
Conflict-Based Diagnosis of Discrete Event Systems: Theory and Practice

Alban Grastien1,2 and P@trik Haslum2,1 and Sylvie Thiébaux2,1

1 Optimisation Research Group, NICTA
2 Artificial Intelligence Group, Australian National University

Abstract

We present a conflict-based approach to diagnosing Discrete
Event Systems (DES) which generalises Reiter’s Diagnose al-
gorithm to a much broader class of problems. This approach
obviates the need to explicitly reconstruct the system’s be-
haviors that are consistent with the observation, as is typi-
cal of existing DES diagnosis algorithms. Instead, our al-
gorithm explores the space of diagnosis hypotheses, testing
hypotheses for consistency, and generating conflicts which
rule out successors and other portions of the search space.
Under relatively mild assumptions, our algorithm correctly
computes the set of preferred diagnosis candidates. We in-
vestigate efficient symbolic representations of the hypotheses
space and provide a SAT-based implementation of this frame-
work which is used to address a real-world problem in pro-
cessing alarms for a power transmission system.

1 Introduction
Discrete Event Systems (DES) are a popular model for dy-
namic systems when the states and events can be represented
with acceptable accuracy at a discrete level (Cassandras and
Lafortune 1999). Starting from a DES model and an ob-
servation of the system’s behavior (a trace of observable
events), the purpose of model-based diagnosis is to deter-
mine if the behavior is nominal, and if not, the preferred
(e.g. most likely) fault modes it exhibits.

DES diagnosis problems are traditionally solved by re-
constructing all system traces consistent with the ob-
servation, either explicitly (Zanella and Lamperti 2003;
Aghasaryan et al. 1998) or through a precompiled structure
(Sampath et al. 1995). This is in spite of the fact that, in
many realistic situations, the high-level classification of be-
havior into nominal and different fault modes is all that is
needed, and reconstructing in complete detail all behaviors
that may have taken place is superfluous. The time or space
complexity of these approaches puts a tight limit on the size
of systems that can be diagnosed. To monitor large networks
consisting of thousands of components, such as power grids,
a different approach is required.

In contrast, diagnosis of static systems is usually per-
formed by efficiently exploring the hypothesis space by
means of simple tests. For instance, the algorithm by Re-
iter (1987), repeatedly tests a diagnosis hypothesis for con-

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

sistency against the system model and observation, either
proving it to be a diagnosis candidate or deriving a conflict
which summarises the reasons why the hypothesis was re-
jected. The conflict is then used to generate successor hy-
potheses to be tested, ruling out any hypothesis that will fail
the test for the same reasons.

In this paper, we generalise the notion of conflict, and
present a new conflict-based diagnosis approach that applies
to a much broader class of systems, including DES. In our
framework, a conflict represents a set of hypotheses which
it excludes; the notion of conflict established by Reiter for
static systems is a special case. In this sense, we unify the
two previously disparate threads of diagnosis research.

Using a sequence of relatively simple tests, our approach
correctly computes the set of all preferred diagnosis candi-
dates (under a few assumptions on the hypothesis space),
and does so without needing to explicitly represent all pos-
sible system behaviors. This results in substantial efficiency
gains, compared to state-of-the-art DES diagnosis methods.
Conflicts help reduce the part of the hypothesis space that
needs to be tested, but they also enable the presentation of
new types of diagnostic information to users, e.g. that the
occurrence of a certain fault excludes or implies that of an-
other, or that some fault definitely occured before another.

Any practical implementation of our approach relies on
representing and manipulating sets of hypotheses symboli-
cally, i.e., via sets of properties. We state the requirements
that a property space used to implement the algorithm must
satisfy, and we identify a suitable property space. For DES,
we provide a SAT-based implementation, where hypotheses
are represented by Boolean formulae over atomic properties
and consistency tests are performed by a SAT solver. We
demonstrate the improved efficiency of our approach on the
problem of processing alarms generated by a power trans-
mission system operated by TransGrid, an Australian utility.

Summing up, our contributions are (1) a general charac-
terisation of conflicts, (2) a conflict-based diagnosis algo-
rithm for a broad class of systems, (3) the identification of
the principles the symbolic representation must satisfy to fa-
cilitate an efficient implementation, and (4) a SAT imple-
mentation of the framework for DES systems which is used
to solve a real-world problem.

The paper is organised as follows. Section 2 introduces a
small example which will be used for illustration throughout
the paper. Section 3 provides background on Reiter’s con-

flict based algorithms and on DES. Section 4 defines the gen-
eral conflict-based diagnosis framework and describes the
conflict-based search algorithm. Section 5 establishes prin-
ciples that an adequate symbolic representation of hypothe-
sis sets should satisfy. Section 6 presents a SAT based imple-
mentation of the approach for DES, and Section 7 demon-
strates its application to the alarm processing problem.

2 Running Example

This work was motivated by the monitoring of incidents on
power networks. When incidents occur, the control room
receives a flood of alarms that is often difficult for human
operators to comprehend. We want to help them by provid-
ing minimal explanations of the alarm cascade.

We present a simple example that will be used for il-
lustration throughout the paper; we will of course solve
much more challenging problems in our Experiments sec-
tion. Consider an electric line protected by a circuit breaker
with single reclosing policy. The line may suffer from a per-
manent fault (line damaged) or a transient fault (electric arc
between lines). If the fault is transient, then opening and
closing the circuit breaker suffices to clear it; otherwise, the
fault is permanent and cannot be cleared. The third possible
fault is a temporary failure of the circuit breaker to open or
close when commanded to; failure to open or to close are
modeled by different events, but not distinguished in the di-
agnosis, which reports both as “failure to operate”.

The reclosing policy is the logic that rules the opening and
closing of the circuit breaker. When a fault is detected, it
forces the circuit breaker to open, then recloses a short time
later. If, on reclosing, the fault is still detected, the recloser
assumes it is permanent and opens the breaker permanently.
Otherwise, it confirms the clearance of the transient fault.

Models of the system components are shown in Figure 1.
The 5 states of the circuit-breaker+line subsystem encode
the fault mode of the line (transient=T, permanent=P or
no fault=N) and the position (open=O or closed=C) of the
breaker. The states of the recloser represent the various
stages of the execution of the reclosing policy (OK, fault
detected=F, opening=OP, reclosing=REC, permanent fault
detected= F2, and permanent opening=OP2). In the circuit-
breaker+line model, events t, p, o, c, fo, and fc represent
“transient fault”, “permanent fault”, “open”, “close”, “failed
to open”, and “failed to close”, respectively. The open (resp.
close) event of the recloser synchronizes with the “open”
event or the “failed to open” event (resp. the “close” event
or the “failed to close” event) of the breaker, depending of
the success of the command. The no fault (resp. detected)
events of the recloser are generated if the circuit breaker
state is NC, NO, or PO (resp. TC or PC).

Events generated by the recloser are observable. Suppose
we observe the sequence [detected, open, close, no fault].
There are two simple explanations: either a transient fault
occurred, or a permanent fault occurred followed by the
breaker failing to close. More complex explanations include
a transient fault followed by a failure to close or a transient
or permanent line fault (not yet detected by the sensors).

NC

TC

PC

NO

PO

t

pc|fo

o

c|fo o

c|fo

o

o|fc

c

o|fc

c

OK F

OPREC

F2 OP2

detected
open

close

no fault

detected

open

Figure 1: Models of the example: left, the circuit breaker
and the line; right, the recloser.

