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Abstract

Current approaches for learning for planning have yet to
achieve competitive performance against classical planners
in several domains, and have poor overall performance. In
this work, we construct novel graph representations of lifted
planning tasks and use the WL algorithm to generate fea-
tures from them. These features are used with classical ma-
chine learning methods which have up to 2 orders of mag-
nitude fewer parameters and train up to 3 orders of magni-
tude faster than the state-of-the-art deep learning for planning
models. Our novel approach, WL-GOOSE, reliably learns
heuristics from scratch and outperforms the hFF heuristic in
a fair competition setting. It also outperforms or ties with
LAMA on 4 out of 10 domains on coverage and 7 out of 10
domains on plan quality. WL-GOOSE is the first learning for
planning model which achieves these feats. Furthermore, we
study the connections between our novel WL feature genera-
tion method, previous theoretically flavoured learning archi-
tectures, and Description Logic Features for planning.

1 Introduction
Learning for planning has regained traction in recent years
due to advancements in deep learning (DL) and neural
network architectures. The focus of learning for planning
is to learn domain knowledge in an automated, domain-
independent fashion in order to improve the computation
and/or quality of plans. Recent examples of learning for
planning methods using DL include learning policies (Toyer
et al. 2018; Groshev et al. 2018; Garg, Bajpai, and Mausam
2019; Rivlin, Hazan, and Karpas 2020; Silver et al. 2024),
heuristics (Shen, Trevizan, and Thiébaux 2020; Karia and
Srivastava 2021) and heuristic proxies (Shen et al. 2019;
Ferber et al. 2022; Chrestien et al. 2023), with more re-
cent architectures motivated by theory (Ståhlberg, Bonet,
and Geffner 2022, 2023; Mao et al. 2023; Chen, Thiébaux,
and Trevizan 2024; Horcik and Šı́r 2024). However, learn-
ing for planning is not a new field and works capable of
learning similar domain knowledge using classical statistical
machine learning (SML) methods predate DL. For instance,
learning heuristic proxies using support vector machines
(SVMs) (Garrett, Kaelbling, and Lozano-Pérez 2016), poli-
cies using reinforcement learning (Buffet and Aberdeen

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2009) and decision lists (Yoon, Fern, and Givan 2002). We
refer to (Jiménez et al. 2012) for a more comprehensive
overview of classical SML methods.

Unfortunately, all deep learning for planning architectures
have yet to achieve competitive performance against classi-
cal planners and suffer from a variety of issues including (1)
a need to tune a large number of hyperparameters, (2) lack of
interpretability and (3) being both data and computationally
intensive. In this paper, we introduce WL-GOOSE, a novel
approach for learning for planning that takes advantage of
the efficiency of SML-based methods for overcoming all
these issues. WL-GOOSE uses a new graph representation
for lifted planning tasks. However, differently from several
DL-based methods, we do not use GNNs to learn domain
knowledge and use graph kernels instead. More precisely,
we use a modified version of the Weisfeiler-Leman algo-
rithm for generating features for graphs (Shervashidze et al.
2011) which can be used to train SML models. Another ben-
efit of WL-GOOSE is its support for various learning tar-
gets, such as heuristic values or policies, without the need
for backpropagation to generate features as in DL-based
approaches. We also provide a comprehensive theoretical
comparison between our approach, GNNs for learning plan-
ning domain knowledge, and Description Logic Features for
planning (Martı́n and Geffner 2000).

To demonstrate the potential of WL-GOOSE, we ap-
plied it to learn domain-specific heuristics using two clas-
sical SML methods: SVMs and Gaussian Processes (GPs).
We evaluated the learned heuristics against the state-of-the-
art learning for planning models on the 2023 International
Planning Competition Learning Track benchmarks (Seipp
and Segovia-Aguas 2023). The learned heuristics generalise
better than previous DL-based methods while also being
more computationally efficient: our models took less than
15 seconds to train which is up to 3 orders of magnitude
times faster than GNNs which train on GPUs. Furthermore,
some of our models were trained in a deterministic fash-
ion with minimal parameter tuning, unlike DL-based ap-
proaches which require stochastic gradient descent and tun-
ing of various hyperparameters, and have up to 2 orders
of magnitude times fewer learned parameters. When used
with greedy best-first search, our learned heuristic mod-
els achieved higher total coverage than hFF (Hoffmann and
Nebel 2001) and vastly outperforms all previous learning for



planning models. Moreover, our learned SVM and GP mod-
els outperformed or tied with LAMA (Richter and Westphal
2010) on 4 out of 10 domains with regards to coverage, and
7 out of 10 domains for plan quality. These results make our
learned heuristics using WL-GOOSE the first ones to sur-
pass the performance of hFF and the best performing learned
heuristics against LAMA.

