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Abstract—Convex power flow relaxations have become pop-
ular to alleviate difficulties with embedding the non-convex AC
power flow equations into optimisation models, and to provide
guarantees on the quality of feasible solutions generated by
heuristic approaches. However, their use has almost universally
been limited to purely continuous problems. This paper extends
the reach of relaxations to reconfiguration problems with binary
decision variables, such as minimal power loss, load balancing
and power supply restoration. This is achieved by extending
the relaxations of AC power flows to bear on the on/off nature
of constraints featured in reconfiguration problems. This leads
to an approach producing AC feasible solutions with provable
optimality gaps, and to global optimal solutions in some cases.
In terms of run time, the new models are competitive with state-
of-the-art approximations which lack formal guarantees.
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I. INTRODUCTION

The steady-state alternating current (AC) power flow equa-
tions are at the core of virtually every computational problem
in the field of power systems. Unfortunately, these equations
form a system of non-convex constraints, raising significant
challenges in any optimisation framework. When embedding
these constraints into optimisation models, global non-linear
programming (NLP) solvers do not scale and may not con-
verge, even if all decision variables are continuous. These
issues are exacerbated in the case of reconfiguration and power
supply restoration problems, where discrete decisions are made
that affect the grid topology. On the one hand, discrete
variables increase the computational difficulty of the problem.
On the other hand, topology changes lead to departure from
the normal operating conditions that are used to hot-start
non-linear solvers. Yet utilities are facing an increasing need
for efficient reconfiguration methods, in order to optimise
their operations to better handle the intermittent nature of
distributed generation, and to quickly resupply customers in
fault situations.

There is a rich set of optimisation approaches in the power
systems literature that tries to circumvent these problems.
Black-box heuristic methods, which push power flow cal-
culations outside the optimisation solver, have become very
popular, owing to their broad applicability [1]-[3]. Yet, these
approaches fail to exploit the problem structure and lack formal
guarantees on the quality of the solutions returned. Another
popular approach is to approximate the power flow equations,
usually linearly [4]-[6], or with more accurate convex models
[7]. This enables the use of a new generation of mathematical
programming solvers including mixed-integer linear (MIP),

quadratic (QP) and second-order cone (SOCP) programming
solvers [8]. With these approaches, the issue is that the solution
returned — whilst optimal for the approximate model — may not
be feasible with respect to the original AC model. Researchers
have observed that this is particularly true with reconfiguration
problems, as switching moves us away from the nominal
configuration under which the approximations are valid [9].

Therefore, recent research has turned to finding linear or
convex relaxations of the AC power flow equations [10]-
[13]. These convex relaxations are of great interest since they
efficiently produce lower bounds on the quality of the feasible
solutions generated by global or local optimisation approaches.
For purely continuous problems such as optimal power flow
(OPF), the semi-definite programming (SDP) relaxation in [12]
is often tight, i.e. its solution is also a solution to the origi-
nal problem. However, for reconfiguration and power supply
restoration problems, the applicability of such relaxations has
not been investigated; the only exception we are aware of is the
work of Jabr et. al. [14] discussed below. Such an investigation
is the topic of the present paper.

Our contributions are as follows. We extend recent
quadratic relaxations of power flow equations for radial [11]
and general networks [13] to include topology changes and
bear on reconfiguration problems. Key to obtaining effective
relaxations is an adequate representation of on/off constraints,
which we describe in some detail. Studying both radial and
non-radial topologies enables us to efficiently exploit the
current radial topology of most distribution systems, whilst
also accounting for more general topologies representative of
advanced networks and microgrids with higher penetration
of distributed generation. We then use these relaxations to
obtain lower bounds and solve reconfiguration problems with
objectives such as loss minimisation and load balancing, as in
[7], as well as power supply restoration problems.

