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Abstract
The paper generalises the notion of landmarks
for reasoning about planning problems involving
propositional and numeric variables. Intuitively,
numeric landmarks are regions in the metric space
defined by the problem whose crossing is necessary
for its resolution. The paper proposes a relaxation-
based method for their automated extraction di-
rectly from the problem structure, and shows how
to exploit them to infer what we call disjunctive and
additive hybrid action landmarks. The justification
of such a disjunctive representation results from
the intertwined propositional and numeric structure
of the problem. The paper exercises their use in
two novel admissible LP-Based numeric heuristics,
and reports experiments on cost-optimal numeric
planning problems. Results show the heuristics are
more informed and effective than previous work for
problems involving a higher number of (sub)goals.

Introduction
Numeric planning [Fox and Long, 2003] is the extension of
classical/STRIPS planning where also numeric variables can
participate into the definition of (sub)goals and actions of
the problem. Despite being undecidable in the general case
[Helmert, 2002], efficient reasoning in this setting is a key
ingredient for planning in real world contexts, where propo-
sitional and numeric reasoning has to be done in an com-
bined way [Della Penna et al., 2009; Scala et al., 2016b;
Fox and Long, 2006; Löhr et al., 2012; Fox et al., 2011].

In propositional planning, landmarks [Hoffmann et al.,
2004], meaning atoms/actions necessary to achieve the goal,
have been a key mechanism to devise informed heuristics
used by both optimal and satisficing state-of-the-art plan-
ners [Keyder et al., 2010; Helmert and Domshlak, 2009;
Pommerening et al., 2014; Haslum et al., 2012]. In addi-
tion landmarks elicit some of the problem’s structure, which
may be used in other ways, for example to decompose the
problem. Finding the complete set of landmarks is as hard as
solving it [Hoffmann et al., 2004]; thus, most works approxi-
mate the landmark set using some kind of problem relaxation,
and the hope is that such a relaxation still contains useful
structural information. Recently, new relaxations for numeric

planning have been devised [Scala et al., 2016a], which, un-
der some conditions, improve on previous interval-based re-
laxation heuristics [Hoffmann, 2003; Scala et al., 2016b].

This paper studies landmarks for numeric planning through
the lens of the subgoaling relaxation [Scala et al., 2016a]. For
this relaxation we derive a hybrid version of the AND/OR
graph introduced by Keyder et al. [2010], capturing achiev-
ers and dependencies of both numeric and propositional sub-
goals; this gives us a method for inferring both types of
landmarks. Numeric landmarks are metric conditions that
are necessarily achieved in every plan solving the problem.
Extending previous cost-partitioning techniques [Karpas and
Domshlak, 2009], we formulate a linear program that es-
timates not only which actions are necessary, but also can
quantify the number of times that actions need to be ex-
ecuted in any plan solving the problem. The result is a
landmark-based admissible heuristics for cost-optimal nu-
meric planning, which we show to be more effective than
the admissible numeric heuristic proposed by Scala et al.
[2016a] for certain kinds of problems. Other (mainly inad-
missible) heuristics for numeric planning have been stud-
ied in the past [Hoffmann, 2003; Coles and Coles, 2011;
Eyerich et al., 2012]; yet, to the best of our knowledge, no
other work has developed them from a landmarks perspec-
tive. This paper attempts to close this gap.

An Illustrative Example
Consider an N-dimensional, metric Travelling Salesman
Problem: An agent, initially at 〈x0, ..., xn−1〉, must visit each
of a set of regions, w0, w1, ..., wm−1, in any order, minimis-
ing its total movement. Each region wj is defined by a con-
junction of simple inequalities

∧
0≤i<n(xi + ki,j{≤,≥}0)

that bounds it in each dimension. The position of the agent is
represented by n numeric state variables. A goal proposition,
gi, for each region is achievable by an action visiti whose pre-
condition is that the agent is in the region. Because the agent’s
movement is encoded numerically, the propositional land-
marks of this problem are are only the goals g0, . . . , gm−1,
and the corresponding heuristic estimate is weak. The hy-
brid ĥmaxhbd admissible heuristic [Scala et al., 2016a], on the
other hand, does capture dependencies between numeric and
propositional reachability, but since it assumes subgoal inde-
pendence it will see only the single most costly goal. The in-
tuition here is that even though the order of visits is not fixed,



any plan solving the problem has to intersect the goal regions
at some point. These are necessary metric conditions; in other
words, landmarks. This paper shows how such numeric land-
marks can be found and used in a much more informed ad-
missible estimate.

