
Directed Unfolding of Petri Nets

Blai Bonet1, Patrik Haslum2, Sarah Hickmott3, and Sylvie Thiébaux2

1 Universidad Simón Boĺıvar, Departamento de Computación, Caracas, Venezuela,
2 National ICT Australia & The Australian National University, Canberra, Australia

3 National ICT Australia & The University of Adelaide, Adelaide, Australia

Abstract. The key to efficient on-the-fly reachability analysis based on
unfolding is to focus the expansion of the finite prefix towards the de-
sired marking. However, current unfolding strategies typically equate to
blind (breadth-first) search. They do not exploit the knowledge of the
marking that is sought, merely entertaining the hope that the road to it
will be short. This paper investigates directed unfolding, which exploits
problem-specific information in the form of a heuristic function to guide
the unfolding towards the desired marking. In the unfolding context,
heuristic values are estimates of the distance between configurations. We
show that suitable heuristics can be automatically extracted from the
original net. We prove that unfolding can rely on heuristic search strate-
gies while preserving the finiteness and completeness of the generated
prefix, and in some cases, the optimality of the firing sequence produced.
We also establish that the size of the prefix obtained with a useful class of
heuristics is never worse than that obtained by blind unfolding. Experi-
mental results demonstrate that directed unfolding scales up to problems
that were previously out of reach of the unfolding technique.

1 Introduction

The Petri net unfolding process, originally introduced by McMillan [1], has
gained the interest of researchers in verification (see e.g. [2]), diagnosis [3] and,
more recently, planning [4]. All have reasons to analyse reachability in distributed
transition systems, looking to unfolding for some relief of the state explosion
problem. Unfolding a Petri net reveals all possible partially ordered runs of the
net, without the combinatorial interleaving of independent events. Whilst the
unfolding can be infinite, McMillan identified the possibility of a finite prefix
with all reachable states. Esparza, Römer and Vogler generalised his approach,
to produce the now commonly used ERV unfolding algorithm [5]. This algorithm
involves a search, but does not mandate a specific search strategy. Typically, it
has been implemented as a breadth-first search, using the length of paths to
select the next node to add and to determine cut-off events.

Of the various unfolding-based reachability techniques, experimental results
indicate on-the-fly analysis to be most efficient for proving the reachability of a
single marking [6]. Nevertheless, generating the complete prefix up to a particular
state via breadth-first search quickly becomes impractical when the unfolding is
wide or the shortest path to the state is deep. Unfortunately, it has not been

obvious what other strategies could be used in the ERV algorithm and recent
results have shown that the use of depth-first search in a simpler unfolding
algorithm is incorrect [7]. In this paper, we investigate directed unfolding, a
strategy that takes advantage of information about the sought marking to guide
the search. The reason why such an informed strategy has not been considered
before may be that unfolding is typically used to prove the absence of deadlocks:
this has set the focus on making the entire prefix smaller rather than on reducing
the part of the search space explored to reach a particular marking. However,
as demonstrated below, information about the goal marking can help also in the
case when this marking is not reachable.

Inspired by heuristic search in artificial intelligence, particularly in the area
of automated planning, directed unfolding exploits problem-specific information
in the form of a heuristic function to guide search towards the desired marking.
Specifically, the heuristic estimates the shortest distance from a given marking
to the desired one, and is used to implement a search strategy where choices are
explored in increasing order of their estimated distance. If the heuristic is suffi-
ciently informative, this order provides effective guidance towards the marking
sought. Whilst the order is not always adequate, in the sense defined in [5], it still
guarantees finiteness and completeness of the generated prefix. Interestingly, our
proof relies on the observation that adequate orders are stronger than necessary
for these purposes, and introduces the weaker notion of semi-adequate ordering.

Using heuristics, automatically extracted from the representation of a tran-
sition system, to guide search has significantly improved the scalability of auto-
mated planning [8–10]. We show that heuristic values can be similarly calculated
from a Petri net. If the chosen heuristic is admissible (meaning it never overesti-
mates the shortest distances) then directed unfolding finds the shortest path to
the target marking, just like breadth-first search. Moreover, a slightly stronger
property than admissibility guarantees that the prefix produced is never larger
than the prefix obtained by breadth-first search. Using inadmissible heuristics,
completeness and correctness are preserved, and performance is often dramati-
cally improved at the expense of optimality. Altogether, directed unfolding can
solve much larger problems than the original breadth-first ERV algorithm. More-
over, its implementation requires only minor additions.

The paper is organised as follows. Section 2 is an overview of Place/Tran-
sition nets, unfoldings, and on-the-fly reachability analysis. Section 3 describes
the ideas behind directed unfolding and establishes its theoretical properties. In
Section 4, we show how to automatically extract a range of heuristics from the
Petri net description. In Section 5 presents experimental results and Section 6
concludes with remarks about related and future work.

2 Petri Nets, Unfolding and Reachability Analysis

2.1 Place/Transition Petri Nets

Petri nets provide a factored representation of discrete-event systems. States
are not enumerated and flattened into single unstructured entities but rather

b

a

1

2

3

c

d

e 4
f

g

6

7

5

0

b (c1) 3 (e3) e (c5)

a (c2)

2 (e2)

1 (e1)

d (c4)

c (c3) 4 (e4)
g (c6)

f (c7)

5 (e12)

g (c17)

f (c18)

7 (e6) a (c9)

6 (e5) b (c8) 3 (e9) e (c12)

2 (e8)

1 (e7)

d (c11)

c (c10)
4 (e11)

g (c15)

f (c16)

5 (e10)

g (c13)

f (c14)

Fig. 1. Example of a Place/Transition Net (top) and its unfolding (bottom).

explicitly factorized into variables (places) such that the temporal relations be-
tween variables become transitions that produce and consume markers in the
net. We consider the so-called Place/Transition (P/T) nets, and describe them
only briefly; a detailed exposition can be found in [11].

A P/T-net (top part of Figure 1) consists of a net N and its initial marking
M0. The net is a directed bipartite graph where the nodes are places and tran-
sitions (depicted as circles and squares respectively). Typically, places represent
the state variables and transitions the events of the underlying discrete-event sys-
tem. The dynamic behaviour is captured by the flow relation F between places
and transitions and vice versa. The marking of a P/T-net represents the state
of the system. It assigns to each place zero or more tokens (depicted as dots).

Definition 1. A P/T-net is a 4-tuple (P, T, F, M0) where P and T are disjoint
finite sets of places and transitions, respectively, F : (P × T)∪ (T ×P) → {0, 1}
is a flow relation indicating the presence (1) or absence (0) of arcs, and M0 :
P → IN is the initial marking.

The preset •x of node x is the set {y ∈ P ∪ T : F (y, x) = 1}, and its postset
x• is the set {y ∈ P ∪ T : F (x, y) = 1}. The marking M enables a transition t
if M(p) > 0 for all p ∈ •t. The occurrence, or firing, of an enabled transition t
absorbs a token from each of its preset places and puts one token in each postset
place. This corresponds to a state transition in the modeled system, moving the

net from M to the new marking M ′ given by M ′(p) = M(p)− F (p, t) + F (t, p)
for each p; this is denoted as M

t→ M ′. A firing sequence σ = t1 . . . tn is a
legal sequence of transition firings, i.e. there are markings M1, . . . ,Mn such that
M0

t1→ M1 · · ·Mn−1
tn→ Mn; this is denoted as M0

σ→ Mn. A marking M is
reachable if there exists a firing sequence σ such that M0

σ→ M . In this paper
we only consider 1-bounded nets, meaning that all reachable markings assign at
most one token at each place.

2.2 Unfolding

Unfolding is a method for reachability analysis which exploits and preserves
concurrency information in the Petri net. It a partially ordered structure of
events that represents all possible firing sequences of the net from the initial
marking.

Unfolding a P/T-net produces a pair U = (ON,ϕ) where ON = (B,E, F ′) is
an occurrence net, which is a P/T-net without cycles, self conflicts or backward
conflicts (defined below), and ϕ is a homomorphism from ON to N that asso-
ciates the places/transitions of ON with the places/transitions of the P/T-net.

A node x is in self conflict if there exist two paths to x which start at the
same place and immediately diverge. A backward conflict happens when two
transitions output to the same place. Such cases are undesirable since in order
to decide whether a token can reach a place in backward conflict, it would be
necessary to reason with disjunctions such as from which transition the token
came. Therefore, the process of unfolding involves breaking all backward conflicts
by making independent copies of the places involved in the conflicts, and thus
the occurrence net ON may contain multiples copies of places and transitions
of the original net which are identified with the homomorphism.

In the occurrence net ON , places and transitions are called conditions B and
events E respectively. The initial marking M0 defines a set of initial conditions
B0 in ON such that the places initially marked are in 1-1 correspondence with
the conditions in B0. The set B0 constitutes the “seed” of the unfolding.

The bottom part in Figure 1 shows a prefix of the unfolding of the P/T-net
in the top part. Note the multiple instances of place g, for example, due to the
different firing sequences through which it can be reached (multiple backward
conflicts). Note also that transition 0 does not appear in the unfolding, as there
no firing sequence that enables transition 0.

