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Abstract—It is becoming increasingly important for network
operators to coordinate the use of prosumer-owned DER so
that their full value can be harnessed without violating the
network’s technical limits. Unfortunately, this coordination is
complicated by the highly volatile uncertainties of PV and
prosumer load, as well as the distributed nature of the problem.
To address this challenge, we present an affinely adjustable robust
extension of the distributed ADMM algorithm that is resilient to
forecast deviations. As with ADMM, every prosumer negotiates
with the grid over a receding horizon to obtain locational
marginal prices and their coordinated “here-and-now” decisions
prior to the uncertainty realizations. However, our new AARO-
ADMM approach robustly coordinates the first time step of each
negotiation to enable prosumers to take local “wait-and-see”
recourse decisions that compensate deviations from the forecast
in real-time. Our experiments on a modified 69-bus network
show a significant reduction in the frequency of negotiation and
communication needed by ADMM to maintain grid security, with
just a small cost increase over an idealized but unachievable
baseline.

Index terms— Affinely Adjustable Robust, Distributed Op-
timization, ADMM, DER.

The main symbols used throughout this paper are:

P
(k)
t

Power produced/consumed by prosumer i at
t and iteration k.

λ
(k)
t LMPs of prosumer i at t and iteration k.

P
′(k)
t

Network expectation from prosumer i at t and
iteration k.

P̄Lt /P̄
PV
t Forecasted load/PV of prosumer i at t.

PCht Battery charge power of prosumer i at t.
PDist Battery discharge power of prosumer i at t.
PCurt PV power curtailment of prosumer i at t.
RmaxCh /RmaxDis Battery maximum charge/discharge rate.
Et Battery state of charge of prosumer i at t.
η Battery efficiency.
Emin/Emax Min/max allowable battery energy.
PPVt /PLt Uncertain PV power/load of prosumer i at t.

P̂L+t , P̂L−t
Maximum allowable load deviation in posi-
tive/negative direction.

µ Budget of uncertainty.
PL+t , PL−t Load deviation in positive/negative direction.

PPV+
t , PPV−t

PV power deviation in positive/negative di-
rection.

P̂PV+
t , P̂PV−t

Maximum allowable PV power deviation in
positive/negative direction.
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I. INTRODUCTION

A. Research Motivation

THE advent of distributed energy resources (DER), is
transforming power systems, dominated by central gen-

eration and passive consumers to a more decentralized one
in which consumers are producing a notable amount of the
overall energy. For example, in Australia, as of February 2018,
1.8 million small-scale solar PV systems are installed with one
in every three consumers owning PV in South Australia [1].
This new demand-side generation can help the distribution
networks increase capacity, improve performance, and defer
augmentation. However, leaving the uncoordinated DER in the
hands of prosumers, who do not have any grid visibility, cre-
ates significant issues for networks, such as voltage, rebound
peak, and ramping problems. Therefore, approaches capable
of coordinating DER taking into account network technical
limits are crucially needed. Unfortunately, such coordination
is a notoriously challenging large-scale optimization problem,
plagued by non-linear constraints (AC power flows), the
unavailability of consumers private information, and highly
volatile uncertainties associated with residential demand and
PV power.

Centralized approaches, relying on conventional optimal
power flow (OPF) models [2], [3], would fail to appropriately
coordinate DERs in a real setting as a) they struggle to scale
with the number of DER, b) residential DER and the distri-
bution network are operated by different parties who might
have conflicting interests, and c) they require a central access
to the relevant prosumer constraints and information which
compromises prosumers privacy. More recently, the alternat-
ing direction method of multipliers (ADMM) has emerged
as a promising approach for solving OPF and coordinating
residential DER in a distributed manner [4], [5], [6], [7].
By breaking the large coordination problem into smaller-
scale sub-problems solved in parallel, it is able to mitigate
the complexity, conflicting interests, and privacy issues of a
central tool. Through such a distributed algorithm, prosumers
coordinate to optimally schedule their DER by individually
negotiating with the network the power exchanged at their
connection point for multiple time steps over an appropriate
time horizon.

When enacted, the solution negotiated by ADMM (similar
to the solution of a central tool) will keep its promise of
optimality and feasibility as long as all prosumers are able to
honour their commitment to the negotiated power. However,
this assumption rarely holds in reality, due to the fact that
prosumer parameters such as residential demand and PV power
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are highly uncertain and can significantly deviate from the
forecast used in the negotiation. To tackle this important
limitation, we propose AARO-ADMM, an affinely adjustable
robust ADMM approach in which prosumers optimize not only
their connection point power (CPP) but also a set of affine
control functions. These functions enable prosumers to honour
the negotiated conditions by making adjustive “wait-and-see”
recourse decisions capable of compensating for any deviation
about the forecast within a given polyhedral uncertainty set.
Unlike the decisions made in the negotiation phase, these
recourse decisions can be made by the prosumer without the
need for communication, and so can be enacted in real-time,
compensating for short time-scale fluctuations.

Moreover, to improve the effectiveness of this robust ap-
proach and tighten the uncertainty set, we apply AARO-
ADMM in a receding horizon framework enabling prosumers
to periodically negotiate using the latest forecast.

In this receding horizon setting, AARO-ADMM is used
to robustly coordinate the first time step of each negotiation
and to obtain the maximum limits of the adjustable terms for
the affine controller, whereas the rest of the time steps are
coordinated deterministically. The decisions in the first time
step are then enacted, and as the uncertain parameters are
revealed, the adjustable terms of the AARO controller take
recourse decisions to compensate from forecast deviation and
hold the CPP at the negotiated value. The same process is then
repeatedly shifted forward in time to robustly coordinate the
next time step. We show that this robust approach avoids net-
work constraint violations at similar computational cost to the
standard ADMM, while substantially reducing the frequency
of negotiations required by the latter (e.g., in our experiments
from every 5min to every hour). This makes AARO-ADMM
applicable in many situations where frequent negotiations of
the standard ADMM would be too computationally expensive
or would lead to excessive communication.

