
Novelty Heuristics, Multi-Queue Search, and Portfolios for Numeric Planning

Dillon Z. Chen1,2, Sylvie Thiébaux1,2

1LAAS-CNRS, Université de Toulouse
2Australian National University

{dillon.chen, sylvie.thiebaux}@laas.fr

Abstract

Heuristic search is a powerful approach for solving planning
problems and numeric planning is no exception. In this pa-
per, we boost the performance of heuristic search for numeric
planning with various powerful techniques orthogonal to im-
proving heuristic informedness: numeric novelty heuristics,
the Manhattan distance heuristic, and exploring the use of
multi-queue search and portfolios for combining heuristics.

1 Introduction
Numeric planning is an expressive extension of classical
planning where states are able to exhibit real-valued vari-
ables. It was formalised in PDDL2.1 (Fox and Long 2003)
and is undecidable in the general case (Helmert 2002). How-
ever, it is PSPACE-complete when variables are integer and
bounded, and there also exist compilations from numeric to
classical planning with certain features that preserve plan
length (Gigante and Scala 2023). Similarly to classical plan-
ning, the two main approaches for solving numeric planning
problems in the literature consist in either heuristic search
or compilation into a sequence of satisfiability problems
for constraint-based solvers. A recent SAT Modulo The-
ory (SMT) approach, PATTY, has been proposed (Cardellini,
Giunchiglia, and Maratea 2024) which provably encodes
fewer variables and constraints than previous constraint-
based approaches (Scala et al. 2016b; Bofill, Espasa, and
Villaret 2017). Compared to heuristic search, it provides bet-
ter performance on highly numeric planning problems which
do not require long plans.

On the other hand, the state of the art for heuristic search
in numeric planning still consists of a search with a sin-
gle heuristic derived from a relaxation of the problem. Such
heuristics include the numeric extensions of classical plan-
ning heuristics: metric FF (Hoffmann 2002, 2003), LP-
based heuristics for computing tighter bounds on the relaxed
planning graph (Coles et al. 2008), interval-based, subgoal-
ing, and set-additive derivations of hadd (Scala, Haslum,
and Thiébaux 2016; Scala et al. 2016a, 2020a,b), land-
marks (Scala et al. 2017), admissible IP-based heuristics (Pi-
acentini et al. 2018), LM-cut and operator counting heuris-
tics (Kuroiwa et al. 2021, 2022; Kuroiwa, Shleyfman, and

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Beck 2023). Alternatively, Illanes and McIlraith (2017) use
a partial policy computed from an abstraction of numeric
planning into classical planning for search guidance. Other
techniques orthogonal to defining new heuristics for numeric
planning also exist, such as abstracting linear numeric prob-
lems into simple numeric problems, enabling the use of
simple numeric heuristics (Li et al. 2018), and computing
state space symmetries with the numeric problem descrip-
tion graph (Shleyfman, Kuroiwa, and Beck 2023).

In this paper, we boost the performance of heuristic search
for numeric planners in several orthogonal directions by
porting search techniques from classical planning. This in-
cludes (1) formalising novelty heuristics for numeric plan-
ning, (2) constructing the simple but effective Manhattan
distance heuristic, (3) extending the ENHSP planner (Scala
et al. 2020b) with multi-queue search, and (4) building naive
portfolios. We provide a systematic set of experiments that
demonstrate the effectiveness of these approaches on the
Numeric Track of the 2023 International Planning Compe-
tition (NT-IPC) (Arxer and Scala 2023) and highlight the
complementary nature of heuristic search and constraint-
based approaches for numeric planning.

2 Background
A numeric planning task (Fox and Long 2003) is given by
a tuple Π = 〈Xp, Xn, A, s0, G〉 where Xp is a finite set of
Boolean variables with domains {>,⊥} and Xn is a finite
set of numeric variables with domains R. Let X = Xp∪Xn

denote the set of state variables. Let S denote the set of pos-
sibly infinitely many states in Π, where a state is a total
assignment to Boolean and numeric variables. Let s0 ∈ S
be the initial state. A propositional condition is a positive
literal, and a numeric condition has the form ξ D 0 where
ξ is an arithmetic expression over numeric variables and
D ∈ {≥, >,=}. Let [x]s and [ξ]s denote the value of x and
ξ in s, respectively. The goal condition G is a set of propo-
sitional and numeric conditions, and we say that a state s
satisfies G if s satisfies all conditions in G. An action a
consists of preconditions and effects. Action preconditions
pre(a) are sets of propositional and numeric conditions, and
action effects eff(a) assign Boolean values to Boolean vari-
ables, and assign the value of a numeric variable using an
arithmetic expression. An action a is applicable in a state s
if s satisfies pre(a), in which case its successor a(s) is the