2 Background and Notation
Planning A classical planning task (Geffner and Bonet
2013) is a state transition model given by a tuple Π =
〈S,A, s0, G〉 where S is a set of states, A a set of actions,
s0 ∈ S an initial state and G ⊆ S a set of goal states. An
action a ∈ A is a function a : S → S ∪ ⊥ where a(s) = ⊥
indicates that action a is not applicable at state s, and oth-
erwise, a(s) is the successor state when a is applied to s.
An action has an associated cost c(a) ∈ R≥0. A solution or
plan for this model is a sequence of actions π = a1, . . . , an
where si = ai(si−1) 6= ⊥ for i = 1, . . . , n and sn ∈ G.
In other words, a plan is a sequence of applicable actions
which progresses the initial state to a goal state when exe-
cuted. The cost of a plan π is the sum of its action costs:
c(π) =

∑n
i=1 c(ai). A planning task is solvable if there ex-

ists at least one plan. A plan is optimal if there does not exist
any other plan with strictly lower cost.

We represent planning tasks in a compact form which
does not require enumerating all states and actions. A
lifted planning task (Lauer et al. 2021) is a tuple Π =
〈P,O,A, s0, G〉 where P is a set of first-order predicates,
O a set of objects, A a set of action schemas, s0 the ini-
tial state, and G the goal condition. A predicate P ∈ P
has a set of parameters x1, . . . , xnP

where nP ∈ N de-
pends on P , and it is possible for a predicate to have no
parameters. A ground proposition is a predicate which is in-
stantiated by assigning all of the xi with objects from O or
other defined variables. An action schema a ∈ A is a tuple
〈∆(a),pre(a), add(a),del(a)〉 where ∆(a) is a set of pa-
rameter variables, and the preconditions pre(a), add effects
add(a), and delete effects del(a) are sets of predicates from
P instantiated with elements from ∆(a) ∪ O. Each action
schema has an associated cost c(a) ∈ R≥0. An action is an
action schema where each variable is instantiated with an
object. A domain D is a set of lifted planning tasks which
share the same sets of predicates P and action schemas A.

In a lifted planning task, states are represented as sets
of ground propositions. The following are sets of ground
propositions: states, goal condition, and the preconditions,
add effects, and delete effects of all actions. An action a is
applicable in a state s if pre(a) ⊆ s, in which case we define
a(s) = (s\del(a))∪add(a). Otherwise a(s) = ⊥. The cost
of an action is given by the cost of its corresponding action
schema. A state s is a goal state if G ⊆ s.

A heuristic is a function h : S→R∪{∞} which maps a
state into a number representing an estimate of the cost of
the optimal plan to the goal, or ∞ representing the state is
unsolvable. A heuristic can be defined on problems by evalu-
ating their initial state: h(Π) = h(s0). The optimal heuristic
h∗ returns for each state s the cost of the optimal plan to the
goal if the problem is solvable from s, and∞ otherwise.

Algorithm 1: WL algorithm

1 c0(v)← c(v),∀v ∈ V
2 for j = 1, . . . , L do for v ∈ V do
3 cj(v)← hash

(
cj−1(v), {{cj−1(u) | u ∈ N (v)}}

)
4 return

⋃
j=0,...,L{{cj(v) | v ∈ V }}

G1 G2

Figure 1: Two non-isomorphic graphs G1 (6-cycle) and G2

(two disjoint 3-cycles) which the WL algorithm returns the
same outputs, thus failing to distinguishing them.

