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Network-Aware Coordination of Residential
Distributed Energy Resources

Paul Scott, Dan Gordon, Evan Franklin, Laura Jones, and Sylvie Thiébaux

Abstract—Rooftop solar and batteries, along with other distrib-
uted energy resources (DER), add a new demand-side flexibility,
which, when harnessed, will enable distribution operators to
more efficiently manage their constrained networks. This pa-
per presents network-aware coordination (NAC), an approach
for coordinating DER within unbalanced distribution network
constraints, which utilises the alternating direction method of
multipliers (ADMM) to solve a distributed receding-horizon OPF.
As far as we are aware, this paper is the first to report on the
practical implementation and performance of an ADMM-based
technique solving a significant network problem in live opera-
tions. We present real-world trial results of NAC coordinating 31
residential batteries on a constrained feeder within Tasmania’s
11 kV distribution network. The batteries are coordinated to
manage the network’s constraints during periods of high feeder
demand, decreasing the need for expensive conventional network
management, in this case a diesel generator. We achieve a
34% reduction in diesel over 7 peaks with 31 batteries capable
of meeting 10% of peak demand. Supplementary simulations
indicate the potential for a 74% diesel reduction if battery
numbers were increased to 100. We find that compared to
uncoordinated battery response, the NAC achieves 13% lower
total costs over the trial period.

Index Terms—Distributed OPF, ADMM, Demand Response,
DER, Prosumers, Batteries, Distribution Network, Live Trial

I. INTRODUCTION

Distributed energy resources (DER) and smart home en-
ergy management systems (EMSs) are transforming passive
consumers of electricity into flexible prosumers, who can
shape their energy use over time. This flexibility presents
distribution network service providers (DNSPs) with oppor-
tunities to improve wider network performance, and offers
a new cost-effective alternative to network augmentation and
overly restrictive connection rules. However, many of these
opportunities can only be realised if the actions of prosumers
are coordinated. In fact, without coordination prosumers may
cause more harm than good. The opportunities include:

1) successfully integrating large amounts of rooftop solar
and electric vehicles (EVs) into our networks — without
coordination, distribution networks may face increased
risk of being overloaded or having voltage limits violated;

2) the management of existing ongoing network issues,
shifting demand away from peak periods; and

3) demand-side participation in wholesale electricity mar-
kets in a way that respects the underlying limitations of
the distribution network.
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As a first step, the electricity sector is seeing a rise in virtual
power plants (VPPs)1 and aggregators, that provide DNSPs
with the opportunity to remotely control DER, in particular
batteries. This is a key service, but the question remains as
to how a DNSP should coordinate the DER on its network
to meet the goals of keeping the network within its operating
limits at low cost and high reliability.

The core goal of DER coordination can be effectively for-
mulated as a multi-period optimal power flow (OPF) problem.
Over the last 20 years, distributed optimisation, in particular
the alternating direction method of multipliers (ADMM) [1],
has been used to solve large-scale OPF problems [2], with
attention more recently turning to using ADMM for DER
coordination [3], [4]. Distributed optimisation has the potential
to scale to large numbers of consumers, decouple DER owners
and VPPs from the network operator, reduce the flow of private
information, and increase resiliency.

Even with these benefits, the underlying OPF problem
for coordinating DER is still very challenging to solve, and
distributed optimisation faces significant challenges in real-
world operations. These challenges include: uncertainty in net-
work models and customer loads; modelling real distribution
feeder components; communication overhead; and solving in
a timely, online manner. To date it has not been demonstrated
whether an ADMM-based approach can be designed and
implemented to overcome these real-world challenges, and
furthermore, produce results that show a tangible benefit over
competing approaches available to network operators.

We address this gap in the literature, by designing, im-
plementing and field trialling an ADMM-based approach
that we call network-aware coordination (NAC). The NAC
incorporates a unique combination of techniques that make it
work in a real setting: an online receding-horizon, unbalanced
3-phase network modelling and a simple decoupling of the
participants from the network. We use ADMM to solve a series
of distributed multi-period OPF problems online in a receding
horizon manner, guided by a series of network-level and
residential forecasts. The OPF contains a detailed unbalanced
3-phase network model, which can correctly account for the
per-phase contribution of DER. Finally, our decomposition
at only the connection between the houses and the network
strikes a practical balance between enabling parallelisation of
the ADMM subproblems, and limiting the number of ADMM
iterations required to converge — which is particularly import-
ant when real-world communications delays come into effect.

1Companies such as Reposit Power, Evergen, Tesla and Sonnen.
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Taken individually, these techniques have previously been
proposed for use with ADMM, but as far as we are aware,
they have not been integrated and experimented with in a
real setting. Our second contribution is to demonstrate and
evaluate our approach’s performance in real-world trials solv-
ing a real network problem. This provides important insights
into the feasibility and performance of these ADMM-based
approaches, that will help to guide their further development
and refinement. As far as we are aware, trial results have not
been presented before for online distributed OPF approaches
for coordinating residential DER.

The trials were conducted on an 11 kV feeder on Bruny
Island, Tasmania, which has a binding line capacity during
peak periods. The trials were run for 65 days, managing 16
peak periods with a combination of 31 residential battery
systems and a diesel generator. We quantify the diesel savings
for all 16 peaks, and provide more detailed counter-factual
simulations for 7 of the peaks to quantify the performance
relative to alternatives available to the DNSP.

The next section of this paper compares our approach to
existing literature. We then present the Bruny Island feeder
as a motivating network problem. The NAC approach is
presented in four stages: the receding horizon optimisation,
the multi-period unbalanced OPF solved for each horizon, the
ADMM decomposition of the OPF, and finally an overview
of the implementation. The remaining sections of the paper
explain the on-network trials and accompanying simulations,
and present the results and conclusions.