state where the effects eff(a) are applied to the variables in
state s. If a is not applicable in s, we set a(s) = s⊥ 6∈ S.
A plan for a numeric planning task is a sequence of actions
a1, . . . , an such that si = ai(si−1) 6= s⊥ for all 1 ≤ i ≤ n
and sn satisfies G. A numeric planning task is solvable if
there exists a plan for it.

3 Boosting Search for Numeric Planning
In this section, we outline various techniques to boost the
performance of satisficing numeric planning solvers. Firstly,
we extend and combine novelty heuristics into a single
framework for numeric planning. We then introduce a sim-
ple extension of the goal count heuristic for numeric plan-
ning which outperforms more sophisticated numeric plan-
ning heuristics for single queue search. Lastly, we make use
of multi-queue search and portfolios for numeric planning.

3.1 Numeric Novelty Heuristics
Let S<N denote the set of all finite sequences of states in a
numeric planning task, and 〈T 〉 a finite sequence of states.
We write Tk for the state of index k in 〈T 〉, and 〈T 〉 .s for the
sequence obtained by appending state s at the end of 〈T 〉.
Moreover, let 〈T 〉 [: s] stand for the substring of 〈T 〉 that
ends in the element before s, and

〈
T=h(s)

〉
for the substring

of 〈T 〉 consisting of the states s′ such that h(s′) = h(s),
where h is a heuristic function. We also assume an enumer-
ation x1, . . . , xN of variables in X , where N = |X|.
Definition 3.1 (Novelty Feature). A novelty feature is a
function f : S<N × S → (R ∪ {⊥})N .

We provide two examples of novelty features for nu-
meric planning. The first example is the assignment feature
A, which has been explored in the context of control sys-
tems (Ramı́rez et al. 2018). The function maps a state to a
vector of its assignments. More specifically, the i-th element
of A(〈T 〉 , s) is the value of xi in s if xi is a numeric variable
and otherwise if xi = > the element is 1 and else ⊥. Note
that the function is agnostic to the 〈T 〉 input.

The next example is the boundary extension encoding fea-
ture (Teichteil-Königsbuch, Ramı́rez, and Lipovetzky 2020)
B, which maps a state to a vector whose component for a
particular variable reflects the number of times this variable
reached a new extreme value in the past before reaching its
current value. More formally, for a variable xi and state s
such that [xi]

s > [xi]
s0 , the novelty feature I(〈T 〉 , s, i) is

the number of times xi is strictly greater than its value in
all preceding states in T before reaching a state sj where
[xi]

sj ≥ [xi]
s. That is

I(〈T 〉 , s, i) =

JI∑
k=1

(k−1∧
l=1

[xi]
Tk > [xi]

Tl

)
, (1)

where JI ≤ | 〈T 〉 | is the smallest index j such that [xi]
Tj ≥

[xi]
s, and the boolean expression evaluates to 1 or 0. The

case where [xi]
s < [xi]

s0 is similar, but we now look at
decreasing values of xi with

D(〈T 〉 , s, i) =

JD∑
k=1

(k−1∧
l=1

[xi]
Tk < [xi]

Tl

)
, (2)

where JD ≤ | 〈T 〉 | is the smallest index j such that [xi]
Tj ≤

[xi]
s. We can then define the boundary extension encoding

feature B on its individual component variables

B(〈T 〉 , s)i =


0, if [xi]

s = [xi]
s0

I(〈T 〉 .s, s, i), if [xi]
s > [xi]

s0

−D(〈T 〉 .s, s, i), if [xi]
s < [xi]

s0 .
(3)

Next, we move on to defining a novelty heuristic given a
novelty feature and a base heuristic. We note that the defini-
tion can be generalised to take as input a tuple of heuristics
but we omit this for simplicity of notation.
Definition 3.2 (Novelty Heuristic). Given a novelty feature
f and a heuristic h, a novelty heuristic is a function nhf :