2.3 Configurations

To understand how a prefix of an unfolding is built, the most important notions
are that of a configuration and local configuration. A configuration represents a
possible partially ordered run of the net. It is a finite set of events C such that:

1. C is causally closed: e ∈ C ⇒ e′ ∈ C for all e′ ≤ e,
2. C contains no forward conflict: •e1 ∩ •e2 = ∅ for all e1 6= e2 in C;

where e′ ≤ e means there is a directed path from e′ to e in ON . If these two
conditions are met, the events in a configuration C can be ordered into a fir-
ing sequence with respect to B0. For instance, in the finite prefix in Figure 1,
{e1, e3, e4} is a configuration, while {e1, e4} and {e1, e2} are not since the former
is not causally closed and the latter has a forward conflict.

A configuration C can be associated with a final marking Mark(C) of the
original P/T-net by identifying which conditions will contain a token after the
events in C are fired from the initial conditions; i.e. Mark(C) = ϕ((B0∪C•)\•C)
where C• (resp. •C) is the union of postsets (resp. presets) of all events in C.
In other words, the marking of C identifies the resultant marking of the orig-
inal P/T-net when only the transitions labelled by the events in C occur. For
instance, in Figure 1, the marking of configuration {e1, e3, e4, e5} is {g, b}. The
local configuration of an event e, denoted by [e], is the minimal configuration
containing event e. For example, [e5] = {e1, e3, e4, e5}. A set of events can oc-
cur in the same firing sequence iff the union of their local configurations is a
configuration.

2.4 Finite Complete Prefix

The unfolding process involves identifying which transitions are enabled by those
conditions, currently in the occurrence net, that can be simultaneously marked.
These are referred to as the possible next events. A new instance of each is added
to the occurrence net, as are instances of the places in their postsets.

The unfolding process starts from the seed B0 and extends it iteratively. In
most cases, the unfolding U is infinite and thus cannot be built. However, it
is not necessary to build U entirely, but only a complete finite prefix β of U
that contains all the information in U . Formally, a prefix β of U is complete if
for every reachable marking M , there exists a configuration C ∈ β such that
Mark(C) = M , and for every transition t enabled by M there is an event e 6∈ C
with ϕ(e) = t such that C ∪ {e} is a configuration.

The key for obtaining a complete finite prefix is to identify those events at
which the unfolding can be ceased without loss of information. Such events are
referred to as cut-off events and can be defined in terms of an adequate order
on configurations [1, 5, 12]. In the following, C ⊕E denotes a configuration that
extends C with the finite set of events E disjoint from C; such E is called an
extension of configuration C.

Definition 2 (Adequate Orderings). A strict partial order ≺ on finite con-
figurations is an adequate order if and only if

(a) ≺ is well founded, i.e. it has no infinite descending chains,
(b) C1 ⊂ C2 ⇒ C1 ≺ C2, and
(c) ≺ is weakly preserved by finite extensions; i.e. if C1 ≺ C2 and Mark(C1) =

Mark(C2), then for all finite extension E2 of C2, there exist a finite extension
E1 of C1 that is structurally isomorphic1 to E2, and C1 ⊕ E1 ≺ C2 ⊕ E2.

1 Two extensions E and E′ are structurally isomorphic if the labelled digraphs induced
by the two sets of events and their adjacent conditions are isomorphic [12].

Algorithm 1 The ERV Unfolding Algorithm (and ERV/fly variant)
Input: a P/T-net (P, T, F, M0) (and transition tR for ERV/fly).
Output of ERV: complete finite prefix β.
Output of ERV/fly: finite prefix β with event eR, with ϕ(eR) = tR, if tR is reachable,

finite prefix β with no event eR, with ϕ(eR) = tR, otherwise.

1. Initialise the prefix β with the conditions in B0

2. Initialise the priority queue with the events possible in B0

3. Initialise the set cut-off to ∅
4. while the queue is not empty do
5. Remove event e in the queue (minimal with respect to ≺)
6. [[only for ERV/fly]] if h([e]) = ∞ then terminate (tR is not reachable)
7. if [e] contains no event in cut-off then
8. Add e and conditions for its postset to β
9. [[only for ERV/fly]] if ϕ(e) = tR then terminate (tR is reachable)

10. Identify the new possible next events and insert them in the queue
11. if e is a cut-off event in β with respect to ≺ then
12. Update cut-off := cut-off ∪ {e}
13. endif
14. endif
15. endwhile

Without threat to completeness, we can cease unfolding from an event e, if it
takes the net to a marking which can be caused by some other already unfolded
event e′ such that [e′] ≺ [e]. This is because the events (and thus marking) which
proceed from e will also proceed from e′. Relevant proofs can be found in [5, 12].

Definition 3 (Cut-off Events). Let ≺ be an adequate order and β a prefix.
An event e is a cut-off event in β with respect to ≺ iff β contains some event
e′ such that Mark([e]) = Mark([e′]) and [e′] ≺ [e].

2.5 The ERV Algorithm

Algorithm 1 shows the well-known ERV algorithm for unfolding P/T-nets [5]
(and a variant, called ERV/fly, which will be discussed later). ERV maintains a
queue of events, sorted in increasing order with respect to ≺. At each iteration,
a minimal event in the queue is processed, starting with checking whether its
local configuration contains any cut-off event with respect to ≺ in the prefix β
under construction. If not, the event is added to the prefix along with conditions
for its postset, and the new possible next events enabled by the new conditions
are inserted in the queue. The algorithm terminates when all queue events have
been processed (the ERV/fly variant has two additional conditions for earlier
termination). This is the ERV algorithm exactly as it is described in [5].

It is important to mention certain details about the implementation of the
algorithm. First, the order ≺ is used both to order the queue and to identify the
cut-off events. As noted in [5], this implies that if the ordering ≺ is total, the

check at line 11 in Algorithm 1 (“e is a cut-off event in β with respect to ≺”)
can be replaced by the simpler check: “β contains a local configuration [e′] such
that Mark([e]) = Mark([e′])”, since with a total order, [e′] ≺ [e] for any event e
that is dequeued after e′. This optimisation may be important if evaluating ≺ is
expensive (this, however, is not the case for any order we consider in this paper).
Second, it is in fact not necessary to insert new events that are causal successors
of a cut-off event into the queue – which is done in the algorithm as described –
since they will only be discarded when dequeued. While this optimisation makes
no difference to the prefix generated, it may have a significant impact on both
runtime and memory use. For optimizations related to the generation of possible
next events see [13].

Besides the explicit input parameters, the ERV and ERV/fly algorithms im-
plicitly depend on an order ≺ (and also on a function h for ERV/fly). Whenever
this dependency needs to be emphasized, we will refer to both algorithms as
ERV[≺] and ERV/fly[≺, h] respectively. Again, note that whatever order this may
be, it is used both to order the queue and to identify cut-off events.

Mole2 is a freeware program that implements the ERV algorithm for 1-
bounded P/T-nets. Mole uses McMillan’s cardinality-based ordering (C ≺m C ′

iff |C| < |C ′|) [1], further refined into a total order [5]. Note that using this order
equates to a breadth-first search strategy. Mole implements the optimisation
described above, i.e. successors of cut-off events are never placed on the queue.

The prefix in Figure 1 is the complete finite prefix that Mole generates for
our example. The events e10, e11, and e12 are all cut-off events. This is because
each of their local configurations has the same marking as the local configuration
of event e4, i.e. {f, g}, and each of them is greater than the local configuration
of e4 with respect to the adequate order implemented by Mole.

2.6 On-The-Fly Reachability Analysis

We define the reachability problem (also often called coverability problem) for
1-bounded P/T-nets as follows:

Reachability: Given a P/T-net (P, T, F, M0) and a subset P ′ ⊆ P ,
determine whether there is a firing sequence σ such that M0

σ→ M where
M(p) = 1 for all p ∈ P ′.

This problem is PSPACE-complete [14].
Since unfolding constructs a complete finite prefix that represents every

reachable marking by a configuration, it can be used as the basis of an algo-
rithm for deciding Reachability. However, deciding if the prefix contains any
configuration that leads to a given marking is still NP-complete [6]. If we are
interested in solving multiple Reachability problems for the same net and
initial marking, this is still an improvement. Algorithms taking this approach
have been designed using mixed-integer linear programming [15], stable models
for Logic Programs [16], and other methods [6, 17].
2 http://www.fmi.uni-stuttgart.de/szs/tools/mole/

However, if we are interested in the reachability of just one single marking,
the form of completeness offered by the prefix constructed by unfolding is unnec-
essarily strong: we require only that the target marking is represented by some
configuration if it is indeed reachable. We will refer to this weaker condition as
completeness with respect to the goal marking. This was recognised already by
McMillan, who suggested an on-the-fly approach to reachability. It involves in-
troducing a new transition tR to the original net with •tR = P ′ and tR

• = {pR}
where pR is a new place. 3 The net is then unfolded until an event eR, such that
ϕ(eR) = tR, is retrieved from the queue. At this point we can conclude that the
set of places P ′ is reachable. If unfolding terminates without identifying such an
event, P ′ is not reachable. If [eR] is not required to be the shortest possible firing
sequence, it is sufficient to stop as soon as eR is generated as one of the possible
next events, but to guarantee optimality, even with breadth-first unfolding, it
is imperative to wait until the event is pulled out of the queue. Experimental
results have shown the on-the-fly approach to be most efficient for deciding the
reachability of a single marking [6].