Fundamentals and Previous Work
This paper focuses on numeric planning problems, which ex-
tend propositional planning with numeric state variables. Nu-
meric variables can appear in conditions ξ D k where ξ is an
arithmetic expression, D ∈ {≤, <,=, >,≥} and k is a con-
stant. In the fragment we consider, action preconditions and
goals are conjunctions of numeric conditions and/or propo-
sitions, ξ is linear, and actions can assign boolean variables
and/or increase/decrease the value of numeric variables by a
constant factor. Conflicting assignments are not allowed. The
semantics of numeric planning can be defined in terms of a
state transition system following PDDL 2.1 level 2 [Fox and
Long, 2003]. We adopt the set-theoretic representation [Ghal-
lab et al., 2004].

Given a set of boolean (F ) and numeric variables (X), a
numeric planning problem consists in finding an action se-
quence 〈a0, ..., an−1〉 which, starting from an initial assign-
ment to all variables (the initial state s0), brings the system to
a state (sn) satisfying given goal conditions G (i.e., sn |= G).
Each action has to be applicable in the state resulting from
the plan prefix executed before it. Each action ai has a cost
c(ai) ∈ <≥0 and the cost of a plan π = 〈a0, ..., an−1〉 is∑

0≤i<|π∗| c(ai); the objective is to minimize cost.

Landmarks
Propositional landmarks [Hoffmann et al., 2004] are propo-
sitions that need to be true at some point in any plan solving
the problem, whereas action landmarks are the actions whose
execution is necessary to achieve the goal: any plan solving
the problem has to contain them.

A sound and complete algorithm to find landmarks is not
tractable [Hoffmann et al., 2004]; therefore previous methods
extract landmarks using a relaxed version of the problem. In-
tuitively, tighter relaxations bring more landmarks, but are ex-
pensive to compute. Looser relaxations are cheaper but bring
limited information, resulting in fewer landmarks [Keyder et
al., 2010]. This generates an obvious trade-off highlighting
the importance of choosing the right relaxation.

Possible Achievers for Simple Numeric Conditions
Simple numeric conditions are linear numeric inequalities af-
fected by only constant increase/decrease actions.1 For this
reason, they match the numeric planning fragment we are in-
terested in. As shown by Scala et al. [2016a], possible achiev-
ers of simple numeric conditions can be obtained using a
parametric regression operation:

1Note that effects can be considered constant if their state de-
pendent nature is ignored. Although possible and computationally
feasible, this can make relaxation-based heuristics highly inadmissi-
ble in general [Scala et al., 2016a].

Definition 1. Let c =
(∑

x∈X wx,cx
)
+ wn,c D 0, with D ∈

{≤, <,>,≥}, be a simple numberic condition. The m-times
regression cr(a,m) of c through action a is:

cr(a,m) ≡
∑
x∈X

wx,c(kx,am+ x) + wn,c D 0 (1)

where kx,a is the constant additive effect of a on x.
We say that a is a possible achiever of c in a state s if there
exists an m such that s |= cr(a,m). All the other elements
of (1) are coefficients extracted from the action model [Scala
et al., 2016a]. In the simple numeric condition case, possible
achievers can be detected statically by looking at the rela-
tional operator (B), the action coefficients and the targeted
condition. This results from the regression being linear in
time, and hence, having a constant derivative. Yet, the num-
berm of repetitions needed to achieve the condition is a state-
dependent information.