S<N × S → R.
We again provide two examples of novelty heuristics. The

first is the partition novelty (PN) measure heuristic. It was
first introduced for solving planning problems in polynomial
time with an incomplete search (Lipovetzky and Geffner
2012) and later adapted for heuristic search (Lipovetzky and
Geffner 2017; Corrêa and Seipp 2022). Given an integer k ≥
1, we extend its definition to numeric planning by the func-
tion kPNhf where kPNhf (〈T 〉 , s) is the smallest n ≤ k for
which there is an n-subset of variable indices i1, . . . , in such
that none of xij = ⊥ in s and f(

〈
T=h(s)

〉
, s)[i1, . . . , in]

differs from f(
〈
T=h(s)

〉
[: s′] , s′)[i1, . . . , in] for all s′ ∈〈

T=h(s)
〉
, and k + 1 if no such subset exists. The original

partition novelty operates on a tuple of heuristics and it is
easy to extend this definition to do so.

Another example of a novelty heuristic is the quantified
both (QB) novelty function (Katz et al. 2017). The weak-
ness of the partition novelty measure is that its value does not
prioritise states with the same partition novelty based on the
base heuristic value. For example, two states with heuristic
values 5 and 3 and the same partition novelty measure will
be treated equally in the search, unless a tie-breaking strat-
egy is used. Furthermore, non-novel states are also treated
the same. The quantified both novelty function addresses
these issues by making use of the base heuristic value and
also distinguishing non-novel states. We extend the quanti-
fied both novelty function to the numeric case and also to
operate on k-subsets of variables instead of just single facts.

With abuse of notation, we omit 〈T 〉 and the novelty fea-
ture f from various helper function arguments. Firstly, we
quantify the novelty of subsets of variables by the function

N(J, s) = min
s′∈T,f(〈T 〉,s)i=f(〈T 〉,s′)i,∀i∈J

h(s′) (4)

where min returns∞ if the set it operates over is empty. The
function returns the minimum value of the heuristic over the
past states that share the same features as s for the consid-
ered variable subset. Then we define ϕ(J, s) = h(s) <
N(J, s) and ψ(J, s) = h(s) > N(J, s) where the Boolean
output evaluates to 0 or 1. The function ϕ states that the J
values of s are novel if h(s) is strictly lower than the heuris-
tic value of all previously seen states with the same J val-
ues. Similarly, ψ denotes non-novelty by noting whether the
heuristic value is strictly greater than the minimum heuristic



value of previously seen states with the same J values. Let{
N
n

}
be the set of n-subsets of variable indices of s and

(
N
n

)
its cardinality. Given an integer k ≥ 1, we can define the
quantified both novelty function kQBhf by

kQBhf (〈T 〉 , s) =

1∑
n=1

(
N
n

)
−

∑
J∈{N1}

ϕ(J, s), if ∃J ∈
{
N
1

}
, ϕ(J, s)

...k∑
n=1

(
N
n

)
−

∑
J∈{Nk}

ϕ(J, s), if ∃J ∈
{
N
k

}
, ϕ(J, s)

k∑
n=1

(
N
n

)
+

∑
J∈{Nk}

ψ(J, s), otherwise,

(5)

where cases are tie-broken by priority from the top. Unlike
the partition novelty measure, it is not as straightforward
to define the quantified both novelty function for tuples of
heuristics. This is because Eqn. (4) would return a Pareto
set for the min function if multiple heuristic were used. One
would then require definingϕ(J, s) over Pareto sets in which
case there are several ways to do so.

3.2 Manhattan Distance Heuristic
The goal count heuristic hgc for classical planning is the
simplest non-degenerate heuristic which counts the num-
ber of achieved goal propositions in a state. It has been
extended to numeric planning by counting the number of
achieved propositional and numeric goal conditions in the
current state. However, we can easily refine the heuristic for
numeric conditions ξ D 0 by measuring the error of the ex-
pression ξ evaluated in the current state. To formally define
this more refined goal count heuristic, let G = Gp ∪ Gn
be the goal of our problem where Gp is the set of proposi-
tional conditions and Gn the set of numeric conditions. Let
[l]s = 1 if s satisfies the literal l and 0 otherwise. Then,
given a goal condition G we define the Manhattan distance
heuristic hmd by

hmd(s) =
∑
l∈Gp

[l]s +
∑

c=ξD0∈Gn

γ(c, s) (6)

where the error is γ(c, s) = 0 if s satisfies c and |[ξ]s| other-
wise. It is possible to further refine hmd by dividing the error
of each numeric condition ξD0 by some constant computed
from the set of actions relevant to ξ. For example, we could
choose the constant to be either the min or max action effect
that brings |ξ| closer to 0 if the condition is not yet satisfied.