The ERV/fly variant of the ERV unfolding algorithm embodies two “short
cuts”, in the form of conditions for earlier termination, which are motivated by
the fact that we are interested only in completeness with respect to the goal
marking. The first is simply to adopt McMillan’s on-the-fly approach, stopping
when an instance of transition tR is dequeued. The second depends on a property
of the heuristic function h, and will be discussed in Section 3.3. 4

3 Directing the Unfolding

In the context of the reachability problem, we are only interested in checking
whether the transition tR is reachable. An unfolding algorithm that doesn’t use
this information is probably not the best approach. In this section, we aim to
define a principled method for using this information during the unfolding process
in order to solve the reachability problem more efficiently. The resulting approach
is called “directed unfolding” as opposed to the standard “blind unfolding”.5

The basic idea is that for deciding Reachability, the unfolding process can
be understood as a search process on the quest for tR. Thus, when selecting
events from the queue, we should favor those “closer” to tR as their systematic
exploration results in a more efficient search strategy. This approach is only

3 Strictly speaking, to preserve 1-safeness, it is also necessary to add a new place
complementary to pR to •tR to avoid multiple firings of tR.

4 In addition, for completeness with respect to a single goal marking, it is not necessary
to insert cut-off events into the prefix at all, since any marking represented by the
local configuration of a cut-off event is by definition already represented by another
event. This optimisation may not have a great impact on runtime, at least if the
previously described optimisation of not generating successors of cut-off events is
already in place, but may reduce memory requirements.

5 The term “directed” has been used elsewhere to emphasize the informed nature of
other model-checking algorithms [18].

possible if the prefix constructed is guaranteed to be complete, in the sense that
it will, eventually, contain an instance of tR if it is reachable.

We show that the ERV algorithm can be used with the same definition of cut-
off events when the notion of adequate orderings is replaced by a weaker notion
that we call semi-adequate orderings. This is prompted by the observation that
the definition of adequate orderings is a sufficient but not a necessary condition
for a sound definition of cut-off events. Indeed, just replacing condition (b) in
Definition 2 by a weaker condition opens the door for a family of semi-adequate
orderings that allow us to direct the unfolding process.

3.1 Principles

As is standard in state-based search, our orderings are constructed upon the
values of a function f that maps configurations into non-negative numbers (in-
cluding infinity). Such functions f are composed of two parts f(C) = g(C)+h(C)
in which g(C) refers to the “cost” of C and h(C) estimates the distance from
Mark(C) to the target marking {pR}. For the purposes of the present work, we
will assume a fixed function g(C) = |C|, yet other possibilities also make sense,
e.g. when transitions are associated with costs, and the cost of a set of transitions
is defined as the sum of the costs of the transitions in the set.

The function h(C) is a non-negative valued function on configurations, and
is required to satisfy:

1. h(C) = 0 if Mark(C) contains a condition cR such that ϕ(cR) = pR where pR

is the new place in tR
•, and

2. h(C) = h(C ′) whenever Mark(C) = Mark(C ′).

Such functions will be called heuristic functions on configurations. Note that the
function which assigns value 0 to all configurations is a heuristic function. We
will denote this function h ≡ 0. For two heuristic functions, h ≤ h′ denotes the
standard notion of h(C) ≤ h′(C) for all configurations C.

Let h be a heuristic and, for f(C) = |C| + h(C), define the ordering ≺h as
follows:

C ≺h C ′ iff
{

f(C) < f(C ′) if f(C) 6= f(C ′)
|C| < |C ′| if f(C) = f(C ′).

Observe that ≺h≡0 is the strict partial order ≺m on configurations used by
McMillan [1], which can be refined into the total order defined in [5].

Let us define h∗(C) = |C ′|−|C|, where C ′ ⊇ C is a configuration of minimum
cardinality that contains an instance of tR if one exists, and ∞ otherwise. (By
“an instance of tR” we mean of course an event eR such that ϕ(eR) = tR.)
We then say that h is an admissible heuristic if h(C) ≤ h∗(C) for all finite
configurations C. Likewise, let us say that a finite configuration C∗ is optimal
if it contains an instance of tR, and it is of minimum cardinality among such
configurations. By f∗ we denote |C∗| if an optimal configuration exists (i.e. if tR
is reachable) and ∞ otherwise. In the following, ERV[h] denotes ERV[≺h].

Theorem 1 (Main). Let h be a heuristic function on configurations. Then,
ERV[h] computes a finite and complete prefix of the unfolding. Furthermore, if
h is admissible, then ERV[h] finds an optimal configuration if tR is reachable.
Both claims also hold for any semi-adequate ordering that refines ≺h.6

Note that this result by no means contradicts a recent proof that unfolding
with depth-first search is incorrect [7]: Not only do heuristic strategies have a
“breadth” element to them which depth-first search lacks, but, more importantly,
the algorithm shown incorrect differs from the ERV algorithm in that when
identifying cut-off events it only checks if the prefix contains a local configuration
with identical marking but does not check whether the ordering ≺ holds.

Optimal configurations are important in the context of diagnosis since they
provide shortest firing sequences to reach a given marking, e.g. a faulty state
in the system. A consequence of Theorem 1 is that the Mole implementation
of the ERV algorithm, which equates using a refinement of ≺h≡0 into a total
order [5], finds shortest firing sequences. In the next two sections, we will give
examples of heuristic functions, both admissible and non-admissible, and exper-
imental results on benchmark problems. In the rest of this section, we provide
the technical characterization of semi-adequate orderings and their relation to
adequate ones, as well as the proofs required for the main theorem. We also
provide a result concerning the size of the prefixes obtained.

3.2 Technical Details

Upon revising the role of adequate orders when building the complete finite
prefix, we found that condition (b), i.e. C ⊂ C ′ ⇒ C ≺ C ′, in Definition 2
is only needed to guarantee the finiteness of the generated prefix. Indeed, let
n be the number of reachable markings and consider an infinite sequence of
events e1 < e2 < · · · in the unfolding. Then, there are i < j ≤ n + 1 such that
Mark([ei]) = Mark([ej]), and since [ei] ⊂ [ej], condition (b) implies [ei] ≺ [ej]
making [ej] into a cut-off event, and thus the prefix is finite [5]. A similar result
can be achieved if condition (b) is replaced by the weaker condition that in every
infinite chain e1 < e2 < · · · of events there are i < j such that [ei] ≺ [ej]. To
slightly simplify the proofs, we can further weaken that condition by asking that
the local configurations of these events have equal markings.

Definition 4 (Semi-Adequate Orderings). A strict partial order ≺ on finite
configurations is a semi-adequate order if and only if

(a) ≺ is well founded, i.e. it has no infinite descending chains,
(b) in every infinite chain C1 ⊂ C2 ⊂ · · · of configurations with equal markings

there are i < j such that Ci ≺ Cj, and
(c) ≺ is weakly preserved by finite extensions.

Theorem 2 (Finiteness and Completeness). If ≺ is a semi-adequate order,
the prefix produced by ERV[≺] is finite and complete.
6 Ordering ≺′ refines ≺ iff C ≺ C′ implies C ≺′ C′ for all configurations C and C′.

Proof. The completeness proof is identical to the proof of Proposition 4.9 in [5,
p. 14] which states the completeness of the prefix computed by ERV for adequate
orderings: this proof does not rely on condition (b) at all. The finiteness proof
is similar to the proof of Proposition 4.8 in [5, p. 13] which states the finiteness
of the prefix computed by ERV for adequate orderings. If the prefix is not finite,
then by the version of König’s Lemma for branching processes [19], an infinite
chain e1 < e2 < · · · of events exists in the prefix. Each event ei defines a
configuration [ei] with marking Mark([ei]), and since the number of markings is
finite, there is at least one marking that appears infinitely often in the chain.
Let e′1 < e′2 < · · · be an infinite subchain such that Mark([e′1]) = Mark([e′j])
for all j > 1. By condition (b) of semi-adequate orderings, there are i < j such
that [e′i] ≺ [e′j] that together with Mark([e′i]) = Mark([e′j]) make e′j into a cut-off
event and thus the chain cannot be infinite. ut

Clearly, if ≺ is an adequate order, then it is a semi-adequate order. The con-
verse is not necessarily true. The fact that ≺h is semi-adequate is a consequence
of the monotonicity of g(C) = |C|, i.e. C ⊂ C ′ ⇒ g(C) < g(C ′), and that
configurations with equal markings have identical h-values.

Theorem 3 (Semi-Adequacy of ≺h). If h is a heuristic on configurations,
≺h is a semi-adequate order.

Proof. That ≺h is irreflexive and transitive is direct from definition.
For well-foundedness, first observe that if C and C ′ are two configurations

with the same marking, then C ≺h C ′ iff |C| < |C ′|. Let C1 �h C2 �h · · · be
an infinite descending chain of finite configurations with markings M1,M2, . . .
respectively. Observe that not all Ci’s have f(Ci) = ∞ since, by definition of
≺h, this would imply ∞ > |C1| > |C2| > · · · ≥ 0 which is impossible. Similarly,
at most finitely many Ci’s have infinite f -value. Let C ′

1 �h C ′
2 �h · · · be the

subchain where f(C ′
i) < ∞ for all i, and M ′

1,M
′
2, . . . the corresponding markings.

