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Abstract
Deep learning is increasingly used to learn poli-
cies for planning problems, yet policies represented
by neural networks are difficult to interpret, verify
and trust. Existing formal approaches to post-hoc
explanations provide concise reasons for a single
decision made by an ML model. However, un-
derstanding planning policies requires explaining
sequences of decisions. In this paper, we formu-
late the problem of finding explanations for the se-
quence of decisions recommended by a learnt pol-
icy in a given state. We show that, under certain
assumptions, a minimal explanation for a sequence
can be computed by solving a number of single de-
cision explanation problems which is linear in the
length of the sequence. We present experimental
results of our implementation of this approach for
ASNet policies for classical planning domains.

1 Motivation
Deep learning has become the method of choice in the areas
of AI that focus on perception, and is rapidly gaining trac-
tion in other areas that have traditionally been strongholds of
reasoning, search, and combinatorial optimisation. In auto-
mated planning for instance, new work has emerged that uses
deep learning to learn policies and heuristics in a range of
planning domains. We refer the reader to [Toyer et al., 2018;
Groshev et al., 2018; Garg et al., 2020; Zhang and Geißer,
2022; Karia and Srivastava, 2022] for examples of work aim-
ing at learning policies for planning domains, and to [Shen
et al., 2020; Ferber et al., 2020; Karia and Srivastava, 2021;
Ferber et al., 2022; Gehring et al., 2022] as representatives of
work on learning heuristics to guide the search for a plan.

As the use of deep learning becomes more widespread in
planning, the need to understand the solutions it produces be-
comes more pressing. Policies represented by neural net-
works are notoriously opaque, and difficult to understand,
verify, and trust [Toyer et al., 2020; Vinzent et al., 2022].
Decisions could also rely on unexpected reasons and prefer-
ences/bias hidden in the data used for training. The neural
network could also be prejudiced against certain groups of
people and give different advice depending on gender, race,
etc. [Darwiche and Hirth, 2020]. At the minimum, one would

like to be able to explain why a particular course of action
was recommended by the policy – by identifying the prop-
erties of the state of the world prior to the execution of the
policy which led to that recommendation – so as to help the
user decide whether this recommendation should be trusted.
This is the problem addressed in this paper.

1.1 Running Example
Throughout the paper, we use the example of Yvette who
needs to take a turnpike to get to her final destination where
she will spend a couple of weeks holidays. The turnpike re-
quires to either purchase a weekly pass online or pay with
cash at a toll gate. The pass is expensive and should not be
taken unless one expects to use the turnpike multiple times in
a single week. Yvette does not currently have a pass or cash.
Hence, the policy prescribes to drive to an ATM, withdraw
some cash, drive to the toll gate, pay the toll, and drive to the
destination.

Why choose this course of action? Firstly because i) Yvette
is on the side of the turnpike opposite to her destination. In-
deed this course of action would work in any state in which
condition i) holds. However, this fails to explain why Yvette
should not directly go to the toll gate. This is because ii) she
has no pass and iii) she has no cash. A correct explanation
should therefore include all three conditions.

If, instead, Yvette did hold a pass, then the policy would
skip the visit to the ATM. The explanation would then men-
tion the fact that Yvette holds a pass but would not mention
her lack of cash as the policy would still have prescribed this
course of action even if she had cash.

As mentioned earlier, explanations can also expose unex-
pected reasons for decisions. For instance, the explanation
could include the proposition iv) it is sunny, which implicitly
means that the policy would have decided differently if it was
not. It is questionable whether iv) is relevant in this context
– it might indicate that the neural network has learnt that you
would not want to make a trip to the ATM under the rain.

1.2 Existing Work
The recent work on explainable planning has been focus-
ing on a different set of problems in a different setting, in
particular on model reconciliation and contrastive explana-
tions for conventional model-based planning [Chakraborti et
al., 2020]. In model reconciliation, the aim is to generate



explanations allowing a human user to update their model
of the planning problem to make it consistent with the plan
produced by a planning agent [Chakraborti et al., 2017;
Sreedharan et al., 2021; Vasileiou et al., 2022]. This lat-
ter question is concerned with the properties of the planning
model, rather than those of the policy. The second promi-
nent line of research in the explainable planning literature is
the generation of contrastive explanations outlining why the
planner chose a course of action over others within the space
of possible plans [Eifler et al., 2020; Kasenberg et al., 2020;
Krarup et al., 2021]. These works are concerned with under-
standing the space of possible decisions and their respective
merits, rather than a particular policy.

Therefore, as a starting point, we instead turn to prior
work concerned with explaining deep learning and other
data-driven models for classification tasks. Existing ap-
proaches typically either compute simpler models that locally
approximate the classifier’s behavior [Ribeiro et al., 2016;
Lundberg and Lee, 2017], or identify sufficient conditions on
the inputs that led the neural network to produce a particu-
lar output [Ribeiro et al., 2018; Ignatiev et al., 2019]. One
approach falling into the latter class is to compute abductive
explanations that are minimal sufficient conditions for the de-
cision. This has the advantage of providing formal guarantees
of soundness and non-redundancy [Ignatiev et al., 2019; Dar-
wiche and Hirth, 2020; Marques-Silva and Ignatiev, 2022].

However, the above approaches are designed to explain a
single decision, whereas understanding the recommendations
of a planning policy requires explaining why a particular se-
quence of decisions was made. The latter is more challeng-
ing as it involves reasoning about repeated applications of the
policy network and about the successive changes they induce
in the state of the world in which the policy is executed.

1.3 Contribution
In this paper, we extend abductive explanations from single to
sequential decisions. We restrict ourselves to classical plan-
ning policies and explanations of why the policy makes a
certain sequence of decisions from a given state. We for-
mally define explanations for a sequence of decisions, and
show that, under certain assumptions, the problem of find-
ing an explanation for the sequence can be decomposed into
that of finding explanations for the individual decisions in the
sequence. We provide an algorithm that exploits this decom-
position to compute a minimal explanation for a sequence by
making a number of consistency tests pertaining to individual
decisions that is at most linear in the length of the sequence
and in the number of state variables. We then discuss the im-
plementation of our approach to explain policies represented
by Action Schema Networks (ASNets) [Toyer et al., 2020]
and report on its performance on sparse ASNet policies for
classical planning domains. We conclude by discussing the
limits of our work and possible extensions.