3.3 Multi-Queue Search
Multi-queue search is an effective method for combining
heuristics for satisficing search by maintaining a separate
queue in greedy best first search for each heuristic (Helmert
2006; Röger and Helmert 2010). More specifically, given n
heuristics, we have n priority queues from which we pop
nodes to expand in a round-robin manner. After a node is
expanded, the children are evaluated by each heuristic and

Numeric Heuristics Novelty Heuristics

h
gc

h
m

d

h
ai

br

h
ad

d

h
ra

dd

h
m

rp

h
m

rp
+h

j

h
ad

d
〈A
,P

N
〉

h
ad

d
〈B
,P

N
〉

h
ad

d
〈A
,Q

B
〉

h
ad

d
〈B
,Q

B
〉

117 200 119 183 171 176 217 178 181 215 236

Table 1: Total coverage of single queue GBFS with a selec-
tion of ENHSP heuristics and hadd novelty heuristics. The
top three scores are indicated by the cell colour intensity.

inserted into the corresponding priority queues. In our im-
plementation, we assume no node reopening which means
states are expanded at most once over all queues, at the
cost of potentially lower quality solutions. Naturally, when a
novelty heuristic and its base heuristic are used in the same
multi-queue search, we can save computing the base heuris-
tic’s value twice. We note that multi-queue search is not lim-
ited to using heuristic values for determining queues, as we
may also construct queues from preferred operators (Richter
and Helmert 2009; Richter and Westphal 2010) or total or-
ders of states (Garrett, Kaelbling, and Lozano-Pérez 2016).

3.4 Portfolios
Given that there is no single numeric planner configuration
that performs best for all domains, the research community
introduced portfolios and automatic configuration selection
of planners, both of which combine standalone planners to
maximise coverage over a diverse set of domains. Both port-
folios and automatic configuration selection methods usu-
ally perform well on optimal and satisficing tracks of the
International Planning Competitions. Portfolios (Helmert,
Röger, and Karpas 2011) statically select a set of planners
to run in sequence, each with a set amount of timeout such
that the sum of their timeout is equal to the total timeout of
the portfolio planner. The partitioning of time resources for
planners can be selected from training data or can simply be
uniform (Seipp et al. 2012). Similarly to portfolios, one may
also just learn to choose a specific planner for a given do-
main (Fawcett et al. 2011; Katz et al. 2018; Ma et al. 2020).
To reduce overfitting to benchmarks and to give a better un-
derstanding of the state of numeric planning domains, we
opt to only use uniform portfolios in our experiments.

4 Experiments
We evaluate the effectiveness of novelty heuristics and
multi-queue search for numeric planning on the Numeric
Track of the 2023 International Planning Competition (NT-
IPC) (Arxer and Scala 2023). Its benchmark suite consists of
20 domains with 20 problems each. Action effects are lim-
ited to either linear or simple effects. Heuristics we consider
are goal count (hgc), Manhattan distance (hmd), the addi-
tive interval-based relaxation (haibr) (Scala et al. 2016a), the
subgoaling additive heuristic with (hradd) and without (hadd)
redundant constraints (Scala, Haslum, and Thiébaux 2016),
and the multi-repetition relaxed plan heuristic (hmrp) with
successors restricted to states generated by up-to-jumping
actions (hmrp+hj). Given a novelty feature f , a heuristic h,



S GBFS M GBFS P GBFS SMT

nu
m

.t
as

ks

h
m

d

h
ad

d

h
m

rp
+h

j

h
m

d
〈B
,Q

B
〉

h
ad

d
〈B
,Q

B
〉

h
m

rp
〈B
,Q

B
〉+

hj

M
(3
h

)

M
(3
n

)

M
(3
h
‖3
n

)

P(
3
h

)

P(
3
n

)

P(
3
h
‖3
n

)