Since the number of markings is finite, we can extract a further subsubchain
C ′′

1 �h C ′′
2 �h · · · such that Mark(C ′′

1) = Mark(C ′′
j) for all j > 1. Therefore,

|C ′′
1 | > |C ′′

2 | > · · · ≥ 0 which is impossible since all C ′′
i ’s are finite.

For condition (b), let C1 ⊂ C2 ⊂ · · · be an infinite chain of finite config-
urations with equal markings. Therefore, val

.= h(C1) = h(Cj) for all j > 1,
and also |C1| < |C2|. If val = ∞, then C1 ≺h C2. If val < ∞, then f(C1) =
|C1|+ val < |C2|+ val = f(C2) and thus C1 ≺h C2.

Finally, if C1 ≺h C2 have equal markings and the extensions E1 and E2 are
isomorphic, the configurations C ′

1 = C1 ⊕E1 and C ′
2 = C2 ⊕E2 also have equal

markings, and it is straightforward to show that C ′
1 ≺h C ′

2. ut

Proof (of Theorem 1). That ERV[h] computes a complete and finite prefix is
direct since, by Theorem 3, ≺h is semi-adequate and, by Theorem 2, this is
enough to guarantee finiteness and completeness of the prefix.

For the second claim, assume that tR is reachable. Then, the prefix computed
by ERV contains at least one instance of tR. First, we observe that until eR is
dequeued, the queue always contains an event e such that [e] is a prefix of an

optimal configuration C∗. This property holds at the beginning (initially, the
queue contains all possible extensions of the initial conditions) and by induction
remains true after each iteration of the while loop. This is because if e is dequeued
then either e = eR, or a successor of e will be inserted in the queue which will
satisfy the property, or it must be the case that e is identified as a cut-off event
by ERV. But the latter case implies that there is some e′ in the prefix built so
far such that Mark([e′]) = Mark([e]) and f([e′]) < f([e]). This in turn implies
that h([e′]) = h([e]), and thus |[e′]| < |[e]| which contradicts the assumption on
the minimality of C∗.

For proof by contradiction, suppose that ERV dequeues a instance eR of tR
such that [eR] is not optimal, i.e. not of minimum cardinality. If e is an event
in the queue, at the time eR is dequeued, such that [e] is a subset of an optimal
configuration C∗, then

f([e]) = |[e]|+ h([e]) ≤ |[e]|+ h∗([e]) = |[e]|+ |C∗| − |[e]| = |C∗| .

On the other hand, since [eR] is non-optimal by supposition, f([eR]) = |[eR]| >
|C∗|. Therefore, f([eR]) > f([e]) and thus [e] ≺h [eR] and eR could not have
been pulled out of the queue before e.

Observe that the proof does not depend on how the events with equal f -
values are ordered in the queue. Thus, any refinement of ≺h also works. ut

3.3 Size of the Finite Prefix

As we have already remarked, to solve Reachability using unfolding we require
only that the prefix is complete with respect to the sought marking, i.e. that it
contains a configuration representing that marking iff the marking is reachable.
This enables us to take certain “short cuts”, in the form of conditions for earlier
termination, in the unfolding algorithm, which results in a smaller prefix being
constructed. In this section, we show first that these modifications preserve the
completeness of the algorithm, and the guarantee of finding an optimal solution
if the heuristic is admissible. Second, under some additional assumptions, we
show a result relating the size of the prefix computed by directed on-the-fly
unfolding to the informedness of the heuristic.

Before proceeding, let us review the modifications made in the variant of
the ERV algorithm which we call ERV/fly (for ERV on-the-fly). The first “short
cut” is adopting the on-the-fly approach, terminating the algorithm as soon as
an instance of the target transition tR is added to the prefix. For the second,
if the heuristic h has the property that h(C) = ∞ implies h∗(C) = ∞ (i.e.
it is not possible to extend C into a configuration containing an instance tR),
then the unfolding can be stopped as soon as the f -value of the next event
retrieved from the queue is ∞, since this implies that tR is unreachable. We
call heuristics that satisfy this property safely pruning. Note pruning safety is a
weaker requirement than admissibility, in the sense that an admissible heuristic
is always safely pruning.

Monotonicity is another well-known property of heuristic functions, which is
stronger than admissibility. A heuristic h is monotonic iff it satisfies the triangle

inequality h(C) ≤ |C ′|− |C|+h(C ′), i.e. f(C) ≤ f(C ′), for all finite C ′ ⊇ C. If h
is monotonic, the order ≺h is in fact adequate [4]. Even though admissibility does
not imply monotonicity, it is in practice difficult to construct good admissible
heuristics that are not monotonic. The admissible heuristic hmax, described in
the next section, is also monotonic.

Although ERV/fly depends on an order ≺ and a heuristic h, we consider only
the case of ≺h and h for the same heuristic. Thus, we denote with ERV/fly[h]
the algorithm ERV/fly[≺h, h], and with β[h] the prefix computed by ERV/fly[h].
We first establish the correctness of the modified algorithm, and then relate the
size of the computed prefix to the informedness of the heuristic.

Theorem 4. Let h be a safely pruning heuristic function on configurations.
Then, ERV/fly[h] computes a finite prefix of the unfolding that is complete with
respect to the goal marking, and this prefix is contained in that computed by
ERV[h]. Furthermore, if h is admissible, then ERV/fly[h] finds an optimal con-
figuration if tR is reachable. Both claims also hold for ERV/fly[≺, h] where ≺ is
any semi-adequate order that refines ≺h.

Proof. ERV/fly[h] is exactly ERV[h] plus two conditions for early termination.
As long as neither of these is invoked, ERV/fly[h] behaves exactly like ERV[h]. If
the positive condition (an instance of tR is dequeued, line 9 in Algorithm 1) is
met, tR is clearly reachable and the the prefix computed by ERV/fly[h] contains
a witnessing event. If the negative condition (the h-value of the next event in
the queue is ∞, line 6 in Algorithm 1) is met, then the h-value of every event
in the queue must be ∞. Since h is safely pruning, this implies none can be
extended to a configuration including an instance of tR. Thus, ERV[h] will not
find an instance of tR either (even though it continues dequeueing these events,
inserting them into the prefix and generating successor events until the queue is
exhausted). Since ERV[h] is complete, tR must be unreachable.

As in ERV[h], both claims hold also for any refinement of ≺h. ut

If the heuristic h does not assign infinite cost to any configuration, the neg-
ative condition can never come into effect and ERV/fly[h] is simply a directed
version of McMillan’s on-the-fly algorithm. In particular, this holds for h ≡ 0.

The next result is that when heuristics are monotonic, improving the in-
formedness of the heuristic can only lead to improved performance, in the sense
of a smaller prefix being constructed. In particular, this implies that for any
monotonic heuristic h, the prefix β[h] is never larger than that computed by
ERV/fly[h ≡ 0], regardless of whether the goal transition tR is reachable or not.
This is not particularly surprising: it is well known in state space search, that
– all else being equal – directing the search with a monotonic heuristic cannot
result in a larger part of the state space being explored compared to blind search.

In order to compare the sizes of the prefixes computed with two different
heuristics, we need to be sure that both algorithms break ties when selecting
events from the queue in a consistent manner. For a formal definition, consider
two instances of ERV/fly: ERV/fly[h1] and ERV/fly[h2]. We say that a pair of
events (e, e′) is an inconsistent pair for both algorithms if and only if

R Rpa

2

b1 3

4c e

t

d

Fig. 2. Example net with an unreachable goal transition (tR).

1. [e] 6≺hi [e′] and [e′] 6≺hi [e] for i ∈ {1, 2},
2. there was a time t1 in which e and e′ were in the queue of ERV/fly[h1], and e

was dequeued before e′, and
3. there was a time t2, not necessarily equal to t1, in which e and e′ were in the

queue of ERV/fly[h2], and e′ was dequeued before e.

We say that ERV/fly[h1] and ERV/fly[h2] break ties in a consistent manner if and
only if there are no inconsistent pairs between them.

Theorem 5. If h1 and h2 are two monotonic heuristics such that h1 ≤ h2, and
ERV/fly[h1] and ERV/fly[h2] break ties in a consistent manner, then every event
in β[h2] is also in β[h1].

Since the all-zero heuristic is monotonic, it follows that the number of events
in the prefix computed by ERV/fly[h], for any other monotonic heuristic h,
is never greater than the number of such events in the prefix computed by
ERV/fly[h ≡ 0], i.e. McMillan’s algorithm (although this can, in the worst case,
be exponential in the number of reachable states). As noted earlier, for com-
pleteness with respect to the goal marking, it is not necessary to insert cut-off
events into the prefix (since the marking represented by the local configuration
of such an event is already represented by another event in the prefix).

Although the same cannot, in general, be guaranteed for inadmissible heuris-
tics, we demonstrate experimentally below that in practice, the prefix they com-
pute is often significantly smaller than that found by blind ERV/fly, even when
the target transition is not reachable. The explanation for this is that all the
heuristics we use are safely pruning, which enables us to terminate the algorithm
earlier (as soon as the h-value of the first event in the queue is ∞) without loss
of completeness.