Qualitatively, our approach leads to AC feasible solutions
with provable optimality gaps, of zero in some cases. Except
for the work of Jabr et. al [14], we are not aware of other
approaches capable of providing such guarantees for reconfig-
uration problems. Jabr et. al use a different relaxation to solve
loss minimisation problems, exclusively with radial topologies.
In the meshed case, and for power supply restoration (regard-
less of topology), we are not aware of any report of provable
quality gaps. Quantitatively, for radial topologies, our approach
leads to better computation times when compared to existing
approaches based on Tabu search [15], SOCP with convex
power flow approximations [7], and MICP using the competing
relaxation [14]. Our experimental results also suggest that
meshed topologies are often beneficial: in the benchmarks we



considered, we observed a further reduction of the objective
function between 2%-15%.

The paper is organised as follows. Section II reviews
the power flow equations suited to the radial and general
case, as well as their relaxation given in [11] and [13],
respectively. Section III extends these relaxations to account
for the specificities of reconfiguration problems and describes
our overall approach. Section IV describes the three specific
reconfiguration problems we consider, and presents an exper-
imental evaluation of our approach on these problems.

II. POWER FLOW EQUATIONS AND THEIR RELAXATION

In the following, we consider a network (N, E), where N
is the set of buses (nodes), and F is the set of lines (edges).
The relevant variables are the voltage magnitude v;, the phase
angle 0; at each bus ¢ € IV, the active power p;; and the
reactive power g;; from bus 7 to bus j. Each line has a constant
impedance, which we represent either via its resistance r;; and
reactance &;; or via its susceptance b;; and conductance g,;.

We assume the following set of operational constraints,
where S7; is the capacity of line (i, j) € £, 6" is the maximal
phase angle difference between connected buses, and (v, v*)
are the lower and upper bus voltage limits

P+ a4 < S, (i,j) € E (1a)
-0"<0,—-0;<6" (i,j) e E (1b)
vl <v; <vie N. (1c)

A. Radial Distribution Networks

Distribution systems have a meshed structure, but are often
exploited radially. From an optimisation point of view, the
radial topology makes it possible to exploit the quadratic Dis-
tFlow equations [1], resulting in more efficient computation.
These equations are defined as
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We use the relaxation of the DistFlow equations described
by Farivar et. al [11]. The relaxation substitutes vf with the
variable vv; which denotes the square of the voltage magnitude
at each bus, and defines the variables
P+ 4
lij =

VU;
representing the square of the current magnitude on each line.
This makes all equations linear except for the latter equality
which is the source of non-convexity and is relaxed into an
inequality. The overall relaxation is

pij= Y, Pik+Tili (3a)
k:(j,k)eE

%j = Z Qjk + Tijlis (3b)
k:(j,k)eE

VU = VV; — Q(Tijpij + a:,;jqij) + (’I’?j + :szj)lw 3¢)

v+ qp < lijuy; (3d)

This relaxation was used by Farivar et. al [11] for Volt/VAR
control; we will extend it to the case of reconfiguration. In
solving a range of reconfiguration problems including loss
minimisation and load balancing, Taylor and Hover [7] have
used a SOCP approximation of the DistFlow equations which
ignores the last term in Equation (2c). This approximation
does not come with guarantees on the feasibility and quality
of the solution returned. The alternative relaxation proposed
by Jabr et. al [14], will also be a point of comparison in our
experimental section.

B. General Distribution Networks

As the penetration of distributed generation increases, dis-
tribution networks will progressively evolve into active meshed
networks with bi-directional power flows. Therefore, this paper
also considers networks with general meshed topologies. The
steady-state AC power flows in such networks are given by

p7] :gijviz b,;j’l}ﬂ}j sin(@ifﬂj) (43)
ij =— bijvi +bijvivj cos(0;—0;)— gi;viv;sin(0;—0;) (4b)

fgijij cos(6;—0;) —

Finding an effective relaxation of these equations is much
more challenging than in the radial case. We use the recent
convex quadratic relaxation of the AC power flow equations
proposed by Hijazi et. al [13], which offers a number of
advantages over other relaxations [12], [16]. In particular,
SDP solvers required by the SDP relaxation [12] are less
mature than non-linear quadratic solvers in terms of scalability.
Furthermore, preliminary experiments have proven [13] to be
a tighter relaxation than [16].