3 Background

This section presents the well-known static diagnosis defi-
nitions and algorithms, and formulates the diagnosis of dis-
crete event systems in such a way that the similarities be-
tween the two tasks becomes apparent.

3.1 Static Diagnosis

In the classical framework of diagnosis of static sys-
tems, a diagnosis problem is defined as a tuple P =
〈SD, Comps, Obs〉 where SD is a model of the system ex-
pressed in first-order logic, Comps is the set of components,
and Obs is an observation. The literals in SD include health
variables Ab(c), for each component c ∈ Comps; these liter-
als evaluate to true if the component c is faulty (abnormal).
In the simplest case, the model represents only the nominal
behaviour, meaning SD is a conjunction of formulas of the
form (¬Ab(c) → φ) where φ is a formula without Ab literal.

The task is to recover the current health assignment of
the system, defined as the subset δ ⊆ Comps of components
that are faulty; other components (Comps\δ) are considered
non-faulty. Health assignment δ is a diagnosis candidate for
diagnosis problem P = 〈SD, Comps, Obs〉 iff it is consistent
with the model and the observation, i.e.,

SD, Obs, {¬Ab(c) | c ∈ Comps \ δ} 6|= ⊥. (1)

The set of diagnosis candidates of problem P is denoted
by ∆(P). Typically, diagnosis candidates that assume more
faults than what is necessary to explain observation Obs are
not considered interesting. We prune those uninteresting
candidates. Thus, the task of the diagnoser is to find the
minimal diagnosis ∆min(P), defined as the set of candidates
that are minimal w.r.t. set inclusion, i.e.,

∆min(P) = min⊆(∆(P))

The set of health assignments is the power set of Comps.
Therefore testing all health assignments is not feasible in
general; the preferred approach is based on conflicts. A set
of components C forms a conflict for problem P iff at least
one of them must be faulty, i.e.,

SD, Obs, {¬Ab(c) | c ∈ C} |= ⊥. (2)

In other words, all of them being in nominal condition, con-
tradicts the model and observation. Reiter (1987) proved
that the (minimal) diagnosis candidates can be computed as
the set of (minimal) hitting sets of all conflicts.

Explicitly generating all conflicts upfront is unpractical
but conflict generation can be interleaved with the hitting
set calculation. Consider Equation (1): when it does not
hold, a contradiction is generated, as in Equation (2). The
logical derivation leading to ⊥ can be studied to determine
the set of components involved in the contradiction. This set
of components is by definition a conflict.

The diagnosis algorithm diagnose proposed by Reiter
(1987) is therefore the following: starting from δ = ∅, i.e.,
the unique minimal health assignment, the algorithm tests
whether δ is a diagnosis candidate. If the current health as-
signment δ is not a diagnosis candidate, then a conflict C is
derived and the following successors of δ are generated:

{δc = δ ∪ {c} | c ∈ C}.

Each successor is in turn tested. Two enhancements avoid
the consideration of spurious hypotheses. First, in case a
health assignment δ fails to hit a previously found conflict
C, i.e., if δ ∩ C = ∅, then C could be derived also from
testing δ; therefore, the test is not applied and successors of
δ are generated immediately. Second, if δ and δ′ such that
δ ⊂ δ′ have been generated, then δ′ is not tested before δ,
and δ′ will be tested only if δ is not a candidate.

3.2 Diagnosis of Discrete Event Systems

A discrete event system is a model of a dynamic system
which describes its possible evolutions in terms of the se-
quences of events that can occur. A DES is essentially a
language over a (finite) set of events Σ.

Before presenting the diagnosis of DES, we introduce the
following notations. A language L over an alphabet E is
a (possibly infinite) subset of (finite) sequences of letters in
E: L ⊆ E⋆. The projection of language L over E onto
the alphabet E′ ⊆ E is the language PrE′(L) defined as
the set of words of L where the letters from E \ E′ have
been removed. The projection PrE′(σ) of a single sequence
σ on alphabet E′ is similarly defined as the sequence where
elements outside E′ are omitted.

We now turn to the diagnosis problem. The first input to
the problem is a DES model Mod, which is a complete de-
scription of all possible sequences of events that can occur.
Mod defines a language L(Mod) ⊆ Σ⋆.

The second input to the diagnosis problem is an observa-
tion. As the system evolves, it takes a sequence of events
σ ∈ L(Mod). This sequence is partially observed, e.g.
through sensors, alarms and log messages. This is modeled
by distinguishing a subset Σo ⊆ Σ of observable events, and
letting the observation of the sequence σ be o = PrΣo

(σ).
Finally the last input to the diagnosis problem is a sub-

set F of events whose occurrence we want to diagnose (this
includes faults and other unobservable events of interest).

The purpose of diagnosis is to determine the sequences δ
of events from F which are consistent with the observation,
i.e., such that:

∃σ ∈ Σ⋆ : σ ∈ Mod ∧ PrΣo
(σ) = o ∧ PrF (σ) = δ. (3)

Equation (3) is to DES what Equation (1) is to static sys-
tems. Similarly to the static framework, we are interested in
the minimal diagnosis candidates, defined as the candidates
such that no proper subsequence are candidates.

In our running example, we take F = {t, p, f}, meaning
transient (t) or permanent (p) line fault, and intermittent fail-
ure of the breaker to operate (f , corresponding to either of
events fo or fc in Figure 1).

4 Generalized Conflict-Based Diagnosis
We now present a generalisation of the conflict-based diag-
nosis approach. This generalisation will include both static
diagnosis and diagnosis of discrete event systems as special
cases, and we will use examples from both domains to illus-
trate some of the concepts thereafter.

This generalisation will require the manipulation of large
– or even infinite – sets. Of course, a naive implementation
of this approach is impractical; the next section is dedicated
to the efficient implicit (symbolic) manipulation of such sets.

4.1 Diagnosis Problem

There are three components in a (generalised) diagnosis
problem.

The system model defines the set of possible system be-
haviors. We will write M for the model and σ ∈ M to state
that the model allows for behavior σ.

The observation is a statement about the actual system be-
havior. Even together with the model, the observation is usu-
ally not sufficient to precisely retrieve the system behavior.
We write o for the observation, and o = obs(σ) if behavior
σ generates observation o.

The last input to the diagnosis problem is a set H of
possible solutions. We call this set the hypothesis space.
In the static framework, the hypothesis space is the power
set of Comps. In the DES framework, the hypothesis
space is the Kleene closure F⋆; for instance, assuming
F = {f, p, t}, the (infinite) set of hypotheses is H =
{[], [f], [p], [t], [f, f], [f, p], . . . }.

The hypothesis space is an implicit partition of the set of
behaviors, i.e., there exists a function hypo that associates
each behavior σ with exactly one hypothesis hypo(σ) ∈ H.
For instance, in the static framework, a complete behavior is
represented by an assignment of all state variables, and the
hypothesis associated with this behavior is the restriction of
this assignment to the Ab literals. In the DES framework,
the hypothesis associated with a sequence of events σ is the
projection of σ on F .

Definition 1 The diagnosis problem is the triple 〈M,o, H〉
as presented above.

The solution of the diagnosis problem is the set of hy-
potheses δ such that there exists a behavior σ i) authorized
by the model, ii) that generates the observation, and iii)
whose hypothesis is δ. (We will write δ for a diagnosis can-
didate, and h for a hypothesis which may not be a candi-
date.)