PA
T

T
Y

400 200 183 217 185 236 222 261 244 274 290 292 315 262

Table 2: Total coverage of single queue (S), multi-queue (M), and portfolio (P) GBFS configurations, and the PATTY solver.
The top three scores are indicated by the cell colour intensity.

and a novelty heuristic n, we write h〈f,n〉 for the correspond-
ing heuristic. The first entry in f(〈T 〉 , s) is given by the
sequence of previously evaluated states during search. We
let 3h denote the list of top 3 performing ENHSP heuris-
tics hmd, hadd, and hmrp+hj, 3n the list of their correspond-
ing novelty heuristics hmd

〈B,QB〉, h
add
〈B,QB〉, and hmrp

〈B,QB〉+hj with
k = 2, and 3h ‖ 3n the concatenation of these two lists. We
choose the novelty heuristic extension 〈B,QB〉 as it is the
best forming novelty heuristic overall. Then M(·) denotes
a multi-queue search with a queue for each input heuris-
tic, and P(·) a portfolio with a uniform partitioning of time
for each input heuristic. PATTY denotes the SMT planner
by Cardellini, Giunchiglia, and Maratea (2024). All exper-
iments are run with a 600 second timeout and 8GB mem-
ory limit on a single Intel Xeon 3.2 GHz CPU core. To help
with the evaluation of the effectiveness of the outlined search
techniques, we perform experiments to answer the following
questions. We refer to the appendix for more detailed plots
and tables.

How effective is hmd? From Tab. 1, we notice that hmd

is the best performing heuristic behind hmrp+hj. This can be
attributed to its fast evaluation speed rather than its infor-
mativeness as it generally expands more nodes than other
heuristics on problems which both hmd and another heuris-
tic solves. Exceptions to this rule are the fo-farmland and
tpp domains in which delete relaxation heuristics perform
poorly. Nevertheless it generally expands far fewer nodes
than hgc. Unfortunately, hmd returns the worst plan length
on almost all problems compared to all other heuristics.

What is the best novelty heuristic for numeric planning?
From Tab. 1, we notice that hadd

〈B,QB〉 is the best performing
novelty heuristic in terms of coverage. Observing the per-
formance of configurations, the effect of choosing QB over
PN for novelty heuristic is greater than choosing B over A
for the novelty feature. This is supported by the fewer expan-
sions of the QB variants compared to their PN counterparts
over almost all domains. On the other hand, the compari-
son of plan length depends on the domain. The performance
improvement over the base heuristic also depends on the do-
main. We lastly note that k = 2 almost always provides
better performance than k = 1 for all novelty heuristics.

Is multi-queue search or using portfolios better for com-
bining heuristics? Multi-queue search saves computation
by reducing redundant node expansions and is able to make
use of the exploration vs. exploitation paradigm when us-

ing multiple diverse heuristics. On the other hand, portfolios
make use of the fact that some heuristics perform better on
some domains than others. From Tab. 2, we notice that port-
folios overall achieve higher coverage even when using the
simple uniform partitioning scheduling. The P(3h‖3n) con-
figuration achieves strictly better coverage than M(3h‖3n)
on 9 domains, and strictly lower coverage on 5 domains.
This suggests that some domains can be solved efficiently
by a single heuristic, while on other domains, we require
the exploration effect of multi-queue search when none of
the heuristics perform well. Furthermore, it depends on the
domain whether the best heuristic or multi-queue search ex-
pands fewer nodes and returns better quality plans.

Which domains are more suited to constraint-based
solvers and which to heuristic search? We note that
the best performing constraint-based solver PATTY solves
strictly more problems than P(3h‖3n) on 5 domains, and
strictly fewer problems on 9 domains. The problems in
which PATTY performs well generally have a high ratio of
numeric variables and short rolled up plans, such as the fo-
counters and fo-sailing domains. These problems have in-
finitely large state spaces and it is more likely for search-
based methods to get lost. However, search-based methods
perform better on domains which require long sequential
plans or traversal over maps with many locations, such as de-
livery, drone, ext-plant-watering, markettrader and tpp. This
is because SMT encodings may require many decision vari-
ables to represent problems with complex, sequential plans.
However, we note that PATTY generally returns poorer qual-
ity plans with plan lengths up to an order of magnitude
longer than search planners.