B. Related Work

ADMM and other distributed optimization techniques have
been widely used to solve OPF problems [8], [9], [10],
[11], [12]. These distributed approaches are particularly well-
suited to the task of DER coordination, given the intrinsi-
cally distributed nature of the data and the large numbers
of participants with potentially competing interests. Another
key characteristic of DER coordination is the large amount
of uncertainty around load and distributed generation produc-
tion, but which often gets overlooked by these distributed
approaches. When not properly accounted for, such uncertainty
can lead to decisions that are suboptimal or even violate the
network’s constraints.

Common techniques for handling uncertainty, that have
been used in both centralized and occasionally distributed set-
tings, include stochastic programming (SP) [13], [14], robust
optimization (RO) [15], [16], [17], [18], and online receding
horizon optimization [5], [7], [19].

Two-stage stochastic programming was used in [13] and
[14] to model uncertainties in OPF and demand response
problems respectively. However, adapting such a two-stage

approach to a residential DER coordination setting is unlikely
to scale due to the large number of scenarios required to
capture the many active participants and sources of uncertainty,
and thus avoid network constraint violations. Our approach
uses robust optimization techniques to reduce the scenarios
that need to be considered, and hence the computational
burden.

Robust optimization [15]–[18] avoids having to consider
large numbers of scenarios by finding and optimizing accord-
ing to a worst-case scenario. Because it focuses on just one
scenario, that could in practice be very unlikely to occur,
RO often leads to solutions that are overly conservative. To
address this problem, our approach combines both receding
horizon optimization and robust optimization. Only the first
time step in the horizon is robustly optimized, with the
remainder optimized considering the expected value of the
uncertain parameters. This produces solutions with a good
balance between considering the worst possible outcome and
what is likely to actually occur.

In addition to potentially overly conservative decisions,
almost all existing RO approaches to solving OPF and coor-
dinating DER are centralized, e.g., [15], [17], [18], and due to
the nature of the techniques employed, i.e. using mixed-integer
formulations with column and constraint generation, it would
be difficult to efficiently distribute the computation among
prosumers. The exceptions that have used ADMM to distribute
RO problems include [16] where the decomposition is between
a coupled electricity and gas network, and [20] and [21] where
the decompositions is between 3 interconnected microgrids.
None of these distributed RO approaches have considered the
problem down at the residential DER level, and either rely on
linear power flow models that perform poorly on distribution
networks, or the same solving techniques as the centralized
approaches which would be challenging to further decompose
to the prosumer level. In contrast our approach decomposes
the problem at the natural boundary between prosumers and
the network while enabling the use of non-linear power flow
models.

To add even more flexibility, our approach to DER coor-
dination allows recourse decisions by way of affine functions
that respond to realizations in the uncertain parameters. These
functions are optimized to operate over the entire uncertainty
set, represented by a convex polytope, rather than just for a
single worst-case point as is the case for regular non-AARO
approaches. This means that the recourse decisions can au-
tomatically respond for any realization within the uncertainty
set, and can even be applied in real-time operation, something
that the regular RO approaches do not provide.

Further to this, the uncertainty set we consider accounts
for the impact of both too much and too little solar on the
network, which when combined with load uncertainty can lead
to voltages going too high or too low. The works [15]–[18]
and [20]–[21] only consider recourse actions where overall
demand is more than expected, whereas our flexible recourse
actions cover the entire uncertainty set, and so are additionally
optimized to take advantage of excess solar generation (e.g.,
through storing it, rather than always curtailing it).

Distributed online receding-horizon approaches [5], [7],



3

[22], which rely on up-to-date forecasts of the uncertain pa-
rameters, can avoid network violations so long as very frequent
optimizations can be made. However, this is not always possi-
ble as computational and communication resources are limited
in a residential DER setting. In particular communication
delays can dominate, and may make ADMM impractical when
frequent optimizations are necessary [23]. Coping with the
communication requirements of ADMM is an essential topic
of research, as we observed when deploying ADMM in real-
world trials [22].

Asynchronous variants of ADMM have been proposed to
help improve convergence time but have been found to only
help under mild communication delays [24]. Our approach
addresses this problem by instead reducing the need to fre-
quently reoptimize. By utilising AARO in the first time step of
each horizon, we deliver recourse actions that can be enacted
in real-time without communication, and that are robust to
uncertainty for the entire first time step, preventing network
violations. This enables less frequent renegotiation and com-
munication, enabling our distributed optimization problem to
be solved in a practical setting.

C. Contributions
The major contributions of this work are:
1 an affinely adjustable robust extension of ADMM capable

of handling uncertainty associated with PV power and
residential demand when coordinating DER;

2 experimental results showing that applying AARO-
ADMM to the first step of a receding horizon opti-
mization leads to a practical number of negotiations,
without compromising the feasibility of the solution nor
significantly increasing its cost.

The rest of this paper is organized as follows. Section II pro-
vides an overview of our proposed algorithm. The two key sub-
components of our algorithm are then detailed in Sections III
and IV: an ADMM-based multi-period OPF optimization for a
single horizon; and our proposed AARO approach for solving
prosumer subproblems. Section V examines the performance
of the proposed approach on a modified 69-bus distribution
network. Finally, Section VI provides the main observations
and conclusions of this study.