In the numeric h1’s family of heuristics [Scala et al.,
2016a], possible achievers over-approximate reachable nu-
meric conditions, and have been used to restrict regression to-
wards the actual relevant actions. This induces a computable
relaxation of the problem. These possible achievers represent
necessary but not sufficient conditions to achieve a numeric
condition; a possible achiever ignores negative effects on
other conditions that might be necessary to achieve - though it
still captures interesting internal conflicting effects for multi-
variables inequalities. Interestingly, as for the propositional
case, possible achievers are also a necessary (though not suffi-
cient) condition for an action to be considered a landmark for
the problem. Next section defines numeric landmarks; then
we show how to compute and use them.

We use the term numeric achiever (NA) for an action that is
a possible achiever of a numeric condition and propositional
achiever (PA) when it sets to true the value of a boolean vari-
able. An action can be both an NA of a (numeric) condition,
and a PA of another (propositional) condition.

Numeric Landmarks and Hybrid Action
Landmarks
A numeric landmark resembles a propositional landmark, yet
it extends its interpretation to the numeric case.
Definition 2 (Numeric Landmark). A numeric condition c :
ξ D k is said to be a numeric landmark if any plan solving
the problem induces a trajectory of states S such that ∃s ∈ S
such that s |= c.
A numeric landmark can be geometrically understood as
defining a region in the metric space that the plan trajectory
has to hit at some step of the execution. Goals and initial state
atoms are landmarks by definition.

An action that must be present in any plan is called an ac-
tion landmark. We call these hybrid (action) landmarks, since
they may be justified by both propositional or numeric land-
marks. A landmark is called causal if it belongs to the pre-
condition of some hybrid action landmark or to the goal set.

Numeric planning is more expressive than propositional
planning. For this reason, a complete numeric and hybrid ac-
tion landmark discovery procedure is not tractable. To over-
come this problem, we approximate the landmarks set using



the landmarks of the underlying subgoaling relaxation given
by hmaxhbd , and defined by Scala et al. [2016a]. The intuition is
that landmarks can be seen as necessary subgoals. Let s and
G be our initial state and goal condition, respectively, a con-
dition c (either numerical or propositional) is a landmark if at
least one of the following holds: i) c is in the initial state, ii)
c is a goal iii) the removal of any action preconditioned on c
makes hmaxhbd (s,G) =∞.

To compute landmarks we propose a hybridized AND/OR
Landmark formulation [Keyder et al., 2010]; then we show
how the extracted landmarks can be used to infer what we
call disjunctive and additive hybrid action landmarks.

AND/OR Graph for numeric planning
An AND/OR Graph is a directed graph whose vertices are
partitioned into AND nodes (Vand) and OR nodes (Vor), with
edges only between AND and OR nodes or vice-versa.

In planning, AND/OR graphs have been used to compactly
represent relaxed state spaces [Keyder et al., 2010]: Vand con-
tains a node for each action (including a dummy initial action
having empty preconditions and the initial state as its effect),
and Vor contains a node for each proposition. There is an edge
(a, b) if either a represents an action achieving proposition b,
or if a is a proposition appearing in the precondition of action
b. The AND/OR graph constructed this way nicely captures
the semantics of the delete-free relaxation.

The extension to numeric planning is straightforward. Vor
is extended with a node for each numeric condition that ap-
pears in problem; Vand is unchanged. Given an action a and
a numeric condition b, there is an edge (a, b) if a is a pos-
sible achiever (NA) of b, as defined above. There is an edge
(b, a) if the precondition of a contains b. In this case, edges
can represent not only the single execution of an action, to
achieve a propositional condition, but also the repeated exe-
cution necessary to achieve a numeric condition, as captured
by the closed form of Eq. 1. The resulting encoding has only a
single copy of each relevant action, also for the numeric part.
This interpretation allows us to focus on the qualitative impli-
cations that the numeric structure has on reachability, so that,
similarly to the propositional case, we can avoid the explicit
layering of relaxed states in a traditional planning graph-
like formulation [Hoffmann, 2003; Gerevini et al., 2008;
Coles et al., 2010; Coles and Coles, 2011]. Most importantly,
it enables the (almost) off-the-shelf use of Keyder et al.’s
landmark discovery procedure for the intertwined inference
of propositional and numeric landmarks.