The Weisfeiler-Leman algorithms We write 〈V,E, c, l〉
for a graph with coloured nodes and edges, where V is
a set of nodes, E ⊆

(
V
2

)
is a set of undirected edges,

c : V → ΣV maps nodes to a set of colours ΣV , and
l : E → ΣE maps edges to a set of colours ΣE . The
edge neighbourhood of a node u under edge colour ι is
Nι(u) = {e = 〈u, v〉 = 〈v, u〉 ∈ E | l(e) = ι}. The neigh-
bourhood of a node u in a graph is N (u) =

⋃
ι∈ΣE

Nι(u).
We only focus on the WL algorithm which is a spe-

cial case of the class of k-Weisfeiler-Leman (k-WL) algo-
rithms (Leman and Weisfeiler 1968). The k-WL algorithms
were originally constructed to provide tests for whether pairs
of graphs are isomorphic or not. The k+ 1-WL algorithm
subsumes the k-WL algorithm as it can distinguish a greater
class of non-isomorphic graphs, and furthermore is in corre-
spondence with k-variable counting logics (Cai, Fürer, and
Immerman 1992). However, the complexity of the k-WL al-
gorithms is exponential in k.

The WL algorithm takes as input graphs without edge
colours, i.e. ∀e ∈ E, l(e) = 0, and outputs a canonical form
in terms of a multiset of colours, a set which is allowed to
have duplicate elements. It has also been used to construct a
kernel for graphs (Shervashidze et al. 2011) which converts
the multiset of colours in the WL algorithm into a feature
vector and then uses the simple dot product kernel. We de-
note a multiset of elements by {{. . .}}.

The WL algorithm is shown in Alg. 1 which takes as in-
put a graph G with coloured nodes only and a predefined
number of WL iterations L. The algorithm begins by initial-
ising the current colours of each node with the initial node
colours. If no node colours are given in the graph, we can
set them to 0. Line 3 updates the colour of each node v by
iteratively collecting the current colours of its neighbors in a
multiset and then hashing this multiset and v’s current colour
into a colour using an injective hash(·, ·) function. In prac-
tice, hash is built lazily by using a map data structure and
multisets are represented as sorted strings. Line 4 returns a
multiset of the node colours seen over all iterations.

If the WL algorithm outputs two different multisets for
two graphs G1 and G2, then the graphs are non-isomorphic.
However, if the algorithm outputs the same multisets for
two graphs we cannot say for sure whether they are isomor-
phic or not. The canonical example illustrating this case is



on(a,b) on(c,a)on(b,c)

a b c

Figure 2: ILG subgraph of facts and goal condition corre-
sponding to the on predicate of a Blocksworld instance. The
current state says that a stacked on b, which is stacked on c,
and the goal condition is for c to be stacked on a.

in Fig. 1 where the two graphs are not isomorphic but the
WL algorithm returns the same output for both graphs since
it views all nodes as the same because they have degree 2.

3 WL Features for Planning
In this section we describe how to generate features for plan-
ning states in order to learn heuristics. The process involves
three main steps: (1) converting planning states into graphs
with coloured nodes and edges, (2) running a variant of the
WL algorithm on the graphs in order to generate features,
and then (3) training a classical machine learning model for
predicting heuristics using the obtained features. We start by
defining the Instance Learning Graph (ILG), a novel repre-
sentation for lifted planning tasks.

Definition 3.1. The instance learning graph (ILG) of a
lifted planning problem Π = 〈P,O,A, s0, G〉 is the graph
G = 〈V,E, c, l〉 with
• V = O ∪ s0 ∪G
• E =

⋃
p=P (o1,...,onP

)∈s0∪G
{
〈p, o1〉 , . . . , 〈p, onP

〉
}

• c : V → ({ap,ug,ag} × P) ∪ {ob} defined by

u 7→


ob, if u ∈ O;
(ag, P ), if u = P (o1, . . . , onP

) ∈ s0 ∩G;
(ap, P ), if u = P (o1, . . . , onP

) ∈ s0 \G;
(ug, P ), if u = P (o1, . . . , onP

) ∈ G \ s0;

• l : E → N with 〈p, oi〉 7→ i.

Fig. 2 provides an example of an ILG. An ILG consists
of a node for each object and the union of propositions that
are true in the state s0 and the goal condition G. A propo-
sition is connected to the n object nodes which instantiates
the proposition. The labels of the n edges correspond to the
position of the object in the predicate argument. The colours
of the nodes indicate whether the node corresponds to an ob-
ject (ob), or determines whether it is a proposition belonging
to s0 (ap) or G (ug) only or both (ag), as well as its cor-
responding predicate. Hence ug stands for unachieved goal,
ag for achieved goal, and ap for achieved (non-goal) propo-
sition. Note that ILGs are agnostic to the transition system of
the planning task as they ignore action schemas and actions.

