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Abstract

We present an algorithm for computing cost-optimal stochas-
tic policies for Stochastic Shortest Path problems (SSPs) sub-
ject to multi-objective PLTL constraints, i.e., conjunctions of
probabilistic LTL formulas. Established algorithms capable
of solving this problem typically stem from the area of proba-
bilistic verification, and strugglewith the large state spaces and
constraint types found in automated planning. Our approach
differs in two crucial ways. Firstly it operates entirely on-the-
fly, bypassing the expensive construction of Rabin automata
for the formulas and their prohibitive prior synchronisation
with the full state space of the SSP. Secondly, it extends re-
cent heuristic search algorithms and admissible heuristics for
cost-constrained SSPs, to enable pruning regions made infea-
sible by the PLTL constraints. We prove our algorithm correct
and optimal, and demonstrate encouraging scalability results.

Introduction
The problem of computing optimal but safe policies
for autonomous agents operating in uncertain environ-
ments has recently attracted significant attention from the
fields of automated verification (Kwiatkowska and Parker
2013), robotics (Ding et al. 2014), and artificial intelli-
gence (Sprauel, Kolobov, and Teichteil-Königsbuch 2014).
Such policies must minimise the agent’s expected cost to
reach a goal, whilst providing probabilistic guarantees about
the sequence of visited states. For instance, a policy for a
search and rescue UAV mission might need to minimise the
expected time to get survivors to safety, whilst avoiding dan-
gerous areas at all times, and circling the affected locations
to correctly determine the presence of survivors with high
probability.

Such planning problems can be modelled as stochastic short-
est path problems (SSPs) augmented with multi-objective
probabilistic LTL (MO-PLTL) constraints. Such constraints
are conjunctions φ =

∧k
i=1 P∈ zi ψi of objectives, where ψi

is an LTL formula and zi ⊆ [0, 1] is an interval bounding its
probability. An optimal solution takes the form of a finite-
memory stochastic policy πwhose execution: (a) satisfies the
MO-PLTL constraints; (b) reaches a goal state with proba-
bility 1; and (c) has minimal expected cost, subject to (a,b).
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Fulfilling requirement (a) alone, and to a lesser degree
in combination with (c), has been studied intensively in
the area of policy synthesis for Markov Decision Pro-
cesses (MDPs) (Forejt et al. 2011; Etessami et al. 2008),
leading to what we call the static approach. This consists in
constructing k automata whose accepting runs correspond
exactly to the satisfying runs of the k LTL constraints, and
then building the k+1-ary cross-product of these k automata
with the state space of the decision process. As these au-
tomata have to be deterministic for the cross product to
remain an MDP, deterministic Rabin automata (DRA) are
required, which are obtained from nondeterministic Büchi
automata (NBA) for the formulas ψi . Finally, linear pro-
gramming is applied to the cross-product, to generate (cost-
optimal) policies that reach certain sets of states (bottom-end
components) with given probability bounds of the form > ui
or ≥ ui , where ui ∈ [0, 1]. A policy for the original problem
can be recovered from the solution of the LP.

There are two practical issues that make the static approach
inapplicable to the probabilistic planning problemswe are in-
terested in. Firstly, the DRA compilation can be prohibitive
for certain common type of planning objectives, e.g., multi-
ple maintenance objectives. Secondly andmore significantly,
the explicit construction of the cross-product is completely
infeasible for planning problems which usually have huge
state spaces.

In this paper, we resolve these two issues in the particular case
where the goal requirement (b) is present by leveraging and
extending efficient heuristic search algorithms and heuristics
from the field of constrained SSPs (C-SSPs) (Trevizan et al.
2016; Trevizan, Thiébaux, and Haslum 2017). Specifically,
the recent i-dual algorithm solves C-SSPs on-the-fly, by run-
ning linear programming on small state space fragments of
increasing size, guided by an admissible heuristic function
to prune regions that are too costly or cannot satisfy the con-
straints. When guided by effective C-SSP heuristics, such as
the occupation measure heuristics (Trevizan, Thiébaux, and
Haslum 2017), i-dual only expands a fraction of the state
space. The i2-dual algorithm additionally embeds the com-
putation of occupation measure heuristics in the LP, making
optimisation and heuristic estimation synergic and avoid-
ing repeated calls to heuristic estimators. These algorithms
and heuristics are however currently limited to much simpler
constraint types and do not handle MO-PLTL constraints.



To harness the benefits of this “on-the-fly approach” for our
problem, we must (1) bypass the need for computing the
DRA and the cross product, and (2) extend the heuristics and
algorithm to handle MO-PLTL constraints. We achieve (1)
by embedding on-the-fly progression of LTL formulae (Bac-
chus and Kabanza 1998) or determinisation of NBA in the
state space expansion performed by i2-dual. This avoids do-
ing work that is not relevant to the traces expanded by the
heuristic search and, in the case of progression, leads to
improved worst-case complexity. We achieve (2) by com-
puting occupation measure heuristics from the exponentially
smaller NBAs for each of the formulas, and optionally em-
bedding this computation into i2-dual. Our experiments show
that the on-the-fly approach is capable of solving planning
problems that are out of reach of the state-of-the-art imple-
mentation of the static approach in the Prism probabilistic
model-checker (Kwiatkowska, Norman, and Parker 2011).

Due to the lack of space, proofs of theorems are given in
appendix.

Background and Problem Definition
Let Dist(X) be the set of all distributions on a set X. Given a
finite set S of states, we write S+ for the set of (non-empty)
finite sequences of states over S, and Sω for the set of infinite
state sequences, thus S+ ∩ Sω = ∅. For a state sequence
p ∈ S+ ∪ Sω and a natural number i, pi denotes the state of
index i in p, and p(i) the suffix pipi+1 · · · of p. For a finite
sequence p ∈ S+, last(p) represents the last state of p. We
write p; p′ for the concatenation of p ∈ S+ and p′ ∈ S+ ∪Sω.