II. RELATED WORK

The NAC approach builds on prior work, including our
own [3], for solving OPF problems in a distributed manner us-
ing using ADMM. In general terms, the literature has varied in
the level of network model detail, whether it is a transmission
or distribution system, which network-connected devices are
coordinated, how they decompose the OPF problem, what ad-
ditional technologies the ADMM approach integrates with, and
the sophistication of the experiments. Motivations consist of
coordinating the actions between independent microgrids [5],
[6], decomposing the network to gain greater parallelisation of
subproblems [2], [7]–[9], providing participants with greater
agency and privacy [3], [4], and establishing complete de-
centralisation where messages only are passed between locally
connected network components [10], [11].

As stated in the introduction, while the individual techniques
that go into our NAC approach have been proposed before in
an ADMM context, it is their unique combination which has
made the NAC work in practical setting. In the following, we
explain where these techniques have been used individually in
related work, and the differences to our approach.

A receding horizon (also known as model predictive control)
was proposed for use with decentralised OPF in [3], [4]. Here
we produce a working implementation, along with online fore-
casts that enable us to assess its ability to manage uncertainty.

Phase unbalance can play a significant role in many dis-
tribution network problems, with individual customers and
their DER having single phase connections to the network [8].

ADMM has been used to solve OPF problems in an unbal-
anced setting in [8], [12], [13]. These focus on more conven-
tional single-period OPFs, while we solve a multi-period OPF
to schedule DER, which greatly increases the problem size.
In addition to this new use, the abstract multi-phase network
model we have developed presents a flexible framework for
constructing and solving 3-phase network problems. It enables
the network components such as open-delta transformers to
be straight-forwardly modelled, something that can require
significant effort in approaches based around an admittance
matrix [14]. The abstraction also makes it possible to apply
different power flow models, and the explicit representation of
connections makes it easy represent different decompositions.

Compared to most related work, in particular [3], [4], [10],
[11], we take a more reserved approach to decomposing the
problem in these trials by doing so only at the customer-
network boundaries. While more aggressive forms of network
decomposition can lead to greater parallelisation of the sub-
problems, they may also lead to an increase in the number
of iterations required before the problem converges. These
extra iterations can quickly become a significant bottleneck
when real-world communication delays and data limits are
taken into account. That said, our approach and model have
been designed to enable this extra level of decomposition if
it proves beneficial for particular distribution network feeders,
the trade-offs of which we expect to explore in the future [15].

As far as we are aware, this is the first work to demonstrate
online distributed OPF coordinating residential DER in real-
world trials. The literature review in [16] provides a good
overview of existing demand-side flexibility field studies, here
we highlight some of the more relevant studies.

The Olympic Peninsula Project [17] managed a variety of
DER including residential electric water heaters, municipal
water pumps and distributed generators. They had access to
approximately 75 kW for the price-responsive homes. The
problem they solve is a much simpler unit dispatch problem,
while we model power flows within the feeder itself, solving a
full OPF that accounts for network losses and phase contribu-
tions. Their trial had to use a virtual feeder to demonstrate
managing feeder capacity, because in reality the resources
were spread across several feeders. Our trial is over a real
feeder solving a real network constraint problem.

The Pacific Northwest Smart Grid Demonstration Pro-
ject [18] trialled a transactive energy system where energy and
prices were exchanged between 27 nodes at the transmission
level. Our trial instead focuses on network problems down at
the distribution level, where we solve an OPF problem using
distributed optimisation.

A different transactive energy approach, named Power-
Matcher, was trialled in the PowerMatching City project [19].
This approach uses agent bidding and market clearing tech-
niques, but again does not account for distribution power flows
and hence does not solve an OPF.

III. THE BRUNY ISLAND FEEDER

We present the Bruny Island feeder as a motivating example
of how DER coordination can provide an improved outcome,



3

compared to uncoordinated DER operation or conventional
constraint mitigation. Bruny Island is a small island off
the southern coast of Tasmania, Australia, with over 1000
dwellings. Electricity is supplied to the island from mainland
Tasmania via two undersea 11 kV cables. The southern cable,
shown in Figure 1, supplies over 800 customers via a long
rural feeder. It reaches its thermal limit during some peak
load events on the island, and voltages at the southern end
of the island can also drop to their lower limits. TasNetworks,
the DNSP responsible for the network, currently manages this
problem by locating and dispatching a portable 550 kVA diesel
generator unit on the island [20].

Diesel Generator

Open-Delta Voltage Regulator

Undersea Cable from Mainland Tasmania

North

Figure 1: Bruny Island southern MV feeder.

The southern feeder has around 337 buses (once reduced),
a peak load of around 1.3 MVA, and experiences significant
phase unbalance which varies with time, with up to around
15% difference in current between phases.

This work was conducted as part of the CONSORT2 project:
a research and industry collaboration that is trialling the use
of around 31 customer-owned battery storage systems to help
TasNetworks manage network problems on Bruny Island. The
NAC platform was developed and used to coordinate Reposit
Power3 EMS equipped battery systems in live trials throughout
2018 and 2019. There are two other key components to the
project not explored in this paper: the social science of this
new customer, network and technology relationship [21], and
the game theory and financial analysis of new ways to reward
customers for their DER support [22].

While the trials are restricted to this one network feeder,
the approach itself was designed to be able to expand beyond
Bruny Island, to other feeders with existing or emerging issues
associated with DER deployment, to coordinate additional
DER beyond batteries, and to enable new interactions in
wholesale markets. As such, many of the findings relating
to performance, modelling and practical implementation will
apply beyond Bruny Island.

IV. RECEDING HORIZON OPTIMISATION

Every 5 minutes the NAC solves (using ADMM) a multi-
period OPF problem. Each multi-period OPF makes up one
horizon in this receding horizon approach. The horizons cover
up to 24 hours4, each made up of 48 time steps. With a

2See our website for more project details: http://brunybatterytrial.org
3https://repositpower.com
4It is likely that, for this type of online use, shorter horizons could be used

without much performance impact, e.g., [23] found 16 hours was sufficient.

reoptimisation every 5 minutes, only the actions in the first
time step of each horizon get acted on — the remaining steps
are there to ensure that the decisions are not short-sighted.