Definition 2 The diagnosis ∆(〈M,o, H〉) of a diagnosis
problem is the set of hypotheses:

{δ ∈ H | ∃σ ∈ M : obs(σ) = o ∧ hypo(σ) = δ}. (4)

In the following, we assume the diagnosis problem is fixed,
and simply write ∆ for the diagnosis.

The hypothesis space is further equipped with a partial or-
der relation � that indicates that if two different candidates
δ and δ′ are such that δ � δ′, then δ is preferred to δ′ (e.g.,
because it is more plausible, hypothesises fewer faults), and
δ′ can be ignored in the minimal diagnosis. Thus, the objec-
tive of diagnosis is to find the set ∆min of candidates that are
minimal according to this order. For every ignored δ′, there
should be δ ∈ ∆min such that δ � δ′; conversely, for any
candidate δ′ such that there exists another candidate δ with
δ � δ′, then δ′ should not be in ∆min. In the static diagnosis
framework, where H = 2Comps, this order is ⊆. In the DES
framework, we have δ � δ′ iff δ is a subsequence of δ′.

Definition 3 The minimal diagnosis is ∆min ⊆ ∆ such that

(i) ∀δ ∈ ∆, ∃δ′ ∈ ∆min : δ′ � δ.

(ii) ∀δ ∈ ∆min, ∀δ′ ∈ ∆, δ′ � δ ⇒ δ = δ′.

We assume that � is a well partial order on H, meaning
that for any non-empty H ⊆ H, the set min�(H) is non-
empty and finite. This ensures that the minimal diagnosis
exists and is finite.1 The two examples given above (sub-
sets and subsequence) are both well partial orders (Nash-
Williams 1963), as are many other natural orders on hypoth-
esis spaces. That � is a well partial order also implies other
important properties, e.g., that the set of children of a hy-
pothesis (defined below) is finite.

To simplify notation, we assume there is a single minimal
hypothesis h0 ∈ H, i.e., ∀h ∈ H, ho � h. This assumption
can easily be lifted, because � being a well partial order
ensures that min�(H) is non-empty and finite.

Notations Given hypothesis h ∈ H, we call:

• descendants of h, the set desc(h) = {h′ ∈ H | h � h′};

• children of h, the set chi(h) = min� (desc(h) \ {h}).

Ancestors (anc) and parents (par) are the inverse operations
of descendants and children.

For instance in the DES framework, where F = {f, p, t}
and h � h′ iff h is a subsequence of h′, hypothesis [f, f] is
a descendant and a child of hypothesis [f]; therefore [f] is
an ancestor and a parent of [f, f]. On the other hand, [f, t, p]
is a descendant of [f], [t], and [p], but is a child of none of
them; the parents of [f, t, p] are [f, t], [f, p], and [t, p].

Given two hypotheses, we write h1 ⊗ h2 the set of min-
imal hypotheses that are descendant of h1 and h2. For in-
stance, if H = F⋆, h1 = [p, t], and h2 = [t, f], then
h1 ⊗ h2 = {[p, t, f], [t, f, p, t]}. For this hypothesis space,
the operation ⊗ can easily be implemented by intertwining
elements of h1 and h2 while carefully avoiding non-minimal
combinations (such as [p, t, f, t] in the example). With slight
abuse of notation, we write h1 ⊗ H2 for

⋃
h2∈H2

(h1 ⊗ h2).

1To ensure that the minimal diagnosis exists, it is sufficient to
assume that � is well-founded, which is a slightly weaker require-
ment; however, if � is well-founded but not a well partial order,
∆min can be infinite, which obviously makes presenting it explic-
itly impossible.

4.2 The Preferred-First Algorithm

We now present an algorithm for solving a diagnosis prob-
lem as formulated before. The algorithm we present relies
primarily on an operation called “test”. A test is an operation
that determines whether a given set of hypotheses contains a
diagnosis candidate.

Definition 4 Given a diagnosis problem 〈M,o, H〉 and a set
H ⊆ H of hypotheses, a test is the problem of determining
whether

H ∩ ∆(〈M,o, H〉) 6= ∅. (5)

We call “test solver” the machine that decides the re-
sult of a test, and assume a test solver is available. (A
practical implementation of a test solver, based on SAT, is
presented in section 6.) A test is said to be “successful”
if Condition (5) holds; otherwise, it “fails”. In the static
framework, Condition (1) is an example of a test where
H = {h ∈ 2Comps | h ⊆ δ}.

The preferred-first algorithm is shown in Algorithm 1.
We first describe it without conflicts, and add them in Sec-
tion 4.3. Like Reiter’s diagnose, the algorithm starts from
the preferred hypothesis h0, and repeatedly tests whether
a hypothesis is a candidate (Line 10); if h is a candidate,
then h is added to the result; otherwise, the children of h are
stored in the open list to be tested.

An important difference with diagnose is that we deal
with a potentially infinite hypothesis space. There is a risk
that the algorithm tries to test an infinite sequence h1, h2, . . .
of hypotheses such that hi+1 is a child of hi for all i. How-
ever, if all minimal candidates have a finite “depth”, then
there is eventually a value i such that hi (as well as all its
descendants) is an ancestor of no minimal candidate; such
“undesirable” hypotheses hi can be removed from the open
list and the infinite sequence of tests is prevented.

It is not possible to define a test which decides that a given
hypothesis h is undesirable. We propose instead to identify
a much wider class of hypotheses (called the non-essential
hypotheses) but that will not affect the correctness of the
diagnosis algorithm. The set local tested on Line 7 cor-
responds to the set of hypotheses that are descendant of h
but that are not descendant of any other hypothesis from
res∪open. If local contains no candidate (i.e., if the test
fails), then it means either that h is undesirable or that, for
all minimal candidates δ descendant of h, δ is a descendant
of another hypothesis h′ from res∪open; in both cases, h
can be removed from open as it does not reduce the set of
minimal candidates reachable from res ∪ open.

Illustration of the algorithm execution We now illustrate
the execution of algorithm with the example presented in
Section 2 where H = F⋆ and F = {f, p, t}. The diagnosis
is ∆ = {[t], [p, f], [t, f], [t, t], [t, p]}, and the minimal diag-
nosis is ∆min = {[t], [p, f]} (that is, either a transient fault
occurred, or a permanent one followed by a failure to oper-
ate). The algorithm starts with res = ∅ and open = {[]}.

At the first iteration, hypothesis [] is chosen; local = H

and the first test succeeds. The second test fails since [] is
not a candidate, and {[f], [t], [p]} is added to open.

Assume now [f] is chosen. The set local of hypothe-
ses is now the set of hypotheses that descend from [f]

Algorithm 1 Preferred-First Algorithm

1: input hypotheses H
2: open := {h0}
3: res := ∅
4: while open is not empty do
5: h := pop(open)
6: Let local = desc(h) \ desc(res ∪ open)
7: if ¬test(local) then
8: continue
9: end if

10: if test({h}) then
11: res := res ∪ {h}
12: else
13: open := open ∪ chi(h)
14: end if
15: end while
16: return res

and descend neither from [p] or [t]. Therefore, local =
{[f], [f, f], [f, f, f], . . . } There is no candidate in local,
and hypothesis [f] is therefore ignored. Notice that [f] is
ignored although several of its descendants are candidates
(and one of them is even minimal); these candidates will be
covered by the hypotheses that are in open. Notice also
that if this test was not performed, all hypotheses [f], [f, f],
[f, f, f], etc. would be tested and the algorithm would never
end. At this stage, res = ∅ and open = {[t], [p]}.