Here we only mention the main principles behind the
relaxation and refer the reader to [13] for further details. As
shown in Figure 1, the formulation exploits convex relaxations
of the non-linear terms appearing in equations (4a)-(4b). It
uses:

e  a quadratic relaxation of cosine (for 8 < 7)

~ _ 1—cos(8") p2
Ccos(@)yt = { G <1~ ~gmz 0
Gi; = cos(0")

e  a quadratic relaxation of v?
2

2R v = v
v =4 _
w? {vv < (v* + vl — vl

—v
a polyhedral relaxation of sine (for 8" < 7)

5i; < cos — 2% 4+ sin(&-
<Sin(9)>32{3 (5)(0 — &) +sin(%)

<
8ij = COS (9“)(94— —) —sm(%)

and the McCormick relaxation of bilinear terms vw

T = vhw + why — viw!

> vYw"
o < vlw + whv — viw
1

v'w + whv —
(owyM =

o < viw + wh — viw
The relaxation is strengthened by introducing the following
formulation of power loss equations [17]
= rijlij
= ®ijli;

Dij + Dji
Qij + qji
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where, as in the radial case, l;; denotes the square of the
current magnitude. This builds on the observation that in-
troducing redundancy can often improve relaxations of non-
convex problems [18].

Altogether, the relaxation obtained is

Pij = g;;U0; — g;;Wcij — bijwsy; (5a)
qij = —bijUv; + bijwci; — g;;Wsij (5b)
0 € (vHHF (5¢)
&ij € (cos(0; — 0;))" (5d)
5, € (sin(0; — ;)" (Se)
Wi € (U, i)™ (50
weyy € (Wij, Gy (52)
Wsij € (Wij, 3" (5h)
Py + ¢ < 1ij00; (5i)
pij + Dji = Tijli (1)
Qi + Gji = Tijli (5k)

In [13], this relaxation is used to solve OPF and capacitor
placement problems. In the following we extend the relaxation
to reconfiguration and demonstrate its benefits for a range of
reconfiguration problems.

III. RELAXATIONS FOR RECONFIGURATION PROBLEMS

Distribution system reconfiguration involves determin-
ing the network topology (the position open/closed of line
switches) optimising a given performance criterion whilst
satisfying physical and operational constraints. For simplicity,
we assume that each line (i,5) € FE is equipped with a
switch whose position is given by the (non-directional) boolean
variable y;;, where y;; = 1 means that the switch is closed.
A line without switch can easily be accommodated by fixing
¥i; = 1. In a distribution system, a subset G < N of buses are
substation buses. Each bus i € N\G has constant active and
reactive loads p! and g!.

For reconfiguration, the set of operational constraints is
now the following:

Py + 4l < SY, ify,; =1,(i,j)eE  (6a)
0" <0,—0,<0"  ify,=1(,j)eE (6b)
v =1, ieG  (60)
vl < v <Y, ie N\G. (6d)

Observe that with the addition of topology changes, some of
the constraints become on/off: they are only active if y;; is true.
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Relaxation of Non-linear Functions (from [13]): cosine (left), square (middle), and sine (right).

For instance, this affects the phase angle constraint (6b), and
will also affect some of the equations in the power flow relax-
ations. The key to efficient formulations and convex relaxations
of reconfiguration problems is an adequate representation
of these on/off constraints. Therefore, before extending the
relaxations, we review on/off constraints representations.

A. On/Off Constraints

Given convex functions f : R"™™ — R, h : R"*™ — RY
and g; : R® — R, Vk € K, we are interested in optimisation
problems of the form

min f(x,z)
s.t. h(x,2z) <0,
gr(x) <0if 2z, = 1, Vke K

xeR", zeZ™.

(Pr)

Each gi(x) < O represents an “on/off” constraint, with zj
as its corresponding indicator variable. h(x,z) < 0 gathers
the remaining constraints. Bounds on variables are assumed
to be finite. A standard formulation of (Pr) would consist of
transforming the “on/off” constraints into: zx gy (x) < 0, Vk €
K, loosing the convexity of the feasible region. In order to
maintain the convexity property, one can use big-M formula-
tions. Unfortunately the continuous relaxations resulting from
such models, although compact and usually easy to solve,
often provide weak lower bounds. Disjunctive programming
(see [19]) offers an interesting alternative. Indeed, (Pr) can be
reformulated as a disjunctive program

min f(x,z)
s.t. h(x,z) <0,
(x,2x) e LT, Vke K
Th ={(x,21): 2 =0, I°<x < u’}
Iy ={(x,2) 26 = 1, (%) <0, I' <x<u'}.
xeR", zeZ™.