Figure 2 illustrates seven consecutive horizons, with time
steps aligned to the half-hour. This half-hour alignment is used
to simplify integration with forecasting and to align to TOU
tariffs. The first step can vary in duration between 5 and 30
minutes, depending on where the horizon lands on the clock,
but it is always only ever acted on for 5 minutes.

1 2 3 48
00:00 00:30 01:00 01:30 23:30 24:00 24:30

1 2 3 48

...

Figure 2: Seven consecutive horizons (top to bottom), starting from
midnight, each made up of 48 time steps.

The optimisation for a horizon is initiated 4 minutes 15
seconds prior to the horizon start, which is the time available
to find a solution. This leaves enough time (45 sec) for the
forecasters to collect their latest inputs and update.

V. OPTIMAL POWER FLOW

Here, we describe the multi-period unbalanced OPF prob-
lem that is solved within each horizon. We begin by formulat-
ing an abstract model of a multi-phase network, defining how
each of the components connect. As explained in Section II,
this model is designed to be flexible so that new components
can be easily integrated, and to make the decomposition
simpler in Section VI. The OPF problem for this network
over a single horizon is then presented, followed by definitions
for the network elements used for the Bruny Island network,
including lines, generators and houses with battery storage.

A. Abstract Multi-Phase Network Model

A network is a tuple (N,E, T, c, a), where N =
{n1, . . . , n|N |} is a set of single-phase nodes, E =
{e1, . . . , e|E|} is a set of elements (lines, generators, etc.),
and T = {τ1, . . . , τ|T |} is a set of terminals (multi-phase
points of connection for an element). The connection function
c : T −→ N<N connects each terminal to a sequence of nodes,
where the notation N<N represents the set of finite sequences
with entries from the set N . Finally, the association function
a : E −→ T<N associates an element with a sequence of
terminals (e.g., one for load, two for line).

Figure 3 shows an example network with two single-
phase loads, one supplied by a delta-wye transformer with
neutral, and the other from a 2-wire spur. An approximate
single line diagram is shown along with our explicit network
representation that models the phases as separate nodes and
sequences the connections between terminals (solid squares)
and nodes (solid circles).

We use the shorthand cτ := c(τ) for terminal τ , and further
cτ,k gives k-th connected node for the terminal (the k-th entry
in the sequence c(τ)).

http://brunybatterytrial.org
https://repositpower.com
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Figure 3: Left: single line diagram. Right: our explicit representation
with nodes (solid circles), elements, terminals (solid squares) and
ordered connections for each terminal (numbered dashed lines).

B. The Optimal Power Flow Problem

At the network level there are two main types of variables:
potential variables and flow variables. Each node n ∈ N has a
potential variable vn ∈ V . The terminals T are partitioned into
three types: line current terminals TI , line power terminals TL,
and line-to-line power terminals TLL. Each terminal τ has one
or more flow variables, for k, k′ ∈ {1, . . . , |c(τ)|}:
• iτ,k ∈ I if τ ∈ TI
• sL,τ,k ∈ S if τ ∈ TL
• sLL,τ,k,k′ ∈ S if τ ∈ TLL
In order to apply a flow conservation constraint, i.e. Kirch-

hoff’s junction law (KJL), at each node we need to convert the
different types of terminal variables into compatible quantities.
We choose to convert them all to equivalent line currents by
introducing new auxiliary current variables that represent the
line current, line power and line-to-line power contributions.
For all nodes n,m ∈ N :

in =
∑

(τ,k) | τ∈TI ,cτ,k=n

iτ,k (1)

i∗L,nvn =
∑

(τ,k) | τ∈TL,cτ,k=n

sL,τ,k (2)

i∗LL,n,m(vn − vm) =
∑

(τ,k,k′) | τ∈TLL,
cτ,k=n,cτ,k′=m

sLL,τ,k,k′ (3)

These are then summed to enforce KJL:

in + iL,n +
∑
m∈N

(iLL,n,m − iLL,m,n) = 0 (4)

Each element e ∈ E has objective and constraint functions:

fe : Xe −→ R, ge : Xe −→ Rdg,e (5)

were Xe = V dV,e × IdI,e × SdS,e × Ye captures the variables
of the element, consisting of the potential variables of nodes
it connects to, its terminal flow variables and some auxiliary
variables internal to the element Ye. The d∗,e ∈ N parameters
capture the required variable and constraint dimensions for the
element. The function ge represents any hard constraints for
element e, which are satisfied when ge(xe) ≤ 0 (using an
element-wise inequality). This is a general form for represent-
ing the constraints of elements — in the sections that follow
we write the constraints in more a readable form.

The optimisation problem for minimising the sum of ele-
ment objective functions (maximising social welfare) is:

min
vn∀n ∈ N
xe∀e ∈ E

∑
e∈E

fe(xe) (6)

s.t. ge(xe) ≤ 0 ∀e ∈ E (7)
(1)− (4)

C. Element Models

For the trials conducted in this paper, the potential and
flow variables are vectors of complex numbers that repres-
ent the network voltage and current phasors, and complex
power in rectangular form over a horizon of |H| time steps:
V, I, S ∈ C|H|. For example, vn,t is the voltage of node n at
time step t ∈ H = {1, . . . , |H|}. The vector δ ∈ R|H|>0 provides
the durations of the time steps. Here we only need elements
with one or two terminals, so we simplify the notation by
dropping the terminal index for an element’s first terminal,
and using a prime to distinguish its second: e.g., ik,t := iτ,k,t
and i′k,t := iτ ′,k,t, where τ, τ ′ = a(e). Similarly, when the
element needs to access the voltages its terminals connect to
we use the notation: vk,t := vcτ,k,t and v′k,t := vcτ′,k,t.