Landmarks Extraction
Landmarks for the relaxed problem are those OR nodes of
the associated AND/OR graph that lie on the intersection of
all possible justifications, or paths to the goal nodes. This can
be tackled using the following recurrence relation [Keyder et
al., 2010]2:

2Note here we use a slightly different formulation where the ex-
plicit initial state is substituted by a dummy action. The recurrence
reaches a base case when the initial dummy action is selected.

LM(v) =


{v} ∪

⋂
〈v′,v〉∈E

LM(v′) if v ∈ VOR⋃
〈v′,v〉∈E

LM(v′) if v ∈ VAND
(2)

The set of propositional and numeric landmarks is given
by: LM(G) =

⋃
v∈G LM(v). The intent of the intersec-

tion in the first line of Eq. 2, is to infer the strongest im-
plicant of the landmarks of each of achievers (PAs or NAs)
of a condition, i.e., a set of conditions that are implied by
each of the sets of conditions LM(v′). In the propositional
case this operation corresponds to intersecting these sets. Tak-
ing the intersection, treating numeric conditions as syntactic
atoms, is valid also in the hybrid AND/OR graph. However,
a stronger implicant can be found by examining the metric
structure of the conditions. We consider numeric conditions
pairwise: comparing two numeric conditions c1 and c2, if one
implies the other, that is, if s |= c1 ⇒ s |= c2 holds for every
state s, then the weaker (implied) condition, c2, is clearly the
strongest implicant of the two.

This dominance relation can be checked syntactically. If
the coefficient vectors of the two conditions are linearly de-
pendent (that is, one can be obtained by scaling the other),
then c1 implies c2 if and only if after scaling the right-hand
side of c1 is greater than that of c2 in the direction of the
inequality. For example, consider the two sets of conditions
{(y > 5)} and {(2y > 9)}. Since they are syntactically dif-
ferent, set intersection yields the empty set. However, since
y > 5 is equivalent to 2y > 10 it implies 2y > 9, so the
implicant is the weaker condition (2y > 9).

In the general case, the strongest implicant of two sets of
linear inequalities that is also a set of linear inequalities is
the convex hull of the regions in the metric space defined by
the disjuncts [Balas, 1998]. This characterization could po-
tentially allow us to infer more landmarks, though at the cost
of increased computational complexity. Our current imple-
mentation is therefore limited considering single conditions
pairwise, as explained above. We leave the study of the more
complex forms of reasoning, and its computational complex-
ity implications, as a future work.

The union of numeric condition sets can also be refined
analogously, leaving in this case only the stricter numeric
condition. While this does not affect the information ex-
tracted, it may remove redundant numeric conditions.

The combined propositional and numeric landmark dis-
covery enjoys three important properties studied by Keyder
et al. [2010] in the propositional case: the system of equa-
tions LM(·) admits only one maximal solution (with respect
to set inclusion); the resulting landmarks set contains all the
causal landmarks w.r.t. the subgoaling relaxation; all the land-
marks are sound. The first two follow from the relationship
between actions and numeric conditions being captured sym-
bolically in the AND/OR graph construction. Thus, Keyder’s
et al. Theorem 1 still applies. Soundness follows from the
fact that edges have relaxed any negative effect between con-
ditions, thus all the landmarks found using the procedure are
also landmarks for the non-relaxed problem. Of course, there
may be landmarks in the problem that are not landmarks of



Figure 1: An excerpt of the landmark’s DAG generated for
GARDENING domain. In order to pour the plant (poured ≥
4) the agent has to carry some water (carrying ≥ 1), and at
the same time reach a particular position in the map (x ≥ 4
and y ≥ 4). These are required for the plant to be poured, and
to reach the tap to load the necessary amount of water.

the relaxation, and thus not identified by the procedure. This
is way more complicated in the numeric case, since the num-
ber of conditions that can be expressed on the problem is infi-
nite. Note here that we not only find all the causal landmarks
for the relaxation, but because the intersection is sensitive to
the metric structure of the problem, we can approximate some
disjunctive landmark as well.

The existence of a unique maximal solution guarantees
computability of the recurrence relation via a polynomial
label-correcting algorithm. Yet the computation, although
polynomial in the number of conditions, can be expensive,
despite the use of efficient data-structures and looking only
at those actions that are relaxed reachable. We will study its
impact experimentally.