2 Background
We start by introducing the type of planning problems we
consider, their representation, and our notations.

Many of the recent works on deep learning for planning
assume that the model of the planning domain is available

to the learner. We assume that it is also available to the ex-
plainer. Here we represent the classical planning instance
I “ xX,A, gy under consideration using the SAS` formal-
ism [Bäckström and Nebel, 1995]. X is a set of finite-domain
state variables, where Dx is the domain of variable x. A par-
tial state (or partial valuation) s is an assignment of value to
a subset Xs Ď X of the variables such that srxs P Dx for
x P Xs. If Xs “ X then we say that s is a state; we write
S for the set of states. A proposition px “ vq is a partial
valuation assigning a value to a single variable.

The goal g is a partial state. Given two partial states s and
s1, we write s Ď s1 when srxs “ s1rxs for all x P Xs. A
completion of a partial state s is a state s1 such that s Ď s1.
The result of applying a partial valuation e to a partial state s
is the partial state s‘e overXsYXe defined by ps‘eqrxs “
erxs if x P Xe and ps‘ eqrxs “ srxs if x P XszXe. We also
define the binary operator a over partial states: s a e is the
restriction of s to the variables XszXe. For a variable x P Xs

will write s´ x as an abbreviation for sa px “ srxsq.

A is the set of actions. Action a P A is characterised
by two partial valuations representing its precondition prepaq
and its effect effpaq, respectively. We say that the action is
applicable in a state s P S iff prepaq Ď s and writeApsq Ď A
for the subset of actions applicable in s. Moreover, given a
partial state s and an action a, the progression of s through
a is the partial state prgapsq “ s ‘ effpaq. Note that if s is
a state and a P Apsq then prgapsq is the state resulting from
applying a in s.

A policy for the planning instance is a function π : S ÞÑ A
mapping states to applicable actions, i.e. πpsq P Apsq. We
define the n-long trajectory τnπ psq induced by π from state s
as follows: τnπ psq “ s1

a1
ÝÑ . . .

an
ÝÝÑ sn`1 such that s1 “ s

and for all 0 ă i ď n, ai “ πpsiq and si`1 “ prgaipsiq.
Finally, the n-long sequence of actions recommended by π
in s is πnpsq “ a1, . . . , an, where the ais are the successive
actions in τnπ psq.

Given a planning instance I , a policy π for I , an initial
state s, and an integer n, our problem is to explain why π
recommended the sequence of actions πnpsq in s. The ex-
planation is meant to shed light on the appropriateness of the
recommendation.

The definition of explanations presented in the next section
relies on the fact that the policy will recommend the same se-
quence of actions for certain states. To ensure that for any
state s and any length n, a policy can recommend an n-long
sequence from s, we make the following assumptions. First,
we assume that there is no terminal state, i.e., Apsq ‰ H for
all states. This is not a restriction as a default action could
be to do nothing. Second, we assume that A includes a spe-
cial goal action ag which has no effect and which is only ap-
plicable in goal states (this will act as a marker of the goal
being reached), and that π is a total function on S such that
πpsq “ ag iff g Ď s. This is purely for convenience as poli-
cies generally check whether a goal state has been reached
before computing the next action. With these assumptions,
our theory applies uniformly to any trajectory, regardless of
whether it reaches the goal.



3 Explanations of Neural-Network Policies
An explanation of a decision (or sequence of decisions) in a
state is a condition on this state that led to this decision being
made: the decision was made because the condition was sat-
isfied in this state. Said differently, the same decision would
have been made in any other state that satisfies this condi-
tion. We could allow arbitrary conditions; e.g. the explana-
tion could be the logical formula that describes exactly all the
states in which this decision would be taken. However, such
an explanation would not be very helpful. We aim instead for
a ‘simple’ explanation, that is, an explanation that mentions
as few propositions as possible and has the simple structure
of a conjunction.

We use a definition similar to that of [Marques-Silva and
Ignatiev, 2022]. An explanation is a partial state that entails
the decision; in logic, this is known as an implicant.
Definition 1. An explanation of a single decision a for policy
π is a partial state z such that π yields the same decision for
all completions of z:

@s P S. pz Ď sq ùñ πpsq “ a.

When s completes z, we say that z explains decision a in s.
Our goal is not to explain just the first decision of the pol-

icy, but the complete sequence of decisions. While the first
decision was based on the initial state, later decisions were
made based on the later states. These states, however, are
fully determined by the initial state and the actions taken. Us-
ing the planning model, it is therefore possible to trace the
sufficient condition that led to the full sequence of actions
back to the initial state.
Definition 2. An explanation of the n-long sequence of deci-
sions a1, . . . , an for a policy π is a partial state z such that π
yields the same sequence of decisions for all completions of
z:

@s P S. pz Ď sq ùñ πnpsq “ a1, . . . , an.

Similarly as before, when s completes z, we say that z ex-
plains the sequence of decisions a1, . . . , an in s. We note that
if an “ ag is the goal action, then the sequence a1, . . . , an´1

leads all completions of z to a goal state since π only recom-
mends applicable actions and ag is only applicable in a goal
state. The sequence of actions recommended by the policy
might not lead to the goal; in this case, the loop of the infi-
nite trajectory induced by the policy does not occur at a goal
state. If one wants to compute an explanation for this infinite
sequence, it is possible to use Definition 2 with n “ L ˆ |S|
where L is the length of the loop and |S| the total number of
states: if z explains πnpsq, then it explains πn`kpsq for all
k ě 0. It may be possible to derive better bounds.