1) Bus: Bus elements can be used to conveniently group
together nodes that are co-located, or to impose appropriate
line-neutral or line-line voltage constraints. The flow variables
for a bus are zero. For a 3-phase bus with line-line voltage
lower and upper bounds

¯
v, v̄ ∈ R≥0, the constraints are:

¯
v2 ≤ |vk1,t − vk2,t|2 ≤ v̄2 ∀(k1, k2) ∈

(
{1, 2, 3}

2

)
(8)

ik,t = 0 ∀k ∈ {1, 2, 3} (9)

Note that the voltage lower bound constraints are non-convex.
2) Line: An α-phase line has two current terminals which

each connect α nodes at either end. We use a 2α × 2α
nodal admittance matrix Y ∈ C2α×2α to model each line.
By putting the terminal voltages and currents into vectors
at each time step, vt := [v1,t, . . . , vα,t, v

′
1,t, . . . , v

′
α,t] and

it := [i1,t, . . . , iα,t, i
′
1,t, . . . , i

′
α,t], the line constraint is simply:

it = Y vt (10)

A thermal limit ı̄ ∈ R>0 is imposed on each line current:
|ik,t|2 ≤ ı̄2 ∀k ∈ {1, . . . , α}.

3) Feeder: A feeder has a single current terminal with
3-phases that represents the zone substation at the root of
the feeder. We assume that there is a voltage regulator that
does a perfect job keeping a steady voltage v̂ ∈ C3 over
time (perfect voltage source). The constraints simply fix the
connected nodes to these voltages, and leave the terminal
currents free to take on any value: vk,t = v̂k ∀k ∈ {1, 2, 3}.

4) Open-Delta Voltage Regulator: An open-delta voltage
regulator consists of the open-delta transformer shown in
Figure 4 and a tap controller that maintains the secondary
winding voltages. It has two current terminals.

We relax the regulator model by treating the taps as con-
tinuously adjustable between their limits. This is a reasonable
approximation for our feeder, since each tap position translates
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Figure 4: Open-delta transformer with two independent taps a and b.
The primary side (first terminal) is on the left.

to a ∼ 0.6% voltage change. The ratios for the taps a and b
are modelled by the variables ra,t, rb,t ∈ [

¯
r, r̄]. We assume

we have direct control over the tap ratios rather than relying
on the regulator’s inbuilt controller, and we assume an ideal
transformer model. Even with the stated simplifications, the
equations remain non-convex:

v2,t = v′2,t (11)

(v1,t − v2,t) = ra,t(v
′
1,t − v′2,t) (12)

(v3,t − v2,t) = rb,t(v
′
3,t − v′2,t) (13)

i1,t + i2,t + i3,t + i′4,t + i′5,t + i′6,t = 0 (14)

i′1,t = −ra,ti1,t, i′3,t = −rb,ti3,t (15)

5) Fixed Loads: These loads have a single terminal of type
line current, line power or line-to-line power depending on the
desired model. These terminal variables are fixed to a constant
value for each time step to match the desired load. In this work
we only require line-to-line fixed power loads.

6) Generator: We make use of a simple delta connected
generator model that injects an equal amount of power into
each phase. It has a single line-to-line power terminal. The
generator can have a running cost and a minimum operating
point (although we relax this in our experiments). For a 3-
phase generator:

pt + iqt = s1,2,t = s2,3,t = s3,1,t (16)

¯
pzt ≤ pt ≤ p̄zt,

¯
qzt ≤ qt ≤ q̄zt, zt ∈ {0, 1} (17)

f(. . .) =
∑
t∈H

(
1

2
Ψt(3pt)

2
+ 3ψtpt

)
δt (18)

where we have modelled the generators costs with a quadratic
where Ψt ∈ R≥0 and ψt ∈ R are prices (e.g., with units
$/kW/kWh and $/kWh respectively).

7) House: A house has a single line or line-to-line power
terminal. In this work we connect them line-to-line to the MV
network. As we do not have reliable LV network data, this
line-to-line connection accounts for their influence on the MV
network through a delta-wye distribution transformer.

A house is modelled as having a fixed background power
consumption combined with a number of DER. In this work
each house has a battery and solar PV system. The specifics
of the household battery optimisation are handled by Reposit
Power’s EMS, which has some performance and behavioural
tweaks for the benefit of customers. We do not present the full
details, but instead a representative model that closely captures
the key battery optimisation behaviour.

Here we assume a single phase house (line-to-line between
two nodes) with a standalone battery inverter (not a hybrid
inverter). The house has an uncontrollable background power
consumption sback,t ∈ C and battery power sbatt,t ∈ C.

The single line-to-line terminal power / house connection
point power is: s1,2,t = sback,t+sbatt,t We impose a apparent
power limit on the battery and inverter system: |sbatt,t|2 ≤
s̄2
batt. As is common, we relax the battery real power into

separate charge and discharge components:

sbatt,t = (pc,t − pd,t) + iqbatt,t (19)

A simple linear relation for the battery state of charge SOCt ∈
[0, SOC] where we have charge and discharge efficiencies
ηc, ηd ∈ (0, 1] is then:

SOCt = SOCt−1 + (ηcpc,t − pd,t/ηd)δt (20)

The objective function of the house consists of the retailer
tariffs applied to their connection point power. Typically,
different tariffs are offered for energy consumption and en-
ergy export, and only active power is typically metered. For
pt + iqt = s1,2,t, and letting γ+

t , γ−t be the consumption and
feed-in tariffs, the house’s objective function is:

f(. . .) =
∑
t∈H

{
γ+
t ptδt if pt ≥ 0

γ−t ptδt if pt < 0
(21)

This is relaxed under the condition that γ+
t ≥ γ−t by introdu-

cing auxiliary variable βt:

f(. . .) =
∑
t∈H

βtδt, βt ≥ γ+
t pt, βt ≥ γ−t pt (22)

D. Model Summary

To summarise, the combined objective function consists of
the diesel generator operating costs (18) and the sum of the
participating household retail tariff costs (22). The model has
non-convex constraints in the KJL power relations (2), (3),
which occur for all nodes that connect to fixed load and house
network elements. The open-delta voltage regulator has non-
convex constraints where the tap ratios multiply the voltages
and currents in (12), (13), (15). The lower voltage limit in (8)
is a final source of non-convexity. Section VII discusses the
implications of these non-convexities.