Assume now [t] is chosen. local contains all hypothe-
ses that mention t at least once and that do not mention p;
local contains the three candidates [t], [t, f], and [t, t].
Next, [t] is tested and proved to be a candidate. At this stage,
res = {[t]} and open = {[p]}.

Hypothesis [p] is next chosen, leading to five new hy-
potheses {[f, p], [t, p], [p, f], [p, t], [p, p]}. The third one is
proved to be a candidate and all others are ignored because
their descendants do not include any minimal candidate.
This leads to res = {[t], [p, f]} and open = ∅.

Correctness of the algorithm To prove Algorithm 1 is
correct, we first prove the following lemma:

Lemma 1 The following proposition always holds when the
condition of the loop (Line 4) is evaluated:

(res ⊆ ∆min) ∧ (∆ ⊆ (desc(open ∪ res))) . (6)

Proof Sketch for Lemma 1: We prove this result induc-
tively. The proposition clearly holds initially since res = ∅
and open = {h0}.

First, observe that local represents the descendants of h
that disappear from desc(res ∪ open) when h is removed
from open. If local does not intersect ∆, then the second
inclusion of (6) remains satisfied.

At each iteration step, there are 3 cases:

1. The first test (Line 7) fails. res is unchanged and the first
conjunct of the proposition still holds. Because the test
failed, we are in the situation above where local does
not intersect ∆ and the second inclusion remains satisfied.

2. Both tests succeed. h is a candidate and is moved from
open to res, hence the second inclusion is still satis-
fied. As for the first, if h is not minimal then another
hypothesis in desc(res ∪ open) covers it, contradicting
the assumption that the first test succeeded.

3. Only the first test succeeds. As in case 1. res is un-
changed and the first conjunct still holds. Since � is a
well partial order, desc(h) = desc(chi(h))∪{h}; in other
words, desc(res∪open) stays unchanged except for the
removal of h, which does not belong to ∆. Hence, the
second conjunct is still satisfied.

�

Theorem 1 Algorithm 1 returns the minimal diagnosis.

Proof of Theorem 1: Assume that, at the end of the al-
gorithm (i.e., when open = ∅), res 6= ∆min. Because
res ⊆ ∆min (by Lemma 1), there exists δ ∈ (∆min \res).
Notice that if open = ∅, then desc(res ∪ open) =
desc(res); therefore by Lemma 1, ∆ ⊆ desc(res), which
means that there exists h ∈ res such that h � δ. Because
res ⊆ ∆min, h is a diagnosis candidate. Therefore, δ is not
a minimal candidate. �

Termination of the algorithm Termination of the algo-
rithm depends on a property on the depth of the hypotheses.

Definition 5 The depth of hypothesis h is the maximal num-
ber k such that there exists hypotheses h1, . . . , hk and h0 ≺
h1 ≺ · · · ≺ hk = h.

In many cases, e.g. with orders defining minimal sets of
faulty components or minimal sequences of events as con-
sidered so far, but also those defining minimal cardinality
sets and minimal multisets of events, every hypothesis has
a finite depth. It is possible however to define sensible hy-
pothesis spaces where some hypotheses have infinite depth.
Assume for instance the set of events F = {n, f} such that
n is a nominal event and f is a faulty event. Assume that
h � h′ if h contains strictly fewer occurrences of f than hy-
pothesis h′. For instance, in this context, [n, n, n, n] � [f].
Then hypothesis [f] has infinite depth. Indeed, [] ≺ [n] ≺
[n, n] ≺ [n, n, n] ≺ · · · ≺ [f].2 Practically, assuming the
minimal diagnosis is {[f]}, Algorithm 1 will successively
test [], [n], [n, n], [n, n, n], etc. and will never test [f].

Theorem 2 Assuming each hypothesis has a finite depth,
Algorithm 1 terminates.

Proof Sketch for Theorem 2: The proof relies on three ar-
guments based on the following set:

H = anc(∆min) ∪ chi(anc(∆min)).

First, H can be shown finite. Second, it can be shown that at
any stage open ⊆ H . (By contradiction, if h′ ∈ chi(h) \H
is added to open, then h is either non-essential or h is a
candidate – and h′ should therefore not be added to open).
Third, it can be shown that the set open cannot have the
same value more than once.

2Notice that this space has hypotheses of infinite depth despite
being a well partial order.

In summary, at each iteration of the loop, open is a dif-
ferent subset of finite set H . Hence, after a finite number of
steps, open becomes empty and the algorithm terminates.
�

4.3 Conflicts

The algorithm used in the static framework is very similar to
Algorithm 1 but differs in the use of conflicts (Reiter 1987;
Pulido and Alonso González 2004). A conflict can be used
to reject more than one hypothesis, thus avoiding many tests.

A conflict is a generalisation of a test failure. In this paper,
we define a conflict as a set of hypotheses all of which have
been identified as non-candidates by the test solver.

Definition 6 A conflict is an object C that implicitly rep-
resents a set hypos(C) of non-candidate hypotheses, i.e.,
hypos(C) ∩ ∆ = ∅.

The classical notion of a conflict used for static systems can
be seen as an instance of this more general definition. In
static systems, a conflict is a set of components C ⊆ Comps
one of which must be faulty; the conflict excludes all hy-
potheses that assume none of these components are faulty:
formally hypos(C) = {h ∈ H | h∩C = ∅}. For instance, if
Comps = {c1, . . . , c5} and C = {c1, c2, c3}, then C rejects
the hypotheses corresponding to the sets of faulty compo-
nents ∅, {c4}, {c5}, and {c4, c5}.

We assume that, if a given set of hypotheses H ⊆ H con-
tains no candidate, then the test solver is not only able to
determine that the test of H will fail, but it is able to return a
superset of H that contains no candidate: a conflict. (In the
worst case, the solver may simply return the conflict C such
that hypos(C) = H .) The practical computation of such a
conflict is the topic of the next section.

We can use this conflict to improve Algorithm 1 in two
ways. First, because a conflict does not intersect ∆, then if
the current hypothesis h belongs to a previously-found con-
flict, we know that this hypothesis is not a candidate and the
test on Line 10 may be skipped.

Second, we can use the conflict to refine the set of succes-
sors to be considered:

min
�

(desc(h) \ hypos(C)) .

Observe that the set of successors used in Algorithm 1 is
a special case where hypos(C) = {h}. Also, note that
the conflict does not just prune some children of h from
the successor set, but might also lead to deeper descendants
of h being considered. Consider for instance hypothesis
h = [f] and conflict hypos(C1) = {[f], [f, p]}. The suc-
cessors of [f] through conflict C1 are [f, f], [f, t], [p, f],
[t, f], and [f, p, p]. Consider now conflict hypos(C2) =
{[f], [f, p], [f, p, p], [f, p, p, p], . . . } (i.e., all sequences con-
sisting of f followed by any number of ps). The successors
of [f] through conflict C2 are [f, f], [f, t], [p, f], and [t, f].

5 Symbolic Representation

In this section, we take advantage of finite sets of
properties to implicitly represent and manipulate infi-
nite hypothesis sets. For instance, the hypotheses
{[t], [f, t], [p, t], [t, f], [t, t], . . . } may be represented as

sharing the “property” that they contain at least one occur-
rence of t. We provide a principled way to choose prop-
erties so as to efficiently represent and test hypothesis sets
encountered in Algorithm 1 and easily compute successor
sets. Specifically the computation of local in lines 6, the
tests in lines 7 and 10, and the computation of successors in
line 13, are all performed symbolically.