Given this approach, one can define the best convex relaxation
of each disjunctive constraint g; to be the convex hull
conv (Tf UTY). When the set I'f reduces to a single point
1° = u® = 0), conv (I'§ UT}) can be formulated in the
space of original variables [20]. The main result is the
following (subscript k is dropped for clarity purposes)

conv (Tg uTy) = closure (T';), where



(x,2) e R*FL:
.=+ zg9(x/z) <0, @)

Al<x<z2ul, 0<z<1
Let us emphasise that for quadratic functions
9(x) = @123 + agas — s
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This result can be extended to the general case (1° # u®) when
functions g are monotonic [21]. Specifically, in the linear case

where g(x) = a’x — f3, the convex hull is given by

(z,2) e R 1.

Yazi<z|B— Y oul — Y agll
i¢S i€S, i€S,

a; <0 a;>0
re= (9)
+1-2)| ¥ ol?+ ¥ ol |, VS,
¢S, ¢S,
a; <0 a; >0

2+ (1= 2)0 < a; < zul + (1—2)ud, Vie N,

0<z<1

where I = {i € {1,...,n} | a; # 0} denotes the set of vari-
able indices appearing in the linear constraint. Observe that
for S = (J one gets the bigM-like constraint

Z oy <P z+(1—2) Z a;l? + Z aul (10)
ieEN ieN ieN
a; <0 ;>0

Let us emphasise that this constraint is not sufficient for
defining the convex hull as shown in [21], therefore, one can
strengthen the relaxation by introducing the remaining non-
dominated constraints. In what follows, we use the results in
(7)-(10) to formulate on/off constraints in the reconfiguration
framework.

B. Radial Distribution Networks

The application of the above on/off constraints principles
leads to the following extension of the DistFlow relaxation

(3a)-(3d) to the reconfiguration case:

P = Y, Djk+Tily+ D ie N\G (11a)
k:(j,k)EE
l .
Qij = Z gk + Tijli; + q; i€ N\G (11b)
k:(j,k)EE
voj > vvi = 2(ripij + Tiiqi) + rEli (11c)
— ("= @) (1= z) (L)€ E,j¢G
v < vvi — 2(ripiy + ®ijqig) + Tl (11d)
+ (@ = (@) (1= z) (i.j) € E,j# G (1)
pi; +ahy < Lo (i,j) e E (11f)
P+ < i (0") 2y (i,j)e E (1g)
P+ qh < Szl (i,j) € E (11h)
D zi=0 ieG (11i)
(4,2)eE
Yij = Zij + 2ji (i,j) e E (115
PR ie N\G (11k)
(4,0)eE
v = 1 ieG (111)
(vl)2 <oy < (vu)2 i€ N\G (11m)
yij € {0,1}, z;; € {0, 1} (i,j)e E (11n)

Equations (11a)-(11b) are identical to Equations (3a)-(3b),
except for the active and reactive load (p',q’) consumed
at bus j. Equations (111)-(11m) enforce the operational con-
straints on voltage at buses (6¢)-(6d). Equations (11i)-(11k)
enforce radial topologies. The boolean variable z;; indicates
whether a flow is allowed from ¢ to j. Unlike for y;;, there are
two instances of these flow indicators per line. Equation (111)
states that incoming flows are not allowed at substations
buses, Equation (11j) states that flows through an open switch
are not allowed and that flows through a closed switch are
unidirectional, and Equation (11k) states that the flow entering
each bus comes at most from one other bus.

Equation (11h) enforces the on/off operational capacity
constraint (6a). This is a direct application of the convex-hull
definition (7) with x = (pij, qi;), 9(x) = a3 + 23 — S}

2 +qi;
and consequently z;;9((pij, ij)/2ij) = zij(pjz% — Sfj)
1y

Observe that 1° = u® = (0, 0) hence the condition 1° = u" is
satisfied.