II. THE OVERALL ALGORITHM

The outermost layer of our approach is a receding horizon
algorithm, that schedules the actions of all prosumers over a
forward horizon of 24 hours, represented by the set T . A new
horizon is optimized every hour, so as to take into account the
latest operating state and forward forecasts for load and solar.

Within each horizon, a multi-period OPF problem is solved
in a distributed manner using ADMM, where each prosumer
subproblem robustly optimizes their connection-point power
for the first time step using AARO. In this AARO approach,
the prosumers optimize both their connection-point power
and a set of individualized affine control functions, while
taking into consideration their local uncertainty. These affine
functions can then be enacted in real-time to guarantee the
negotiated connection-point power over the next hour, for the
chosen uncertainty set.

III. THE DISTRIBUTED ADMM ALGORITHM

We first present a high-level model of the multi-period OPF
problem solved within each horizon, which is used to explain
our ADMM decomposition. We then present a deterministic
model of the prosumer subproblems, which we modify to
handle uncertainty using AARO in Section IV.

The multi-period OPF problem is split between prosumers
and the remainder of the network. Each prosumer i ∈ C has
a vector Pi ∈ R|T | that represents the active power1 they
exchange with the network for each time step in horizon T .
Each prosumer has objective fi and constraint gi functions
which take these powers as inputs. We drop the subscript
to represent all prosumer powers, P ∈ R|C|×|T |, which is
an input to the network’s own objective f ′ and constraint
g′ functions (which represent AC power flows). Finally, Xi

and Y represent any internal variables for the prosumers (e.g.,
battery state of charge (SoC)) and network (e.g., voltages),
respectively. The combined multi-period OPF is:

min
Pi,Xi,P ′,Y

∑
i∈C

fi(Pi, Xi) + f ′(P ′, Y ) (1a)

s.t.
∀i ∈ C : gi(Pi, Xi) ≤ 0 (1b)

g′(P ′, Y ) ≤ 0 (1c)

P − P ′ = 0 (1d)

In the above, we have duplicated the prosumer power variables
so that the network and prosumers have their own copies, P ′

and P , which get set equal through equation (1d). By relaxing
this constraint, we are able to decompose the problem and then
solve it iteratively using the ADMM algorithm.

A. ADMM Algorithm

The first step to applying the ADMM algorithm is to take
an augmented Lagrangian relaxation of (1d), which results in
the following penalty term component:

L∗(P, P ′, λ) = λᵀ(P − P ′) +
ρ

2
||P − P ′||22 (2)

where λ ∈ R|C|×|T | is a vector of dual variables for the
constraint and ρ is the penalty parameter of the augmented
Lagrangian.

The ADMM algorithm [4] can then be used to iteratively
solve (1a)–(1d) to its optimum. Fig. 1 shows how the problem
is split up into subproblems that exchange data, and which
ADMM solves in three parts per iteration k:

P (k) := min
Pi,Xi

∑
i∈C

[
fi(Pi, Xi) + L∗i (Pi, P

′(k−1)
i , λ

(k−1)
i )

]
∀i ∈ C : gi(Pi, Xi) ≤ 0 (3a)

P ′(k) := min
P ′,Y

[
f ′(P ′, Y ) + L∗(P (k), P ′, λ(k−1))

]
g′(P ′, Y ) ≤ 0 (3b)

1Here, we focus just on the real power exchanged with the network;
however, reactive power could be similarly modeled.
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Fig. 1: The proposed decomposition configuration.

λ(k) := λ(k−1) + ρ(k) · (P (k) − P ′(k)) (3c)

In the first phase (3a), the prosumers are optimized for P ,
while holding P ′ and λ constant at their k−1-th value. In the
second phase (3b), the network is optimized for P ′, while
holding P and λ constant at their k and k − 1-th values
respectively. Finally, the dual variables λ are updated in (3c),
completing the k-th iteration. Note that λ is the vector of the
Lagrangian multipliers for the energy conservation constraint
at each node. So, when the algorithm converges to its optimum,
λ represents the locational marginal prices (LMPs), i.e., it
reflects the cost of serving energy to that node in the net-
work. Through (3a)–(3c), within each iteration, the prosumers
selfishly optimize their own objective function independently
of the network and all other prosumers. Moreover, as shown
in (3a) and (3b), such representation enables each subproblem
(stakeholder) to have a different objective function reflecting
their interests to the problem.

B. Stopping Criteria and Convergence of the Algorithm

In line with [4], we define the stopping criteria using primal
R

(k)
p and dual residuals R(k)

d as follows:

R(k)
p :=

(
(P

(k)
1 − P ′(k)1 ), (P

(k)
2 − P ′(k)2 ), ...

)ᵀ
(4a)

R
(k)
d :=

(
ρ(P

′(k)
1 − P ′(k−1)1 ), ρ(P

′(k)
2 − P ′(k−1)2 )...

)ᵀ
(4b)

The primal residuals (4a) represent the constraint violation at
the current solution and the dual residuals (4b) the violation of
the KKT stationarity constraint [4]. In this paper, we consider
the problem to have converged when the scaled 2-norms of
both the primal and dual residuals are smaller than 10−6.
Moreover, to improve the convergence we adaptively improve
ρ based on the primal and dual residual balance, presented in
[25], as follows:

ρ(k+1) =


ρ(k) · (1 + σk), if ||R(k)

p ||2 > ν||R(k)
d ||2.

ρ(k)/(1 + σk), if ||R(k)
d ||2 > ν||R(k)

p ||2
ρ(k), Otherwise.

(5)

We adaptively change ρ for the first 50 iterations, but then
continue with the latest penalty i.e., ρ(k=50), in order to
guarantee convergence, as discussed in [25].