It should be clear that there can be multiple explanations in
the same state. For instance, in our running example, Yvette
needs either a pass or some cash to take the turnpike. Both the
fact that she has a pass and the fact that she has cash would be
acceptable explanations for driving directly to the toll gate. In
a state where she has a pass and cash, these two explanations
are therefore suitable. We also note that explanations enjoy
monotonic properties: if z is an explanation, any superset of
z is an explanation. In particular, the complete initial state is
an explanation, although hardly a useful one.

Our goal is to compute the ‘best’ explanation for the se-
quence of decisions made from our initial state. Specifically,
we want to compute a subset-minimal explanation (akin to
a prime implicant in logic), i.e., an explanation z such that
no strict subset of z is an explanation. Therefore, seeing a
variable that should not be relevant in a minimal explana-
tion should raise questions about the policy, while this phe-
nomenon is unsurprising in a non-minimal explanation. Min-
imal explanations provide additional benefits: all variables
mentioned in the explanation are required, in the sense that if
any were removed, the resulting partial state would no longer
be an explanation. While there can be multiple minimal ex-
planations for the same sequence of decisions, we only con-
sider the problem of finding one of them.

Definition 3. Given a policy π, an integer n, and a state s,
the minimal explanation problem is to find a minimal partial
state that explains the sequence of decisions πnpsq in s.

Ignatiev et al. [2019] have shown how to compute expla-
nations for single decisions. The policy is translated into a
set of constraints Cπ over a set of variables that includes the
state variables X which are the input to the policy, and the
variable y which represents its output. The models of Cπ are
exactly all the pairs xs1, yy, s1 P S, y “ πps1q. If π is repre-
sented by a neural network, Cπ can be formulated as a set of
sat modulo theory or mixed-integer programming constraints
(see Section 5). In order to decide whether z is an explanation
for a decision a, the two constraints that s1 completes z and
 d are added to the set where d ” py “ aq. If the resulting
set of constraints is consistent, then there exists a state s1 that
completes z and yields a decision different from a; hence, z
does not explain a. Otherwise, all states that complete z lead
to decision a, and z explains a:

z explains a ô  COpCπ^
ľ

xPXz

ps1rxs “ zrxsq^ dq. (1)

Using monotonicity, it is then possible to greedily search
for a minimal explanation: we start with an existing expla-
nation z, for instance the current state s, and repeatedly test
whether for some variable x P Xz, z1 :“ z ´ x remains an
explanation. If z1 indeed explains a, we replace z with it; oth-
erwise, we go on with z. We test each state variable exactly
once. The resulting partial state is a minimal explanation.

4 Computing a Minimal Explanation
We now turn to the problem of computing a minimal expla-
nation for a sequence of decisions.

4.1 Naive Algorithm
For completeness, we first consider a naive algorithm, illus-
trated in Figure 1. We expect that this algorithm will only be
practical for short sequences as it requires testing the consis-
tency of constraint sets involving too many variables.

Similarly as in the single decision case, the idea of the al-
gorithm is to build a single set of constraints which is con-
sistent iff a specified partial state does not explain a specified
sequence of decisions a1, . . . , an. Given an initial state s11,
we define the set of constraints Ca1,...,an which computes the



s11 s12 s13 . . . s1n
prga1 prga2 prga3 prgan´1

y1 y2 y3 . . . yn

π π π π π

d
Figure 1: Graphical representation of Ca1,...,an , the set of con-
straints used to determine whether a partial state is an explanation.
Nodes of the graph are sets of variables. Arrows represent con-
straints defined such that the target variables are a function of the
source variables.

states s11
a1
ÝÑs12

a2
ÝÑ . . .

an´1
ÝÝÝÑs1n reached by applying the suc-

cessive actions as well as the policy decisions yi “ πps1iq in
each of these states; we then compare the yis with the ai:

s1i`1 “ prgaips
1
iq @i P t1, . . . n´ 1u

yi “ πps1iq @i P t1, . . . nu
di “ pyi “ aiq @i P t1, . . . nu
d “

Źn
i“1 di

Finally, we add the constraints that s11 should complete z and
that d should be false. The resulting set of constraints,

Ca1,...,an ^
ľ

xPXz

ps11rxs “ zrxsq ^  d,

is consistent iff there exists a state s11 that completes z for
which π generates a different sequence of decisions than the
specified one; i.e., z does not explain a1, . . . , an. As before,
starting with z “ s1, one can then greedily try to remove
propositions to compute a minimal explanation.

However in this set of constraints, the variables include n
duplicates of the set of state variables X , which are needed to
represent the successive states s11 . . . s

1
n, as well as the much

larger set of variables required to represent n duplicates of the
computation of π (via the constraints Cπ mentioned above).
As shown in our experiments in Section 6, this makes testing
consistency impractical beyond short sequences.

4.2 Forward Decomposition
We now show that it is possible to decompose the explanation
so that it is easier to compute a single minimal explanation.
This decomposition leads to an algorithm that need only solve
a number of single decision explanation problems that is in
the worst case linear in the length of the sequence. In the
following, ˝ is the function composition.
Theorem 1. Let π be a policy, s be a state, and let τnπ psq “
s1

a1
ÝÑ . . .

an
ÝÝÑ sn`1 be the n-long trajectory induced by π

from s. Let z Ď s be a partial state and let z1, . . . , zn be
a sequence of partial states defined by zi`1 “ prgai ˝ ¨ ¨ ¨ ˝
prga1pzq. Then z explains πnpsq iff for all steps i, zi explains
ai in si.

The proof of Theorem 1 is in Appendix A. Theorem 1 gives
us a clear procedure to verify whether a partial state z is an
explanation, which is to compute the partial states zi resulting
from applying the actions from z (note: zi`1 “ prgaipziq)
and to verify whether each zi explains ai.

Algorithm 1 Computing a minimal explanation for a se-
quence of decisions.