Since ILGs have coloured edges, we need to extend the
WL algorithm to account for edge colours to generate fea-
tures for ILGs. Our modified WL algorithm is obtained by
replacing Line 3 in Alg. 1 with the update function

cj(v)← hash
(
cj−1(v),

⋃
ι∈ΣE

{{
(cj−1(u), ι) | u ∈ Nι(v)

}})
,

DLFWLF ILGGNN ILG

Muninn

6=
Thm. 4.4Thm. 4.1

=

(
Thm. 4.2

(
Cor. 4.3

Figure 3: Expressivity hierarchy of WL, GNN and DL gen-
erated features for planning.

where the union of multisets is itself a multiset. Note that
edge colours do not update during this modified WL algo-
rithm. It is possible to run a variant of the WL algorithm
which modifies edge colours but this comes at an additional
computational cost given that usually |E| � |V |.

Now that ILGs can be represented as multisets of colours,
we can generate features by representing these multisets
as histograms (Shervashidze et al. 2011). The feature vec-
tor of a graph is a vector v with a size equal to the
number of observed colours during training, where v[κ]
counts how many times the WL algorithm has encoun-
tered colour κ throughout its iterations. Formally, let G1 =
〈V1, E1, c1, l1〉 , . . . , Gn = 〈Vn, En, cn, ln〉 be the set of
training graphs. Then the colours the WL algorithm encoun-
ters in the training graphs are given by

C = {cji (v) | i ∈ {1, . . . , n}; j ∈ {0, . . . , h}; v ∈ Vi}

where cji (v) is the colour of node v in graph Gi during
the j-th iteration of WL for j > 0 and c0i (v) = ci(v).
Given a planning task Π and the set of colours C ob-
served during training, Π’s feature vector representation ~v ∈
R|C| is ~v = [countC(Π, κ1), . . . ,countC(Π, κ|C|)] where
countC(Π, κ) is the number of times the colour κ ∈ C is
present in the output of the WL algorithm on the ILG rep-
resentation of Π. There is no guarantee that C contains all
possible observable colours for a given planning domain and
colours not in C observed after training are ignored.

4 Theoretical Results
In this section, we investigate the relationship between WL
features and features generated using message passing graph
neural network (GNN), description logic features (DLF) for
planning (Martı́n and Geffner 2000) and the features used by
Muninn (Ståhlberg, Bonet, and Geffner 2022, 2023), a theo-
retically motivated deep learning model. Fig. 3 summarises
our theoretical results.

We begin with some notation. Let D represent the set of
all problems in a given domain. We defineWLF ILG

Θ :D →
Rd as the WL feature generation function described in Sec. 3
which runs the WL algorithm on the ILG representation of
planning tasks. We denote Θ the set of parameters of the
function which includes the number of WL iterations and
the set of colours C with size d observed during training. We
similarly denote parametrised GNNs acting on ILG repre-
sentations of planning tasks by GNN ILG

Θ :D → Rd. Param-
eters for GNNs include number of message passing layers,
the message passing update function with fixed weights, and
the aggregation function.



We denote DLF generators (Martı́n and Geffner 2000) by
DLFΘ :D → Rd where the parameters for DLF include
the maximum complexity length of its features. DLFs have
been used in several areas of learning for planning including
learning descending dead-end avoiding heuristics (Francès
et al. 2019), unsolvability heuristics (Ståhlberg, Francès,
and Seipp 2021) and policy sketches (Bonet, Francès, and
Geffner 2019; Drexler, Seipp, and Geffner 2022). Lastly, we
denote the architecture from Ståhlberg, Bonet, and Geffner
(2022) for generating features by MuninnΘ :D → Rd. We
omit their final MLP layer which transforms the vector fea-
ture into a heuristic estimate. Furthermore in our theorems,
we ignore their use of random node initialisation (RNI) (Ab-
boud et al. 2021). The original intent of RNI is to provide a
universal approximation theorem for GNNs but the practical
use of the theorem is limited by the assumption of exponen-
tial width layers and absence of generalisation results. Pa-
rameters for Muninn include hyperparameters for their GNN
architecture and learned weights for their update functions.

In all of the aforementioned models, the parameters Θ
consist of a combination of model hyperparameters and
trained parameters based on a training set TD ⊆ D. The
expressivity and distinguishing power of a feature generator
for planning determines if it can theoretically learn h∗ for
larger subsets of planning tasks. We begin with an applica-
tion of a well-known result connecting the expressivity of
the WL algorithm and GNNs for distinguishing graphs (Xu
et al. 2019) by extending it to edge-labelled graphs.