C. Network Subproblem

In this paper, we model a feeder exposed to time-varying
wholesale prices for real power energy import. The network
constraints including AC power flow equations and any capac-
ity or voltage constraints represented by (3b) in our model.
We use a conic relaxed branch flow model for power flows
which is proved to be exact under some mild conditions [26].
In the final solution, when our AARO-ADMM converges,
the primal residuals in the ADMM algorithm approach zero,
which translates to a feasible solution for the OPF problem,
therefore satisfying all the network constraints (3b). It is worth
mentioning that our OPF subproblem enables the operators to
thoroughly examine their networks using the available tools,
proposed for the well-studied OPF problem.

We refer the readers to [26] for the detail network model
and focus on the prosumer subproblem, which we model and
solve using AARO in Section IV.

D. Deterministic Prosumer Subproblem

In the detailed prosumer formulation we drop the i sub-
script, as we only work with one prosumer at a time, and index
the variable vectors and other quantities by time t ∈ T , where
T is the set of time points for the horizon. Here, we provide
an explicit representation of (3a) for a single prosumer owning
a background load, PV system and battery2. The background
load and solar production are the uncertain parameters in this
paper; we forward their forecasts, P̄Lt and P̄PVt , to make the
deterministic model as follows:

P (k) := argmin
P,X

∑
t∈T

[
λ
(k−1)
t (Pt − P ′(k−1)t )

+
ρ(k−1)

2
(Pt − P ′(k−1)t )2

]
(6a)

Pt − P̄Lt − PCht + PDist + P̄PVt − PCurt = 0 (6b)

PCurt ≤ P̄PVt (6c)

PCht ≤ RmaxCh (6d)

PDist ≤ RmaxDis (6e)

Et+1 = Et + ηPCht − PDist /η (6f)

Et ∈ [Emin, Emax] (6g)

The objective (6a) consists solely of minimising the real power
augmented Lagrangian terms. Here, the prosumer has a zero
cost function f(P,X) = 0, however they can include any
convex cost function such as a time of use tariffs (ToU). Note
that since our network is exposed to wholesale market prices,
our algorithm will end up reflecting in the LMPs λt; and
prosumers are charged

∑
t∈T λtPt.

Equation (6b) fixes the prosumer CPP Pt to be the sum
of the battery power, PV power after curtailment and house
background load. Constraint (6c) limits the curtailment to
the maximum available PV power. The battery charge and
discharge rates are restricted by (6d) and (6e), respectively.

2Note, that (3a) is a general model which can include other appliances such
as EV, heating ventilation and air conditioning (HVAC), and defferable loads.
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The SoC equation of the battery is given in (6f). Finally,
(6g) keeps the SoC of the battery within its limits. In this
explicit representation, the vector X is expanded into variables
for battery charging and discharging PCht and PDist , PV
curtailment PCurt , and battery SoC Et. The general constraint
g(P,X) ≤ 0 is replaced by (6b)–(6g).

The solution of the ADMM algorithm in (3a)–(3c) produces
the network operating state and prosumer DER schedules over
the horizon. However, when using the above deterministic
prosumer subproblem, there is no guarantee that prosumers
can stick to their schedules. Errors in load and PV forecasts
can force prosumers to deviate from their negotiated CPP,
which can cause network constraint violations. To overcome
this, we propose prosumers solve an affinely adjustable robust
optimization instead of this deterministic model, and then
apply the affine rules in real-time to hold the CPP steady at
the negotiated value.

IV. THE PROPOSED AARO APPROACH

Our approach integrates ideas from adjustable robust op-
timization [27] and protection functions [28] to obtain DER
schedules that adjust themselves in real-time, achieving the
negotiated CPP in practice. To clearly present our AARO
approach, we first present a general compact formulation in
Section IV-A; then we present an explicit extended formulation
for the problem (6a)–(6g) in Section IV-B.

A. The Compact AARO prosumer Model

The deterministic prosumer subproblem can be re-written
as:

P (k) := min
P,X,Z

L∗(P, P ′(k−1), λ(k−1)) (7a)

A · P + B ·X + C · Z +D · Ū + E ≤ 0 (7b)
where P is the negotiated active power between the prosumers
and the network; X represents the “here-and-now” variables
which are made before the realization of the uncertainty; Z
includes the variables that can take “wait-and-see” recourse
decisions; Ū represents a realization of the uncertain parame-
ters; and finally, A− E represent the certain parameters.

To obtain the AARO model from (7a)–(7b), we first model
the uncertain parameters Ū , in a polyhedral uncertainty set
(US) as follows:

US =
{
U ≥ 0; F · U ≤ G : ζ (dual variable)

}
(8)

The aim of the proposed AARO-ADMM coordination ap-
proach is to immunize prosumers’ decisions against any un-
certainty realization in US (8). Thus, (7b) can be written as:

∀ U ∈ US : A · P + B ·X + C · Z +D · U + E ≤ 0 (9)
To allow recourse actions, we substitute the vector Z with its
affine functions as:

Z = Zn + Za · U (10)
where Zn is the “here-and-now” part of Z which is made
before the realization of uncertainty while Za ·U adjusts itself
to varying data when the uncertain parameters are revealed.
Note that since all the constraints at the prosumer level, i.e.,

(7b), are linear, the relation between all the variables are
already affine. Therefore, affine representation of recourse
variables does not restrict our problem. Substituting (10) into
(9) leads to:

∀ U ∈ US : A·P+B·X+C·(Zn+Za·U)+D·U+E ≤ 0 (11)
Due to the requirement ∀ U ∈ US, (11) consists of an infinite
number of constraints. However, the “wait-and-see” recourse
term Za ·U in (11) can adjust itself to account for all scenarios
in US if it can compensate the most extreme cases. This can be
included to the model by using a max operator which enables
the adjustable terms to compensate the extreme scenarios of
US as follows:

A·P +B·X+max
U

{
C ·(Zn+Za ·U)+D·U

}
+E ≤ 0 (12)

The maximization term in (12) is analogous to the protection
functions introduced in [28] to find a robust solution immu-
nized against any realization of uncertain parameters belonging
to the uncertainty set. To solve (12) efficiently and in one go,
we use duality theory to eliminate the max operator, which
results in:

P (k) := min
P,X,Z,ζ

L∗(P, P ′(k−1), λ(k−1)) (13a)

A · P + B ·X + C · Zn +G · ζ + E ≤ 0 (13b)

F · ζ ≤ C · Za ·+D (13c)
The AARO prosumers subproblem (13a)–(13c) is a convex
quadratic problem with linear constraints, which can be easily
solved via available solvers, such as Gurobi.

B. The AARO Prosumer Model

In this section, we follow the steps (7)–(13) to derive an
AARO model for prosumer subproblem (6a)–(6g).

1) Uncertainty Characterization: As mentioned earlier,
we apply our proposed approach within a receding horizon
context. This enables us to use the latest (most accurate)
electricity prices, PV power and residential demand for every
negotiation. In addition to that we apply a robust treatment to
PV power and residential demand as their variation, along a
single horizon, can change the negotiated CPP and can lead to
grid infeasibility. Similar to (8), we capture these uncertainty
sets through a series of constraints, where PPVt and PLt are
variables representing the potential realizations:

PPVt = P̄PVt + PPV+
t − PPV−t (14a)

PLt = P̄Lt + PL+t − PL−t (14b)

0 ≤ PPV+
t ≤ P̂PV+

t : ζPV+
t (14c)

0 ≤ PPV−t ≤ P̂PV−t : ζPV−t (14d)

0 ≤ PL+t ≤ P̂L+t : ζL+t (14e)

0 ≤ PL−t ≤ P̂L−t : ζL−t (14f)
Inequalities (14c)–(14f) set the bounds on the solar and load
uncertainty sets. These bounds can be chosen wide enough to
compensate any uncertainty mismatches but in practice they
are limited according to the recourse resources (i.e., battery
capacity in our case).
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To control the robustness of the proposed AARO approach,
we use a parameter µ, called the degree of robustness:∑
t∈T

[(PPV+
t

P̂PV+
t

+
PPV−t

P̂PV−t

)
+
(PL+t
P̂L+t

+
PL−t

P̂L−t

)]
≤ µ : ω (15)

Setting µ to zero in (15) leads to the deterministic values
PPVt = P̄PVt and PLt = P̄Lt via (14a) and (14b). Larger val-
ues of µ increases the size of the uncertainty set and hence the
robustness of our AARO solution. For sufficiently large values,
for which all uncertain variables can vary (i.e., µ = 100%),
µ does not constrain the uncertainty set any more than (14c)–
(14f) already do. For later reference, we group the uncertain
variables into the tuple u := (PPV+

t , PPV−t , PL+t , PL−t ), and
the dual variables associated with constraints (14c)–(14f) and
(15) into Ω := (ζPV+

t , ζPV−t , ζL+t , ζL−t , ω).

2) Affine Functions: Our AARO approach takes into con-
sideration the uncertainty set, and optimizes the parameters
of affine functions used to control DER in real-time. These
functions take real-time realizations of the available solar and
load u as an input, and output battery charge and discharge
actions that keep the negotiated CPP constant:

PCht (u) := c0t + c1tP
PV+
t + c2tP

PV−
t

+ c3tP
L+
t + c4tP

L−
t (16a)

PDist (u) := d0t + d1tP
PV+
t + d2tP

PV−
t

+ d3tP
L+
t + d4tP

L−
t (16b)

where c stands for charge and d for discharge. The nonad-
justable terms c0t and d0t (similar to Zn in (10)) represent the
first stage “here-and-now” decisions, while the remaining ad-
justable terms c1−4t and d1−4t (similar to Za in (10)) represent
the second stage “wait-and-see” recourse decisions [27].

The use of affine functions for recourse and our character-
ization of the uncertainty set about the forecast, enables us
to compensate for fluctuations in multiple directions in the
uncertainty set. Previous robust works, e.g., [17] and [18],
are only able to account for uncertainty in available solar in
one direction (less solar than expected), relying on curtailment
alone for the other direction (excess solar). Our proposed
approach is able to use the battery to compensate in both
directions, leading to less wasted renewable energy.

3) AARO Subproblem Formulation: To obtain the proposed
AARO model, we take the deterministic prosumer subproblem
(6a)–(6g), and replace the forecasts and deterministic battery
decisions P̄PVt , P̄Lt , PCht and PDist with their uncertain and
affinely adjustable function equivalents PPVt , PLt , PCht (u)
and PDist (u) (similar to what we did in previous section to
obtain (11)). These affine functions need to be able to com-
pensate the most extreme uncertainty realizations within the
uncertainty set, which requires us to select their parameters so
that our constraints are feasible under all conditions. Similarly
to what we did in (12), we enforce this on a constraint-
by-constraint basis, as explained further below. The overall
objective is to optimize the CPP of the house, and affine
function coefficients c0−4t and d0−4t , so that the constraints

are feasible over all values u ∈ US in the uncertainty set:

min
P,X,c0−4,d0−4

∑
t∈T

[
λ
(k−1)
t (Pt − P ′(k−1)t )

+
ρk−1

2
(P

(k)
t − P ′(k−1)t )2

]
(17a)

min
u∈US

{
Pt − PLt − PCht (u) + PDist (u)