1: procedure MINIMALEXPLANATION(I, π, n, s)
2: s1

a1
ÝÑ . . .

an
ÝÝÑ sn`1 “ τnπ psq

3: z1 :“ s
4: for i P t1, . . . , n´ 1u do
5: zi`1 :“ prgaipziq
6: for x P X do
7: explains :“ True
8: for i P t1, . . . , nu do Ź Testing condition of Th. 1
9: zi :“ zi ´ x

10: if  pzi explains aiq then Ź Eq. 1
11: explains :“ False
12: break
13: if x P Xeffpaiq

then
14: break Ź Can stop now (cf. Eq. 2)
15: if  explains then ŹMust reinsert x
16: for j P t1, . . . , iu do zj :“ zj ‘ px “ sjrxsq

17: return z1

In the algorithm that we propose next, we use the additional
property: for any variable x, prgai ˝ ¨ ¨ ¨ ˝ prga1pz´ xq “
#

prgai ˝ ¨ ¨ ¨ ˝ prga1pzq if xPXeffpaiqY. . .YXeffpa1q
prgai ˝ ¨ ¨ ¨ ˝ prga1pzq ´ x otherwise.

(2)
The first case is useful because it means prgai ˝¨ ¨ ¨˝prga1pz´
xq explains ai`1 iff prgai ˝ ¨ ¨ ¨ ˝ prga1pzq does; so as soon
as variable x appears in the effects of ai, we will be able
to ignore the condition of Theorem 1 that zk should explain
ak in sk for all k ą i. The second case is useful because
it makes it easy to compute prgai ˝ ¨ ¨ ¨ ˝ prga1pz ´ xq from
prgai ˝ ¨ ¨ ¨ ˝ prga1pzq.

Our procedure is described in Algorithm 1. In Lines 3–5,
the algorithm initialises the variables zi, mirroring the vari-
ables from Theorem 1 for explanation z :“ s. Line 6 starts
the loop in which each variable x is tentatively removed from
the explanation. The variable explains will record whether
z ´ x explains the sequence; until proven otherwise, it is as-
sumed it does. The inner loop from Line 8 verifies the con-
dition of Theorem 1. After zi is updated (using the second
case of Eq. 2), the consistency check (Eq. 1) is performed on
Line 10. If zi does not explain action ai, the inner loop is
stopped; the loop from Line 16 will then undo the update.
Otherwise, the inner loop moves to the next step i` 1 except
if variable x is mentioned in the effects of ai in which case
the loop can be stopped (first case of Eq. 2).

This algorithm requires Opnˆmq calls to the consistency
solver where n is the length of the sequence of m is the num-
ber of state variables.

We illustrate this algorithm with our running example.
We assume Yvette uses the policy described in Figure 2.
We note that this policy recommends sub-optimal actions
(e.g., driving to the ATM and then purchasing a pass on-
line when it is raining), which our approach can also han-
dle. The initial state, and so the initial explanation, is z “
tFriday, Sunny,NoCash,NoPass,AtHome, . . . u.



1. If has passed the TollGate, has a pass, or has some cash,
drive towards the destination.

2. Otherwise, if not at the ATM, drive towards the ATM.
3. Otherwise, if it is sunny, withdraw cash.
4. Otherwise, purchase a pass online.

Figure 2: The policy given to Yvette (without goal action ag)

Algorithm 1 starts by removing Friday from the explana-
tion, leading to z1 “ z11 “ zatFridayu. We find that it is im-
possible to instantiate the only free variable (day of the week)
in such a way that a decision different from DriveToATM is
taken; in other words, z11 explains the first decision. Progress-
ing z11 gives us z12 “ tSunny,NoCash,NoPass,AtATM, . . . u.
This partial state also explains the second decision (With-
drawCash), and so on until the end of the sequence. There-
fore, z1 explains the whole sequence.

Then, Algorithm 1 removes Sunny from the explanation.
The partial state is therefore z2 “ z21 “ z1 a tSunnyu. Par-
tial state z2 explains the first decision (DriveToATM). Pro-
gressing z21 gives us z22 “ tNoCash,NoPass,AtATM, . . . u.
This time, we find that a state in which Yvette is at the ATM
and the weather is rainy will yield a different decision (Pur-
chasePass) than the second decision (WithdrawCash). There-
fore, z2 does not explain the sequence and Sunny is added
back to the explanation. Similarly, the algorithm would then
try and fail to remove the subsequent propositions.

5 Implementation
We use Algorithm 1 to explain the recommendations of AS-
Net policies [Toyer et al., 2018] for classical planning do-
mains. This requires implementing the consistency test on
line 10 of the algorithm for ASNets, which have a com-
plex structure and nonlinear activation functions. Our en-
coding, presented below, is supported by mixed integer pro-
gramming (MIP) solvers such as Gurobi [Gurobi Optimiza-
tion, LLC, 2023], and builds on the principles underlying
the MIP encodings of simpler networks used in verification
or single-decision explanations (see e.g. [Fischetti and Jo,
2018]). Clearly the framework presented in the previous sec-
tion is general enough to apply to any policy representation
for which the consistency test can be implemented. We chose
ASNets as they can learn sparse policies which are easier to
scrutinise for testing purposes, and make the consistency test
computationally feasible, at least for small problems.

5.1 ASNets
ASNets are neural networks dedicated to planning, trained to
produce policies that apply to any problem instance from a
given planning domain modelled in (P)PDDL [Younes and
Littman, 2004]. An ASNet consists of L alternating action
and proposition layers, beginning and ending with an action
layer. In each action layer (resp. proposition layer), each
action (resp. proposition) of the planning instance is repre-
sented by an action module (resp. proposition module). Mod-
ules in one layer are connected to related modules in the next
layer, where a proposition p and action a are related, written

Rpa, pq iff p appears in the precondition or effect of a. This
enables relevant information to be efficiently propagated.

An ASNet is capable of learning policies that generalise
to problem instances of different size from the same domain
thanks to a weight sharing mechanism whereby the action
(resp. proposition) modules from the same layer that are
ground instances of the same action schema (resp. the same
predicate), have the same weights. Here we omit details such
as the use of skip connections and the more complex defini-
tion of relatedness in [Toyer et al., 2020], but our implemen-
tation supports them.

