et al., 1996). Both this paper and (Bacchus et alwithout a costly pre-processing phase. Our main contribu-
1997) advocate the use of PLTL over a finite past to spection is an approach based on FLTL and progression which
ify non-Markovian rewards. In the PLTL style of specifi- does precisely that, letting the solution method resolve the
cation, we describe the past conditions under which we gefadeoff between quality and cost in a principled way inter-
rewarded now, while with $FLTL we describe the condi- mediate between the two extreme suggestions above.
tions on the present and future under which future states i i
will be rewarded. While the behaviors and rewards mayThe structured representation and s_olutlon methods tar-
be the same in each scheme, the naturalness of thinking §€ted by (Bacchus et al., 1997) differ from the any-
one style or the other depends on the case. Letting the ki e state—t_)ased ;oluthn methods our framevx{ork primar-
have a strawberry dessert because they have been good '&12iMs at, in particular in that they do not require explicit
day fits naturally into a past-oriented account of rewardsState enumeration at all (Boutilier etal., 2000; Hoey etal,

whereas promising that they may watch a movie if they tidylggg)' Accordingly, the translation into XMDP given in
their room (indeed, making sense of the whole notion ofB2cChus et al., 1997) keeps the state and expanded state

promising) goes more naturally with FLTL. One advantageSpace implicit, and amounts to adding temporal variables

of the PLTL formulation is that it trivially enforces the prin- to the problems together with the decision-tree describing

ciple that present rewards do not depend on future statelelr dynarmcs. It is very efficient but rather crude: the
In $FLTL, this responsibility is placed on the domain mod- encoded h|§tory features do not even vary fr'o'm one state to
eller. On the other hand, the greater expressive power df'¢ nexg, which strongly compromises the minimality of the
$FLTL opens the possibility of considering a richer classtDP' However, non-minimality is notas problematic as
of decision processes, e.g. with uncertainty as to whicP(V'th the state-based approaches, since structured solution

rewards are received (the dessert or the movie) and whefi€thods do not enumerate states and are able to dynami-
(some time next week, before it rains). This is a topic forcally ignore some of the variables that become irrelevant at

future work. At any rate, as we now explain, $FLTL is bet- SOMe point of policy construction.
ter suited than PLTL to solving NMRDPs using anytime  5Chomicki, 1995) uses a similar approach to extend a

state-based solution methods. database with auxiliary relations containing additional informa-
tion sufficient to check temporal integrity constraints. As there is

(Bacchus et al., 1996) proposes a method whereby an @ny ever one sequence of databases, what matters is more the size

state is labeled by a set of subformulae of the PLTL rewarf these relations than avoiding making redundant distinctions.
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