Theorem 4.1 (WLF ILG and GNN ILG have the same power
at distinguishing planning tasks.). Let Π1 and Π2 be any two
planning tasks from a given domain. If for a set of param-
eters Θ we have that GNN ILG

Θ (Π1) 6= GNN ILG
Θ (Π2), then

there exists a corresponding set of parameters Φ such that
WLF ILG

Φ (Π1) 6= WLF ILG
Φ (Π2). Conversely for all Φ such

that WLF ILG
Φ (Π1) 6= WLF ILG

Φ (Π2), there exists Θ such
that GNN ILG

Θ (Π1) 6= GNN ILG
Θ (Π2).

Proof. [⊆] The forward statement follows from (Xu et al.
2019, Lemma 3) which states that GNNs are at most as
expressive as the WL algorithm for distinguishing non-
isomorphic graphs. We can modify the lemma for the edge
labelled WL algorithm and GNNs which account for edge
features. Then the result follows after performing the trans-
formation of planning tasks into the ILG representation.

[⊇] The converse statement follows from (Xu et al. 2019,
Corollary 6) and modifying Eq. (4.1) of their GIN architec-
ture by introducing an MLP for each of the finite number
of edge labels in the ILG graph and summing their outputs
at each GIN layer. The MLPs have disjoint range in order
for injectivity to be preserved as to achieve the same distin-
guishing power of the edge labelled WL algorithm. This can
be easily enforced by increasing the hidden dimension size
and having each MLP to map to orthogonal dimensions.

We proceed to show that GNNs acting on ILGs is sim-
ilar to Muninn’s GNN architecture (Ståhlberg, Bonet, and
Geffner 2022). The idea of the proof is that encoding dif-
ferent predicates into the ILG representation is equivalent to
having different weights for message passing to and from

Q(a,a) Q(b,b) Q(a,b) Q(b,a)

a b

(a) ILG of Π1

Q(a,b) Q(b,a)

a b

(b) ILG of Π2

Q(a,a) Q(b,b) Qg(a,b) Qg(b,a)

a b

(c) Implicit Muninn graph of Π1

Q(a,b) Q(b,a) Qg(a,b) Qg(b,a)

a b

(d) Implicit Muninn graph of Π2

Figure 4: ILG and Muninn graph representations of tasks in
Thm. 4.2 [)].

different predicates in Muninn. However, we also show that
our model has strictly higher expressivity for distinguish
planning tasks due to explicitly encoding achieved goals.

Theorem 4.2 (GNN ILG is strictly more expressive than
Muninn at distinguishing planning tasks.). Let Π1 and
Π2 be any two planning tasks from a given domain. For
all Θ, if MuninnΘ(Π1) 6= MuninnΘ(Π2), then there
exists a corresponding set of parameters Φ such that
GNN ILG

Φ (Π1) 6= GNN ILG
Φ (Π2). Furthermore, there exists

a pair of planning tasks Π1 and Π2 such that there ex-
ists Φ with GNN ILG

Φ (Π1) 6= GNN ILG
Φ (Π2) but for all Θ,

MuninnΘ(Π1) = MuninnΘ(Π2).

Proof. [⊇] In order to show the inclusion, we show that a
Muninn instance operating on a state can be expressed as a
GNN operating on the ILG representation of the state. More
explicitly, we show that the implicit graph representation of
planning states by Muninn is the same graph as ILG. The
message passing steps and initial node features are different
but the semantic meaning of executing both algorithms are
the same. The node features in the implicit graphs of Muninn
are all the same when ignoring random node initialisation.
Muninn differentiates object nodes and fact nodes by using
different message passing functions depending on whether a
node is an object or a fact, and depending on which predi-
cate the fact belongs to. In the language of ILG, Muninn’s
message passing step on fact nodes p = P (o1, . . . , onP