Action Layers. At layer l, excluding the first and last layer,
the module for action a takes as input a vector ula which is
constructed by enumerating the propositions p1, . . . , pM re-
lated to a, and concatenating the outputs ψl´1

p1 , . . . , ψl´1
pM of

these propositions’ modules from the previous layer. That is
ula “ rψ

l´1
p1 . . . ψl´1

pM s
T . The output of the module is the vec-

tor φla “ fpW l
au
l
a ` blaq where W l

a is a weight matrix, bla a
bias vector, and f a nonlinearity. ASNets use exponential lin-
ear units (ELU), i.e. fpxq “ x if x ě 0 and ex´ 1 otherwise.
Note that except for the final layer, the output vectors of all
modules in the network have the same dimension d.

Proposition Layers. At layer l, the module for proposi-
tion p takes as input a vector vlp constructed by enumerat-
ing the actions that are related to the proposition, pooling
from the outputs of their modules at layer l if they share the
same action schema, and concatenating the results. That is
vlp “ rpoolptφla | oppaq “ o1 ^ Rpa, pquq . . . poolptφla |
oppaq “ oS ^ Rpa, pquqsT , where pool represents max-
pooling and oppaq is the action schema of action a. Similarly
as for action modules, the output of the proposition module is
the vector ψlp “ fpW l

pv
l
p ` b

l
pq.

First Layer. The input to an action module of the first layer
are the boolean values (0 or 1) of all its related propositions
p1, . . . , pM in the current state s, booleans indicating whether
each of these propositions is true in the goal, and a boolean
indicating whether the action is applicable in s. That is the
input vector is u1a “ rσ γ εs

T , where σ P t0, 1uM with σj “
1 iff pj P s, γ P t0, 1uM with γj “ 1 iff pj P g, and ε “ 1 iff
a P Apsq.

Last Layer. The output of an action module in the final
layer l “ L is a single logit φLa representing the unnormalised
probability that this action should be taken in the current state
s given as input to the network. When, as in this paper, a de-
terministic policy is sought, the applicable action a P Apsq
with maximum φLa is selected by the policy, breaking ties
consistently.

5.2 MIP Encoding
The main purpose of the encoding is to answer consistency
queries where only some of the inputs to the ASNet are given,
and its output is constrained. The key decision variables in
the MIP model fall into 3 categories: variables representing
the network inputs, its outputs, and the action and proposition
modules. As is well known from other MIP encodings of neu-
ral networks, one also needs auxiliary variables to encode the
activation functions. Parameters include the weight matrices



and bias vectors described above. The MIP has no objective
function since we are only testing for consistency.
Policy Inputs. We encode each element in the input of an
ASNet (current state propositions, goal proposition, applica-
ble actions) using the following binary variables: Sp is true iff
proposition p is true in the current state, Gp is true iff propo-
sition p is true in the goal, and Ea is true iff a is applicable
in the current state. Since a key feature of the MIP model
is to allow specifying partial states as input, we must add
constraints capturing when actions are applicable: action a is
applicable when Sp “ 1 for all p P prepaq.
Ea ď Sp @a P A,@p P prepaq
Ea ě 1´ |prepaq| `

ř

pPprepaq Sp @a P A

Moreover, ASNets only support boolean propositions p ”
px “ vq for x P X and v P Dx. To encode SAS` state
variables, we add mutex constraints ensuring that at most one
proposition assigning a value to a given variable can be true.

ř

vPDx
Spx“vq ď 1 @x P X

ř

vPDx
Gpx“vq ď 1 @x P X

Action Modules. To encode action modules, we define the
MIP variables pPAClaqi representing the ith element of the
pre-activation vector (omitting the non-linearity f ) of the
module for action a in layer l, and pOUTlaqi representing the
ith element of the output vector φla of this module. For an ac-
tion a with related propositions p1, . . . , pM , we have, taking
j “ pm´ 1qd` k

pPAClaqi “
M
ÿ

m“1

d
ÿ

k“1

pW l
aqi,j ¨ pOUTl´1

pm qk ` pb
l
aqi for l ą 1

pPAC1
aqi “

M
ÿ

m“1

pW 1
a qi,m ¨ Spm ` pW

1
a qi,M`m ¨Gpm`

pW 1
a qi,2M`1 ¨ Ea ` pb

1
aqi

Proposition Modules. Similarly, we define pPAClpqi and
pOUTlpqi for each proposition p. For proposition modules we
additionally need variables pPOOLlp,oqi to represent the ith
element of the pooled vector over actions related to p shar-
ing the action schema o. If related actions belong to S action
schemas o1, . . . oS , we have, taking j “ ps´ 1qd` k

pPAClpqi “
S
ÿ

s“1

d
ÿ

k“1

pW l
pqi,j ¨ pPOOLlp,osqk ` pb

l
pqi

pPOOLlp,oqi “maxptpOUTlaqi | oppaq “ o^Rpa, pquq

Activations. The encoding of f as the ELU function is very
similar to the encoding of ReLU in MIP [Fischetti and Jo,
2018] and is the same for proposition and action modules.
Given a proposition or action b we define the auxiliary vari-
ables ptlbqi and pslbqi to store the positive and negative com-
ponent of the variable pPAClbqi, respectively, and pzlbqi which
is an indicator variable for the sign of pPAClbqi. This leads to
the following constraints (note that Gurobi linearises the ex-
ponential, see [Gurobi Optimization, LLC, 2023, p584-586])
pzlbqi “ 1 ùñ ptlbqi ď 0, pzlbqi “ 0 ùñ pslbqi ď 0

ptlbqi ě 0, pslbqi ě 0

pPAClbqi “ pt
l
bqi ´ ps

l
bqi, pOUTlbqi “ pt

l
bqi ` e

´pslbqi ´ 1

Policy Output. The chosen action is the applicable action
a maximising the output φLa of the final layer’s modules.
We enforce this using the following additional variables: Ca
which is a binary variable true iff action a is chosen, and
V max which is the maximal value of φLa for applicable ac-
tions.