Orderings
As by-product of this novel AND/OR graph interpretation
and Eq. 2, orderings among landmarks can also be ex-
tracted. A natural order ≺n between two landmarks c0, c1,
(c0 ≺n c1) establishes that any valid plan needs to satisfy
c0 first, and then c1. This can be inferred looking at whether
c0 ∈ LM(c1). Other classic forms of orderings seem how-
ever more difficult to characterize in the numeric setting and
probably require a more profound re-interpretation. At the
moment we can also support greedy necessary ordering ≺gn
(as defined by Keyder et al. [2010]), under the assumption
that, given c0 ≺gn c1, c0 is a propositional landmark.

The validity of such ordering relationships is preserved by
construction, since, although these conditions have a differ-
ent semantics, the kind of reasoning performed at this level
is, again, completely qualitative. Figure 1 shows an example
of numeric landmarks and natural orderings inferred in the
GARDENING domain [Francès and Geffner, 2015].

Disjunctive/Additive Hybrid Landmarks
Quantitative information can also be captured from the
AND/OR graph. It is in fact sufficient to store for each pos-
sible way of achieving a condition, information regarding
the number of times actions need to be repeated in order to
achieve such a condition (i.e., using Eq. 1). This quantitative
information can be used to obtain an admissible estimate by
minimising over the number of repetitions needed for all the
NAs/PAs. To account for this optimisation problem system-
atically we propose a generalised form of cost partitioning

by Karpas and Domshlak [2009] that considers numeric and
propositional conditions altogether. The formulation contains
a linear constraint for each numeric and propositional land-
mark found and minimizes the cost.

In particular: let O be the set of reachable actions (ac-
cording to the relaxation), we denote with O(c) the sub-
set of O containing the NAs for a numeric condition c, and
O(p) the set of PAs for a propositional condition p. Given
a ∈ O(c) with λ(a, c) we define the contribution of an ac-
tion a to achieve a condition c, and with γ(a) its cost. With
t(c) we define the target value for a condition c. In the propo-
sitional case the contribution of each action as well as the
target value is 1. For the numeric case the contribution and
the target value can be computed in closed-form on a per-
state basis by manipulating Eq. 1. For the ≥ and > case3

λ(a, c) =
∑
x∈X wx,ckx,a (kx,a is the result of the additive

effects of a onto c andwx,c represents the weight of the action
on the numeric condition) ; t(c) = −(

∑
x∈X wx,cx + wn,c)

(this captures what is missing to satisfy condition c). Note
that both λ(a, c) and t(c) are to be evaluated on the state.

For each action we introduce a counting variable Y (a).
Each O(p/c) is de facto a disjunctive/additive hybrid land-
mark. In the propositional case this disjunction implies the
existence of at least one of these actions in any plan solving
the problem. In the numeric case the equation is a weighted
summation of variables that needs to satisfy a given bound.
Each plan has to contain actions such that the resulting con-
straint is satisfied. This is effectively an additive hybrid land-
mark. Note that an additive hybrid landmark captures actions
repeatable an arbitrary number of times, so directly exploit-
ing numeric structural properties of the problem. These hy-
brid landmarks can be encoded in an integer linear problem,
from which we take its continuous relaxation4:

minimize
∑
a∈O

γ(a)Y (a)

subject to
∑

a∈O(c)

λ(a, c)Y (a) ≥ t(c), c ∈ LM(G)

Y (a) ∈ <≥0,∀a ∈ O
(3)

The result of this optimisation problem is our landmark-
based heuristic: hlmahbd , where the subscript stands for HyBriD.

Theorem 1. If LM(G) contains only sound landmarks, the
optimal cost induced by Eq. 3 gives us an admissible estimate,
i.e., hlmahbd (s) ≤ h∗(s)

Proof Sketch. Easy by contradiction; assume the cost pro-
duced by the linear program was overestimating the real cost;
this implies at least one constraint requiring some unneces-
sary action. However, this contradicts either the formulation
of NAs/PAs or the soundness of the landmarks, or both.

3≤ and < can be reduced to ≥ and >, respectively, by a simple
mathematical manipulation.