VI. ADMM DECOMPOSITION

This section provides a high-level overview of the ADMM
algorithm which is used to decompose and solve the OPF
problem for each horizon (for further details of the algorithm
and its application to OPF see [1] and [3]).

We decompose the problem at the interface between the
participating households and the network. The flow variables
associated with a houses single power terminal are the only
common variables between the house and the rest of the
network. The general approach in ADMM is to duplicate such
common variables, keeping one for the network st = pt + iqt,
and one for the house ŝt = p̂t+ iq̂t, and to link them together
with a constraint st = ŝt. An augmented Lagrangian relaxation
is taken of this constraint:

L =
∑
t∈T

(
1

2
ρ(pt − p̂t)2

+
1

2
ρ(qt − q̂t)2

+λp,t(pt − p̂t) + λq,t(qt − q̂t)) (23)
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where the λ terms are dual variables / Lagrangian multipliers
for the constraint, and ρ is a penalty parameter. The dual
variables are locational marginal prices (LMPs) for power
with units $/kW and $/kVar for real and reactive power,
which incentivise the house EMS to act in a way to support
the network when it becomes constrained. This augmented
Lagrangian gets added to the objective function for each
house, therefore the EMSs can account for these side-by-
side with existing time-of-use (TOU) and feed-in tariff (FIT)
arrangements they have with their retailer. As described in [24]
and [25], these distribution-level LMPs can form the basis of a
market for managing network constraints (we use them within
a receding horizon rather than day-ahead market).

The ADMM algorithm has three stages per iteration k:
1) Obtain skt by minimising over network variables, using

λk−1
t and holding ŝt constant at ŝk−1

t .
2) Obtain ŝkt by minimising over house variables, using

λk−1
t and holding st constant at skt .

3) Update the dual variables: e.g., λkp,t = λk−1
p,t +ρ(pkt − p̂kt )

The implication is that we can decompose our large OPF
into much smaller subproblems that are solved iteratively to
come to an overall solution. In the first stage of the algorithm,
the network subproblem only needs to know the terminal
power of the houses from the previous iteration — it does not
need to know any of the underlying household constraints,
auxiliary variables or parameters. Furthermore, as all of the
time coupling constraints (those associated with the battery
state of charge) only appear in house subproblems, the network
subproblem can be split up into many smaller subproblems and
solved independently for each time step, i.e. by solving |H|
unbalanced 3-phase OPF problems in parallel.

For the second stage, each house can solve its own small
subproblem independent of the network constraints and all
other houses. In addition to enabling greater parallelisation,
this decomposition presents a clear separation of responsibility
and ownership between the VPPs and DNSPs, and enables
multiple, potentially competing, VPPs to operate over the same
network at the same time.

VII. NAC IMPLEMENTATION

Our NAC implementation has three main modules: a Dealer,
Workers (network solvers), and Remotes (EMSs or VPPs).
The Dealer keeps track of time and initiates the optimisation
for a horizon by sending jobs to Workers, which solve the
distribution network part of the problem, and to Remotes,
which solve the EMS part of the problem. The Dealer updates
prices and checks for convergence of the ADMM algorithm.

The flow of data between these modules is shown in
Figure 5. A Redis5 store is used for all network, forecast and
participant connection data. Redis is also used as an inter-
process communication layer, with the Dealer pushing jobs
onto a queue, and Workers popping these jobs. This enables
the system to easily scale to multiple CPU cores (simply spawn
more workers) and across multiple machines. HTTP is used
for asynchronously communicating with remotes, using JSON
payloads to initiate a Remote computation.

5https://redis.io

Workers Dealer Remotes

Network
Model

Live Data
/ Forecasts

Aggregators / VPPsNAC

List of
Remotes

Redis
Store HTTP

Figure 5: Structure of the NAC implementation and interaction.

The Workers use the Madopt6 interface to Ipopt [26] to
model and solve the NLP network problems, in these exper-
iments using the HSL [27] ma27 library as a backend. As
discussed in Section V-D, the underlying network problem for
the Workers is non-convex. We use Ipopt directly on this non-
convex problem, which will return the first locally optimal
solution it finds. In the single phase case, previous work
has shown experimentally that often these local solutions are
within 1% [3], [7] of the global optimal. We leave investigating
the global optimality gap for the 3-phase unbalanced case as a
future task — this will require developing tight convex relax-
ations for the unbalanced case with an open-delta transformer.

A. Forecasters

Online forecasts are critical for the receding horizon ap-
proach. We split the forecast uncertainty into two sources:
that from network customers that do and do not participate
in NAC. The participant Reposit Power EMSs have their own
personalised load and solar PV forecasts. The non-participant
forecast is made at an aggregate feeder level, and then pro-
portionally allocated as loads at the distribution transformers.

Existing feeder-level load forecasting options, such as those
currently built into a DNSP’s SCADA or DMS, were not
suitable for our online receding-horizon forecasting needs.
They were either designed for much larger network sections or
rigid day-ahead usage. We decided to train our own forecasters
for the trial, with a simple linear regression model as a
first attempt. An improved transformer neural network (TNN)
forecaster was developed, which we describe in [28]. The
forecaster takes as input recent recloser load readings and
air temperatures from a weather station on Bruny Island.
The output is the island load at half-hourly resolution over
a forward horizon of 24 hours.