+ PPVt − PCurt

}
= 0 (17b)

max
u∈US

{
Pt − PLt − PCht (u) + PDist (u)

+ PPVt − PCurt

}
= 0 (17c)

max
u∈US

{
PCurt − PPVt

}
≤ 0 (17d)

max
u∈US

{
PCht (u)

}
≤ RmaxCh (17e)

max
u∈US

{
PDist (u)

}
≤ RmaxDis (17f)

Et+1 = Et + min
u∈US

{
ηPCht (u)− PDist (u)/η

}
(17g)

E′t+1 = Et + max
u∈US

{
ηPCht (u)− PDist (u)/η

}
(17h)

Et, E
′
t ∈ [Emin, Emax] (17i)

For the inequality constraints (6c)–(6e), the worst case is when
we maximize the left hand side (LHS) over the uncertainty
set, producing (17d)–(17f). We treat the equality constraints in
two different ways. We ensure the CPP constraint (6b) LHS
remains zero in both directions: a min (17b) and max (17c)
over the uncertainty set. This ensure the CPP remains fixed for
all values in the uncertainty set. For the battery SoC constraint
(6f), we allow the SoC to be a recourse variable. In this case
we need to make sure all potential SoC values remain within
the battery capacity. We apply a min (17g) and max (17h) to
the right hand side of this constraint over the uncertainty set,
and introduce a second recourse variable E′t+1 to represent
the SoC in the max case. The smaller recourse variable, Et+1

is used in the constraints for the next time step, while the
real SoC is used in every negotiation as we further discuss in
Section IV-C.

The optimization problem in (17a)–(17i), with embedded
max and mins over the uncertainty set, is not directly solvable
with standard optimization tools. We use the dual variables Ω
associated with constraints (14c)–(14f) and (15), and duality
theory to eliminate the embedded max and min terms. A
separate set of these dual variables needs to be introduced for
each embedded max and min. In the following, we reformulate
(17e), by first substituting in (16a), and then replacing the max
over the uncertainty set with its dual equivalent:

c0t +
(
P̂PV+
t ζPV+

t + µω
)

+
(
P̂PV−t ζPV−t + µω

)
+
(
P̂L+t ζL+t + µω

)
+
(
P̂L−t ζL−t + µω

)
≤ RmaxCh (18a)

ζPV+
t + ω/P̂PV+

t ≥ c1t , ζPV−t + ω/P̂PV−t ≥ c2t (18b)

ζL+t + ω/P̂L+t ≥ c3t , ζL−t + ω/P̂L−t ≥ c4t (18c)
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This equivalent set of linear constraints (µ and P̂ ∗t are param-
eters) are used in place of (17e). When the same approach is
applied to (17b)–(17d) and (17f)–(17h), we obtain a convex
quadratic program over linear constraints, forming our final
AARO subproblem, similar to (13a)–(13c) in the compact
representation. Note that DER schedules and affine control
parameters are obtained when our AARO-ADMM algorithm
(3a)–(3c) converges. Since both prosumers and network sub-
problems are convex, the convergence and thus feasibility of
our ADMM algorithm is guaranteed [4].

C. Receding Horizon Integration and Guarantees

While the AARO subproblem was presented in the previous
section for all t, when integrated within a receding horizon
context we only apply the AARO treatment for the first time
step (1 hour) and instead use the original deterministic model
with forecast values for the remaining 23 hours. This combi-
nation ensures that we can handle the fluctuations between
now and the next reoptimization, and that those decisions
are neither short-signed (as they would be if the rest of the
horizon was simply ignored), nor overly conservative (as they
would be if AARO was applied to the entire horizon). After
an hour has passed, as in a model-predictive control approach,
the real battery SoC is measured and used in optimizing the
next horizon (rather than the worst case value used in other
RO work [17]) Moreover, using the real SoC in every re-
optimization indirectly adds the cost of the recourse actions
to our problem.

Algorithm 1 together with Function AAROADMM show
the implementation of the proposed AARO-ADMM approach.
Through the coordination function AAROADMM, prosumers
obtain their DER schedules as well as their affine functions
while the network obtains its operating state for the hori-
zon T . Algorithm 1 calls the function AAROADMM on a
receding horizon basis to coordinate the prosumers and the
grid frequently. Given the affine functions and the uncertainty
realizations, prosumers take recourse actions every τ minutes
3 between the two negotiations. Finally, at the end of the first
time step of the horizon T , and just before the next negotiation,
SoC is updated and is used for the next negotiation.

A solution to the AARO subproblem guarantees for the
next hour a constant CPP equal to the negotiated value, as
long as the uncertainty realization is within the uncertainty
set. In some cases it might be desirable or necessary to
restrict the uncertainty set (used with the AARO approach)
to be smaller than the real-world uncertainty set. This could
be a compromise to make the decisions less conservative, a
way to guarantee feasible subproblems when the uncertainty
volatility is greater than the available recourse actions (e.g.,
battery capacity), or as a result of limited information. In such
cases the affine functions will still do their best effort to keep
the CPP constant, and so the fluctuations experienced at the
network level will be dampened.

Since our approach notably reduces the need for frequent
negotiations (here from every 5 minute to every hour), it is

3Here, wetake recourse actions every 5 minutes until the whole hour is
covered.

also more robust to communication failure than the standard
ADMM. However, in case the communication network fails
for over 1 hour, our approach can follow common practices
such as falling back on the previous actions or program the
EMS to keep their CPP close to zero to avoid any network
impacts.