Equation (11f) is identical to Equation (3d) of the DistFlow
relaxation and Equation (11g) is its on/off counterpart. The
on/off constraint matches the quadratic form investigated in
the previous subsection, whose convex hull is defined as in (8)
with x = (pij7qijalij), o = (1,1), ﬁ = (1}?)2. Again, 10 =
u’ = (0,0,0).

Finally, Equations (11c)-(11d) are the on/off counterpart
of the voltage drop equation (3c) (where r:czzj replaces
r?j + mfj). Note that these constraints match the linear form
investigated in the previous subsection. For Equation (11c)
(and similarly for Equation (11d)), this leads to the bigM-
like constraint in (10) with x = (vv;, vv;, pij, ¢ij, lij)>
a = (1,-1,-2ry;, —2x;,r3 + ), 6 = 0, 1° =
((0")?2, (v')%,0,0,0), u” = ((v*)*, (v")*,0,0,0).

C. General Distribution Networks

We now consider the extension of the AC relaxation to
reconfiguration of general (meshed) networks. Again, we make



use of the on/off constraints principles described above. The
resulting relaxation is shown below.

pij = g,;003; — g,;Wci; — bijwsi; (i,5) € E (12a)
¢ij = —bij005; + bijwci; — 9:;Wsij (i,5) € E (12b)
iy = 00 — (1 — yig)(0")? (12¢)
T35 < 00i + (1= yij)(v')? (12d)
|3:; — cos(0"/2)(0; — 0;)| < 2:;(sin(6*/2) (12e)

—cos(0"/2)0"/2) + (1 — z;;)(cos(0"/2)|E|0" + 1)

Cij < zij — %us)(f) ((0: — 0;,)> + (1 — z”)(|E|6“)2) (12f)
Cij = zij cos(—0") — (1 — 2;5) (12g)
> b +pi=0 (12h)
J:(i.d)eE
>, Gi+a =0 (12i)
J:(i,5)eE
P+l < Li(v")’y; (12))
Py + a5 < Sijyi; (12K)
0; —0; = —yi;0" — (1 —yiy)|E|0" (121)
0; — 0; < yi;0" + (1 —yi;) | E0" (12m)
Oret = 0 (12n)

(5¢), (5) — (5k), (6¢) — (6)

The new power flow equations are given in (12a)-(12b).
The on/off version of the squared voltage magnitude con-
straints are defined in (12c)-(12d). Constraints (12e), which
represent the sine relaxation, are obtained by applying the
convex hull formulation introduced in (9). Constraints (12f)-
(12g) also define an on/off version of the cosine relaxation.
Equations (12h)-(12i) represent Kirchhoff’s law, inequalities
(12j) and (12k) represent respectively the on/off version of
the squared current magnitude and capacity constraints, while
inequalities (121)-(12n) encode the operational constraints on
phase angles. In addition, the formulation includes constraint
(5¢) defining variable ©v;, constraints (5f)-(5h) which encode
the McCormick relaxations wc;;-ws,;, and constraints (5j)-
(5k) representing the loss equations. Finally, (6¢)-(6d) states
the operational constraints on voltage magnitude variables.

D. Finding a Solution with Quality Guarantees

The relaxations discussed above return a lower bound on
the DistFlow (resp. AC) global optimal solution and compute
an optimal topology in the relaxed space. This topology is
then evaluated in the exact DistFlow (resp. AC) formulation
by solving the non-convex model using an NLP solver. There
are no on/off constraints in the latter model: instead, the set
E of lines is restricted to the lines (¢,j) such that z; = 1
(resp. ;5 = 1) in the optimal relaxed topology. Any feasible
solution returned by the NLP solver gives us an upper bound.
If such a feasible solution is returned, its objective function is
compared with the lower bound to produce an optimality gap.
If the gap is zero, then the lower bound is a feasible optimal
solution. Otherwise, we run a heuristic MINLP solver on an
exact DistFlow (resp. AC) formulation of the reconfiguration
problem, and compute the optimality gap wrt. the MINLP
solution.