B. Infrastructure

The Workers, Dealer and forecaster were running on a
server with two 6 core Intel Xeon CPUs (L5640 @ 2.27 GHz,
circa 2010). This server communicates with Reposit Power
who run a (lightly utilised) cloud 2-node cluster (each with 2
cores, 4 GB memory) to solve the Remote subproblems. Once
the negotiations for a horizon have converged, the decisions are
sent out to participant EMSs where they are then acted on. To
save on cloud costs, the Remote subproblems could instead be
solved directly by the EMSs on participant premises. However,
due to unreliable and slow internet connectivity on the island,
this approach was deemed too much risk for the project.

6https://github.com/stanle/madopt

https://redis.io
https://github.com/stanle/madopt
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VIII. TRIALS AND SIMULATIONS

A. Trial Details

To date, the NAC has been trialled in live operations for
a total of 65 days. These cover 5 trial periods where peaks
are known to have historically occurred [20]. The trial periods
and the number of peaks they experienced that required either
diesel or battery support are:
• March 29 to April 3 2018 (6 peaks)
• April 13 to May 3 2018 (0 peaks)
• June 8 to June 12 2018 (5 peaks)
• July 13 to July 23 2018 (5 peaks)
• December 19 to January 9 2019 (0 peaks)

Only those particular days where peaks occurred, and hence
required DER coordination, are of interest here.

Various improvements were made to the NAC implementa-
tion between the March and June trials. Further improvements
were made on July 16 when the forecaster was switched from
the linear regression to the TNN approach. For these reasons,
the more detailed analysis focuses on the results in the later
trial periods: 3.5 days covering 5 peaks on June 8–11 and 2
days covering 2 peaks on July 20–21. The NAC diesel savings
are analysed for the other 9 peaks in Section IX-A.

During the trials we elected to reward participants for their
network support at a generous fixed rate of $1/kWh on the
amount their battery was discharged during peak events. The
customer payments could be quite uncertain if directly exposed
to NAC LMPs, as explored in Section IX-B, and hence it was
deemed too high risk to do so for the trials to date without
first gaining a better understanding of their volatity.

Nevertheless, while this might have social and economic
implications, it does not impact the results presented in this
paper. The EMSs were still responding correctly to the LMPs
in the background, the participants just get rewarded with more
generous payments after the event.

B. Simulation and Model Details

There were relatively few peaks available for live trials, and
the network conditions during these peaks were uncontrollable
and varied. To provide crucial counter-factual comparisons to
the status quo and alternative battery coordination techniques,
we therefore supplemented the live results with a number of
simulations:

1) Simulation replaying NAC (NAC Sim)
2) NAC with perfect island load forecast (NAC Perf)
3) Manually scheduled dispatch strategy (Manual)
4) Independent local battery optimisation (Indep)
5) Participants without batteries (No Batts)
6) NAC with 100 batteries (NAC 100)
Simulations were performed using the open source Smart-

GridToolbox simulation library7. In this section we discuss
some of the points of difference between the simulation and
the real-world.

The connection phasing of some participants was unknown,
so had to be randomly allocated. We estimage around 75%

7https://github.com/NICTA/SmartGridToolbox

of them to be correct in the simulation. The simulation does
not replay any of the communications problems that were
experienced during the trials. During the live trials, several of
the participants had communications outages at various times.

In the NAC, the zone substation was modelled as a constant
voltage source (feeder element), and part of the network on
mainland Tasmania between the zone substation and undersea
cable was removed. Simulations over the July 20–21 period
show that this simplification results in a maximum relative
error in the current through the undersea cable of 2.6%, or
less than 1 A; most of the time, the error is substantially
smaller. This, along with further network reductions reduced
the number of feeder buses from 517 to 337.

These model inaccuracies and the large load ramp rates
around the peak periods present a challenge to the receding-
horizon OPF approach which only makes a new decision every
5 minutes (the cable current can change by up to 6 A in 5
minutes). Our approach has been to set a more conservative
cable line limit in the NAC model, which means that it might
at times provide more support than is strictly required. As
discussed below, the diesel is typically started when the cable
current reaches 64 A, while for most of our trials we have
used a 57 A limit in the NAC model (recent improvements
have allowed us to increase it to 60 A).

A human operator manually controls the diesel generator
by reacting to real-time SCADA alarms that trigger on the
cable current. We approximately model this in the simulations,
using a “human-in-the-loop” (HITL) controller that mimics
the response a human operator could achieve if they were
paying attention to the alarms and reactively adjusting the
diesel output to prevent a cable line limit violation.

Briefly, the simulated HITL controller responds to a
smoothed version Is of the measured cable line current Ic
(maximum across phases), specified by the following equation
at the j-th time step:

Is,j = Ic,j

(
1− e−∆t/τ

)
+ Is,j−1e

−∆t/τ (24)

where ∆t is the time step and τ is a smoothing time constant.
Sufficient power is then injected at the diesel generator so as
to maintain this smoothed current at or below the cable limit,
while enforcing a lower bound on the power that the diesel
generator can supply. For the simulations in this paper, we
used τ = 9 minutes, a minimum diesel power of 100 kW
and a cable limit of 64 A, which were tuned to match good
historical operator responses.

IX. RESULTS

Figure 6 shows the aggregate battery and diesel response
for 5 trial days (June 9–11 and July 20–21), alongside the
participating house load and solar output. The shaded green
regions indicate the presence of non-zero NAC LMPs, i.e.
times where the NAC believes the undersea cable constraint
is binding. For most peak periods both battery and diesel
response is required, except the evening peak on July 21 where
the batteries managed the cable constraint on their own. The
NAC conservatively dispatches the batteries a small amount

https://github.com/NICTA/SmartGridToolbox
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on the morning of the two July days. The counter-factual sim-
ulations suggest that without this support the cable constraint
would have been near its limit, but not quite violated. We
therefore do not label these periods as peaks, but still count
the cost of these conservative NAC actions.