To illustrate, consider the example net in Figure 2. Suppose initially only
place a is marked: at this point, a heuristic such as hmax (defined in the next
section) estimates that the goal marking {pR} is reachable in 3 steps (the max
length of the two paths). However, as soon as either transition 1 or 2 is taken,
leading to a configuration in which either place b or c is marked, the hmax estimate
becomes ∞, since there is then no way to reach one of the two goal places.

Pruning safety is a weaker property than admissibility, as it pertains only
to a subset of configurations (the dead-end configurations from which the goal
is unreachable). Most heuristic functions satisfy it; in particular so do all the
specific heuristics we consider in this paper. Moreover, the heuristics we consider

all have equal “pruning power”, meaning they assign infinite estimated cost to
the same set of configurations. There exist other heuristics, for example those
based on pattern databases [20, 21], that have much greater pruning power.

Proof of Theorem 5

Recall that f∗ denotes the size of an optimal configuration if one exists, and ∞
otherwise.

Lemma 1. If h is admissible, all events in β[h] have f-value ≤ f∗.

Proof. If tR is not reachable, f∗ = ∞ and the claim holds trivially. Suppose tR
is reachable. Before the first event corresponding to tR is dequeued, the queue
always contains an event e part of the optimal configuration, which, due to
admissibility, has f([e]) ≤ f∗ (see proof of Theorem 1 (ii)). Thus, the f -value of
the first event in the queue cannot be greater than f∗. When an instance of tR
is dequeued, ERV/fly[h] stops. ut

Lemma 2. Let h be a monotonic heuristic. (i) If e < e′, i.e. e is a causal
predecessor of e′, then f([e]) ≤ f([e′]). (ii) Let β′ be any prefix of β[h] (i.e.
β′ is the prefix constructed by ERV/fly[h] at some point before the algorithm
terminates). If e is an event in β′, then every event e′ such that h([e′]) < ∞,
[e′] − {e′} contains no cut-off event in β′ with respect to ≺h, and [e′] ≺h [e], is
also in β′.

Proof. (i) Consider two events, e and e′, such that e < e′, i.e. e is a causal pre-
decessor of e′. Since [e′] is a finite extension of [e], the definition of monotonicity
states that h([e]) ≤ |[e′]| − |[e]| + h([e′]), which implies that |[e]| + h([e]) ≤
|[e′]| + h([e′]), i.e. that f([e]) ≤ f([e′]). Thus, in any causal chain of events
e1 < · · · < en, it holds that f([e1]) ≤ · · · ≤ f([en]).

(ii) Let e and e′ be events such that e is in β′, h([e′]) < ∞, [e′]−{e′} contains
no cut-off event in β′ with respect to ≺h, and [e′] ≺h [e]. We show that e′ must
be dequeued before e. Since [e′] can not contain any cut-off event, other than
possibly e′ itself, it will be added to the prefix when it is dequeued, because, at
this point, e′ can not be in the set of recognised cut-off event (the set cut-off is
only updated on line 12 in the algorithm). Since e ∈ β′, this implies that e′ ∈ β′.

Either e′ itself or some ancestor e′′ of e′ is in the queue at all times before e′

is dequeued. By (i), f([e′′]) ≤ f([e′]) < ∞ for every causal ancestor e′′ of e′, and
since |[e′′]| < |[e′]| we have [e′′] ≺h [e′] and therefore [e′′] ≺h [e] (by transitivity
of ≺h). Thus, all ancestors of e′ must be dequeued before e and, since their local
configurations contain no cut-off events, added to the prefix. Thus, e′ must be
put into the queue before e is dequeued, and, since [e′] ≺h [e], it is dequeued
before e. ut

Lemma 3. For any heuristic h, the event e is a cut-off event in prefix β with
respect to ≺h if and only if e is a cut-off event in β with respect to ≺m, where
≺m is McMillan’s order, i.e. [e] ≺m [e′] if and only if |[e]| < |[e′]|.

Proof. If e is a cut-off event in β with respect to ≺h, then there exists an event
e′ in β such that Mark([e′]) = Mark([e]) and [e′] ≺h [e]. The former implies that
h([e′]) = h([e]). The latter implies that either f([e′]) < f([e]), or f([e′]) = f([e])
and |[e′]| < |[e]|. Both imply |[e′]| < |[e]| and so [e′] ≺m [e].

If e is a cut-off event in β with respect to ≺m, then there is e′ such that
Mark([e′]) = Mark([e]) and |[e′]| < |[e]|. The former implies that h([e′]) = h([e]).
Therefore, f([e′]) < f([e]) and so [e′] ≺h [e]. ut

Lemma 4. For any monotonic heuristic h, an event e ∈ β[h] is a cut-off with
respect to ≺h in β[h] iff e is a cut-off in the prefix β′ built by ERV/fly[h] up to
the point when e was inserted.

Proof. That e remains a cut-off event in the final prefix β[h] if it was in β′ is
obvious.

If the h-value of the first event on the queue is∞, ERV/fly terminates, without
inserting the event into the prefix. Thus, since e ∈ β[h], h([e]) < ∞.

If e is a cut-off event in β[h] with respect to ≺h, there exists an event e′ ∈ β[h]
such that Mark([e′]) = Mark([e]), [e′] ≺h [e], and [e′] contains no cut-off event.
The first two properties of e′ are by definition of cut-off events. For the last,
suppose [e′] contains a cut-off event: then there is another event e′′ ∈ β[h],
with the same marking and such that [e′′] ≺h [e′] (and thus by transitivity
[e′′] ≺h [e]). If [e′′] contains a cut-off event, there is again another event, with
the same marking and less according to the order: the recursion finishes at some
point because the order ≺h is well-founded and the prefix β[h] is finite. Thus,
there is such an event whose local configuration does not contain a cut-off event:
call it e′. Consider the prefix β′ ⊕ {e} (i.e. the prefix immediately after e was
inserted): since it contains e, by Lemma 2(ii) it also contains e′. ut

Since ERV/fly never inserts into the prefix an event e such that [e] contains
an event that is a cut-off in the prefix at that point, it follows from Lemma 4
that if h is a monotonic heuristic, the final prefix β[h] built by ERV/fly[h] upon
termination contains no event that is the successor of a cut-off event.

Proof (of Theorem 5). Let f1 and f2 denote f -values with respect to h1 and h2

respectively, i.e. f1([e]) = |[e]|+ h1([e]) and f2([e]) = |[e]|+ h2([e]).
We show by induction on |[e]| that every event e ∈ β[h2] such that [e]− {e}

contains no cut-off event in β[h2] with respect to ≺h2 , i.e., such that e is not a
post-cut-off event, is also in β[h1]. As noted, by Lemma 4, ERV/fly directed with
a monotonic heuristic never inserts any post-cut-off event into the prefix. Thus,
it follows from the above claim that every event that may actually be in β[h2]
is also in β[h1].

For |[e]| = 0 the claim holds because there are no such events in β[h2]. Assume
that it holds for |[e]| < k. Let e ∈ β[h2] with [e]−{e} containing no cut-off events
and |[e]| = k. By inductive hypothesis, all causal ancestors of e are in β[h1].

Ancestors of e are not cut-off events in β[h2] with respect to ≺h2 (if any
of them were e would be a post-cut-off event). Assume some ancestor e′ of e
is a cut-off event in β[h1] with respect to ≺h1 . Then, there is e′′ ∈ β[h1] such

that Mark([e′′]) = Mark([e′]), [e′′] ≺h1 [e′] and [e′′] contains no cut-off event in
β[h1] with respect to ≺h1 (by the same reasoning as in the proof of Lemma 4).
If some event e′′′ ∈ [e′′] is a cut-off event in β[h2] with respect to ≺h2 , then
there exists an event e4 in β[h2], with equal marking, [e4] ≺h2 [e′′′], and such
that [e4] contains no cut-off event. But |[e4]| < |[e′′′]| < |[e′′]| < |[e′]| < k, so by
the inductive hypothesis, e4 is also in β[h1], and because [e4] ≺h2 [e′′′] implies
that [e4] ≺h1 [e′′′] (by Lemma 3), this means that e′′′ is a cut-off event in β[h1]
with respect to ≺h1 . This contradicts the choice of e′′ as an event such that
[e′′] contains no cut-off events in β[h1] with respect to ≺h1 . Therefore, because
|[e′′]| < |[e′]|, which implies [e′′] ≺h2 [e′] (by Lemma 3), it follows from Lemma 2
that e′′ is in β[h2]. This makes e′ a cut-off event in β[h2] with respect to ≺h2 ,
contradicting the fact that e was chosen to be a non-post-cut-off event in β[h2].
Thus, no ancestor of e is a cut-off event in β[h1] with respect to ≺h1 . It remains
to show that e must be dequeued by ERV/fly[h1] before it terminates: since
ancestors of e are not cut-off events in β[h1] with respect to ≺h1 , it follows from
Lemma 4 that they are not cut-off events in the prefix built by ERV/fly[h1] at
that point either, and therefore that, when dequeued, e is inserted into β[h1] by
ERV/fly[h1].