IV. APPLICATIONS AND EXPERIMENTAL RESULTS

We now evaluate our approach on three reconfiguration
problems: loss minimisation, load balancing, and power supply

Obj. Opt. LB. Run | UB. Run Closed
Value Gap Time Time Switch.
Network Radial
32-bus 0.01395 0% 2.90 - 32/37
70-bus 0.03016 0% 7.45 - 68/76
135-bus | 0.28013 0% 24.80 — | 135/156
880-bus | 0.45703 0% 2886.94 — | 873/900
Network Meshed
32-bus 0.01232 | 0.55% 6.26 0.10 36/37
70-bus 0.02977 | 0.17% 3542 0.21 75176
135-bus | 0.27079 | 3.00% T.L. 3.42 | 149/156
880-bus | 0.45175 | 8.72% T.L. T.L. | 900/900
TABLE 1. MINIMAL LOSS RESULTS

restoration. We will provide results for the radial and meshed
variants of these problems, to give a sense of the benefits that
could be achieved with complex topologies.

We use the 4 networks with 32, 70, 135, and 880 buses
considered by Taylor and Hover [7]. This enables us to
compare our loss minimisation and load balancing results with
those obtained by their QP, QCP, and SOCP approximations.
We also compare with the MICP relaxation described by Jabr
et. al. We reimplemented these approaches to provide fairer
quantitative comparisons. For power supply restoration, we are
not aware of work on convex approximations or relaxations to
compare with.

All experiments were run on an AMD Opteron proces-
sor 4226 at 2.7 GHz with 65 Gbytes of RAM and 2 Mbytes
of cache. We used AMPL [22], CPLEX [8] to solve QPs and
SCOPs, IPOPT [23] for NLPs, and Bonmin [24] for MINLPs.
Bounds were as follows: ' = 0.9, v* = 1.05, and 8% = 1”—2
Power supply restoration problems were run with a time limit
of 30 minutes. All remaining problems were run with a time
limit of 1h except for the larger 880-bus instance for which it
was set to Sh.

A. Loss Minimisation

The objective is to find the configuration minimising the
total active power loss

min Z Tijlij

(i,4)eE

The results for the 4 networks are shown in Table I.
The columns respectively report the upper bound found by
NLP/MINLP, the gap (difference) with the value of the lower
bound obtained with the relaxation, the run-time (sec) for
the lower bound computation, the run time for the upper
bound computation, and the number of switches closed in the
AC solution. A Dash in the upper bound run time column
indicates that the NLP found a feasible (optimal) solution and
the MINLP was not run. Note that the NLP solver time is
negligible. As can be seen from the table, for radial topologies,
our approach finds the global optimal solution for all networks.
For meshed topologies, the gap starts to become significant for
the large network. The gain obtained by switching to meshed
topologies ranges from at most 3% for the 135-bus network
to 12% for the 32-bus instance.

Table II compares our approach with results reported in
the literature. The QP approximation of Taylor and Hover
[7] gives identical results for the first 3 networks, with good
run-times. However, recall that, in general, this approximation
is not guaranteed to return AC-feasible solution, does not
come with a provable gap with respect to the AC optimal