ř

aPA Ca “ 1 @a P A
Ca “ 1 ùñ Ea “ 1 @a P A
Ea “ 1 ùñ V max ě OUTLa @a P A
Ca “ 1 ùñ V max ď OUTLa @a P A

Moreover, ties must be broken consistently to prevent the
solver to select another action tied at the maximum value
with the one currently tested. This issue frequently occurs
when the problem has some symmetries, as e.g. in the Grip-
per domain where our ASNet policy often gives equal value
to picking up the various balls in a room. LetMa be a boolean
variable true iff action a has maximum value, and ă be the
total ordering over the action setA used by the policy to break
ties, we break ties by favouring the action coming earlier in
the ordering.

pOUTLa “ V max^ Ea “ 1q ðñMa “ 1
Ca “ 1 ùñ Ma ´

ř

a1ăaMa1 “ 1

These additional constraints greatly increase the runtime of
the MIP solver. Therefore we apply them only when needed.
We first run the MIP without them, and if the solver finds a
solution which selects an action tied with the action tested,
we re-run the MIP with the tie-breaking constraints.
Temporary Constraints. The above constraints constitute
the encoding Cπ of the ASNet policy and only needs to be
built once for a given sets X and A of state variables and
actions. For each consistency query involving a planning in-
stance I “ xX,A, gy, an action decision a, and a candidate
explanation z, it suffices to temporarily add the following
constraints to set g as the goal, prevent a to be chosen by
the policy, and look for a possible completion s of z.

Ca “ 0
Spx“zrxsq “ 1 @x P Xz

Gpx“grxsq “ 1 @x P Xg
ř

vPDx
Gpx“vq “ 0 @x P XzXg

6 Experimental Results
The goal of our experiments is to evaluate how effective ab-
ductive explanations are in explaining why a policy recom-
mends a particular course of actions. In particular, we con-
sider what fraction of the input appears in the minimal ex-
planation: the smaller the explanation, the easier it is for a
human to interpret. We also focus on the scalability of Algo-
rithm 1 as the size of the policy increases, taking that of the
naive algorithm in Section 4.1 as a baseline. Finally, we eval-
uate the sensitivity of the explanation size and runtime to the
ordering in which variables are processed by our algorithm.
For reproducibility, our repository https://github.com/Renee-
Selvey/policy-explanations provides our algorithm imple-
mentation, benchmarks used, learnt policies, and the scripts
to learn them and run the experiments.
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Figure 3: Performance of Algorithm 1: size of the explanation produced as a fraction of the neural network input size (3a), runtime of the
algorithm (3b) and average runtime of the MIP solver (3c) as a function of the number of network modules.

6.1 Experimental Setup
Hardware. All experiments were run on a machine with an
AMD Ryzen Threadripper 3990X CPU, with 64 cores/128
threads, a clock speed of 2.9 GHz base, 4.3 GHz max boost,
and 128 GB of memory of which we used 64 GB.

MIP Configuration. Gurobi version 9.1.2 is the MIP solver
used for the experiments. To ensure the model is accurate
enough for our experiments, we set the integer feasibility tol-
erance (IntFeasTol) to 10´9 and the error for function
approximations (FuncPieceError) to 10´6.

ASNet policies. We took all deterministic domains and
training instances from the code distributions of [Toyer et al.,
2020] and [Steinmetz et al., 2022]. We ran the script provided
by Toyer using 1 core, an 8h timeout, and 64 GB of memory
to learn, from these instances, two-layer (i.e. two proposition
layers and three action layers) sparse policies with skip con-
nections and without heuristic inputs. As described in [Toyer
et al., 2020, Sec. 6], the `1-regulariser used to train sparse
policies results in many modules having coefficient so close
to zero that they are insignificant to the output of the net-
work and are prunned by the ASNet sparsification procedure.
Hence, these modules do not appear in the MIP model, mak-
ing a simpler model to solve.

6.2 Domains and Problems
We kept the domains for which the learnt policy could solve
any problem within 150 execution steps, amongst a test set of
20 randomly generated small problems for that domain. This
resulted in 4 policies for the domains of Blocksworld, Grip-
per, n-Puzzle, and Parking, which are present in the ASNets
code distribution. In order to evaluate our approach, we ran-
domly generated, for each of these domains, the set of prob-
lems described below. Explanations were only computed for
problems where the policy was able to reach the goal within
150 steps. Each explanation problem was run with a time
limit of 3h, except for Gripper for which the timeout was 4h.

Blocksworld. Experiments were conducted on 10 problems
of each size (2-10 blocks) for a total of 90 problems. The
policy was able to solve 71% of problems, all of which had
explanations computed within the time limit.

Gripper. Explanations were computed using problems with
2 rooms and 1-15 balls. The policy was able to solve all prob-
lems, and explanations could be computed for 93%.
n-Puzzle. Experiments were conducted on all solvable and
non-trivial combinations of 3-puzzle problems (on a 2x2
grid). Out of these 11 problems, the policy was correctly
able to solve all instances and our approach could compute
all explanations.
Parking. Problems in the parking domain comprised of 2
cars and 2-4 curbs. Out of the 22 total problems, the pol-
icy reached the goal for 55% and we were able to compute
explanations for all of these within the time limit.

To avoid numerical instability issues, we excluded from
our results below any problem for which a MIP call ex-
ceeded a constraint violation tolerance of 5e-01. This led
to 8 Blocksworld and 2 Parking problems being excluded.
Note moreover that we would have liked to evaluate our al-
gorithm on larger n-Puzzle or Parking instances. However,
we couldn’t learn sparse policies capable of solving such in-
stances, and the non-sparse (standard) ASNet policies pro-
duced with the `2-regulariser were too large for the MIP
solver.

6.3 Results
Size of Explanations
Figure 3a shows the size of the explanation obtained as a frac-
tion of the size of the input. In all domains, Algorithm 1
produces an explanation smaller than ASNet’s input. For n-
Puzzle, the small explanations are due to many static propo-
sitions. The grid in the problem is defined as propositions
listing the neighbours of each position. As this grid is static,
this will not appear in the explanation.