4The continuous relaxation (LP) of a MIP has polynomial worst-
case complexity, while its integral counter-part is NP-hard. The LP
cost lower bounds the integer solution cost.



The resulting heuristic is both polynomial (inferring the
landmark plus solving the Linear Program), and because ad-
missible it also is safe-pruning: i.e., it gives infinity values
only for actually unsolvable problems. Its computational cost
trivially derives from Keyder et al.’ procedure [2010].

Getting More Landmarks
Numeric planning makes explicit structural and metric prop-
erties of the search space. Such information is crucial not only
to infer repeated action applications within the heuristic, but
also to constrain the solutions space by adopting redundant
constraints. Redundant constraints have been used in schedul-
ing [Getoor et al., 1997], but also in planning [Scala et al.,
2016a] to tighten the relaxation. It is known that tighter relax-
ations lead to more landmarks [Keyder et al., 2014], therefore
our research question is: can we obtain more landmarks using
redundant constraints? How useful is that?

Consider two numeric goals c1 : x ≥ 10 and c2 : y ≥ 10,
an initial state 〈x = 0, y = 0〉 and three unit cost actions a :
〈∅, {x+= 5, y−= 5}〉, b : 〈∅, {x+= 1}〉 c : 〈∅, {y+= 1}〉.
This formulation generates two additive hybrid landmarks:
5Y (a) + Y (b) ≥ 10 and Y (c) ≥ 10. The estimated cost is
12, given by executing c 10 times, and a twice.

For the purpose of studying the impact of redundant land-
marks we adopt the same technique presented in Scala et al.
[2016a]. For each set of conditions S (action precondition and
goal), we augment S with a number of redundant constraints
obtained looking at some of the necessary condition for the
satisfaction of each pair of numeric conditions in S. Given
c0 : ξ B k and c1 : ξ′ B′ k′ the redundant numeric condi-
tion added is red(c0, c1) : ξ + ξ′weaker(B,B′)k + k′. The
weaker operator intuitively selects the less strict comparator.

In our previous example the generated redundant constraint
is x + y ≥ 20 and requires the additive hybrid landmark
Y (b) + Y (c) ≥ 20: the overall estimate here is 20.

Redundant constraints approximate conjunctive landmarks
in a very interesting way whilst preserving admissibility. This
however comes at a price in our landmark inference and our
LP heuristic, since they both have polynomial worst case
complexity in the number of conditions. We study their ben-
efit experimentally; the resulting heuristic is hlma+hbd .

Theorem 2. hlmahbd (s) with redundant constraints is poten-
tially more informative, whilst still admissible

hlmahbd (s) ≤ hlma+hbd (s) ≤ h∗(s)

Experiments
Our experimental evaluation compares the landmark heuris-
tics with the hybrid ĥrmaxhbd heuristic [Scala et al., 2016a],
which is, to our knowledge, the only existing admissible
heuristic for cost-optimal numeric planning.

We apply the heuristics in a standard forward state space
planner using A∗, so as to minimise any noise in the evalu-
ation. The cost-partitioning problem is solved with CPLEX
12.63. Ties are broken preferring higher g-values. All heuris-
tics are computed on a per-state basis.5

5The implementation is part of the ENHSP planning sys-

The evaluation is done over four numeric, non-temporal
domains that have featured in the International Planning
Competition6, the SAILING and FARMLAND domains from
our earlier paper [Scala et al., 2016a], and the COUNTERS
and GARDENING domains by Frances & Geffner [2015].

COUNTERS is a very simple numeric domain with N nu-
meric variables (X1, X2, ..., XN ) that have to be set to a spe-
cific configuration (X1 < X2∧X2 < X3∧...∧XN−1 < XN )
through unit increase and decrease actions. Instances scale
with N (from 2 to 40), and are split in three groups, with
the initial values all 0, ordered inversely to the goal, or ran-
dom. GARDENING models an agent that has to water a num-
ber N of plants located in a M ×M grid, can carry a limited
amount of water, and can be refill at a specific location. Mov-
ing, watering and refilling actions have only numeric effects.
Instances scale in the number of plants (from 1 to 3) and grid
size (4 to 10).