SSPs. A Stochastic Shortest Path problem (SSP) is a tuple
S = (S, sinit,G,A, P,C,T) where: S is the finite set of states;
sinit ∈ S \ G is the initial state; G ⊂ S is the non-empty set
of goal states; A is a finite set of actions and A(s) ⊆ A is
the set of actions enabled in s ∈ S. We assume A(s) , ∅ for
s ∈ S\G andA(sg) = ∅ for sg ∈ G;P(•|s, α) ∈ Dist(S) is the
probability of transitioning to t ∈ S after applying α ∈ A(s)
in state s; C(α) ∈ R∗+ is the cost of α; and T: G → R is the
one-time terminal cost of reaching a goal state.1

Policies. A solution to an SSP is a policy. In this paper, we
consider various types of policies for SSPs and formore com-
plex sequential decision problems to be defined later. These
policy types differ in their ability to incorporate memory
and randomisation. The most general of these are stochastic
history-dependent policies, or unrestricted policies, which
are (partial) functions π : S+ 7→ Dist(A) mapping the fi-
nite state history p to a probability distribution over the ac-
tions enabled in the current state. We abbreviate π(p)(α) as
π(p, α) and stipulate that π(p, α) = 0 if α < A(last(p)). A
policy is deterministic if, for every p in its domain, there is
α ∈ A(last(p)) such that π(p, α) = 1; hence these policies
are (partial) functions π : S+ 7→ A and we write π(p) for
the unique action prescribed by the policy in a given state

1An SSP with terminal cost can be trivially encoded as an SSP
without terminal costs by adding extra actions. We use terminal
costs to simplify our notation.

history. A policy is memoryless (i.e., stationary) if π(p) only
depends on last(p), and has finite memory if it additionally
depends on a mode which has finitely many values and is
updated along with the current state after each transition.

A run r is a path p = s1s2 · · · ∈ S+ ∪ Sω annotated with
the actions executed between states, that is, r = s1

α1−→
s2

α2−→ s3 · · · such that αi ∈ A(si) and P(si+1 |si, αi) > 0,
for all i ≥ 1. The cost and probability of a run r are de-
fined as C(r) =

∑
i≥1 C(αi) and P(r) =

∏
i≥1 P(si+1 |si, αi),

respectively. Since a path p can be trivially obtained from
a run r by removing the action annotation, we use r as a
path (e.g., π(r, a)) when clear from context.

Given a policy π, a run r is an exhaustive run of π if
π(s1 · · · si, αi) > 0 for all i ≥ 1 and either r is infinite or
π is not defined for the finite path represented by r . An ex-
haustive run of π only stops when π is unable to recommend
an action to be executed next (in particular when a goal state
is reached). We write Runs(s, π) for the set of all exhaustive
runs of π starting from s ∈ S, and GRuns(s, π) ⊆ Runs(s, π)
for those runs that additionally reach a goal state. For any
s ∈ S and r ∈ Runs(s, π), the probability of r being pro-
duced by π is P(r |π) = P(r)

∏
i≥1 π(s1 · · · si, αi).

A policy π is proper if
∑

r ∈GRuns(sinit,π) P(r |π)=1, i.e., if the
probability of reaching the goal when using π from sinit is 1.
To simplify notation, we assume that there is at least one
proper policy for S, or equivalently, that there are no reach-
able dead ends from sinit. Dead ends can easily be handled
as in (Trevizan, Teichteil-Königsbuch, and Thiébaux 2017).

Optimal Policies.Given a proper policy π, its total expected
cost Vπ(s) to reach a goal state from a state s ∈ S is:

Vπ(s) =
∑

r ∈GRuns(s,π)

[
C(r) + T(last(r))

]
P(r |π).

We abbreviate Vπ(sinit) with Vπ. An optimal policy π∗ is a
proper policy such that Vπ∗ ≤ Vπ for all proper policies π.

It is well-known that, in the case of SSPs, at least one optimal
policy is memoryless and deterministic. For such policies,
their total expected cost can be expressed as the following
set of fixed-point equations that is at the core of most solution
methods for SSPs:

Vπ(s) =



T(s) if s ∈ G
C(π(s)) +

∑
t∈S

P(t |s, π(s))Vπ(t) otherwise

C-SSPs.Many extensions of SSPs require stochastic policies.
This is the case of cost-constrained SSPs (C-SSPs), which
will be useful later in this paper, and for which stochastic
policies are needed to optimally account for trade-offs be-
tween various cost functions representing, e.g., fuel, money,
or time. A C-SSP C = (S, sinit,G,A, P,C,T, z) is an SSP
where: (i) the action cost function is replaced by a vector of
k + 1 action cost functions C = [C0, . . . ,Ck] (C0 : A → R∗+
andCj : A→ R+ for all j ≥ 1); (ii) the terminal cost function
is also replaced by a vector of k + 1 terminal cost functions
T; and (iii) a vector of k intervals z = [z1, . . . , zk] (z j ⊆ R+



for all j ≥ 1) is added. We refer to C0 and T0 as the primary
action (resp. terminal) cost and to the other elements of the
cost vectors as the secondary costs. The optimal solution for a
C-SSP is any stochastic memoryless policy π : S 7→ Dist(A)
which minimises the total expected primary cost to reach a
goal state in G from the initial state sinit subject to the total
expected j-th cost lying within interval z j for j ≥ 1. That is,
there are k + 1 total expected cost functions:

Vπ
j (s)=




Tj (s) if s∈G∑
α∈A(s)

π(s, α)*.
,
Cj (α)+

∑
t∈S

P(t |s, α)Vπj (t)+/
-
otherwise (1)

and an optimal policy π∗ minimizes Vπ∗
0 subject to Vπ∗

j ∈ z j ,
for all j ≥ 1.

Algorithms. The worst-case complexity of computing an
optimal policy for SSPs or C-SSPs is polynomial in the
size of the state space S (Dolgov and Durfee 2005). For
planning problems however, the state space is much too
large to be explicitly enumerated. Therefore, the field rep-
resents SSPs using exponentially more compact factored
representations, and has moved away from methods that
completely expand the state space, including in particular
from vanilla linear programming and dynamic programming
methods such as value and policy iteration. Instead it fo-
cuses on Monte Carlo tree search (Bonet and Geffner 2012;
Keller and Eyerich 2012), or on heuristic search ap-
proaches such as (L)RTDP (Barto, Bradtke, and Singh 1995;
Bonet and Geffner 2003) and LAO* (Hansen and Zilber-
stein 2001) for SSPs, and i-dual for C-SSPs (Trevizan et
al. 2016). These start from the factored representation and
expand the state space on-the-fly, guided by an admissible
heuristic function derived from a polynomial time analy-
sis of the factored representation (Bonet and Geffner 2005;
Teichteil-Königsbuch, Vidal, and Infantes 2011; Trevizan,
Thiébaux, and Haslum 2017). Such a heuristic provides us
with a lower bound on the optimal expected cost Vπ∗ (s) to
reach the goal from the current state s, and enables large
regions of the state space to be pruned. When equipped with
an informative heuristic, heuristic search algorithms often
expand only a small fraction of the state space.

Factored Representation. We adopt a probabilistic vari-
ant of the SAS+ formalism as our factored representation
(Backström 1992; Trevizan, Thiébaux, and Haslum 2017).
A probabilistic SAS+ task is a tuple 〈V,A, s•, s?,C〉. V is
a finite set of state variables, and each v ∈ V has a finite
domain Dv . A valuation (or partial state) is a function s on a
subset Vs of V , such that s[v] ∈ Dv for v ∈ Vs and v = ⊥
otherwise. IfVs = V , then s is a state. s• is the initial state
and s? is a partial state representing the goal. Given partial
states s and s′, we write s′ ⊆ s if s′[v] = s[v] for all v ∈ Vs′ .