present approach QP approx. [7] SOCP approx. [7] MICP relax. [14] Tabu search [15]
Network Val Time Val Time Val Time Val Time Val Time
32-bus 0.01395 2.90 0.01395 0.39 0.01395 23.83 0.01395 5.23 - -
70-bus 0.03016 7.45 0.03016 0.98 0.03016 | 769.63 0.03016 | 52.48 - -
135-bus | 0.28013 24.80 0.28013 | 54.74 0.28661 T.L. 0.29171 T.L. 0.28016 | 46.78
880-bus | 0.45703 | 2886.94 0.45704 T.L. - T.L. mem. err. - - -
TABLE II. COMPARISON OF MINIMAL LOSS RESULTS
Ob;. Opt. LB. Run | UB. Run Closed present approach || QCP approx. [7] || SOCP approx. [7]
Value Gap Time Time Switch. Network Val Time Val Time Val Time
Network Radial 32-bus | 0.04145 6.19 || 0.04146 4.42 || 0.04146 9.73
32-bus 0.04145 0% 6.19 - 32/37 70-bus | 0.44126 | 35.35 inf. | 778.31 || 0.44879 | 1690.25
70-bus 0.44126 0% 35.35 - 68/76 135-bus | 0.25334 T.L. || 0.25334 T.L. || 0.28380 T.L.
135-bus 0.25334 0% 3600.00 — | 135/156 880-bus | 0.10975 T.L. || 0.10116 T.L. || 0.14238 T.L.
EISO-bus 0.10975 16% TL. — | 873500 TABLE IV. COMPARISON OF LOAD BALANCING RESULTS
etwork Meshed
32-bus 0.03511 0.59% 16.25 52.76 34/37 .
70-bus | 0.41840 | 0.30% 87417 | 48490 | 72776 C. Power Supply Restoration
135-bus | 0.21494 | 0.76% TL. TL. | 148/156 Power supply restoration consists in reconfiguring the
880-bus | 0.10975 | 15.40% T.L. T.L. | 873/900 network to isolate faults and resupply as much of the existing
TABLE IIL LOAD BALANCING RESULTS load as possible. Let F' € N denotes the set of faulty buses.

solution, and does not apply to other reconfiguration problems
such as load balancing. Moreover, for the larger network, our
approach finds the optimal solution in a fraction of the time
taken by the QP approximation. The table also shows that the
SOCP approximation [7], which is more powerful than the QP
approximation, suffers from computational inefficiencies. Un-
like these approximations, the MICP relaxation by Jabr et al.
[14] provides optimality guarantees. However, this formulation
lacks an efficient modelling of the on/off constraints which is
reflected in its weaker computational performance. Note that
it fails to converge to the optimal solution on the 135-bus
instance and raises a memory error on the 880-bus benchmark.
The table also mentions results obtained with Tabu search [15]
which returns AC feasible solutions and achieves a reasonable
compromise between quality and efficiency. The lower bound
provided by our approach enables us to assess the optimality
of meta-heuristics and approximation methods, showing, e.g.,
that the optimality gap of the QP approximation is O for the 3
first networks.

B. Load Balancing

As described in [7], the objective is to find the configuration
minimising the maximum line capacity usage ratio, that is,
minimising the ratio ¢ defined by the additional constraint

Py +ay < St (13)

Table III shows the results for our approach. The first
observation is that the new objective function is more difficult
to optimise than loss minimisation. The second is that we
nevertheless manage to find zero gap solutions for medium
size radial networks and good solutions (with a gap less than
1%) for the three first meshed networks. The third observation
is that the benefits of meshed topologies are more substantial
in this case, with 15% improvement for both the 32-bus and
135-bus networks, and 5% for the 70-bus.

Table IV compares our results on the load balancing prob-
lem with those obtained with the QCP and SOCP approxima-
tions in [7]. Note that the former returns an infeasible topology
on the 70-bus instance while the latter computes suboptimal
solutions on all benchmarks. On the 880-bus instance, the QCP
approximation returns the best solution, with an optimality gap
of 8%, as can be established using our lower bound.

To simplify notations, we assume that faults only occur on
buses, however the model can be simply extended to handle
line faults. For each bus 7 € N, we introduce a new boolean
variable f; which is 1 iff ¢ is fed, indicating that there exists
a path consisting of closed switches from a substation bus to
i. If bus i € N\G is fed, then all its load (p,q!) must be
supplied. In supply restoration problems, it is not possible to
feed all buses: faulty buses must not be fed, and sometimes
other buses cannot be fed either as a result of the interplay
between faults and operational constraints (in particular line
capacity).