Function AAROADMM
Input: A horizon T to optimize over
Output: DER schedules and affine functions for each

prosumer. The operating state for the network.
Initialize P ′(0), P (0), λ(0);
k ← 1;
do

P (k) ← prosumers solve AARO subproblems using
P ′(k−1), λ(k−1) and ρ(k) communicated from
network;
P ′(k) ← network solves multi-period OPF
subproblem using P (k) communicated from
prosumer, λ(k−1) and ρ(k);
λ(k) ← λ(k−1) + ρ(k)(P (k) − P ′(k));
R

(k)
p , R

(k)
d ← calculate residuals;

k ← k + 1;
while R(k−1)

p > ε or R(k−1)
d > ε;

Algorithm 1 Proposed AARO-ADMM approach
t← 1 loop

T ← {t, . . . , t− 1 + |T |}
Coordination← AAROADMM (T )
Recourse ← Prosumers affine functions, obtained from
AAROADMM (T )
foreach τ min period in first hour of T do

Reveal uncertainty and take Recourse action locally
for each prosumer

Update SOC of batteries at end of first hour in horizon
after applying recourse decisions
t← t+ 1

end;

V. NUMERICAL RESULTS

To illustrate the effectiveness of the proposed approach, we
use a radial 69-bus distribution network (data of which can
be found in [29]). The wholesale electricity prices for the
feeder import are taken from the Australian Electricity Market
Operator (AEMO) [30]. Prosumers connecting to the grid are
consuming 20 kWh per day on average and own a 5 kW
rooftop PV and a 10 kWh battery with charge and discharge
rates of 5kW and efficiency of 85%. We use anonymized solar
and demand data for 28 consumers in Tasmania, Australia,
provided by Reposit Power [31], and randomly assign this
data to 96 prosumers in our 69-bus network.

A. Approaches Compared

To assess the performance of AARO-ADMM, we study and
compare four different approaches as follows:



8

Deterministic: The grid components negotiate hourly over
a receding horizon through the standard multi-period ADMM
algorithm (3a)−(3c). This approach assumes that the forecast
of the uncertain parameters over the next hour is accurate
enough to enable all negotiations to be done deterministically.
However, if the uncertain parameters deviate notably between
negotiations, this approach cannot make any corrective action.

Reactive Controller: Similarly to the deterministic ap-
proach, the negotiations are on an hourly basis. However,
this approach additionally includes a droop reactive controller
which tries its best to avoid infeasibility by compensating for
uncertainty mismatches between negotiations. This approach
shares with AARO-ADMM the ability to apply corrective
actions to compensate for deviations from forecast in real-
time, however, since the controller’s decision have not been
obtained robustly, there is no guarantee that these corrective
actions succeed in delivering the negotiated CPP.

Proposed: This is the proposed AARO-ADMM approach.
Similarly to the deterministic and reactive controller ap-
proaches, the negotiations are done hourly. However, instead
of assuming an accurate forecast, the first time step of each
negotiation robustly optimizes affine functions using AARO.
Between negotiations, we take recourse decisions using these
affine functions every 5 min, and are guaranteed to success-
fully compensate for any mismatch within the uncertainty set.

Perfect: This approach is intended to provide a perfect
but unachievable baseline reflecting the ideal costs that could
be obtained by ADMM if there were no uncertainty, and if
computation and communication time were not an issue.

Due to the time granularity of our available data, both the
Reactive Controller and the Proposed approach, w.l.o.g., re-
optimize every hour and make recourse decisions every 5
minutes. However, operators can increase or decrease these
timing parameters to match the volatility in their network. Note
that since the recourse actions are made locally by the fast-
responding invertor-based technologies, both approaches can
act within much smaller time steps, e.g., in terms of seconds.

B. Convergence of the Proposed ADMM-AARO Approach

The average number of iterations as well as the CPU time
of the various approaches for a horizon are reported in Table I.
As can be seen from this table, the Deterministic and Reactive
Controller approaches have the same performance in terms of
computational effort. The reason is that the reactive controller
is independent of the ADMM algorithm and adds negligible
overhead. On the other hand, the Perfect approach uses 5
minute resolution data, 288 time steps per horizon, so it takes
much longer to converge on our test case. This incompati-
bility between computational requirements and available time
highlights the limitations of frequent negotiation with high
resolution discretisation of time. In contrast, the computation
time and the number of iterations of the Proposed AARO
approach is close to those of Deterministic and Reactive
Controller since all these use an hour time discretisation, and
only renegotiate a new horizon every hour. The convergence

of the primal and dual residuals for the Proposed approach is
shown in Fig. 2.

TABLE I: Average convergence and CPU time of different
cases per horizon.

Cases No. Iterations CPU time (mins)

Deterministic 62 3.4
Reactive controller 62 3.4

Proposed 77 4.2
Perfect 356 26.1
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Fig. 2: Primal and dual residuals convergence.

C. Detailed Behaviour of the Recourse Decisions

To clearly illustrate the behavior of the proposed AARO-
ADMM coordination approach, we consider a prosumer lo-
cated on bus 27. The load forecast along with the actual five-
minute load realization for hour 20 for this prosumer is shown
in Fig. 3. As can be seen from the figure, the load realization
during this peak hour significantly differs from the forecast.

Since the hourly forecast is used for the negotiations, these
discrepancies could negatively affect the grid and even lead
to constraint violations, especially in the case of correlated
uncertainties such as those due to solar. However, the Pro-
posed approach which uses the hourly forecast to robustly
negotiate on a receding horizon basis is capable of taking
“wait-and-see” recourse decisions through its adjustable terms
and compensate for the uncertainty mismatches. Fig. 3 also
shows the adjustable terms applied to the battery charge for
the mentioned prosumer and hour 20. The positive values in
this figure mean that the battery charges more than anticipated
while the negative values stand for charge reduction. As shown
in the figure, a proper recourse decision is made to compensate
for deviation from the forecast every five minutes during the
whole hour. As a result, the forecast deviations do not lead to
deviation from the negotiated CPP.