5 Conclusion
We have ported search techniques from classical plan-
ning to boost the performance of satisficing numeric plan-
ning solvers. We have formalised novelty heuristics for nu-
meric planning, constructed a simple but powerful Man-
hattan distance heuristic, and extended the ENHSP plan-
ner with multi-queue search and naive portfolios. Experi-
ments demonstrate the effectiveness of these techniques on
the recent Numeric Track of the 2023 International Plan-
ning Competition (NT-IPC). Results also suggest a need for
more diverse numeric planning benchmarks, as 78.8% of the
problems from the NT-IPC are solved by our new P(3h‖3n)
configuration in the ENHSP planner within 5 minutes, and
89.2% of the problems by either P(3h‖3n) or PATTY.



Acknowledgments
The authors thank the reviewers for the helpful comments and sug-
gestions, most notably with the naming of the Manhattan distance
heuristic by connecting the computation of errors to the L1 met-
ric. We also thank Enrico Scala for providing the source code for
ENHSP. The computing resources for the project was supported by
the Australian Government through the National Computational In-
frastructure (NCI) under the ANU Startup Scheme This work was
supported by Australian Research Council grant DP220103815, by
the Artificial and Natural Intelligence Toulouse Institute (ANITI)
under the grant agreement ANR-19-PI3A-000, and by the Euro-
pean Union’s Horizon Europe Research and Innovation program
under the grant agreement TUPLES No. 101070149.

References
Arxer, J. E.; and Scala, E. 2023. International Planning Compe-
tition 2023 - Numeric Tracks. https://ipc2023-numeric.github.io.
Accessed: 2024-02-19.
Bofill, M.; Espasa, J.; and Villaret, M. 2017. Relaxed Exists-Step
Plans in Planning as SMT. In IJCAI, 563–570.
Cardellini, M.; Giunchiglia, E.; and Maratea, M. 2024. Symbolic
Numeric Planning with Patterns. In AAAI, 20070–20077.
Coles, A.; Fox, M.; Long, D.; and Smith, A. 2008. A Hybrid
Relaxed Planning Graph-LP Heuristic for Numeric Planning Do-
mains. In ICAPS, 52–59.
Corrêa, A. B.; and Seipp, J. 2022. Best-First Width Search for
Lifted Classical Planning. In ICAPS, 11–15.
Fawcett, C.; Helmert, M.; Hoos, H.; Karpas, E.; Röger, G.; and
Seipp, J. 2011. FD-Autotune: Domain-Specific Configuration us-
ing Fast Downward. In ICAPS 2011 Workshop on Planning and
Learning.
Fox, M.; and Long, D. 2003. PDDL2.1: An Extension to PDDL for
Expressing Temporal Planning Domains. J. Artif. Intell. Res., 20:
61–124.
Garrett, C. R.; Kaelbling, L. P.; and Lozano-Pérez, T. 2016. Learn-
ing to Rank for Synthesizing Planning Heuristics. In IJCAI, 3089–
3095.
Gigante, N.; and Scala, E. 2023. On the Compilability of Bounded
Numeric Planning. In IJCAI, 5341–5349.
Helmert, M. 2002. Decidability and Undecidability Results for
Planning with Numerical State Variables. In AIPS, 44–53.
Helmert, M. 2006. The Fast Downward Planning System. J. Artif.
Intell. Res., 191–246.
Helmert, M.; Röger, G.; and Karpas, E. 2011. Fast Downward
Stone Soup: A Baseline for Building Planner Portfolios. In ICAPS
2011 Workshop on Planning and Learning.
Hoffmann, J. 2002. Extending FF to Numerical State Variables. In
ECAI, 571–575.
Hoffmann, J. 2003. The Metric-FF Planning System: Translating
”Ignoring Delete Lists” to Numeric State Variables. J. Artif. Intell.
Res., 24: 685–758.
Illanes, L.; and McIlraith, S. A. 2017. Numeric Planning via Ab-
straction and Policy Guided Search. In IJCAI, 4338–4345.
Katz, M.; Lipovetzky, N.; Moshkovich, D.; and Tuisov, A. 2017.
Adapting Novelty to Classical Planning as Heuristic Search. In
ICAPS, 172–180.
Katz, M.; Sohrabi, S.; Samulowitz, H.; and Sievers, S. 2018. Delfi:
Online planner selection for cost-optimal planning.
Kuroiwa, R.; Shleyfman, A.; and Beck, J. C. 2023. Extracting and
Exploiting Bounds of Numeric Variables for Optimal Linear Nu-
meric Planning. In ECAI, 1332–1339.