SAILING models N boats navigating in an unbounded 2-D
space which must reach and rescueM persons scattered in the
sea. To rescue a person, a boat must be inside a region defined
by a set of inequalities. Instances scale with N and M (both
from 1 to 5). FARMLAND models the problem of allocating
manpower to farms whilst preserving a hard constraint on a
metric measuring benefit. Each farm contributes differently to
the overall metric. Instances scale with the number of farms
(from 2 to 6), and workers at disposal (from 100 to 1000).

Table 1 shows a summary of the results. We make the fol-
lowing general observations: In almost all domains, hlmahbd and
hlma+hbd require fewer node expansions than ĥrmaxhbd (we discuss
one exception in detail in the next subsection). Where the re-
duction is substantial, this also translates into improved run-
time or coverage. In the domains where using redundant con-
straints generates more landmarks, hlma+hbd also expands fewer
nodes than hlmahbd . Among the IPC domains, ZENO TRAVEL is
only one in which an action precondition (or goal) contains
more than one numeric condition, and therefore the only one
in which a redundant constraint is generated. However, in this
domain it does not lead to more landmarks being found, and
there is a runtime overhead.

We also tried disabling dominance testing in the intersec-
tion of numeric conditions, as described in the section on
landmark extraction. This configuration is faster (both land-
mark heuristics solve one more instance in DEPOT) and finds
slightly fewer landmarks only in ZENO TRAVEL.
In-Depth: SAILING. The SAILING domain highlights a sig-
nificant difference between the landmark-based heuristics and
ĥrmaxhbd . As we scale up the number of goals (persons to be res-
cued) with a single boat, the landmark heuristics, which add
up actions needed to reach the precondition area of each res-
cue action, remains informative, while ĥrmaxhbd , which consid-
ers only the single most expensive goal requires much more
search. However, when the number of boats becomes greater
than one, each goal has multiple achievers (boats) with dis-

tem, open sourced at https://bitbucket.org/enricode/
the-enhsp-planner. Experiments have run on a Xeon E5-
2660 V3 with 8G of RAM.

6See http://www.icaps-conference.org/index.
php/Main/Competitions for information on these domains.

https://bitbucket.org/enricode/the-enhsp-planner
https://bitbucket.org/enricode/the-enhsp-planner
http://www.icaps-conference.org/index.php/Main/Competitions
http://www.icaps-conference.org/index.php/Main/Competitions


Coverage Cpu-Time Expanded Nodes Average LMs
ĥrmax
hbd hlma

hbd hlma+
hbd ĥrmax

hbd hlma
hbd hlma+

hbd ĥrmax
hbd hlma

hbd hlma+
hbd hlma

hbd hlma+
hbd

COUNTERS(11) 2 2 3 <1 <1 <1 10.5 10.0 6.0 19.18 276.5
COUNTERS-INV(11) 2 2 2 <1 1.1 <1 160.5 133.5 8.5 19.18 270
COUNTERS-RND(33) 6 8 8 <1 <1 <1 5.5 5.5 5.5 9.72 140.4

GARDENING(63) 63 63 63 23.9 10.6 16.4 34442.3 19845.7 17398.7 7.71 22.06
SAILING (1 boat, 5 tot) 5 5 5 5.5 6.6 5.6 12571.6 3454.0 1307.0 9 12

SAILING (2-5 boats, 20 tot) 10 0 0 NA NA NA NA NA NA 3 3
SAILING (1 boat 1-20 persons, 20 tot) 14 20 20 105.3 29.1 7.2 638449.8 24802.6 2032.0 31.5 42

FARMLAND(30) 30 30 30 6.2 6.6 6.4 4641.1 4327.2 1883.6 2.67 9.67
ZENO TRAVEL(23) 7 7 7 226.3 117.8 173.8 191702.4 36446.7 36446.7 18.78 18.78

ROVER(20) 4 4 4 6.1 4.1 3.9 3079.0 296.0 296.0 12.75 12.75
SATELLITE(20) 2 3 3 110.7 4.1 4.2 387929.5 522.5 522.5 16.6 16.6