First, assume that tR is reachable. By Theorem 4, there is an instance e1
R

of tR in β[h1] and an instance e2
R of tR in β[h2] with |[e1

R]| = |[e2
R]| = f∗. By

Lemma 1, f2([e]) ≤ f2([e2
R]) = f∗ and thus, since h1([e]) ≤ h2([e]), f1([e]) ≤ f∗.

We do an analysis by cases:

• If f1([e]) < f∗, then [e] ≺h1 [e1
R] and, by Lemma 2, e is in β[h1].

• If f1([e]) = f∗ and |[e]| < |[e1
R]|, then [e] ≺h1 [e1

R] and e is in β[h1].
• If f1([e]) = f∗, |[e]| = |[e1

R]| and e = e1
R, then e is in β[h1].

• f1([e]) = f∗, |[e]| = |[e1
R]| and e 6= e1

R: e was in the queue of ERV/fly[h1]
when e1

R was dequeued because all causal ancestors of e were in β[h1] at
that time (because their f -values are all less than or equal to f∗ and the
size of their local configurations is strictly smaller). Thus, ERV/fly[h1] chose
to dequeue e1

R before e (and terminated). We show that ERV/fly[h2] must
have chosen to dequeue e before e1

R even though e1
R was in the queue of

ERV/fly[h2], and thus the two algorithms do not break ties in a consistent
manner, contradicting the assumptions of the theorem. All causal ancestors e′

of e1
R satisfy [e′] ≺h2 [e2

R] and therefore, by Lemma 2, are in β[h2]. Hence, when
e is dequeued by ERV/fly[h2], e1

R is in the queue. It cannot be in β[h2] since
this would imply termination of ERV/fly[h2] before adding e. Thus, ERV/fly[h2]
chose e over e1

R.

Next, assume that tR is unreachable. In this case, ERV/fly[h1] can terminate
only when the queue is empty or the h-value of the first event in the queue is ∞.
The former cannot happen before ERV/fly[h1] dequeues e, because all ancestors
of e are in β[h1] and thus e was inserted into the queue of ERV/fly[h1]. Since
e ∈ β[h2], h2([e]) < ∞ (recall that ERV/fly never inserts an event with infinite
h-value into the prefix), and therefore h1([e]) < ∞. Thus, the latter also cannot
happen before ERV/fly[h1] dequeues e, because e was in the queue of ERV/fly[h1]
and its h-value is less than ∞. ut

4 Heuristics

A common approach to constructing heuristic functions, both admissible and
inadmissible, is to define a relaxation of the search problem, such that the re-
laxed problem can be solved, or at least approximated, efficiently, and then use
the cost of the relaxed solution as an estimate of the cost of the solution to the
real problem, i.e. as the heuristic value [22]. The problem of extending a config-
uration C of the unfolding into one whose marking includes the target place pR

is equivalent to the problem of reaching pR starting from Mark(C): this is the
problem that we relax to obtain an estimate of the distance to reach pR from C.

The heuristics we have experimented with are derived from two different
relaxations, both developed in the area of AI planning. The first relaxation is
to assume that the cost of reaching each place in a set of places is independent
of the others. For a transition t to fire, each place in •t must be marked: thus,
the estimated distance from a given marking M to a marking where t can fire is
d(M, •t) = maxp∈•t d(M, {p}), where d(M, {p}) denotes the estimated distance
from M to any marking that includes {p}. For a place p to be marked – if it
isn’t marked already – at least one transition in •p must fire: thus, d(M, {p}) =
1 + mint∈•p d(M, •t). Combining the two facts we obtain

d(M,M ′) =

0 if M ′ ⊆ M
1 + mint∈•p d(M, •t) if M ′ = {p}
maxp∈M ′ d(M, {p}) otherwise

(1)

for the estimated distance from a marking M to M ′. Equation (1) defines only
estimated distances to places that are reachable, in the relaxed sense, from M ;
the distance to any place that is not is taken to be∞. A solution can be computed
in polynomial time, by solving what is essentially a shortest path problem. We
obtain a heuristic function, called hmax, by hmax(C) = d(Mark(C), {pR}), where
tR

• = {pR}. This estimate is never greater than the actual distance, so the hmax

heuristic is admissible.
In many cases, however, hmax is too weak to effectively guide the unfold-

ing. Admissible heuristics in general tend to be conservative (since they need
to ensure that the distance to the goal is not overestimated) and therefore less
discriminating between different configurations. Inadmissible heuristics, on the
other hand, have a greater freedom in assigning values and are therefore often
more informative, in the sense that the relative values of different configurations
is a stronger indicator of how “promising” the configurations are. An inadmissi-
ble, but often more informative, version of the hmax heuristic, called hsum, can be
obtained by substituting

∑
p∈M ′ d(M, {p}) for the last clause of Equation (1).

hsum dominates hmax, i.e. for any C, hsum(C) ≥ hmax(C). However, since the above
modification of Equation (1) changes only estimated distances to places that are
reachable, in the relaxed sense, hsum is still safely pruning, and in fact has the
same pruning power as hmax.

The second relaxation is known as the delete relaxation. In Petri net terms,
the simplifying assumption made in this relaxation is that a transition only

RR

a

b 3

c1

e

0

4d2

g

f

t p5

Fig. 3. Relaxed plan graph corresponding to the P/T-net in Figure 1.

requires the presence of a token in each place in its preset, but does not consume
those tokens when fired (put another way, all arcs leading into a transition are
assumed to be read-arcs). This implies that a place once marked will never be
unmarked, and therefore that any reachable marking is reachable by a “short”
transition sequence. Every marking that is reachable in the original net is a
subset of a marking that is reachable in the relaxed problem. The delete-relaxed
problem has the property that a solution – if one exists – can be found in
polynomial time. The procedure for doing this constructs a so called “relaxed
plan graph”, which may be viewed as a kind of unfolding of the relaxed problem.
Because of the delete relaxation, the construction of the relaxed plan graph is
much simpler than unfolding a Petri net, and the resulting graph is conflict-free7

and of bounded size (each transition appears at most once in it). Once the graph
has been constructed, a solution (configuration leading to pR) is extracted; in
case there are multiple transitions marking a place, one is chosen arbitrarily.
The size of the solution to the relaxed problem gives a heuristic function, called
hFF (after the planning system FF [9] which was the first to use it). Figure 3
shows the relaxed plan graph corresponding to the P/T-net in Figure 1: solutions
include, e.g., the sequences 2, 3, 5, tR; 1, 3, 4, tR; and 1, 2, 0, 3, tR. The FF heuristic
satisfies the conditions required to preserve the completeness of the unfolding
(in Theorem 1) and it is safely pruning, but, because an arbitrary solution is
extracted from the relaxed plan graph, it is not admissible. The heuristic defined
by the size of the minimal solution to the delete-relaxed problem, known as h+,
is admissible, but solving the relaxed problem optimally is NP-hard [23].

The relaxing assumption of independence of reachability underlying the hmax

heuristic is implied by the delete relaxation. This means hmax can also be seen
as an (admissible) approximation of h+, and that hmax is dominated by hFF.
However, the independence relaxation can be generalised by considering depen-
dencies between sets of places of limited size (e.g. pairs), which makes it different
from the delete relaxation [24].

7 Technically, delete relaxation can destroy the 1-boundedness of the net. However,
the exact number of tokens in a place does not matter, but only whether the place
is marked or not, so in the construction of the relaxed plan graph, two transitions
marking the same place are not considered a conflict.

100

90

80

70

60

50

40

30

20

10

0
30010050.50.10.050.030.01

%
 P

R
O

B
LE

M
S

 S
O

LV
E

D

run time (sec)

original
hmax

ff
hsum

Fig. 4. Results for Dartes Instances

5 Experimental Results

We extended Mole to use the ≺h ordering with the hmax, hsum, and hFF heuris-
tics. In our experiments below we compare the resulting directed versions of
Mole with the original (breadth-first) version, and demonstrate that the for-
mer can solve much larger instances than were previously within the reach of
the unfolding technique. We found that the additional tie-breaking comparisons
used by Mole to make the order strict were slowing down all versions (including
the original): though they do – sometimes – reduce the size of the prefix, the
computational overhead quickly consumes any advantage. (As an example, on
the unsolvable random problems considered below, the total reduction in size
amounted to less than 1%, while the increase in runtime was around 20%.) We
therefore disabled them in all experiments.8 Experiments were conducted on a
Pentium M 1.7GHz with a 2Gb memory limit. The nets used in the experiments
can be found at http://rsise.anu.edu.au/∼thiebaux/benchmarks/petri.

5.1 Petri Net Benchmarks

First, we tested directed Mole on a set of standard Petri net benchmarks repre-
sentative of Corbett’s examples [25]. However, in all but two of these, the blind
version of Mole is able to decide the reachability of any transition in a matter
of seconds. The two problems that presented a challenge are Dartes, which
models the communication skeleton of an Ada program, and dme12. 9

Dartes is the one where heuristic guidance shows the greatest impact.
Lengths of the shortest firing sequences required to reach each of the 253 tran-
sitions in this problem reach over 90 events, and the breadth-first version could
8 Thus, our breadth-first Mole actually implements McMillan’s ordering [1].
9 It has since been pointed out to us that the dme12 problem is not 1-safe, and thus

not suitable for either blind or directed Mole.