The first simulation (NAC Sim) was run as a point of
reference between the real-world trials and the simulations.
It replays the measured conditions from the trial but with
simulated network, EMS actions, and HITL controller. Its
results are overlaid on Figure 6 for comparison to the trial.

Over both trial periods the mean absolute error (MAE)
between the real and simulated aggregate battery power is 7.8
kW. The real human operated diesel control and our HITL
controller have a MAE of 32.7 kW if we focus just on the 6
peak periods where the diesel ran. This is not surprising, as
a human operator in the control room has many other tasks
to take care of, so cannot always devote as much attention to
managing the diesel response as our HITL controller.

This is most observable in the July 20 evening peak in
Figure 6. The operator dispatched the diesel more than was
necessary to meet the cable constraint during this peak, and
left the diesel running for more than an hour after the peak
had subsided. As such, the diesel usage was two times more
than necessary when compared to the HITL controller. This
illustrates that more automated control of the diesel generator
on its own could achieve significant cost savings.

A. Costs

Figure 7 shows the costs that the NAC achieved in reality
alongside the simulations. These are split up into the diesel
component (on top) and aggregate participant component,
which is mostly related to their retail tariffs. The overall ob-
jective is to minimise the sum of these two. Figure 8 provides
June 10 as an example comparison between the aggregate
battery and diesel response for the different approaches (the
power direction follows load convention). This day has both
morning (0600) and evening (1800) peaks.

The actual trial (NAC) has a 7% higher cost relative to the
simulation (NAC Sim). This is a result of the diesel generator
being left on for the July peak discussed in the previous section
(an extra $73), and once accounted for the simulation agrees
with the live trial total costs to within 0.7%.

Understandably, the case where there are no batteries in
the system (No Batts) has the largest cost. When batteries are
added without coordination (Indep), the participants obtain a
17% benefit (by locally minimising their costs) and incident-
ally also reduce diesel usage. Figure 8 shows the batteries do
not act for the morning peak in the Indep case (no precharging
of the battery) but they do contribute a small amount to
relieving the evening peak.

The Manual dispatch is a hand-tuned schedule for the
batteries. The rule, aggregate dispatch of 88 kW from 08:00
to 10:50 and 53 kW from 16:30 to 21:15 on each day,
was developed based on historical data on the peak timings,
intensity and durations. It achieves a good reduction in diesel
usage, but it over-utilises the batteries and hence significantly
increases participant costs.

The NAC achieves a 13% reduction in costs compared to
the uncoordinated Indep case. The participants incur a slightly
higher cost so that the diesel can be significantly reduced. As
such we would expect the network to use some of these savings
to compensate the participants for their assistance. The NAC
achieves a 7.5% improvement over the Manual schedule.

The NAC Perf case represents the response that could
be achieved with perfect non-participant load forecasts. It
indicates there is room for an up to 3.5% improvement with a
better forecast. The morning peak in Figure 8 demonstrates
the impact of a forecast that underestimates the upcoming
peak, which leads to not enough battery precharging. While
the receding horizon approach enables the NAC to correct as it
gets closer to the peak, it still only manages half the dispatch
of the perfect forecast during the peak.

The 31 batteries in the trial, around 4% of all feeder
customers, have the capacity to meet 10% of peak feeder
demand, which managed to achieve a 34% reduction in diesel
use compared to the case with no batteries. To see how
this changes with the number of batteries, a NAC simulation
with 100 batteries was conducted, which reduced the diesel
consumption usage by 74%.

Using the same counter-factual analysis, the NAC was found
to have achieved a 30% reduction in diesel for the 6 peaks over
the March 29 trial period (when the approach was less refined)
and 60% reduction in diesel over 3 peaks from July 13. The 3
peaks in this July period are relatively small compared to other
peaks, which is why it achieves a higher percentage reduction.

B. Prices

Figure 9 shows histogram plots for the non-zero real-power
NAC LMPs experienced by each participant in the June period.
The width of the line indicates the relative frequency at which
the given customer experienced the price on the y-axis. The
customers are first sorted based on their network phasing (5
RW, 7 BR, 19 WB) and are then further sorted within these
groups based on their distance from the zone substation. There
is a clear pattern of higher prices on the most common phase
(WB), which typically experiences the most load. There is
also a pattern of higher prices offered at the end of the feeder,
where a reduction in load can avoid more network losses.

As discussed in Section VIII-A, customers were in reality
paid at a fixed rate of $1/kWh for the amount their battery
was discharged. If they had instead been paid according to the
LMPs (applied to the house connection point power rather than
just battery power), the mean payment to customers during the
June trial would have been $3.88. This corresponds to a total
net payment of $120 from the network to customers, which
in aggregate is more than enough to compensate customers
for their increased tariff-related costs incurred by providing
network support. The maximum payment to a customer would
have been $14.6, and the minimum payment -$8.1 (network
charges customer due to large local demand). In fact, 9 of
the 31 customers would have overall had to pay the network
if LMPs were enforced, which could deter participation in a
voluntary scheme, in the absence of additional incentives.
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Figure 6: Battery and diesel response for five days (June 9–11 top, July 20–21 bottom) comparing the actual and simulated values.
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C. Computational Performance

ADMM was used with a penalty of ρ = 0.1 $/kVA2. Two
sets of tolerances were selected, an acceptable tolerance of 2×
10−3 for the primal and dual residuals, and a desired tolerance
of 5 × 10−4. The negotiation continues until it reaches the
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Figure 9: Histogram of real power LMPs for each customer.

desired tolerance. If time runs out, then the EMSs will only
act if an iteration met the acceptable tolerance.