DEPOT(20) 3 3 3 5.4 8.5 9.2 1956.5 746.5 746.5 26.36 26.36

Table 1: Results of the three heuristics across three domains. The timeout is 1800 secs. The run-time is in seconds. We report the
average number of expanded nodes only among instances solved by all systems. In parenthesis is the total number of instances.
Bold font is used to emphasize the best results

I hlma
hbd h

lma+
hbd

2 6 8
4 12 16
6 18 24

10 30 40
15 45 60
20 60 80

Figure 2: In depth analysis on the SAILING domain. X-axes
scales with number of goals (persons to be rescued). Y-Axes
reports Cpu-Time in seconds. The table shows the number of
extracted landmarks without and with redundant constraints.

Cpu-Time Expanded Nodes h(s0)

#C OPL ĥrmax
hbd hlma

hbd hlma+
hbd

ĥrmax
hbd hlma

hbd hlma+
hbd

ĥrmax
hbd hlma

hbd hlma+
hbd

2 1 0.2 0.2 0.2 2 2 2 1 1 1
3 3 0.2 0.2 0.2 4 4 4 2 2 2
4 6 0.5 0.6 0.7 19 18 10 2 3 4
5 10 1 1 1.1 231 192 109 2 4 6
6 15 3.8 4.0 3.4 3752 2482 1086 2 5 8
7 21 45.6 20.3 13.4 71980 39615 16216 2 6 10
8 28 TO TO 511.2 NA NA 265163 2 7 12
9 36 TO TO TO NA NA NA 2 8 14

Table 2: COUNTERS: focus on small instances. Timeout 1800
secs. Last column: estimate in the initial state. OPL stands for
optimal plan length, #C is the number of counters

joint preconditions, so that the landmark heuristics reduce to
simply counting unsatisfied goals.

To show this, Table 1 separates results for subsets SAIL-
ING instances that scale in different ways. We also created
additional instances with a single boat and more goals (up to
20). Figure 2 shows planner run-times with the three heuris-
tics, as well the number of landmarks found, on this instance
set only. With redundant constraints, the run-time increases
nearly linearly with the number of goals.
In-Depth: COUNTERS. The COUNTERS instances used by
Frances & Geffner [2015] scale up very rapidly, having 2, 4,
8, 12, 20, and 24 counters. This set is intended for evaluat-
ing satisficing planners, and does not reveal meaningful re-
sults for optimal planning (as can be seen in Table 1 only a

few problems are solved with any heuristic). We created ad-
ditional instances, increasing problem size (number of coun-
ters) by steps of one from 2 up to 9, which is the smallest
that no configuration solves. Table 2 shows results on this set.
The landmark heuristic values without redundant constraints
equate to h+. Redundant constraints tighten the underlying
relaxation enabling more landmarks to be found, and there-
fore the heuristic value increases faster with problem size,
though not as fast as the optimal plan length, which grows
quadratically.

Conclusion
Landmarks have proven very useful in propositional plan-
ning, and recently the notion has also been applied to tempo-
ral propositional [Karpas et al., 2015] and HTN [Elkawkagy
et al., 2012] planning. However, over a decade since first in-
troduced in classical planning [Hoffmann et al., 2004], this
paper is the first to explain how landmarks and landmark ex-
traction mechanisms can be developed for planning with both
propositional and numeric variables.

We have applied our proposal to cost-optimal numeric
planning, yet the presented mechanisms can be beneficial in
other forms of intertwined numeric and propositional rea-
soning as well. Landmarks allow automatic identification of
problem decompositions, as well as inducing (in)admissible
heuristics. We believe this extension allows similar, perhaps
even more powerful mechanisms. Numeric planning in fact
makes explicit structural, metric information about the prob-
lem that is difficult to capture in a purely propositional rep-
resentation. As future work we plan to improve landmark ex-
traction with stronger reasoning about the disjunction of sets
of numeric conditions, and extend the characterisation to sup-
port autonomous processes and temporal landmarks together.
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Thiébaux. Heuristics for numeric planning via subgoaling.
In Proceedings of IJCAI, 2016.

[Scala et al., 2016b] Enrico Scala, Patrik Haslum, Sylvie
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