The result of applying a valuation e to valuation s is the val-
uation res(s, e) such that res(s, e)[v] = e[v] if e[v] , ⊥ and
res(s, e)[v] = s[v] otherwise. A is a finite set of probabilis-
tic actions. Each α ∈ A consists of a precondition pre(α)
given by a valuation over V , a set eff (α) of effects, each of
which is a valuation over V , and a probability distribution

Prα(·) ∈ Dist(eff (α)) such that Prα(e) represents the proba-
bility of res(s, e) being the state resulting from applying α
in state s. C(α) ∈ R∗+ is the immediate cost of applying α.

A probabilistic SAS+ task 〈V,A, s•, s?,C〉 defines an SSP
S = (S, sinit,G,A, P,C,T) where sinit = s•, S =×v∈V Dv ,
G = {s ∈ S|s? ⊆ s},A(s) = {α ∈ A|pre(α) ⊆ s},P(t |s, α) =∑

e∈eff (α) s.t. t=res(s,e) Prα(e), and T(s) = 0 for all states s ∈
G. A C-SSP can be compactly represented by a probabilistic
SAS+ task whose cost function has been replaced with the
corresponding vectors of cost functions and intervals.

SSPs with Multi-Objective PLTL Constraints
The main contribution of this paper is to extend the scope
of heuristic search to SSPs with multi-objective probabilistic
LTL constraints, which we define next.

LTL. Let 〈V,A, s•, s?,C〉 be a probabilistic SAS+ task and
S = (S, sinit,G,A, P,C,T) the SSP it defines. Let AP =
{(v, d) | v ∈ V, d ∈ Dv } be the finite set of atoms. LTL
formulas ψ are described by the following grammar:
ψ = true | (v, d) ∈ AP | ψ ∧ ψ | ψ ∨ ψ | ¬ψ | X ψ | ψUψ
The standard semantics of LTL interprets formulas over infi-
nite sequences of states. Formally, for a formula ψ and a path
p ∈ Sω, the satisfaction relation p |= ψ is defined as follows:

p |= > p |= ψ1 ∧ ψ2 iff p |= ψ1 and p |= ψ2
p |= (v, d) iff p1[v] = d p |= ψ1 ∨ ψ2 iff p |= ψ1 or p |= ψ2
p |= ¬ψ iff p 6 |= ψ p |= X ψ iff p(2) |= ψ
p |= ψ1 Uψ2 iff ∃i ≥ 1 s.t. p(i) |= ψ2 and p( j) |= ψ1 ∀1 ≤ j < i

Planning, however, seeks finite state sequences ending in
a goal state, and therefore usually interprets LTL over fi-
nite paths. A popular semantics for that is the infinite ex-
tension semantics (Bacchus and Kabanza 1998; Bauer and
Haslum 2010), which gives a formula the truth value it would
have under the standard semantics by infinite repetition of a
path’s last state. (Other popular semantics include f-FOLTL
(Baier andMcIlraith 2006) andLTL f (DeGiacomo andVardi
2013), but they do not appear to offer any advantage in our
context.) That is, for any p ∈ S+, we define the satisfaction
relation p |=IE ψ as follows:

p |=IE ψ :=
{

true if p; (last(p))ω |= ψ
⊥ Otherwise

PLTL. A probabilistic LTL (PLTL) formula is of the form
P∈z ψ where z ⊆ [0, 1]. Informally, P∈z ψ states that the LTL
formula ψ holds with a probability that lies in the interval z.
Amulti-objective PLTL (MO-PLTL) formula is a conjunction
φ =
∧k

i=1 P∈ zi ψi of PLTL formulas, for some arity k ≥ 0.
If k = 0 then φ is equivalent to the constant true.

The probability ofψ being satisfied byS underπ is defined as
PrπS (ψ) =

∑
r ∈GRuns(sinit,π) s.t. r |=IEψ P(r |π). We say that S and

π satisfy φ =
∧k

i=1 P∈ zi ψi and write S, π |= φ iff PrπS (ψi) ∈
zi for all i = 1..k.

We can now state the problem we want to solve:



Definition 1 (MO-PLTL SSP Problem) Let T be a prob-
abilistic SAS+ task, S the SSP it defines, and φ an MO-
PLTL formula. Find an optimal policy π∗ for S and φ, i.e.,
S, π∗ |= φ and Vπ∗ ≤ Vπ for all unrestricted proper policies
π for S such that S, π |= φ. Return failure if no unrestricted
proper policy π for S exists such that S, π |= φ.

Related Work
Algorithms that can be used for the MO-PLTL SSP prob-
lem (Def. 1) are given in (Kwiatkowska and Parker 2013;
Forejt et al. 2011; Etessami et al. 2008). The overall ap-
proach is similar to single-LTL policy synthesis in that it
constructs a product automaton and reduces to certain reach-
ability problems determined by the end-components of that
automaton. These algorithms can be used for both synthesis
and model checking, i.e., to check that all policies satisfy
the given MO-PLTL formula φ; see, e.g., (Kwiatkowska and
Parker 2013). They are based on building NBAs for each LTL
formulaψi followed by transformation intoDRAs. Both steps
require, worst-case exponential time and space each, and are
together double-exponential in |φ| (and polynomial in |S|).
Also, they accept single-sided bounds only, > ui or ≥ ui ,
whereui ∈ [0, 1]. Our interval bounds “∈ zi” can be compiled
away into that form at the cost of doubling the size of φ. This
can worsen the overall costs, hence, to double-exponential in
2|φ| which can be problematic even for small φ.

It is important to note that the mentioned algorithms solve
the more general problem of policy synthesis for MDPs as
opposed to SSPs, that is, probabilistic problems with no goal
states. This problem is known to be complete for double-
exponential time (Courcoubetis and Yannakakis 1995). In-
deed, we can show that our tailored SSP synthesis algorithm
is strictly less complex (Theorem 4) and no extra penalty
needs to be paid for accepting intervals.

It could be argued that MO-PLTL in the context of
SSPs is closer to synthesis for probabilistic LTL over fi-
nite traces. Indeed, automata-based approaches to plan-
ning problems for LTL constraints over finite trace seman-
tics have been proposed in (De Giacomo and Vardi 2013;
2015). These techniques could be employed for MO-PLTL
policy synthesis following the architecture outlined above
(cf. (Kwiatkowska and Parker 2013)). However, this would
again incur double-exponential worst-time costs, for building
NFAs and determinising them afterwards.

In yet another approach (Lacerda, Parker, and Hawes 2015;
2017) consider syntactic co-safe MO-PLTL constraints,
which are reachability queries and can be represented by
DFAs of double-exponential size in the size of the contraints.
Notice that our MO-PLTL constraints are not restricted in
that way and allow for, e.g., the formulation of maintenance
goals (see below for examples).