Handling power supply restoration requires a slight change
in Equations (11a)-(11b) and (12h)-(12i), we replace occur-
rences of the loads p! and ¢! with fipl and f;q', respectively,
to account for the fact that not all buses are fed. For instance,
equation (11a) becomes

Z Pjk + ’I"Z'jlij + fjpé- i€ N\G
k:(j,k)eE

Pij =

The only other change is the addition of the following two
operational constraints,

fi =0 iel
yij < fi—fi+1
Constraint (14a) enforces that no faulty bus is fed. Con-
straint (14b) states that if a line switch is closed, the connected
buses must be either both fed or both unfed; this forces the
separation of the fed from the unfed regions via open switches.
A lexicographic objective function is defined by first max-

imising the load supplied and then minimising the number of
switching operations, that is,

(14a)

(i,j) € E (14b)

max M Zfipé - Z |yij_y?j|

1EN (¢,7)€E

with M > |E|/min(pl, 1), Vi e N, and where y§; represents
the position of switch (4, j) € E prior to reconfiguration.
Table V shows the results obtained using our approach
for each of the 4 networks and an increasing number n of
faults between 1 and 3. For radial topologies, each row of the
table averages the results over min(|/N|™,200) random fault
scenarios. The same applies for meshed topologies, except for
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Radial Meshed
Load | Time | Ops. Load [ Time [ Ops.
Network 1 Fault
32-bus 89.53% 0.70 | 2.79 90.42% 1.29 | 2.33
70-bus 91.75% | 11.72 | 291 95.89% 335.04 | 2.88
135-bus | 98.97% 355 | 2.65 98.97% 23.51 | 2.18
880-bus | 99.62% | 40.94 2.5 96.77% | 1237.14 | 3.68
Network 2 Faults
32-bus 75.82% 1.04 | 5.07 77.59% 2.19 4.5
70-bus 87.12% | 22.54 | 5.23 91.50% 455.18 | 5.68
135-bus | 97.90% 426 | 5.09 97.90% 21.18 | 4.19
880-bus | 99.05% | 73.60 | 4.80 97.37% | 1446.63 | 6.14
Network 3 Faults
32-bus 66.73% 0.88 | 6.86 68.83% 191 | 6.53
70-bus 79.64% | 31.03 | 7.45 85.03% 365.55 | 8.50
135-bus | 96.98% | 24.74 | 7.70 96.89% 22.59 | 6.28
880-bus | 98.88% | 58.17 | 7.31 99.01% | 1225.08 | 7.12
TABLE V. POWER SUPPLY RESTORATION RESULTS
Nb. Faults: 1 [ 213 1 [T 2 ] 3
Network Radial Meshed
32-bus 15% | 20% | 30% 6% 14% | 22%
70-bus 55% | 75% | 81% 21% 43% | 62%
135-bus 9% | 16% | 24% 0% | 0.5% | 0.5%
880-bus 3% 7% 9% 2% 4% 4%

TABLE VI PROBLEMS WITH INFEASIBLE DC SOLUTIONS

the 880-bus instance where, given the increased computational
difficulty, only 50 scenarios were used. This results in a total
of 3624 problems being solved. The columns show the average
fraction of active load served after the restoration, the average
run-time, and the average number of switching operations
involved. The average run-time accounts for both the relaxation
and the NLP solving time. For radial networks, the relaxation
provided an optimal feasible solution in over 99% of cases and
a near-optimal solution on the remaining scenarios, within a
minute of computation time on average.

In the meshed case, there is a computational cost associated
with the AC power flow model, and global optimality guaran-
tees are only obtained on 80% of instances. Observe that, on
average, the percentage of served load increases in comparison
to the radial networks.

Finally, Table VI highlights the weakness of the widely
used linear DC model as a substitute for convex relaxations,
reporting the percentage of instances for which the DC optimal
solution could not be converted into an AC feasible one.

V. CONCLUSION

This paper presents tractable convex relaxations of re-
configuration problems for radial and meshed topologies. In
combination with generic MINLP solvers they lead to provably
optimal or near-optimal, AC feasible solutions for a wide
range of reconfiguration problems. The benefits of a right
representation of the on/off constraints are highlighted in the
numerical experiments section where the present approach
competes with approximate methods while offering provable
optimality bounds. An important and challenging aspect of
future work is to account for transient phenomena which
occur after switching operations in the presence of distributed
generation, and which may compromise the stability of the
network.
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