Many Blocksworld’s explanations are also particularly
small as many propositions remain false along the plan ex-
ecution and are irrelevant, and some of the true propositions
can be deduced from a small set of others. For instance, con-
sider the optimal plan for a 3 block problem with b2 on b1 on
b3 initially and b3 on b2 and b1 on the table in the goal. The
explanation clearpb2q, onpb2, b1q, ontablepb1q returned by
Algorithm 1 suffices to make the plan applicable and does not
need to mention b3 which is obviously on the table.
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Figure 4: Cumulative Coverage Comparison: number of problems solved as a function of computation time for Algorithm 1 and Naive (4a);
Sensitivity to Removal Ordering: explanation size (4b) and runtime (4c) when removing variables by increasing vs decreasing sensitivity.

The bulk of Gripper’s explanations (i.e. all except for
n “ 1, 2, 14 balls) are steady at 1/4 of the input proposi-
tions. These explanations are obtained when the algorithm
makes the best choices about which propositions to remove.
They mention the actual location of the balls and Robby. The
other propositions representing locations can be deduced to
be false, and at that point the status of the grippers become
irrelevant.

Scalability
Most of the runtime is spent in MIP consistency tests. As
can be seen from the size of problems we can address, rea-
soning about neural networks using MIP is a serious bottle-
neck. Across all domains, we have observed that, as input
propositions progressively get removed from the explanation,
consistency tests generally become harder. This is because
proving inconsistency generally becomes harder, and whilst
proving consistency becomes easier, it leads us to reinsert the
proposition, so the algorithm never reaches the easy region of
the consistent side of the phase boundary. This behaviour is
common with optimisation problems.

There are differences in scalability amongst the domains
however. Figure 3b shows the runtime of the algorithm as
a function of the size of the neural network policy for the
problem. Gripper scaled the worst as a function of the number
of modules in the network. This is due to two main factors.
Firstly gripper plans are longer than those recommended by
the policies for the other domains (from length 3 for n “ 1 to
41 for n “ 14) and therefore lead to a large number of MIP
calls (from 16 to 1442). Secondly, and more importantly, the
average runtime of MIP calls (shown in Figure 3c) is also
larger than for the other domains, due to a large amount of
tie-breaking being necessary for many problems. For n “ 1
to 9, only the odd numbered problems required tie-breaking
as is visible on both Figures 3b and 3c.

Blocksworld scaled the best. It has reasonably long plans
(2 to 26 actions), and leads to even more MIP calls than Grip-
per (17 to 2176) because propositions survive longer through
the inner loop before being reinstated in the explanation or
definitely ruled out. However, as shown in Figure 3c, the MIP
problems are relatively easy to solve, in part because, except
for two problems, almost no tie-breaking was necessary.

We implemented the naive approach as a baseline for scala-
bility comparison. The naive algorithm can solve the Parking
and n-Puzzle problems as these have short plans (1 to 6 ac-
tions). It could not solve Gripper problems after n “ 4 nor
the largest Blocksworld problems. Moreover, as shown in
Figure 4a, it is 5 to 10 times slower than Algorithm 1 on our
benchmark problems.

Sensitivity to Removal Ordering

As explained in Section 3, there are potentially many mini-
mal explanations for a policy trajectory. The explanation ob-
tained, as well as its size and the runtime of Algorithm 1,
depend on the order in which input variables are selected for
removal on line 6 of the algorithm. In order to provide an idea
of how stable the minimal explanation size and runtime are to
the ordering, we use a heuristic inspired by [Wu et al., 2022;
Vinzent et al., 2023], which computes the sensitivity of the
network output to changes of value to each input variable. We
then compare the explanations obtained by removing vari-
ables in increasing and decreasing order of their sensitivity,
respectively. We measure variable sensitivity as follows.

senpxq “
n

min
i“1

`

πpai, siq ´ max
aPApsiqztaiu
vPDxztsirxsu

πpa, si ‘ px “ vqq
˘

where, by slight abuse of notation, πpa, sq is the (unnor-
malised) probability of the policy predicting action a in state
s, before determinisation (this corresponds to the value of
OUTLa in our MIP encoding). Hence, for each state in the
trajectory, we take the difference between the output of the
neural network for the action prescribed, and that of the best
other action that would be prescribed if we changed the value
of the variable x. The variable sensitivity senpxq is the mini-
mum of this difference over the states in the trajectory.

Figures 4b and 4c compare the explanation size and algo-
rithm runtime, respectively, obtained under the two removal
orderings. These figures suggest that except for Parking, the
runtime and explanation size are only very moderately sensi-
tive to the ordering.



7 Conclusion, Limits, and Future Work
We have extended abductive explanations to sequences of de-
cisions recommended by neural network policies. Our de-
composition approach to find a single minimal explanation
incurs no overhead in comparison with the single decision
case, once the length of the sequence is factored in.

Our approach makes a number of limiting assumptions
which we discuss here together with possible extensions and
future work. The first assumption is the availability of a sym-
bolic planning model. An interesting avenue for future work
is the extension of this approach to learnt planning models,
also represented as neural networks.

We also assumed that actions have simple, unconditional
effects. Conditional effects can be handled by our naive al-
gorithm. However, Theorem 1 does not allow for them be-
cause it is impossible to apply conditional effects to a partial
state. We assumed that we have no background knowl-
edge, i.e. constraints that restrict the set of possible states
[Thiébaux et al., 2005; Rintanen, 2017]. These can greatly
simplify explanations. Yu et al. [2023] showed that in the
single decision case, adding the background knowledge K
as another conjunct to the consistency tests performed by the
greedy algorithm preserves the minimality of explanations.
This property carries over to the multiple decision case and
our naive algorithm. However, our decomposition algorithm
may not return a minimal explanation with this augmented
consistency test, because the set of reachable states cannot
be represented by intersections of partial states with K. We
leave an efficient treatment of conditional effects and back-
ground knowledge for future work.