For the June trial the algorithm reached the desired tolerance
in 960 out of 982 horizons, with the remaining 22 solved to
acceptable values. The worst case real power disagreement (or
residual) between the network and customers was 8 W across
all customers, time steps and horizons that met the desired
tolerance. Over the remaining 22 “acceptable” horizons the
worst case was 80 W, and the mean was less than 1 W.

Over all horizons the mean number of iterations was 18.7
with a standard deviation of 15, and the maximum was 64.
The average time per iteration was approximately 4 seconds,
while the average solve time of each Worker job was 316
ms. With 12 Workers running in parallel, and 48 problems to
solve per iteration this accounts for around 1.3 s of the 4 s
iteration time, while the other 2.7 s is taken up by the Dealer
and Remote computations and communications.

The equivalent simulations (NAC Sim) produced somewhat
better convergence for the June period, with a mean of
13.6 iterations per horizon. During the live trials, an EMS’s
predictions could be updated mid-negotiation, slowing down
convergence, while the simulation presents a more stable
environment. In the 100 battery experiments the mean number
of iterations is actually slightly better at 13.0. The mean
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Worker solve time goes up slightly to 357 ms per job, but much
less than the threefold increase in the number of participating
customers. Worker tests with 250 and 500 battery instances
have produced mean solve times of 390 ms and 430 ms.

After factoring in the utilisation of the infrastructure, the
extra computational and communications costs required to run
the NAC are estimated to be $4.5 per day where support is
required. This reduces the benefit of the NAC over the Manual
dispatch to 5.6%.

X. CONCLUSION

We have presented NAC for coordinating residential DER
on a distribution feeder. The online receding horizon approach
and decomposition has enabled distributed multi-period OPF
to be solved in a practical setting. We have demonstrated the
ability of such an approach to reduce diesel consumption on
a real-world trial, and outperform alternatives, advancing the
technology closer to the point where it presents a credible
tool for DNSPs to manage their networks in a future with
high levels of renewables and other DER.

Future experiments will focus on scaling to thousands of
participants, enabling the reactive power response capabilities,
exploring the use of soft and hard voltage constraints, and
establishing the value of LV network modelling.

Uncertainty remains a big challenge to the reliability of
these techniques. This can be tackled this from two different
angles: improved general-purpose load and solar forecasting
techniques for use in a online setting; and exploring enhanced
techniques such as distributed robust optimisation and coup-
ling scheduling with fast, intelligent local control.
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[11] S. Magnússon, P. C. Weeraddana, and C. Fischione, “A Distributed
Approach for the Optimal Power Flow Problem Based on ADMM and
Sequential Convex Approximations,” ArXiv e-prints, Jan. 2014.

[12] B. A. Robbins and A. D. Domı́nguez-Garcı́a, “Optimal reactive power
dispatch for voltage regulation in unbalanced distribution systems,” IEEE
Trans. on Power Systems, vol. 31, no. 4, pp. 2903–2913, July 2016.

[13] H. J. Liu, W. Shi, and H. Zhu, “Distributed voltage control in distribution
networks: Online and robust implementations,” IEEE Transactions on
Smart Grid, pp. 1–1, 2017.

[14] R. Yan, Y. Li, T. K. Saha, L. Wang, and M. I. Hossain, “Modeling and
analysis of open-delta step voltage regulators for unbalanced distribution
network with photovoltaic power generation,” IEEE Transactions on
Smart Grid, vol. 9, no. 3, pp. 2224–2234, May 2018.

[15] J. Guo, G. Hug, and O. K. Tonguz, “Intelligent partitioning in distributed
optimization of electric power systems,” IEEE Transactions on Smart
Grid, vol. 7, no. 3, pp. 1249–1258, May 2016.

[16] P. Kohlhepp, H. Harb, H. Wolisz, S. Waczowicz, D. Müller,
and V. Hagenmeyer, “Large-scale grid integration of residential
thermal energy storages as demand-side flexibility resource: A review
of international field studies,” Renewable and Sustainable Energy
Reviews, vol. 101, pp. 527 – 547, 2019. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1364032118306944

[17] D. J. Hammerstrom, R. Ambrosio, J. Brous, T. A. Carlon, D. P.
Chassin, J. G. DeSteese, R. T. Guttromson, G. R. Horst, O. M.
Järvegren, R. Kajfasz, S. Katipamula, L. Kiesling, N. T. Le, P. Michie,
T. V. Oliver, R. G. Pratt, S. E. Thompson, and M. Yao, “Pacific
northwest gridwise testbed demonstration projects: Part 1. olympic
peninsula project,” Pacific Northwest National Laboratory, Tech. Rep.,
2007. [Online]. Available: https://eioc.pnnl.gov/research/gridwise.stm

[18] R. Melton, “Pacific northwest smart grid demonstration project
technology performance report volume 1: Technology performance,”
2015. [Online]. Available: https://www.osti.gov/servlets/purl/1367568

[19] F. Bliek, A. van den Noort, B. Roossien, R. Kamphuis, J. de Wit,
J. van der Velde, and M. Eijgelaar, “Powermatching city, a living lab
smart grid demonstration,” in 2010 IEEE PES Innovative Smart Grid
Technologies Conference Europe (ISGT Europe), Oct 2010, pp. 1–8.

[20] E. Franklin, D. Gordon, D. Jones, P. Scott, L. Blackhall, and S. Thiebaux,
“Peak demand management on distribution networks using coordinated
behind-the-meter pv / battery systems: The bruny island battery trial,”
in 4rd Asia Pacific Solar Research Conference. APVI, 2016, pp. 1–10.

[21] H. Lovell, V. Hann, and P. Watson, “Rural laboratories and experiment
at the fringes: A case study of a smart grid on bruny island,
australia,” Energy Research & Social Science, vol. 36, pp. 146 –
155, 2018, spatial Adventures in Energy Studies:. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S2214629617303158

[22] A. C. Chapman, S. Mhanna, and G. Verbič, “Cooperative game theory
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