Kuroiwa, R.; Shleyfman, A.; Piacentini, C.; Castro, M. P.; and
Beck, J. C. 2021. LM-cut and Operator Counting Heuristics for
Optimal Numeric Planning with Simple Conditions. In ICAPS,
210–218.
Kuroiwa, R.; Shleyfman, A.; Piacentini, C.; Castro, M. P.; and
Beck, J. C. 2022. The LM-Cut Heuristic Family for Optimal Nu-
meric Planning with Simple Conditions. J. Artif. Intell. Res., 75:
1477–1548.
Li, D.; Scala, E.; Haslum, P.; and Bogomolov, S. 2018. Effect-
Abstraction Based Relaxation for Linear Numeric Planning. In
IJCAI, 4787–4793.
Lipovetzky, N.; and Geffner, H. 2012. Width and Serialization of
Classical Planning Problems. In ECAI, 540–545.
Lipovetzky, N.; and Geffner, H. 2017. Best-First Width Search: Ex-
ploration and Exploitation in Classical Planning. In AAAI, 3590–
3596.
Ma, T.; Ferber, P.; Huo, S.; Chen, J.; and Katz, M. 2020. On-
line Planner Selection with Graph Neural Networks and Adaptive
Scheduling. In AAAI, 5077–5084.
Piacentini, C.; Castro, M. P.; Ciré, A. A.; and Beck, J. C. 2018. Lin-
ear and Integer Programming-Based Heuristics for Cost-Optimal
Numeric Planning. In AAAI, 6254–6261.
Ramı́rez, M.; Papasimeon, M.; Lipovetzky, N.; Benke, L.; Miller,
T.; Pearce, A. R.; Scala, E.; and Zamani, M. 2018. Integrated Hy-
brid Planning and Programmed Control for Real Time UAV Ma-
neuvering. In AAMAS, 1318–1326.
Richter, S.; and Helmert, M. 2009. Preferred Operators and De-
ferred Evaluation in Satisficing Planning. In ICAPS, 273–280.
Richter, S.; and Westphal, M. 2010. The LAMA Planner: Guid-
ing Cost-Based Anytime Planning with Landmarks. J. Artif. Intell.
Res., 39: 127–177.
Röger, G.; and Helmert, M. 2010. The More, the Merrier: Com-
bining Heuristic Estimators for Satisficing Planning. In ICAPS,
246–249.
Scala, E.; Haslum, P.; Magazzeni, D.; and Thiébaux, S. 2017.
Landmarks for Numeric Planning Problems. In IJCAI, 4384–4390.
Scala, E.; Haslum, P.; and Thiébaux, S. 2016. Heuristics for Nu-
meric Planning via Subgoaling. In IJCAI, 3228–3234.
Scala, E.; Haslum, P.; Thiébaux, S.; and Ramı́rez, M. 2016a.
Interval-Based Relaxation for General Numeric Planning. In ECAI,
655–663.
Scala, E.; Haslum, P.; Thiébaux, S.; and Ramı́rez, M. 2020a. Sub-
goaling Techniques for Satisficing and Optimal Numeric Planning.
J. Artif. Intell. Res., 68: 691–752.
Scala, E.; Ramı́rez, M.; Haslum, P.; and Thiébaux, S. 2016b. Nu-
meric Planning with Disjunctive Global Constraints via SMT. In
ICAPS, 276–284.
Scala, E.; Saetti, A.; Serina, I.; and Gerevini, A. E. 2020b. Search-
Guidance Mechanisms for Numeric Planning Through Subgoaling
Relaxation. In ICAPS, 226–234.
Seipp, J.; Braun, M.; Garimort, J.; and Helmert, M. 2012. Learning
Portfolios of Automatically Tuned Planners. In ICAPS, 368–372.
Shleyfman, A.; Kuroiwa, R.; and Beck, J. C. 2023. Symmetry De-
tection and Breaking in Linear Cost-Optimal Numeric Planning. In
ICAPS, 393–401.
Teichteil-Königsbuch, F.; Ramı́rez, M.; and Lipovetzky, N. 2020.
Boundary Extension Features for Width-Based Planning with Sim-
ulators on Continuous-State Domains. In IJCAI, 4183–4189.