10e6

10e5

10e4

10e3

10e2

10

1
502010

15105110511051

S
IZ

E
 o

f P
R

E
FI

X
 (n

b
ev

en
ts

)

nb states per component

nb components

original
hsum

100

10

1

1e-1

1e-2

1e-3
502010

15105110511051

R
U

N
 T

IM
E

 (s
ec

)

nb states per component

nb components

original
hsum

Fig. 5. Results for first set of Random P/T-nets

not solve any instance with a shortest solution length over 60. Overall, the undi-
rected version is able to decide 185 of the 253 instances (73%), whereas the
version directed by hsum solves 245 (97%). The instances solved by each directed
version is a strict superset of those solved by the original. Unsurprisingly, all the
solved problems were positive decisions (the transitions were reachable). Fig-
ure 4 presents the percentage of reachability problems decided by each version
of Mole within increasing time limits. The breadth-first version is systemati-
cally outperformed by all directed versions.

In the dme12 benchmark, blind Mole finds solutions for 406 of the 588 tran-
sitions, and runs out of memory on the rest. Solution lengths are much shorter
in this benchmark: the longest found by the blind version is 29 steps. Thus, it is
more difficult to improve over breadth-first search. Nevertheless, Mole directed
with hmax solves an additional 26 problems, one with a solution length of 37.
Mole with the hsum and hFF performs worse on this benchmark.

5.2 Random Problems

To further investigate the scalability of directed unfolding, we implemented our
own generator of random Petri nets. Conceptually, the generator creates a set
of component automata, and connects them in an acyclic dependency network.
The transition graph of each component automaton is a sparse, but strongly
connected, random digraph. Synchronisations between pairs of component au-
tomata are such that only one (the dependent) automaton changes state, but
can only do so when the other component automaton is in a particular state.
Synchronisations are chosen randomly, constrained by the acyclic dependency
graph. Target states for the various automata are chosen independently at ran-
dom. The construction ensures that every choice of target states is reachable.
We generated random problems featuring 1 . . . 15 component automata of 10,
20, and 50 states each. The resulting Petri nets range from 10 places and 30
transitions to 750 places and over 4,000 transitions.

Results are shown in Figure 5. The left-hand graph shows the number of
events pulled out of the queue. The right-hand graph shows the run-time. To

10 100 1,000 10,000 100,0001,000,000
0

50

100

118/82

50

0

Size of Prefix (events dequeued)

P
ro

bl
em

s
(r

ea
ch

ab
le

 −
 u

nr
ea

ch
ab

le
)

original
hmax

hsum

0.01 0.1 1 10 100 1000
0

50

100

118/82

50

0

Runtime (seconds)

P
ro

bl
em

s
(r

ea
ch

ab
le

 −
 u

nr
ea

ch
ab

le
)

original
hmax

hsum

Fig. 6. Results for second set of Random P/T-nets

avoid cluttering the graphs, we show only the performance of the worst and best
strategy, namely the original one, and hsum. Evidently, directed unfolding can
solve much larger problems than blind unfolding. For the largest instances we
considered, the gap reached over 2 orders of magnitude in speed and 3 in size.
The original version could merely solve the easier half of the problems, while
directed unfolding only failed on 6 of the largest instances (with 50 states per
component).

In these problems, optimal firing sequences reach lengths of several hundreds
events. On instances which we were able to solve optimally using hmax, hFF

produced solutions within a couple transitions of the optimal. Over all problems,
solutions obtained with hsum were a bit longer than those obtained with hFF.

With only a small modification, viz. changing the transition graph of each
component automaton into a (directed) tree-like structure instead of a strongly
connected graph, the random generator can also produce problems in which
the goal marking has a fair chance of being unreachable. To explore the effect
of directing the unfolding in this case, we generated 200 such instances (each
with 10 components of 10 states per component), of which 118 turned out to
be reachable and 82 unreachable, respectively. Figure 6 shows the results, in the
form of distribution curves (prefix size on the left and run-time on the right; note
that scales are logarithmic). The lower curve is for solvable problems, while the
upper, “inverse” curve, is for problems where the goal marking is not reachable.
Thus, the point on the horizontal axis where the two curves meet on the vertical
is where, for the hardest instance, the reachability question has been answered.

As expected, hsum solves instances where the goal marking is reachable faster
than hmax, which is in turn much faster than blind unfolding. However, also in
those instances where the goal marking is not reachable, the prefix generated
by directed unfolding is significantly smaller than that generated by the original
algorithm. In this case, results of using the two heuristics are nearly indistin-
guishable. This is due to the fact that, as mentioned earlier, their pruning power
(ability to detect dead end configurations) is the same.

5.3 Planning Benchmarks

To assess the performance of directed unfolding on a wider range of problems
with realistic structure, we also considered some benchmarks from the 4th In-
ternational Planning Competition. These are described in PDDL (the Planning
Domain Definition Language), which we translate into 1-bounded P/T-nets as
explained in [4]. Note that runtimes reported below do not include the time for
this translation.

The top two rows of Figure 7, show results for 29 instances from the IPC-4
domain Airport (an airport ground-traffic control problem) and 30 instances
from the IPC-4 domain Pipesworld (a petroleum transportation problem), re-
spectively. The corresponding Petri nets range from 49 places and 18 transitions
(Airport instance 1) to 3,418 places and 2,297 transitions (Airport instance
28). The length of optimal solutions, where known, range from 8 to over 160.

Graphs in the first and second columns show cumulative distributions of the
number of dequeued events and runtime, respectively, for four different configu-
rations of Mole: using no heuristic (i.e. h ≡ 0), hmax, hFF and hsum. Evidently,
directed unfolding is much more efficient than blind, in particular when using the
inadmissible hFF and hsum heuristics. The original version of Mole fails to solve
9 instances in the Airport domain, running out of either time (600 seconds) or
memory (1Gb), while Mole with hmax solves all but 4 and Mole with hFF and
hsum all but 2 instances (only one instance remains unsolved by all configura-
tions). In the Pipesworld domain, blind Mole solves only 11 instances, while
guided with hFF it solves all but 1.

Graphs in the last column compare the runtimes of the two faster, subopti-
mal, Mole configurations with three domain-independent planning systems that
are representative of the state-of-the-art. Note that these planning systems im-
plement many sophisticated techniques besides heuristic search guidance. Also,
all three are incomplete, in the sense that they are not guaranteed to find a
solution even when one exists. While the directed unfolder is generally not the
fastest, it is not consistently the slowest either. Moreover, with the hFF heuristic,
Mole is very good at finding short solutions in the Pipesworld domain: in 14
of the 30 instances it finds solutions that are shorter than the best found by any
suboptimal planner that participated in the competition, and only in 1 instance
does it find a longer solution. In the Airport domain, all planners find solutions
of the same length.

The last row of Figure 7 shows results for an encoding of the Open stacks
problem (a production scheduling problem) as a planning problem. A different
encoding of this problem (which disabled all concurrency) was used in the 5th
planning competition. The corresponding Petri nets all have 65 places and 222
transitions, but differ in their initial markings. Optimal solution lengths vary
between 35 and 40 firings. This is an optimisation problem: solving it optimally
is NP-complete [26], but only finding any solution is quite trivial. We include this
benchmark specifically to illustrate that restricting search to optimal solutions
can be very costly. The gap between suboptimal and optimal length unfolding
is spectacular: Mole using the hsum heuristic consistently spends around 0.1

10 50 100 500 5000

0
20

40
60

80
10

0

Airport

Size of Prefix

%
 P

ro
bl

em
s

S
ol

ve
d

mole/h=0
mole/hmax
mole/hFF
mole/hsum

1e−02 1e−01 1e+00 1e+01 1e+02

20
40

60
80

10
0

Airport

Runtime (seconds)

%
 P

ro
bl

em
s

S
ol

ve
d

mole/h=0
mole/hmax
mole/hFF
mole/hsum

1e−02 1e+00 1e+02

0
20

40
60

80
10

0

Airport

Runtime (seconds)

%
 P

ro
bl

em
s

S
ol

ve
d

mole/hFF
mole/hsum
FF
SGPlan
LPG

1e+01 1e+03 1e+05

0
20

40
60

80
10

0

Pipesworld

Size of Prefix

%
 P

ro
bl

em
s

S
ol

ve
d

mole/h=0
mole/hmax
mole/hFF
mole/hsum

1e−02 1e+00 1e+02

0
20

40
60

80
10

0

Pipesworld

Runtime (seconds)

%
 P

ro
bl

em
s

S
ol

ve
d

mole/h=0
mole/hmax
mole/hFF
mole/hsum

1e−02 1e+00 1e+02

0
20

40
60

80
10

0

Pipesworld

Runtime (seconds)

%
 P

ro
bl

em
s

S
ol

ve
d

mole/hFF
mole/hsum
FF
SGPlan
LPG

10e6

10e5

10e4

10e3

10e2

10
119115111107103999591

S
IZ

E
 o

f P
R

E
FI

X
 (n

b
ev

en
ts

)

Warwick instance ID

OPENSTACKS

original
hmax

ff
hsum 100

10

1

0.1

119115111107103999591

R
U

N
 T

IM
E

 (s
ec

)

Warwick instance ID

OPENSTACKS

original
hmax

ff
hsum

Fig. 7. Results for Planning Benchmarks Airport (top row) and Pipesworld (middle
row), and the Openstacks problem (bottom row).

seconds solving each problem, while with the admissible hmax heuristic or no
heuristic at all it requires over 50 seconds. This shows that directed unfolding,
which unlike breadth-first search is not confined to optimal solutions, can exploit
the fact that non-optimal Openstacks is an easy problem.