The existence of goals make MO-PLTL SSPs amenable
(also) to heuristic search that builds only a small fraction
of the state space on-the-fly. Our approach extends exist-
ing work from the planning community on deterministic and

non-deterministic planning with LTL constraints to the prob-
abilistic case. Relevant work include in particular compila-
tion approaches which translate LTL and finite LTL variants
into various types of automata whose states, transitions and
accepting conditions are then incorporated as additional vari-
ables, actions, or constraints in the factored planning prob-
lem description (Edelkamp 2006; Baier and McIlraith 2006;
Torres and Baier 2015; Camacho et al. 2017). The two
key advantages of these approaches and ours are: a) they
deal with exponentially more compact non-deterministic au-
tomata, leaving to the planner the choice of how to resolve
the non-determinism, and b) they use efficient planning al-
gorithms (e.g. planning via heuristic search), which do not
explicitly generate the whole state space.

The use of progression as an alternative to automata to gen-
erate modes originated in the TLPlan planner (Bacchus and
Kabanza 1998). Progression has been used in the proba-
bilistic planning setting, for instance to accommodate non-
Markovian rewards (Thiébaux et al. 2006), but not to handle
PLTL constraints.

MO-PLTL SSPs as Constrained SSPs
This section contains our formal framework for translating
MO-PLTLSSPs intoConstrainedSSPs (C-SSPs) to be solved
for finite-memory policies. The translation abstracts from
how MO-PLTL constraints are dealt with. We then describe
two instances of this framework which respectively use au-
tomata and progression to represent the policy modes.

In this section let T be a probabilistic SAS+ task, S the SSP
it defines, and φ =

∧k
i=1 P∈ zi ψi an MO-PLTL formula.

Finite-Memory Policies. (Baier and Katoen 2008) A
stochastic finite-memory policy for an SSP S is a DFA
πfin = (M, start,mod, act) where: M is a finite set of modes,
start ∈ M is an initial mode, mod: M × S 7→ M is the mode
transition function, and act : M × S 7→ Dist(A) is the ac-
tion probability function such that, for all 〈m, s〉 ∈ M × S,
act(m, s)(α) ≥ 0 only if α ∈ A(s) and 0 otherwise. A finite-
memory policy πfin can be used whenever an unrestricted
policy π is required by defining π(s1 · · · sn) = act(mn, sn)
where m1 = start and mi = mod(mi−1, si) for i = 2..n.2

Below we define modes Mi and components starti and
modi , for i = 1..k. These are compounded into a par-
tial finite-memory policy (M, start,mod, ·) for S, where
M = M1 × · · · × Mk , start = 〈start1, . . . , startk〉, and
mod(〈m1, . . . ,mk〉, s) = 〈mod1(m1, s), . . . ,modk (mk, s)〉.
Then we compile into a C-SSP C× such that any optimal
policy π∗C× for C× can be used as the act-component for the
finite-memory policy:

Definition 2 (Product C-SSP C×) Given an MO-PLTL
SSP S = (S, sinit,G,A, P,C,T) and (M, start,mod, ·)

2The literature usually defines the mode transition function mod
dependent on the source state si−1, not the target state si , i.e., mi =
mod(mi−1, si−1). This change is theoretically inconsequential, but
technically more convenient for us.



as above, the product C-SSP C× is the C-SSP
(S×, s×init,G

×,A, P×,C×,T×, z) with k secondary costs where:
the state space S× = M × S; the initial state s×init =〈start, sinit〉; the goal set G× = M × G; A(〈m, s〉) = A(s)
for all m ∈ M; the transition probability function is
P×(〈n, t〉|〈m, s〉, α) = P(t |s, α) if α ∈ A(s) and n =
mod(m, t), otherwise 0; the main action cost C×0 = C, and
C×i (α) = 0 for all α ∈ A and i ∈ 1..k; T×0 (•) = 0 and, for
i ∈ 1..k, T×i (〈m, s〉) = 1 if 〈m, s〉 ∈ Accepti and 0 otherwise;
and zi is the probability interval for ψi in φ.

The mentioned sets Accepti ⊆ G×, defined below, are mode
specific. Informally, 〈m, s〉 ∈ Accepti means that ψi is IE-
satisfied by all finite runs of S from sinit to the goal s.

As C× is an ordinary C-SSP, any off-the-shelf C-SSP solver
can be used to compute an optimal policy π∗C× for C×. More-
over, π∗C× is stationary and stochastic (Altman 1999), that
is, π∗C× maps states 〈m, s〉 ∈ S× to probability distributions
over the set of actions A(s). Thus, π∗C× can be used as action
probability function, i.e., act(m, s)(α) = π∗C× (〈m, s〉, α).

Büchi Automaton Mode

In this section we instantiate our C-SSP framework with
NBA-based modes. Unlike the policy synthesis methods in
“Related Work”, we avoid NBA determinisation at up-front
exponential costs by using heuristic search and on-the-fly
determinisation of the NBA.

In order to employ existing LTL to NBA algorithms we need
to equip the given formula with IE-semantics: for an LTL for-
mula ψ let ψIE = ψ∧F (

∧
a∈AP(a → G a)∧ (¬a → G¬a)),

which is a faithful encoding of ψ wrt. the IE-semantics in
standard LTL (Bauer and Haslum 2010). Let BψIE denote an
NBA for ψIE. Then it follows that BψIE accepts a run r iff
r = p; (last(p))ω and p |=IE ψ, for some finite path p.

In more detail, let BψIE = (Q, S,∆,Qinit, F), where: Q is the
finite set of states; S is the input alphabet (i.e., the set of states
of the given SSP S); ∆ : Q×S→ 2Q is the non-deterministic
transition function; Qinit ⊆ Q are the initial states; and F ⊆ Q
is the acceptance set. As a non-standard notion, we say that
a state q ∈ Q is accepting with s ∈ S iff (1) starting from
q some strongly connected component scc ⊆ Q is reachable
by 0 or more transitions with s only, (2) scc ∩ F , ∅, and (3)
∆(q′, s′) = ∅ for all q′ ∈ SCC(q) and s′ ∈ S with s , s.3
Now we can characterize satisfaction in a pleasant way:

Lemma 3 Let p ∈ S+ be a path with p1 = sinit, ψ an LTL
formula and BψIE as defined above. Then p |=IE ψ iff starting
from some state in Qinit and following the states in p a state
q ∈ Q is reachable that is accepting with last(p).

For each LTL formula ψi of the givenMO-PLTL constraintφ
we need one NBA, denoted by BψIE

i
= (Qi, S,∆i,Qinit,i, Fi).

3In words, condition 3 says that the only transitions among any
states in scc are with s.