Definition 7 A property p is an object that implicitely rep-
resents the set of hypotheses hypos(p) that “satisfy” this
property. A set of properties P represents the set of hypothe-
ses hypos(P) that satisfy all properties in P :

hypos(P) =
⋂

p∈P

hypos(p).

A set of properties can therefore be interpreted as a conjunc-
tion. We write props(h), the set of properties that hypothesis
h satisfies, i.e., props(h) = {p | h ∈ hypos(p)}.

5.1 Representation of Tested Hypotheses

We start by examing how to represent the hypothesis sets to
be tested. Let us write P for the set of properties that will be
used to do so. P needs to be expressive enough to represent
the sets local and {h}. Observe that both sets are defined
as desc(h) \desc(H) for some hypothesis h and some finite
set of hypotheses H (in the second case, H can be defined
as the set chi(h)).

Requirement 1 The property space P must be defined such
that for any hypothesis h and any finite set of hypotheses
H , there exists a finite set of properties P ⊆ P such that
hypos(P) = desc(h) \ desc(H).

Theorem 3 There exists a property space that satisfies Re-
quirement 1.

Proof of Theorem 3: A property space that satisfies the re-
quirement can be constructed using 2 atomic properties pdesc

and pdesc per hypothesis, representing the set of hypotheses
that are descendant of the given hypothesis, and the set of
hypotheses that are not among its descendants, respectively:

hypos(pdesc(h)) = desc(h)

and
hypos(pdesc(h)) = H \ desc(h).

Looking at desc(h) \ desc(H), hypotheses desc(h) are di-
rectly captured by pdesc(h). Moreover, H being finite, the
subtraction of desc(H) can be captured by a finite set of
pdesc(h

′) atoms. Hence {pdesc(h)}∪ {pdesc(h
′) | h′ ∈ H} is

a finite representation of desc(h) \ desc(H). �

Observe that desc(h) \ desc(H) can be represented by
{pdesc(h)}∪{pdesc(h

′) | h′ ∈ min�(H)} which (a) is more
compact (but requires to compute min�(H)) and (b) allows
to generalise the requirement in case H is infinite (min�(H)
is always finite since we consider well partial orders).

Hence, in the following, we use the property space:

P = {pdesc(h) | h ∈ H} ∪ {pdesc(h) | h ∈ H}.

The property space used in the static diagnosis framework is
a special case. For any component c ∈ Comps, the property
¬Ab(c) (the property that component c is nominal) equates

to pdesc({c}). Other properties pdesc(h) for larger sets of
components are not used because they can be defined as con-
junctions of the defined properties. The properties pdesc(h)
are not used in the weak-fault model because they cannot be
used to infer anything.

In the Discrete Event System framework, hypotheses are
sequences of fault events, and the descendants of a hypothe-
sis h are those that contain h as a subsequence. Thus, for ex-
ample, property pdesc([t]) represents the descendants of [t],
i.e., all hypotheses that contain at least one occurrence of t.
The property pdesc([t]) represents the hypotheses that are not
descendants of [t], i.e., that do not mention t, such as [], [f],
[p], [f, f], etc. The hypothesis h = [t] can be represented
by the following set of properties P : pdesc([t]), pdesc([t, t]),
pdesc([t, f]), pdesc([t, p]), pdesc([f, t]), and pdesc([p, t]), and is
the only hypothesis that satisfies P . The hypothesis [t, f, f],
for example, is a descendant of [t, f] and, therefore, does
not the satisfy third property in P . The hypothesis [p], on
the other hand, is not a descendant of [t] and, therefore, does
not satisfy the first property of P .

5.2 Symbolic Test

We reformulate the test presented in Definitions 2 and 4
using properties rather than hypotheses. Let H be a set
of hypotheses and let P be a set of properties such that
hypos(P) = H . The test of H can be written:

∃σ ∈ M : obs(σ) = o ∧ P ⊆ props(hypo(σ)).

Assuming the properties can be enforced on the behaviors
themselves (as we illustrate in Section 6), the hypotheses are
not explicitely manipulated. The test solver will use the set
of properties P to guide the search for a behavior σ consis-
tent with the observation, or to disregard (possibly partially
defined) behaviors. If the test fails, the test solver should be
able to trace back all the properties it used in order to reach
its conclusion. These properties defines a set of hypotheses
that contains no candidate; this defines our conflict.

Formally, the test solver is given a set P of properties
representing the hypotheses H = hypos(P), returns true
if hypos(P) ∩ ∆ 6= ∅, and a conflict C ⊆ P such that
hypos(C) ∩ ∆ = ∅ otherwise. Here, the conflict is a subset
of properties and the set hypos(C) of hypotheses excluded
by C are those that satisfy all properties in C. In the worst
case – if the solver is not able to extract a more useful cause
for failure – it can always return C = P .

The simplest symbolic representation of h defines h as the
(single) hypothesis that is a descendant of h and of none of
its children. We denote P0(h) this representation:

P0(h) = pdesc(h) ∪ {pdesc(h
′) | h′ ∈ chi(h)}.

This is correct, i.e., hypos(P0(h)) = {h}, and finite because
the hypothesis space is a well partial order.

The choice of which properties to include in the descrip-
tions of hypotheses has an influence on the generality of the
conflict generated. Assume for instance we want to find a
set of properties P to represent the set {[p]} (cf. Figure 2).
P0([p]) is the set {pdesc([p]), pdesc([f, p]), pdesc([p, f]),
pdesc([p, p]), pdesc([p, t]), pdesc([t, p])}. However, the two
properties p1 = pdesc([f, p]) and p2 = pdesc([p, f]) may be
replaced by the single property p3 = pdesc([f]). (Observe

[]

[f] [p] [t]

[f, p] [p, f] [p, p] [p, t] [t, p]

Figure 2: Part of the hypothesis space ([p], its parent, its
children, its siblings). The arrows show the ordering.

that a third option is to include all three properties in P .)
The second choice looks more appealing that the first be-
cause p3 is more general than p1 and p2; in this example, it
tells the test solver directly that f cannot occur in the trace.
On the other hand, using only p3 instead of p1 and p2 it is
not possible to generate a conflict such that [p, f] is in the set
of successors whilst [f, p] is not. Thus, no option dominates
the others. In the experiments reported in Section 7, we used
P0(h) as defined above.

5.3 Computing Successors

The last step to implement is the computation of successors.
Remember that the set of successors is defined as the mini-
nal elements of the set S′ = desc(h)\hypos(C). The set S′

can be infinite, and therefore cannot be computed explicitly.
Instead, we show (Theorem 4) how to compute the succes-
sors using only a finite number of ⊗ operations defined at the
end of Subsection 4.1. We first illustrate the process with an
example and then prove it works in the general case.

Assume that we have tested the hypothesis h = [p], and
that the test solver has returned the following conflict:

{pdesc([p]), pdesc([p, p]), pdesc([f])}.