To further demonstrate the effectiveness of the Proposed
approach, we compare the voltage profile of bus 27 at hour 20
for the different approaches in Fig. 4. Voltages are considered
to be safe when they are in the interval [0.95, 1.05] p.u., and
as shown in Fig. 4, the lower limit is exceeded by some
of the approaches during this peak hour. In particular the
voltage for the Deterministic approach is too low since there is
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action on battery charge (hour 20).

no “wait-and-see” recourse decision. Whilst it improves over
Deterministic, even the Reactive Controller is unable to keep
the voltage within the safe limit during this peak hour. In
contrast, the voltage of the Proposed approach is always the
same as was negotiated. As the Perfect approach uses perfect
information instead of a forecast, it is able to keep the voltage
within the safe limit.
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To evaluate the performance and economic benefits of these
approaches on a longer time frame, we use five-minute solar
and demand data for our 28 prosumers over 30 days. Table II
reports their total and relative costs (wrt the Perfect approach)
as well as the the number of time steps during which they led
to constraint violations occurring. Comparing the results of
Table I, Fig. 4, and Table II leads to the following observations:

1) The Proposed approach is able to match the Perfect
case in ensuring grid constraints are met. As reported
in Table II, 6% better schedules are obtained when
perfect information is available, but this is not possible
in practice.

2) Although the Deterministic and Reactive Controller ap-
proaches require the least computational effort, they lead
to constraint violations as shown in Fig. 4 and Table II.
Moreover, despite, their lower “expected” cost reported
in Table II, they are likely to yield the most expensive
“real” costs, once expensive load shedding penalties are
factored in. In contrast, the Proposed approach has similar
computational performance as the Reactive controller
case but provides a principled way to automatically and
dynamically configure the control parameters, guarantee-
ing the absence of constraint violations within the limits
afforded by the uncertainty set.

TABLE II: Performance of different approaches on 30 days.

Cases Expected
Cost ($)

Rel. to
perfect % Const. dev.

Deterministic 152537 -20 447
Reactive
controller 161439 -15 128

Proposed 201012 +6 0
Perfect 190451 − 0

All in all, the proposed AARO-ADMM coordination ap-
proach obtains feasible solutions, at a cost just slightly higher
than the unachievable Perfect baseline, while enjoying the low
computation and communication burden of approaches that
use fewer renegotiations and low discretization of time. For
comparison, an online non-AARO approach that reoptimizes
every 5 minutes will take at least 12 times as much commu-
nication and computational effort, will not be able to ensure
constraints remain satisfied, and, based on our experiments, in
ideal conditions will only be able to improve the costs by at
most 6%, as bounded by our perfect approach. This added cost
would differ depending on how hard the constraints are, the
type of constraints (e.g., linear or non-linear) and whether or
not these constraints are binding. Network data (e.g., R and X,
thermal limits), prosumers DER and load profile, as well as the
uncertainty in the whole problem, can also increase/decrease
such cost.

D. A comparison between SP and AARO

Table III compares AARO with SP on the problem (3a)–
(3c). The results for SP are averaged over 50 runs, each of
which uses 20 scenarios to model prosumer load and PV
uncertainties. The table reports the cost and run time of each
approach (averaged over the 50 runs for SP), and the number
of runs during which SP was able to deliver the agreed CPP–
for AARO, the agreed CPP is always delivered.

TABLE III: SP and AARO comparison

SP AARO

Total cost ($) 5.373 5.372
Time (s) 2.98 0.74

CPP 46/50 agreed agreed

E. AARO-ADMM under PV penetration levels

PV penetration level (PPL) can affect the power system
differently based on battery availability. Therefore, for this
experiment, we developed two different cases as follows: PV)
in which prosumers are equipped with a PV panel but not
a battery; and PV+Batt) where prosumers are equipped with
a PV-battery pair. Table IV compares the results obtained by
the proposed coordinated approach (C) with those obtained
without coordination (NC):
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TABLE IV: AARO-ADMM under different PPL

Total Costs ($ 1k)
PPL PV PV+Batt
(%) C NC C NC

0 19.7 19.7 19.7 19.7
25 13.4 13.4 9.75 Inf.
50 7.178 Inf. 0.19 Inf.
75 1.25 Inf. -8.80 Inf.
100 -4.24 Inf. -16.96 Inf.

As shown in Table IV, without the proposed coordination,
the synchronized behaviour of the prosumers exceeds the
network capabilities, leading to infeasible results (shown by
Inf.) in most cases. On the contrary, the proposed approach
varies the LMPs to avoid such infeasibilities, i.e., the LMPs
will become negative at the point where the network is
operated at its edges to create incentive for prosumers to curtail
their PV power.

VI. CONCLUSION

We proposed AARO-ADMM, an affinely adjustable robust
DER coordination approach based on the distributed algorithm
ADMM. This approach addresses the privacy concerns of the
prosumers, handles network constraints and AC power flows,
and deals with uncertainty in PV generation and residential
demand. To do so, it iteratively coordinates DER on a receding
horizon basis and accounts for forecast deviations in the first
time step of each renegotiation using AARO optimization.
AARO-ADMM coordination negotiates “here-and-now” deci-
sions in longer time steps and compensates the uncertainty
mismatches using “wait-and-see” recourse decisions in shorter
steps until the next negotiation. We demonstrate that this
achieves an excellent compromise between computational cost
and solution quality, whilst guaranteeing the feasibility and
robustness of solutions.
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