The Büchi-Automata based finite-memory policy (NBA pol-
icy) is πNBA = (MNBA, startNBA,modNBA, π∗C× ) where:
MNBA

i = 2Qi (the powerset of the NBA state
space); startNBAi =

⋃
q∈Qinit ∆i (q, sinit); modNBAi (m, s) =⋃

q∈m ∆i (q, s); π∗C× is an optimal solution for C× obtained
usingMprog, startprog,modprog and Accepti = {〈m, s〉 ∈ G× |
some q ∈ mi is accepting with s}.
To save space we do not spell out soundness and complete-
ness results. They are analogous to Theorems 5 and 6 below.
The main difference is in the definition of Accepti , which, as
per Lemma 3 correctly identifies IE-satisfaction of ψi .

Formula Progression Mode
ByCNF(ψ, s) wedenote the conversion of theLTL formulaψ
into conjunctive normal form with on-the-fly simplification
by evaluating non-temporal formulas in s ∈ S. Thanks to
simplification and equivalences like ψ1 Uψ2 ≡ ψ2 ∨ (ψ1 ∧
X (ψ1 Uψ2)), every formula in CNF(ψ, s) is an X-formula.
This allows us to takeCNF(ψ, s) to successor states bymeans
of an unX-operator, which strips each formula in CNF(ψ, s)
of itsX-operator. ByΣ(ψi) wedenote a certain set of formulas
obtained from the i-th PLTL constraint ψi (of size quadratic
in the size of ψi .) See the appendix for details.

The progression-based finite-memory policy is
πprog = (Mprog, startprog,modprog, π∗C× ) where:
Mprog

i = 2Σ(ψi )3 ; startprog
i = CNF(ψi, sinit);

modprog
i (m, s) = CNF(unX(m), s); and π∗C× is an opti-

mal solution for C× obtained using Mprog, startprog,modprog

and Accepti = {〈m, s〉 ∈ G× | s |=IE mi }. Notice that πprog

exists iff C× has a solution.
Notice that, every mode is a set of sets formulas of size at
most 3 over an a priori fixed domain Σ(ψi) whose size is
polynomial in the size of ψ. This is possible thanks to a poly-
nomial “Tseitin-style” CNF transformation (Tseitin 1968).

Theorem 4 (Complexity) Let S be an SSP, φ an MO-PLTL
constraint, andC× theC-SSPobtained usingMprog, startprog,
and modprog. Then there is a linear program LPC×whose so-
lution, if any, defines the optimal policy π∗C× for C×.LPC×can
be obtained in time and space at most O(|S|) · (2O( |φ |)7

).

The mentioned linear program LPC×and the mapping of its
solution to the solution of C× is defined in the Appendix.
We emphasize that Theorem 4 is a marked improvement
over using generic model-checking algorithms of double-
exponential complexity (see “Related Work”). Our qualita-
tive main results are as follows.

Theorem 5 (Soundness) If πprog exists then it is an optimal
policy for S and φ, i.e., S, πprog |= φ and Vπprog ≤ Vπ for all
unrestricted proper policies π such that S, π |= φ.

Theorem 6 (Completeness) If π is an unrestricted proper
policy for S such that S, π |= φ then πprog exists and is a
proper policy such that πprog |= φ and Vπprog ≤ Vπ.



Theorems 5 and 6 entail solvability of the MO-PLTL SSP
Problem (Def. 1). By Theorem 4, LPC×can be used for that.
Finally, we need to add that the complexity results in this
section are valid in the context of the progression mode but
not when NBAs are used, whether to compute modes or
heuristics as we do in the next section.

Heuristic Search Algorithms
In the previous sections, we showed that an MO-PLTL SSP
can be compiled into a Constrained SSP (C-SSP) and, in this
section, we leverage this result in order to solve MO-PLTL
SSPs using heuristic search algorithms for C-SSPs.

Traditionally, C-SSPs are solved as a single LP representing
all the (reachable) search space at once similarly to Value
Iteration (D’Epenoux 1963; Altman 1999). In the AI com-
munity this LP is referred as the dual LP for (C-)SSPs and
its variables are the policy’s occupation measures xs,a rep-
resenting the expected number of times action a ∈ A(s) will
be executed in state s. The main advantage of the dual formu-
lation is that the expectation of any function f : S × A → R
(e.g., the cost functions Cj) over the policy encoded by x can
be easily computed by

∑
s,a xs,a f (s, a).

Another important feature of the dual formulation that we
exploit in this section is that it can be interpreted as a prob-
abilistic flow problem, where xs,a describes the flow leaving
state s via action a. Using this interpretation, we can see the
dual LP as a flow problem where the expected total cost to
reach a goal (sink) from the initial state (source) isminimised.

The drawback of this single dual LP approach is the same as
that of Value Iteration, namely, the whole reachable search
space of the problemmust the computed a priori, making this
approach not viable for large problems. To address this issue,
i-dual (Trevizan et al. 2016) and its successor i2-dual (Tre-
vizan, Thiébaux, and Haslum 2017) were introduced. Both
algorithms solve C-SSPs using heuristic search by generating
and solving increasingly large LPs.

i2-dual for Product C-SSPs

In our context, given a Product C-SSP C× = (S×, s×init,
G×,A, P×,C×,T×, z) and T the SAS+ task associated with
C× as input, i2-dual incrementally generates and explores
larger partial problems of C× starting from s×init. Given a set
Ŝ ⊆ S× of explored states and a set Γ ⊆ Ŝ of fringe states
of the search, the partial problem solved by i2-dual is shown
in LP1 where, for readability, we abbreviate in(〈m, s〉) as
in(m, s), out(〈m, s〉) as out(m, s) and x〈m,s〉,α as xm,s,α. The
constraints of LP1 can be categorized as follows (Fig. 1):

Probabilistic Flow Network (C3–C6). Representation of
the states explored so far using occupation measures.

Multiplexer (C7–C8). These constraints extract the flow
from Γ and, for each SAS+ variable v ∈ V , they redirect
a copy of this flow to the appropriate state d ∈ Dv of the
projection of T onto v.

〈m0, s0〉

Proj onto v0

Proj onto vn

C9-C12

Multiplexer
Non-det

Proj onto Ψk

Proj onto Ψ0

C7, C8
Multiplexer

Explored
states so far
C1-C6

...

...