Note that the conflict rejects the hypothesis h = [p]. An
interpretation of this conflict is “if p occurred at least once,
then p occurred at least twice or f occurred at least once”.
Therefore, the successors of h are [p, p], [f, p] and [p, f]. As
mentioned above, a hypothesis is excluded by the conflict if
it satifies all three properties. Therefore, an element of S′ is
an element that contradicts at least one of these properties.
Clearly, all descendants of h satisfy the first property, so no
element of S′ can contradict this property. Therefore, all
properties of the form pdesc(h

′) can be ignored when com-
puting successors. We now turn to the last two properties
of the conflict. An element of S′ is a descendant of h that
contradicts one of those two properties. Therefore, in addi-
tion to being a descendant of h, an element of S′ must be a
descendant of [p, p] or a descendant of [f]. Such elements
include [f, p], [p, f], [p, p], [f, p, p], [f, p, t], etc. It is easy to
see that the minimal elements of S′, i.e., the set of succes-
sors, is {[p, p], [p, f], [f, p]}.

We now generalise this result. Given a set of properties
P ⊆ P, we write A(P) = {h ∈ H | pdesc(h) ∈ P} and
Ω(P) = {h ∈ H | pdesc(h) ∈ P} (observe that both sets are
finite since P is finite).

Theorem 4 Let h be a hypothesis and let C be any conflict

that rejects h, then

min
�

(desc(h) \ hypos(C)) = min
�

(h ⊗ Ω(C)) .

Proof Sketch for Theorem 4: Notice that min�(A) =
min�(B) is equivalent to desc(A) = desc(B), which is
equivalent to (A ⊆ desc(B)) ∧ (B ⊆ desc(A)), which is
what we prove now for A = desc(h) \ hypos(C) and
B = h ⊗ Ω(C).

For the first conjunct, let hs be an element of desc(h) \
hypos(C). Then hs ∈ desc(h). Remember that
hypos(C) =

⋂
p∈C

hypos(p). Thus, since hs 6∈ hypos(C),

hs 6∈ hypos(ps) for some ps ∈ C. If ps = pdesc(h
′)

for some h′ ∈ A(C), we have h′ 6� hs (since hs 6∈
hypos(pdesc(h

′))). Because all properties in the conflict C,
including pdesc(h

′), are satisfied by h, we also have h′ � h,
and hence h′ � h � hs. This contradicts h′ 6� hs. There-
fore ps must be a property of the form pdesc(h

′) for some
h′ ∈ Ω(C). Since hs 6∈ hypos(pdesc(h

′)), we have h′ � hs,
and hence hs ∈ desc(h ⊗ h′).

For the second conjunct, let hs be an element of h⊗Ω(C).
Then, by definition of ⊗, there exists h′ ∈ Ω(C) such that
h′ � hs and h � hs. Therefore hs does not satisfy property
pdesc(h

′) ∈ C, hence hs 6∈ hypos(C) and hs ∈ desc(h) \
hypos(C). �

6 Implementation
In this section, we briefly describe our Boolean satisfiability
(SAT) implementation of the test solver in the case of DES.
A test P amounts to determining if the system model allows
for a sequence σ of events that generates the observation
and satisfies all properties in P . We generate a propositional
logic formula Φ that encodes all paths σ consistent with the
model, the observation, and the given set of properties, then
query a SAT solver to find satisfying assignment for Φ. If Φ
is not satisfiable, the test fails and we use the clause learning
capabilities of the SAT solver to generate a conflict.

How to enforce that the path is consistent with the model
and the observation is well-known (Grastien et al. 2007). Of
importance here is that we assume that σ has a maximum
length of n events: n can be upperbounded by the product
of the number of distinct observation time points (which is
known from the input) and the maximum number of unob-
servable events that can take place between any two obser-
vations (which is a property of the model). For the system
model we conducted experiments on, the latter number is 6.

For each event e ∈ Σ and for each timestep t ∈
{1, . . . , n}, a propositional variable e@t that is true iff the

tth event in σ is e. The encoding of the model and the
observation is a formula over the e@t variables such that
the set of satisfying assignments corresponds to the set of
event/state sequences allowed by the system model and con-
sistent with the observation. Similar encodings have been
used for bounded planning (Kautz and Selman 1992) and
model checking (Biere et al. 2003).

Each call to the test solver (in lines 7 and 10 of Algo-
rithm 1) is made with a set of hypotheses, which also con-
strain the set of paths. As explained in the previous section,
the set of hypotheses to be tested is represented by a finite set
of properties, P , each of the form pdesc(h) or pdesc(h). To

represent properties of relevant hypotheses in SAT, we cre-
ate a propositional variable desc(h, t) for each h that is equal
to, or a prefix of, some h′ such that pdesc(h

′) or pdesc(h
′) is

in P , and for each timestep t ∈ {1, . . . , n}. In any satisfy-
ing assignment, desc(h, t) will be true iff the prefix σt (the
first t events of sequence σ) is a descendant of h. In par-
ticular, h � hypo(σ) iff desc(h, n) evaluates to true. The
values of variables desc(h, t) is recursively constrained via
the following formulae:

desc(h.e, t) ↔ desc(h.e, t − 1) ∨ (desc(h, t − 1) ∧ e@t) .

were h.e appends event e to hypothesis h. Observe how
these formulae further constrain the truth values of e@t. The
base cases are that: (i) desc([], t) is always true; and (ii)
desc(h, 0) is false if h 6= []. The formula Φ that is given to
the SAT solver is the conjunction of all the formulae above.

If Φ is unsatisfiable, we use the clause-learning capabil-
ities of the SAT solver to generate a conflict: the variables
representing the set of properties to be tested (P) are as-
signed at the beginning of the SAT search. If these assign-
ments makes the problem unsatisfiable, the clause learning
module returns a subset of those assignments that is suffi-
cient to prove unsatisfiability, and that is the conflict.

7 Experiments
Input data for our case study is an alarm log from the op-
erations center of TransGrid, the company that owns and
operates the electricity transmission network in NSW and
the ACT, Australia. The log contains alarms generated by
automatic equipment (e.g., switch gear, voltage and power
sensors and regulators) located throughout the transmission
network, as well as commands issued by operators. It covers
roughly fifteen hours: the first two thirds are routine opera-
tion, then a major fault situation arises and the rest of the log
chronicles the operators’ efforts to reconfigure the network
to restore service. Restricted to relevant alarm types (i.e.,
those that appear in our model) the log has 731 entries.

The purpose of diagnosis is to provide operators with
a comprehensible picture of the situation in the network.
Therefore, events to be diagnosed include not only real faults
(like transient or permanent line faults) but also events that,
while in themselves not faulty, cannot be explained by the
model (e.g., a sudden but non-critical voltage drop, if there
is no discernable reason for it). The diagnostic summary of
the network situation must be available in real-time. There-
fore, we split the alarm log into (a) fixed size (one minute)
time windows, and (b) variable sized chuncks separated by
at least one minute where no alarm occurs. This gives us
129 problem instances. For each of those we extract a sub-
model, with only the parts of the network potentially rele-
vant to reasoning about this set of alarms. This subnetwork
is computed iteratively, starting from the components that
emitted the alarms in the instance alarm log, adding com-
ponents that may influence (according to the model) this al-
ready in the subnetwork, until a fixpoint is reached.

The behavior of the (sub-)network is captured by a set of
component automata, similarly to the example in Section 2.
The number of components varies from 3 to 105, with com-
ponent models each ranging from 8 to 1 024 states and 44
to 92 800 transitions, which means that, in general, a single

256 256 256

384

384 384 384

1024

256

256 256 256

1024

384 384 384 384

384

384 384 384

1024

256

256

256 256

1024

256

888

256

Breakers

Line

Bus

Generator

Network

Figure 3: Subnetwork for problem window-347.

automaton model cannot be computed. Figure 3 shows the
topology of the subnetwork for problem window-347, where
each component type is drawn using a different node shape,
and labeled with its number of states.