6 Conclusion, Related and Future Work

We have described directed unfolding, which incorporates heuristic search straight
into an on-the-fly reachability analysis technique specific to Petri nets. We proved
that the ERV unfolding algorithm can benefit from using heuristic search strate-
gies, whilst preserving finiteness and completeness of the generated prefix. Such
strategies are effective for on-the-fly reachability analysis, as they significantly
reduce the prefix explored to find a desired marking or to prove that none ex-
ists. We demonstrated that suitable heuristic functions can be automatically ex-
tracted from the original net. Both admissible and non-admissible heuristics can

be used, with the former offering optimality guarantees. Experimental results
show that directed unfolding provides a significant performance improvement
over the original breadth-first implementation of ERV featured in Mole.

Edelkamp and Jabbar [27] recently introduced a method for directed model-
checking Petri nets. It operates by translating the deadlock detection problem
into a metric planning problem, solved using off-the-shelf heuristic search plan-
ning methods. These methods, however, do not exploit concurrency in the pow-
erful way that unfolding does. In contrast, our approach combines the best of
heuristic search and Petri net reachability analysis. Results on planning bench-
marks show that directed unfolding with inadmissible heuristics is competitive
(in the sense of not being consistently outperformed) with some of the current
state-of-the-art domain-independent planners.

The equivalent of read-arcs is a prominent feature of many planning prob-
lems. In our translation to Petri nets, these are represented by the usual “consume-
and-produce” loop, which forces sequencing of events that read the same place
and thus may reduce the level of concurrency (although this does not happen
in the two domains we used in our experiments; they are exceptional in that
respect). We believe that a treatment of read-arcs that preserves concurrency,
such as the use of place replication [28], is essential to improve the performance
of directed unfolding applied to planning in the general case, and addressing this
is a high priority item on our future work agenda.

In this paper we have measured the cost of a configuration C by its cardi-
nality, i.e. g(C) = |C|. Or similarly, g(C) =

∑
e∈C c(e) with c(e) = 1 ∀e ∈ E.

These results extend to transitions having arbitrary non-negative cost values, i.e.
c : E → IR. Consequently, using any admissible heuristic strategy, we can find
the minimum cost firing sequence leading to tR. As in the cardinality case, the
algorithm is still correct using non-admissible heuristics, but does not guaran-
tee optimality. The use of unfolding for solving optimisation problems involving
cost, probability and time, is a focus of our current research.

We also plan to use heuristic strategies to guide the unfolding of higher level
Petri nets, such as coloured nets [29]. Our motivation, again arising from our
work in the area of planning, is that our translation from PDDL to P/T-nets
is sometimes the bottleneck of our planning via unfolding approach [4]. Well
developed tools such as punf10 could be adapted for experiments in this area.

Acknowledgements It was our colleague Lang White who first recognised the
potential of exploring the connections between planning and unfolding-based
reachability analysis; we are very thankful and much endebted to him. Many
thanks to several of the UFO-07 participants for very insightful discussions. In
particular, thanks to Eric Fabre, Victor Khomenko, and Walter Vogler, whose
comments helped to significantly improve this paper. The TopNoc reviewers also
provided insightful comments, for which we are thankful. Thanks also to Jussi
Rintanen and John Slaney for their help with various aspects of this work at some
stage or another, and to Stefan Schwoon for his help with Mole. The authors
10 http://homepages.cs.ncl.ac.uk/victor.khomenko/tools/tools.html

thank NICTA and DSTO for their support via the DPOLP project. NICTA is
funded through the Australian Government’s Backing Australia’s Ability initia-
tive, in part through the ARC.

References

1. McMillan, K.L.: Using unfoldings to avoid the state explosion problem in the
verification of asynchronous circuits. In: Computer Aided Verification, 4th Inter-
national Workshop (CAV’92). Volume 663 of Lecture Notes in Computer Science.,
Springer (1992) 164–177

2. Esparza, J.: Model checking using net unfoldings. Science of Compututer Pro-
gramming 23(2–3) (1994) 151–195

3. Benveniste, A., Fabre, E., Jard, C., Haar, S.: Diagnosis of asynchronous discrete
event systems, a net unfolding approach. IEEE Trans. on Automatic Control 48(5)
(2003) 714–727

4. Hickmott, S., Rintanen, J., Thiébaux, S., White, L.: Planning via Petri net unfold-
ing. In: Proc. of 20th Int. Joint Conference on Artificial Intelligence, AAAI Press
(2007) 1904–1911

5. Esparza, J., Römer, S., Vogler, W.: An improvement of McMillan’s unfolding
algorithm. Formal Methods in System Design 20(3) (2002) 285–310

6. Esparza, J., Schröter, C.: Unfolding based algorithms for the reachability problem.
Fundamentia Informatica 46 (2001) 1–17

7. Esparza, J., Kanade, P., Schwoon, S.: A negative result on depth first unfolding.
Software Tools for Technology Transfer (2007)

8. Bonet, B., Geffner, H.: Planning as heuristic search. Artificial Intelligence 129(1–2)
(2001) 5–33

9. Hoffmann, J., Nebel, B.: The FF planning system: Fast plan generation through
heuristic search. Journal of Artificial Intelligence Research 14 (2001) 253–302

10. McDermott, D.: Using regression-match graphs to control search in planning.
Artificial Intelligence 109(1–2) (1999) 111–159

11. Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the
IEEE 77(4) (1989) 541–580

12. Chatain, T., Khomenko, V.: On the well-foundedness of adequate orders used for
construction of complete unfolding prefixes. Information Processing Letters 104
(2007) 129–136

13. Khomenko, V., Koutny, M.: Towards an efficient algorithm for unfolding Petri
nets. In: Proc. of 12th Int. Conf. on Concurrency Theory, Springer: LNCS 2154
(2001) 366–380

14. Cheng, A., Esparza, J., Palsberg, J.: Complexity results for 1-safe nets. In: Proc.
13th Conf. on the Foundations of Software Technology and Theoretical Computer
Science, Springer: LNCS 761 (1993) 326–337

15. Melzer, S.: Verifikation Verteilter Systeme Mittels Linearer - und Constraint-
Programmierung. PhD thesis, Technische Universität München (1998)

16. Heljanko, K.: Using Logic Programs with stable model semantics to solve deadlock
and reachability problems for 1-safe Petri nets. In: Proc. of 5th Int. Conf. on Tools
and Algorithms for the Construction and Analysis of Systems, Springer: LNCS
1579 (1999) 240–254

17. Khomenko, V., Koutny, M.: LP deadlock checking using partial order dependencies.
In: Proc. of 11th Int. Conf. on Concurrency Theory, Springer: LNCS 1877 (2000)
410–425

18. Edelkamp, S., Lluch-Lafuente, A., Leue, S.: Directed explicit model checking with
HSF-SPIN. In: Proc. of 8th Int. SPIN Workshop. Volume 2057 of Lecture Notes
in Computer Science., Springer (2001) 57–79

19. Khomenko, V., Koutny, M., Vogler, W.: Canonical prefixes of Petri net unfoldings.
Acta Informatica 40(2) (2003) 95–118

20. Edelkamp, S.: Planning with pattern databases. In: Proc. 6th European Conf. on
Planning, Springer: LNCS (2001) 13–24

21. Haslum, P., Bonet, B., Geffner, H.: New admissible heuristics for domain-
independent planning. In: Proc. 20th National Conf. on Artificial Intelligence,
AAAI Press / MIT Press (2005) 1163–1168

22. Pearl, J.: Heuristics: Intelligent Search Strategies for Computer Problem Solving.
Addison-Wesley (1984)

23. Bylander, T.: The computational complexity of propositional STRIPS planning.
Artificial Intelligence 69(1–2) (1994) 165–204

24. Haslum, P., Geffner, H.: Admissible heuristic for optimal planning. In: Proc. 6th
International Conf. on Artificial Intelligence Planning and Scheduling, Brecken-
ridge, CO, AAAI Press (2000) 140–149

25. Corbett, J.C.: Evaluating deadlock detection methods for concurrent software.
IEEE Trans. on Software Engineering 22(3) (1996)

26. Linhares, A., Yanasse, H.H.: Connection between cutting-pattern sequencing, VLSI
design and flexible machines. Computers & Operations Research 29 (2002) 1759–
1772

27. Edelkamp, S., Jabbar, S.: Action planning for directed model checking of Petri
nets. Electronic Notes Theoretical Computer Science 149(2) (2006) 3–18

28. Vogler, W., Semenov, A., Yakovlev, A.: Unfolding and finite prefix for nets with
read arcs. In: Proc. of 9th Int. Conf. on Concurrency Theory, Springer: LNCS 1466
(1998) 501–516

29. Khomenko, V., Koutny, M.: Branching processes of high-level Petri nets. In: Proc.
of 9th Int. Conf. on Tools and Algorithms for the Construction and Analysis of
Systems, Springer: LNCS (2003) 458–472