Tying C13, C25

C21 – C23

LP2

Γ

Figure 1: Representation of the flow network solved in each
iteration of i2-dual (non-shaded network – LP1) and of our
novel algorithm PLTL-dual (full network – LP3).

min
x

∑
〈m,s〉∈Ŝ,α∈A(s)

xm,s,αC×0 (α) +
∑

〈m,s〉∈Ŝ∩G×
in(m, s)T×0 (〈m, s〉) +

∑
d∈Dv′,α∈A

xv
′

d,αC×0 (α) (LP1)

s.t. xm,s,α ≥ 0 ∀〈m, s〉 ∈ Ŝ, α ∈ A(s) (C1)
xvd,α ≥ 0 ∀v ∈ V, d ∈ Dv, α ∈ A (C2)

in(m, s) =
∑

〈n,t〉∈Ŝ,α∈A(s′)

xn,t,αP×(〈m, s〉|〈n, t〉, α) ∀〈m, s〉 ∈ Ŝ (C3)

out(m, s) =
∑

α∈A(s)

xm,s,α ∀〈m, s〉 ∈ Ŝ \ G× (C4)

out(start, sinit) − in(start, sinit) = 1 (C5)
out(m, s) − in(m, s) = 0 ∀〈m, s〉 ∈ Ŝ \ G× (C6)

pv0 (g) =
∑

〈m,s〉∈Ŝ∩G×
in(m, s) ∀v ∈ V (C7)

pv0 (d) =
∑

〈m,s〉∈Γ,s[v]=d
in(m, s) ∀v ∈ V, d ∈ Dv (C8)

inv (d) =
∑

d′∈Dv,α∈A∪{ag }
xvd′,αP(d |d ′, α) ∀v ∈ V, d ∈ Dv ∪ {g} (C9)

outv (d) =
∑

α∈A∪{ag }
xvd,α ∀d ∈ Dv (C10)

outv (d) − inv (d) = pv0 (d) ∀v ∈ V, d ∈ Dv (C11)
inv (g) = 1 ∀v ∈ V (C12)∑

di ∈Dvi

xvi
d,α
=
∑

d j ∈Dvj

xvj
d,α

∀vi, vj ∈ V, α ∈ A (C13)

∑
〈m,s〉∈Ŝ∩Accept (i)

in(m, s) ∈ zi ∀i ∈ {1, . . . , k} (C14)

Projection Occupation Measure Heuristic (C9–C12). For
each SAS+ variable v ∈ V , these constraints represent the
projection ofT onto v. This projection is an SSP in itself over
the state space Dv ∪ {g} where g represents the sink of the
overall problem (see (Trevizan, Thiébaux, and Haslum 2017)
for formal definition). The variables xv

d,α
are the occupation

measures for the projection onto v. The projections are used
for obtaining a lower bound on the expected cost of reaching
the goal set G× of the overall problem from Γ.

Tying constraints (C13). These constraints tie the projec-
tions onto the different v ∈ V together. In order to avoid the
complexity of the original problem, the projections are tied
using the following relaxation: for all α ∈ A, the expected
number of times action a is applied over the entire projection
must be the same for every projection.



PLTL Constraint (C14). These linear constraints enforce
the PLTL constraints. The left-hand side of the constraints
follows from the definition of C×i and T×i . Due to the lack
of domain-independent lower bounds for PLTL constraints,
i2-dual can only handle intervals zi that are left-closed and
starting at 0, thus P∈ zi ψi is represented using two con-
straints: P∈ [0,zi ] ψi and P∈ [0,1−z

i
] ¬ψi .

The objective function of LP1 minimises the expected pri-
mary cost of reaching the fringe Γ and the goal states in Ŝ
(first and second summation, respectively) plus the heuristic
estimate to solve the problem from the states reached in Γ to
the goal set G× of the original problem (third summation).
Due to the tying constraints (C13), any variable v′ ∈ V
can be used in the third summation. Notice the updates in
the search space explored so far and the heuristics estimates
happens together and in the same LP, thus the search and
heuristic computation work in unison instead of the search
method driving the heuristic computation.

Once LP1 is solved, the fringe states reachable by its optimal
solution are expanded and a new iteration of i2-dual is per-
formed. i2-dual stops when all the flow injected in the initial
state reaches the goal set G×. The optimal policy π∗C× is en-
coded in the optimal solution x∗ of LP1 in the last iteration
of i2-dual: π∗C× (〈m, s〉, α) = x∗m,s,α

out(m,s) for all 〈m, s〉 ∈ S× and
α ∈ A(s) such that out(m, s) > 0.

Heuristic for PLTL Constraints
Since the secondary action costs C×i of C× are always zero,
the heuristics embedded in i2-dual is unable to estimate
the probability of ψi being true; therefore, i2-dual performs
heuristic search only for the primary cost. As we show in our
experiments, this approach is not enough to solve large MO-
PLTL SSPs. We address this issue by introducing a heuristic
for the PLTL constraints, i.e., a function that can prioritize
the search on S× according to a given PLTL constraint ψi .

Formally, a heuristic for ψi is any function hψi : S× → R+
that estimates the probability of ψi being satisfied. hψi is
an admissible heuristic if, for all s× ∈ S×, hψi (s×) ≥
maxπ∈Π∗ Vπ

i (s×) where Π∗ is the set of optimal policies for
C× and Vπ

i is the policy π value function for the secondary
cost associated with ψi (Eq. 1). Thus, the trivial admissi-
ble heuristic for ψi is the always-1 function. In this paper,
we consider only admissible heuristics because they do not
prune feasible solutions from the search, thus, the sound-
ness, completeness and optimally guarantees of i2-dual are
preserved.

In order to be able to integrate our novel heuristic to i2-dual
and take advantage of the unison search property of i2-dual,
we propose a heuristic based on projections onto the Non-
deterministic Büchi Automaton (NBA) of each LTL formula.
To get a good estimate from an NBA projection, we need
to handle both the non-determinism of the NBA transitions
as well as the probabilistic effects of the SAS+ actions. We
accomplish this bymodelling theNBAprojection as a relaxed
SSP over the NBA states.

Formally, let Bi = (Qi, S,∆i, χinit,i, Fi) be the NBA for
the PLTL constraint ψi . Given an effect e of a probabilis-
tic SAS+ action α ∈ A and s ∈ S, e is consistent with
s if res(pre(α), e) ⊆ s. We call Comp(e, q) the set of
successor states of q ∈ Qi compatible with effect e of
action α. Formally Comp(e, q) = {q′ ∈ Qi |∃(q, s, q′) ∈
∆i, e is consistent with s}.
The relaxed SSP representing the projection of C× onto Bi

is Sψi = (Qi, χstart, Fi,Bψi , Pψi ) whose set of states Qi is that
of Bi and whose set of goal states Fi is the set of accepting
states ofBi . This relaxed SSP has anon-deterministic initial
state χstart ⊆ Qi , i.e., no probability distribution over χstart
is given. Bψi is the set of actions and Bψi (q) = {βα,p |p ∈×e∈eff (α) Comp(e, q)} is the set of actions applicable in any
q ∈ Qi . Lastly, Pψi (q′ |q, βα,p) =

∑
e∈eff (α),p[e]=q′ Prα(e), is

the probability of transitioning from q to q′ after applying
βα,p ∈ Bψi (q), where p[e] is the element in the e-th coor-
dinate of p. Sψi does not have a cost function and we are
interested in finding a solution to Sψi that maximizes the
probability of reaching the goal set, that is, the accepting
states of Bi .