Centralised methods such as the unfolding approach
(Zanella and Lamperti 2003) or the diagnoser approach
(Sampath et al. 1995) require respectively exponential and
double-exponential memory size in the number of compo-
nents, which makes them inapplicable here. Instead, we
compare the performance of our approach with a state-of-
the-art method for DES diagnosis based on the distributed
computation of all system behaviors consistent with the ob-
servation (Kan John and Grastien 2008). A junction tree
is computed over the network topology, and a diagnosis is
computed locally for each cluster of the junction tree; the
local diagnoses are made consistent with each other until a
fixed-point is reached (Su and Wonham 2005). We compare
the preferred-first algorithm powered by a SAT tester (later
called PF) against this junction tree algorithm (later called
JT) with a time limit of 10 minutes. JT only computes the
set of behaviors and is not required to extract the diagnosis.
For the model at hand, the number of time points necessary
for PF (as explained in the previous section) is 6 times the
number of observation points, which ranges from 1 to 139.

Out of 129 problems, PF is able to solve 116 problems,
while only 35 problems can be solved by JT. A sample of the
results are presented in Table 1. For all problems that both
approaches can solve, the runtimes are similar, although PF
is sligthly faster. However, PF is able to solve most problems
while JT very often runs out of time. Only for two problems
does JT perform better than PF.

The only problems JT can solve do not involve transmis-
sion lines. In our model, a line state is represented by four
binary variables and three four-valued variables (i.e., 1 024
states). Furthermore, there are 64 initial states, and the line
is not directly observable. JT requires to project automata
which necessitates to perform determinisation and minimi-
sation. These operations turn out to be too expensive for JT
to be effective. This is a nice feature of PF coupled with
SAT: the solver does not have to compute behaviors start-
ing from the initial state; therefore it is not very sensitive to
imprecision wrt initial states.

The experiments also illustrate that PF is sensitive not
only to the number of components in the diagnosis problem
but also to the number of diagnosis candidates. We unsuc-
cessfully tried to solve more problems by giving more time
to the solver; at this stage, it seems that the number of candi-

N M C A PF JT
window-250 1 0 2 3 0.3 1.5
window-137 1 0 2 5 0.5 1.8
chunk-008 1 0 4 5 0.7 2.7
chunk-004 1 2 3 3 0.8 2

window-249 2 1 5 4 1 2.3
chunk-073 2 1 5 6 1.4 2.1

window-248 3 2 5 5 1.6 2.2
chunk-056 1 4 4 7 1.7 2.6

window-618 1 0 6 2 0.7 –time–
window-602 1 1 5 2 0.9 –time–
window-135 1 0 9 5 1 –time–
window-601 1 2 5 3 1.2 –time–
window-136 1 1 9 4 1.3 –time–
window-617 1 1 13 3 1.4 –time–
chunk-040 2 3 5 4 1.6 –time–

window-157 2 2 11 3 1.6 –time–
chunk-054 1 0 9 18 1.9 –time–

window-155 2 2 12 5 2.2 –time–
chunk-105 2 2 8 4 2.7 –time–

window-527 2 1 11 8 2.7 –time–
chunk-127 2 4 6 5 3.4 –time–

window-134 2 2 17 6 4 –time–
window-526 3 2 12 9 4.2 –time–
chunk-132 1 3 20 6 5.1 –time–
chunk-077 1 2 12 11 5.2 –time–
chunk-037 2 4 9 12 6 –time–

window-525 4 3 12 10 6.2 –time–
chunk-026 3 2 13 11 6.8 –time–

window-524 5 4 12 11 8.5 –time–
chunk-049 4 4 16 11 11.9 –time–
chunk-045 1 2 20 19 13 –time–

window-348 2 8 25 11 30.7 –time–
window-258 25 5 11 6 51 –time–
window-257 26 5 12 7 54.1 –time–
window-256 27 7 12 8 95.5 –time–
chunk-076 27 7 12 8 100.2 –time–

window-347 4 9 32 13 106.1 –time–
chunk-078 27 8 13 14 206.4 –time–

window-336 ? ? 58 49 –time– –time–
window-332 ? ? 67 57 –time– –time–
window-335 ? ? 67 66 –time– –time–
window-333 ? ? 71 71 –time– –time–
window-334 ? ? 71 71 –time– –time–
chunk-089 ? ? 105 146 –time– –memory–

window-410 ? ? 19 13 –time– 5
window-409 ? ? 22 14 –time– 5.3

Nb problems solved (/129) 116 35

Table 1: Results: N : number of minimal candidates, M :
maximum number of faults in a minimal candidate, C: num-
ber of components in the problem, A: number of alarms, PF:
runtime for PF running SAT, and JT: runtime for automata-
based approach (in seconds; –time– means time out).

dates is simply too large and that enumerating all those can-
didates is impossible (this is similar to diagnosis of circuits
where, apart from trivial problems, only minimal-cardinality
diagnosis candidates are extracted).

8 Related Work

We have already discussed in detail the relationship be-
tween our approach and the classical conflict-based theory

for static systems (Reiter 1987) on the one hand, and the
main classes of approaches for diagnosing DES (Zanella and
Lamperti 2003; Sampath et al. 1995) on the other. Here, we
focus on the relationship between our work and techniques
targeted at solving the simpler problem of finding a single
diagnosis candidate, and on the dual role of symbolic repre-
sentations in our framework.

8.1 Diagnosis of DES and Path-Finding Problems

This paper and those mentioned just above consider exhaus-
tive diagnosis: the problem is to find all the minimal hy-
potheses consistent with the observation. This contrasts with
the problem of finding a single diagnosis candidate or test-
ing a single diagnosis hypothesis, which is related to the test
operation in our framework.

For instance, McIlraith’s (1998) notion of “potential ex-
planatory diagnosis” essentially implements our test opera-
tion, but offers no guidance on the vital question of how to
find in the very large, or even infinite, space of hypotheses
all minimal explanations. We answer that question, by pro-
viding an algorithm for the systematic exploration of the hy-
pothesis space, guided by the preference order, which is also
able to take advantage of additional information provided by
the test solver in the form of conflicts.

It has long been acknowledged that, in the case of
discrete-event systems, finding a single diagnosis candidate
amounts to finding an execution path of the system model (a
sequence of events) which satisfies certain constraints (rep-
resenting the observation), and that this task can be solved
using planning and other path finding techniques (Cordier
and Thiébaux 1994; McIlraith 1994). Compilations into
planning (Haslum and Grastien 2011; Sohrabi, Baier, and
McIlraith 2010) or SAT (Grastien et al. 2007) have indeed
been used to find a single system trace with a minimal num-
ber of faults. Note that planning technology can also be used
to implement the test operation in our algorithm. We have
tried this, but in our experiments on the transmission net-
work problems, the SAT test solver proved to be better in
practice.

8.2 Symbolic Approaches in Diagnosis of DES

We use symbolic representations for two distinct purposes
in the implementation of the diagnosis algorithm.

First, for each diagnosis test, we symbolically represent
the set of hypotheses tested, via a set of “properties”. The
reasons for this are that i) this allows the test solver to gener-
alise test failures, returning a subset of properties that make
the test fail; and ii) when testing essentiality (line 7 in Algo-
rithm 1), the set of hypotheses is infinite and must therefore
be manipulated implicitly. There is no other approach in the
literature on diagnosis of DES that uses symbolic represen-
tations in this way.