We have assumed that the actions and the policy are deter-
ministic. Handling stochastic actions and/or policies could
be achieved by generating explanations that pertain to a fi-
nite tree of actions reachable with non-zero probability from
the initial state. This would require applying progression and
consistency tests at each branch of the tree. Handling stochas-
tic policies would additionally require a more complex con-
sistency test, as the decision d becomes a probability distri-
bution over actions and the test must establish that it is not
possible for the policy to return a different distribution.

Another avenue for future work is the generation of all
(set-inclusion) minimal explanations and of minimum car-
dinality explanations. This is likely to require a different
decomposition of the problem than the one presented here, as
well as effective heuristics to guide search. Finally, even in
the single decision case, methods for computing formal ex-
planations of neural networks suffer from scalability issues
due to the expensive consistency test. New breakthroughs in
MIP and SMT methods for analysing neural networks, new
problem abstractions, and approximate explanation methods
will be needed for these approaches to flourish.

A Proof of Theorem 1
Lemma 1. If z explains a1, . . . , an, then for all i P

t0, . . . , n´ 1u, zi`1 :“ prgai ˝ ¨ ¨ ¨ ˝ prga1pzq explains ai`1.
We shall prove that for all i P t0, . . . , n ´ 1u, for all state

si`1 that completes zi`1, there exists si such that i) ai is
applicable in si, ii) si

ai
ÝÑ si`1 is a transition of the planning

domain, and iii) si completes zi. By recursion, we end up
with a state s1 that completes z1 such that s1

a1
ÝÑ s2

a2
ÝÑ

. . .
ai
ÝÑ si`1. Since s1 completes z1 “ z, we know that

πnps1q “ a1, . . . , an. Therefore, πpsi`1q “ ai`1. As this is
true for all si`1, zi`1 explains ai`1.

The proof will be done by induction, i.e., we assume that it
is true for i. (Base case for i “ 0 is trivially true as z1 “ z.)
Given state si`1, we choose si as one of the states satisfying

si Ě zi ‘ ppsi`1 a effpaiqq ‘ prepaiqq . (3)
We prove that si satisfies the three points above.
i) Eq. 3 clearly enforces the precondition prepaiq, so ai is
indeed applicable in si.
ii) We note

prgaipsiq Ě psi`1 a effpaiqq ‘ prepaiq ‘ effpaiq.
which can be simplified by

prgaipsiq Ě si`1 ‘ prepaiq ‘ effpaiq. (4)
We also note that all variables x P X are specified in
prgaipsiq, regardless of the choice of si. Consider any vari-
able x; we show that prgaipsiqrxs “ si`1rxs holds by look-
ing at 3 cases:

• If x P Xeffpaiq, then prgaipsiqrxs “ effaipxq and, since
zi`1 “ prgaipziq, si`1rxs “ zi`1rxs “ effaipxq.

• If x P XprepaiqzXeffpaiq, then prgaipsiqrxs “ sipxq “

prepaiqrxs since ai is applicable in si.
Furthermore, we note that si`1 completes prga1pziq and
that zirxs “ prepaiqrxs since (by induction) zi explains
ai; therefore si`1rxs “ prepaiqrxs “ prgaipsiqrxs.

• If x P XzXprepaiqzXeffpaiq, then prgaipsiqrxs “

sirxs “ si`1rxs.
iii) Does si complete zi? Since, by construction, si completes
zi ‘ ppsi`1 a effpaiqq ‘ prepaiqq, the question is whether
some assignment in the right operand of zi ‘ contradicts an
assignment in si. We know that zi explains ai, so preai will
not contradict zi. State si`1 completes zi`1 which differs
with zi only on effpaiq. However, the expression above re-
moves effpaiq from si`1, so that the right operand does not
map any variable to a different value than zi.
Lemma 2. Let z be a partial state, and for all i P t0, . . . , n´
1u, zi`1 :“ prgai ˝ ¨ ¨ ¨ ˝ prga1pzq. If for all i, zi explains ai,
then z explains a1, . . . , an.

Assume that zi explains ai for all i. Let s be a state com-
pleting z and let s1

a1
ÝÑ . . .

an
ÝÝÑ sn be the trajectory obtained

by applying the sequence of actions a1, . . . , an from s1 “ s.
We shall prove πpsiq “ ai for all i (which proves that π
recommends a1, . . . , an); this is proven by showing that si
completes zi.

The state si`1 is defined as prgai ˝ ¨ ¨ ¨ ˝ prga1psq. Do we
have @x P Xzi`1

. si`1rxs “ zi`1rxs? Let j be the largest
index in t1, . . . , iu such that x P Xeffpajq. If j does not ex-
ist, then si`1rxs “ srxs “ zrxs “ zi`1rxs. Otherwise,
si`1rxs “ effpajqrxs “ zi`1rxs. Either way, the variables of
si`1 map to the same value as those of zi`1. Therefore, zi`1

explains ai`1 in si`1.
Theorem 1 is a consequence of Lemmas 1 and Lemma 2.
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Littman. PPDDL1.0: an extension to PDDL for express-
ing planning domains with probabilistic effects. Technical
report, CMU, 2004.

[Yu et al., 2023] Jianqiang Yu, Alexey Ignatiev, Peter J.
Stuckey, Nina Narodytska, and João Marques-Silva. Elim-
inating the impossible, whatever remains must be true. In
Proc. AAAI, 2023.

[Zhang and Geißer, 2022] Ziqi Zhang and Florian Geißer.
Extending graph neural networks for generalized stochas-
tic planning. In Proc. ICAPS-21 Planning and Reinforce-
ment Learning Workshop (PRL), 2022.


	Motivation
	Running Example
	Existing Work
	Contribution

	Background
	Explanations of Neural-Network Policies
	Computing a Minimal Explanation
	Naive Algorithm
	Forward Decomposition

	Implementation
	ASNets
	MIP Encoding

	Experimental Results
	Experimental Setup
	Domains and Problems
	Results
	Size of Explanations
	Scalability
	Sensitivity to Removal Ordering


	Conclusion, Limits, and Future Work
	Proof of Theorem 1