Our heuristic for a PLTL constraint, called the NBA pro-
jection heuristic and denoted by hψi

BA for the i-th PLTL con-
straint, is formally presented in LP2. hψi

BA takes as input a
non-empty subset χstart of Qi and returns an upper bound on
the probability of ψi being true when χstart is used as the
non-deterministic initial state of Bi .
min

xψi ,pψi

∑
q∈Qi\Fi

xψi
q,αsink (LP2)

s.t. xψi

q,β
≥ 0 ∀q ∈ Qi, β ∈ Bψi (q) ∪ {αsink} (C15)

pψi
q ≥ 0 ∀q ∈ χstart (C16)

xψi
q,αsink +

∑
β∈Bψi (q)

xψi

q,β
−
∑
q′∈Qi

β∈Bψi (q′)

P(q |q′, β)xψi

q′,β = pψi
q ∀q ∈ χstart (C17)

xψi
q,αsink +

∑
β∈Bψi (q)

xψi

q,β
−
∑
q′∈Qi

β∈Bψi (q′)

P(q |q′, β)xψi

q′,β = 0 ∀q ∈ Qi \χstart (C18)

∑
q∈χstart

pψi
q =

∑
q∈Qi

xψi
q,αsink = 1 (C19)

The variables of LP2 are: the occupation measures xψi
q,α for

this projection; and the input flows pψi
q representing how the

flow injected into the network is distributed within the states
q ∈ χstart of the non-deterministic initial state. While xψi

q,α is
analogous to xv

d,α
of LP1, pψi

q have no counterpart since they
encode the non-deterministic initial state of Bi .

Notice that an artificial action αsink is used in LP2 (C15,
C17, C18 and C19). This action represents the deterministic
transition from a state q ∈ Qi to the sink and it is applicable
in all states (C17 and C18). The source and sink constraints
C19 enforces that 1 unit enters and leaves the network. C18
is the set of flow preservation constraints that, for all states
q < χstart, forces the flow leaving q to the sink and other states
q′ ∈ Qi to equal the flow entering q. Similarly, C17 is the
flow preservation constraint for source states.

The objective function of LP2 minimises the flow going
into the sink from the non-accepting states of Bi , thus it



maximises the probability of reaching an accepting state q ∈
Fi from χstart. The admissibility of hψi

BA is formalized by
Theorem 7 and its proof is based on the fact that the trivial
admissible heuristic for the PLTL constraints is the always-
1 function and that the LP can move the flow from any
state q ∈ Qi to a state q′ ∈ Fi except when q is part of a
non-accepting bottom end component of Bi . We refer to the
Appendix for the complete proof.

Theorem 7 hBAψi
is an admissible heuristic for ψi .

As the insights for the proof for Theorem 7 suggest, LP2 is
encoding the problem of avoiding the non-accepting bottom
end components of Bi . Although there are more efficient
ways of solving this problem (e.g., a look-up table), our en-
coding as a projection of the MO-PLTL SSP over ψi pays off
by being able to be integrated to i2-dual. The integration is
done by tying the actions in the projection onto each ψi to
the projections onto the state variables v ∈ V of the prob-
abilistic SAS+ task. By tying all projections together, both
SAS+ and ψi projections, we force them to reach a relaxed
agreement over their solutions for reaching the original set
of goals G× from the current fringe states Γ. This agreement
provides better heuristic estimates for both the primary cost
function and PLTL constraints.

PLTL-dual

Our last contribution is the integration of hψi

BA to i2-dual. The
obtained algorithm, PLTL-dual, consists of the same iterative
procedure as i2-dual but LP1 is replaced by LP3. We assume
that themode space is theNBAmode.A visual representation
of LP3 is presented in Figure 1 and its constraints can be
categorized as:

i2-dual constraints (C3 – C13). All constraints except the
PLTL constraint (C14)

Non-deterministic Multiplexer (C21 – C23). The non-
deterministic counterpart of the state variable multiplexer
(C7 – C8). This multiplexer represents the non-deterministic
distribution of flow from the mode mi to the states q ∈ mi .
Γψi = {mi ∈ Mi |∃〈n, s〉 ∈ Γ s.t. ni = mi } represents all the
observedNBAmodesmi ofψi in the fringe Γ andD (mi, Γ

ψi )
denotes the NBA states q ∈ mi not present in any other mode
ni ∈ Γψi , formally, D (mi, Γ

ψi ) = mi \ (∪ni ∈Γψi |ni,mi ni).

NBA Projection Heuristic (C17–C18). The flow preserva-
tion constraints for hψi

BA for each ψi .

PLTL sink constraint (C24). The replacement of the sink
constraint of hψi

BA. The new sink extracts the same amount of
flow that the non-deterministic multiplexer injected in each
NBA projection.

NBA Tying constraints (C25). These constraints tie the
NBA projections to the state variable projections. Any state
variable v ∈ V can be used in these constraints since all state
variables are already tied together by C13.

PLTL constraints (C26). These constraints replace C14 and
contain the heuristic estimation provided by hψi

BA.

min
x

∑
〈m,s〉∈Ŝ,α∈A(s)

xm,s,αC×0 (α) +
∑

〈m,s〉∈Ŝ∩G×
in(m, s)T×0 (〈m, s〉) +

∑
d∈Dv′,α∈A

xv
′

d,αC×0 (α) (LP3)

s.t. xs,α ≥ 0, xvd,α ≥ 0, xψi
q,α ≥ 0, pψi

q ≥ 0 (C20)
constraints C3 – C13∑

〈m,s〉∈Γ |mi={q }
in(m, s) ≤ pψi

q ≤
∑

〈m,s〉∈Γ | q∈mi

in(m, s) ∀i ∈ {1, . . . , k}, q ∈ Qi (C21)∑
q∈D (m,Γψi )

pψi
q ≤

∑
〈n,s〉∈Γ | ni=m

in(n, s) ≤
∑
q∈m

pψi
q ∀i ∈ {1, . . . , k},m ∈ Γψi (C22)∑

q∈Qi

pψi
q =

∑
〈m,s〉∈Γ

in(m, s) ∀i ∈ {1, . . . , k} (C23)∑
q∈Qi

xψi
q,αsink =

∑
〈m,s〉∈Γ

in(m, s) ∀i ∈ {1, . . . , k} (C24)

constraints C17 – C18 ∀i ∈ {1, . . . , k}∑
d∈Dv

xvd,α =
∑
q∈Qi

xψi
q,α ∀i ∈ {1, . . . , k}, α ∈ A (C25)∑

〈m,s〉∈Ŝ∩Accept(i)

in(m, s) +
∑
q∈Fi

xψi
q,αsink ∈ zi ∀i ∈ {1, . . . , k} (C26)

LP3 assumes that the mode for each PLTL constraint ψi is
the NBA Bi associated with ψi . This presents two key com-
putational advantages: (i) the NBA projection heuristics do
not need to compute Bi since they were already computed to
be used as modes; and (ii) the non-deterministic multiplexer
can easily relate the mode mi ⊆ Qi and the NBA projection
states q ∈ Qi since they are defined over the same set Qi of
Bi . Nonetheless, PLTL-dual can be used with any mode as
long as a translation from the non-NBA mode mi to a subset
of Qi is provided for each PLTL constraint.