Second, we also use a symbolic representation (SAT) in
the implementation of the test solver. Here, the purpose of
symbolic techniques is to avoid the explicit manipulation of
sets of system states, using partial state variable assignments
to represent them. This use of symbolic representations is
not a novelty of this paper. The use of CNFs and compiled
symbolic representations such as BDDs is well-established
for DES, both for computing a single candidate (Grastien et

al. 2007) and an exhaustive diagnosis (Schumann, Pencolé,
and Thiébaux 2007). For instance, Schumann et al. (2007)
use BDDs to represent belief states and diagnosis informa-
tion, and update them by means of BDD operations as obser-
vations are received. This approach, however, still computes
a representation of all system behaviors consistent with the
observation, which is what we avoid using hypothesis tests.

9 Conclusion and Future Work

In this paper, we presented a radically new approach which
makes three important contributions to the state of the
art. Firstly, it unifies two subareas of diagnosis, namely
consistency-based diagnosis for static systems and diagno-
sis of DES, which had traditionally followed separate routes
with little interaction. Secondly, not only does it generalise
Reiter’s work to DES, but it also opens the way to consid-
ering systems with infinite state spaces such as timed and
hybrid systems. Finally it transfers the efficiency of conflict-
based approaches to DES diagnosis, resulting in much more
practical methods.

The generality of our framework is appealing: its only re-
quirement is the ability of testing whether a set of hypothe-
ses (taken from a well-ordered space where hypotheses have
finite depth) contains a candidate. Moreover, the required
tests can be performed symbolically using as few as two ba-
sic types of properties. As we demonstrated in the DES case,
this approach also has significant potential to scale to large
complex problems which are clearly out of reach of conven-
tional diagnosis methods.

Our work is currently progressing in two different direc-
tions. The first is the use of conflicts in diagnosis explana-
tion and model debugging (Belard, Pencolé, and Combacau
2011). Conflicts provide a justification for the diagnosis, a
type of information that has never been exploited for DES.
We believe that the justifications generated by our approach
can be improved by incorporating observation or model in-
formation, to obtain conflicts such as “because the recloser
follows a single reclosing procedure, and because the alarm
detected has been raised, a fault of type p or of type t
must have occurred”.

The second direction is the improvement of the applicabil-
ity of our results, in terms of efficiency and scope. Our cur-
rent SAT implementation is still rudimentary and could be
improved by several orders of magnitude, e.g., with decen-
tralised pre-processing (Pencolé and Cordier 2005) or with
dedicated SAT solvers (Rintanen 2010). Looking at more
expressive classes of systems, we are particularly interested
in hybrid systems and timed systems for which the set of
behaviors consistent with an observation can be potentially
infinite. We plan to investigate implementations of the corre-
sponding test solver using SAT Modulo Theories (de Moura,
Dutertre, and Shankar 2007).

Acknowledgments

NICTA is funded by the Australian Government as repre-
sented by the Department of Broadband, Communications
and the Digital Economy and the Australian Research Coun-
cil through the ICT Centre of Excellence program.

References

Aghasaryan, Ar.; Fabre, É.; Benveniste, Al.; Boubour,
R.; and Jard, Cl. 1998. Fault detection and diagnosis
in distributed systems: an approach by partially stochastic
Petri Nets. Journal of Discrete Event Dynamical Systems
8(2):203–231.

Belard, N.; Pencolé, Ya.; and Combacau, M. 2011. MED-
ITO: A logic-based meta-diagnosis tool. In 22nd Interna-
tional Workshop on Principles of Diagnosis (DX-11), 130–
137.

Biere, A.; Cimatti, A.; Clarke, E.; Strichman, O.; and Zhu,
Y. 2003. Bounded model checking. Advances in Computers
58:118–149.

Cassandras, Chr., and Lafortune, St. 1999. Introduction to
discrete event systems. Kluwer Academic Publishers.

Cordier, M.-O., and Thiébaux, S. 1994. Event-based diag-
nosis for evolutive systems. In 5th International Workshop
on Principles of Diagnosis (DX-94), 64–69.

de Moura, L. M.; Dutertre, B.; and Shankar, N. 2007. A tu-
torial on satisfiability modulo theories. In 19th International
Conference on Computer Aided Verification (CAV), 20–36.

Grastien, Al.; Anbulagan; Rintanen, J.; and Kelareva, E.
2007. Diagnosis of discrete-event systems using satisfiabil-
ity algorithms. In 22nd Conference on Artificial Intelligence
(AAAI-07).

Haslum, P., and Grastien, Al. 2011. Diagnosis as planning:
two case studies. In Fifth Scheduling and Planning Applica-
tions Workshop (SPARK-11).

Kan John, Pr., and Grastien, Al. 2008. Local consistency
and junction tree for diagnosis of discrete-event systems. In
Eighteenth European Conference on Artificial Intelligence
(ECAI-08).

Kautz, H., and Selman, B. 1992. Planning as satisfiability.
In Proc. 10th European Conference on Artificial Intelligence
(ECAI’92), 359–363.

McIlraith, S. 1994. Towards a theory of diagnosis, testing
and repair. In Proc. 5th International Workshop on Princi-
ples of Diagnosis (DX’94), 185–192.

McIlraith, S. 1998. Explanatory diagnosis: Conjecturing ac-
tions to explain observations. In Proceedings of the Sixth In-
ternational Conference on Principles of Knowledge Repre-
sentation and Reasoning (KR’98), Trento, Italy, June 1998,
167–177.

Nash-Williams, Cr. 1963. On well-quasi-ordering finite
trees. Mathematical Proceedings of The Cambridge Philo-
sophical Society 59(4):833–835.

Pencolé, Ya., and Cordier, M.-O. 2005. A formal framework
for the decentralised diagnosis of large scale discrete event
systems and its application to telecommunication networks.
Artificial Intelligence (AIJ) 164(1–2):121–170.

Pulido, B., and Alonso González, C. 2004. Possible con-
flicts: a compilation technique for consistency-based diag-
nosis. IEEE Transactions on Systems, Man, and Cybernetics
(TSMC) 34(5):2192–2206.

Reiter, R. 1987. A theory of diagnosis from first principles.
Artificial Intelligence (AIJ) 32(1):57–95.

Rintanen, J. 2010. Heuristic planning with SAT: beyond
strict depth-first search. In 23rd Australasian Joint Confer-
ence on Artificial Intelligence (AJCAI-10).

Sampath, M.; Sengupta, R.; Lafortune, St.; Sinnamohideen,
K.; and Teneketzis, D. 1995. Diagnosability of discrete-
event systems. IEEE Transactions on Automatic Control
(TAC) 40(9):1555–1575.

Schumann, A.; Pencolé, Ya.; and Thiébaux, S. 2007. A
spectrum of symbolic on-line diagnosis approaches. In 22nd
Conference on Artificial Intelligence (AAAI-07).

Sohrabi, Sh.; Baier, J.; and McIlraith, Sh. 2010. Diagnosis
as planning revisited. In Twelfth International Conference
on the Principles of Knowledge Representation and Reason-
ing (KR-10), 26–36.

Su, R., and Wonham, W. 2005. Global and local con-
sistencies in distributed fault diagnosis for discrete-event
systems. IEEE Transactions on Automatic Control (TAC)
50(12):1923–1935.

Zanella, M., and Lamperti, Gi. 2003. Diagnosis of active
systems. Kluwer Academic Publishers.