Experiments

In this sectionwe empirically evaluate our heuristic search al-
gorithms and compare their performance with that of Prism,
a state-of-the-art model-checker implementing the static ap-
proach (Kwiatkowska, Norman, and Parker 2011). We en-
force a 30-minutes and 4-Gb cut-off for all experiments, and
report results averaging 30 runs of each algorithm for each
problem taken from the following two domains.

Factory. This domain features an assembly line with n ma-
chines, where each machine mi produces a part pi starting
from the part pi−1 produced by machine mi−1. There are ac-
tions for turning a machine on or off (cost 1), and for produc-
ing pi using machine mi once mi is on and pi−1 is available.
This makes pi−1 unavailable. The k machines m2 . . .mk+1
are unreliable and fail to produce the new part pi 20% of
the time, but still make pi−1 unavailable. Production cost for
reliable (resp. unreliable) machines is 5 (resp. 3). Initially,
all machines are off and p0 is available. In the goal, the ma-
chines are off again and part pn has been produced. The two
MO-PLTL constraints (P = 1) are that (1) m1 is eventually
started, and (2) once mi−1 stops for good, mi has to be on,
and then the same hand-shake applies to the next machine
down the line and so on: G (on(m1) ⇒ (on(m1) U (on(m2)∧
G¬on(m1) ∧ (on(m2) U (on(m3) ∧ G¬on(m2) ∧ . . . ∧
(on(mn−1) ∧ U (on(mn) ∧ G¬on(mn))) . . .))))).
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Figure 2: Time in seconds to solve: factory problems n, k
(n ∈ 2..8, k ∈ 0..(n−1)); and Wall-e problem for n ∈ 4..7.

Wall-e. In this domain, Wall-e and Eve are in a corridor with
n distinct locations l1 . . . ln and n rooms r1 . . . rn. Location
li is connected to room ri and to locations li−1 and li+1.
Wall-e and Eve can be in any of these locations and rooms,
either separately or together. They can move to a connected
location, enter or exit a connected room, either separately
or together. All actions are deterministic and have cost 1,
except exiting a room together which has cost 5 and fails
with 10% probability. Wall-e starts in l1 and Eve in r2, and
the goal has Wall-e in ln. The MO-PLTL constraints specify
that: (1) they must eventually be together (P ≥0.5); (2) once
they’re together they remain together (P = 1); (3) Eve must
be at most 3 steps away from a room until they are together
(P ≥ 0.8); (4) Eve visits the first 3 rooms r1, r2, r3 (P = 1);
and (5) Wall-e never visits any room twice, except possibly
rn (P ≥0.8).

Algorithms. The algorithms considered are: (a) PLTL-dual,
that is, i2-dual with the NBA mode and NBA projection
heuristic; (b) PLTL-dual(100), which is like PLTL-dual ex-
cept that the NBA projection heuristic is only used for NBAs
with less than 100 states – for the other formulas, the trivial
heuristic is used; (c) i2-dual with the NBAmode and the triv-
ial heuristic for all formulas; (d) i2-dual with the progression
mode and the trivial heuristic for all formulas; and (e) the
multi-objective version of Prism with the -lp option.4 In our
implementation, we use ltl3ba to produce the NBAs.

Results. The graphs in Figure 2 show the time spent by each
algorithm on problems from the Factory domain (log scale)
with n = 2..8 machines including k = 0..(n−1) unreliable
machines, and from the Wall-e domain with n = 4..7 rooms.

4Without this option, Prism produces an error on both domains.

We find it convenient to analyse the results by means of
answering the following questions:

What is the best mode? To answer this question, we need to
compare bothmodes using the same heuristics, i.e., the trivial
heuristics. In this case, the progressionmode outperforms the
NBAmode in theWall-e domain (25% faster for n = 7) while
being statistically tied in the Factory domain. The reason
for this performance advantage is that progression uses the
observed information so far to simplify its search space thus
reducing the overall number of states expanded, e.g., 8% less
expanded states in Wall-e #7.

Is the NBA projection heuristic effective? Yes when the
formulas are not trivial to check and the NBAs are not too
large. The first condition is usual for heuristic search algo-
rithms because, in easy search problems, a less accurate but
cheap to compute heuristic is good enough. Constraint (2)
of the Factory domain is an example of a constraint triv-
ial to check since turning on a machine in the wrong order
violates it. The second condition is an issue because large
NBAs result in projections with a large number of LP vari-
ables. For instance, the NBA for constraint (5) of Wall-e #6
has 112 states and its projection uses 19863 LP variables.
This represents about 40% of the total LP variables in the
last LP solved by PLTL-dual in Wall-e #6. An example of
good guidance provided by the NBA projection heuristic is
constraint (3) of the Wall-e domain. This constraint has a
small NBA (11 states) and violations can be detected early
by using a look-ahead of size 3. Since the NBA projection
heuristic performs search in the mode space, it is able to do
early pruning for this constraint while the trivial heuristic,
which cannot look beyond the current state, is unable to do.

What is the best algorithm? Although progression is the
best mode when using the trivial heuristic, the best algo-
rithm is PLTL-dual(100): it is statistically tied with i2-dual
with progression for the large Factory problems (n = 8)
while it dominates all other algorithms in the Wall-e do-
main. As expected, the static approach employed by Prism
is outperformed by our heuristic search approaches due to
the prohibitive size of the DRA required by it. For instance,
the DRA for constraint (2) of Factory #4,3 and constraint (5)
of Wall-e #5 has, respectively, 29979 and 2857 states while
their NBA has only 13 and 48 states, respectively.

Conclusion and Future Work

Wehave provided the first heuristic search algorithm for SSPs
with MO-PLTL constraints, and demonstrated both practical
and in certain cases worst-case complexity improvements
over state-of-the-art algorithms. Our approach performs an
on-the-fly translation of the MO-PLTL SSP into a C-SSP,
which is solved by extending recent heuristic search ap-
proaches for C-SSPs and guiding them using novel linear
programming heuristics for MO-PLTL constraints. In the fu-
ture, we plan to improve our NBA heuristics, design heuris-
tics that work together with progression, and extend the scope
of heuristic search to SSPs with larger subsets of PCTL*.
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