) is

hL+1
p = MLPP (hLo1 , . . . , h

L
onP

) (1)

where hL+1
p denotes the latent embedding of the node p in

the L + 1-th layer, hLoi denotes the latent embedding of the
object node oi in the l-th layer, and MLPP is a multilayer
perceptron, with a different one for each predicate. The mes-
sage passing step of Muninn on object nodes oi is

hL+1
o = MLPU (hLo , {{hLp | o ∈ p}}) (2)

where o ∈ p denotes that o is an argument of the predicate
associated with p. We note that having a different MLP in
the message passing step for different nodes is equivalent
to having a larger but identical MLP in the message pass-
ing step for all nodes. This is because the model can learn
to partition latent node features depending on their semantic



meaning and thus be able to use a single MLP function to
act as multiple different functions for different node feature
partitions. Thus, Eq. (1) and (2) can be imitated by a GNN
operating on ILG since ILG features differentiate nodes de-
pending on whether they correspond to an object, or a fact
associated with a predicate. Different edge labels in the ILG
allow it to distinguish the relationship between facts and ob-
jects depending on their position in the predicate argument.

[)] The main idea here is that Muninn does not keep
track of achieved goals and sometimes cannot even see that
the goal has been achieved. Firstly, let MuG denote the
underlying edge-labelled graph representation of planning
tasks in Muninn, such that GNNMuG = Muninn. To see
how GNN ILG is strictly more expressive than Muninn, we
consider the following pair of planning tasks. Let Π1 =

〈P,O,A, s(1)
0 , G〉 and Π2 = 〈P,O,A, s(2)

0 , G〉 with P =

{Q}, O = {a, b}, A = ∅, G = s
(2)
0 = {Q(a, b), Q(b, a)}

and s
(1)
0 = {Q(a, a), Q(b, b)}. Fig. 4 illustrates the ILG

and MuG representation of Π1 and Π2. It is clear that the
ILG representation of Π1 and Π2 are different and hence
GNN ILG differentiates between Π1 and Π2. On the other
hand without RNI, any edge-labelled variant of the WL algo-
rithm views the MuG representation of Π1 and Π2 illustrated
in Fig. 4(c) and (d) as the same. Thus, GNNMuG = Muninn
views the graphs as the same.

Corollary 4.3 (WLF ILG is strictly more expressive than
Muninn at distinguishing planning tasks.). Let Π1 and
Π2 be any two planning tasks from a given domain. For
all Θ, if MuninnΘ(Π1) 6= MuninnΘ(Π2), then there
exists a corresponding set of parameters Φ such that
WLF ILG

Φ (Π1) 6= WLF ILG
Φ (Π2). Furthermore, there exists

a pair of planning tasks Π1 and Π2 such that there ex-
ists Φ with WLF ILG

Φ (Π1) 6= WLF ILG
Φ (Π2) but for all Θ,

MuninnΘ(Π1) = MuninnΘ(Π2).

Our next theorem shows that WLF ILG and DLF fea-
tures are incomparable, in the sense that there are pairs of
planning tasks that look equivalent to one model but not
the other. We use a similar counterexample to that used for
Muninn but with an extra predicate which WLF ILG does
not distinguish but DLF can. Conversely we use the fact
that DLFs are limited by the need to convert planning pred-
icates into binary predicates to construct a counterexample
pair of planning tasks with ternary predicates which DLF
views as the same whileWLF ILG does not.
Theorem 4.4 (WLF ILG and DLF are incomparable at
distinguishing planning tasks.). There exists a pair of
planning tasks Π1 and Π2 such that there exists Φ
with WLF ILG

Φ (Π1) 6= WLF ILG
Φ (Π2) but for all Θ,

DLFΘ(Π1) = DLFΘ(Π2). Furthermore, there exists
a pair of planning tasks Π1 and Π2 such that there ex-
ists Φ with DLFΦ(Π1) 6= DLFΦ(Π2) but for all Θ,
WLF ILG

Θ (Π1) =WLF ILG
Θ (Π2).

Proof. [∃<] We begin by describing a pair of planning tasks
Π1 and Π2 such that WLF ILG

Θ (Π1) = WLF ILG
Θ (Π2) for

any set of parameters Θ but are distinguished by DLF.

Q(a,a) Q(b,b) W(a,b) W(b,a)

a b

(a) ILG of Π1

Q(a,b) Q(b,a) W(a,b) W(b,a)

a b

(b) ILG of Π1

Figure 5: ILG representations of tasks in Thm. 4.4 [∃<].

Let Π1 = 〈P,O,A, s1
0, G〉 and Π2 = 〈P,O,A, s2

0, G〉
with P = {Q,W}, O = {a, b}, A contains the single
action schema o = 〈{x, y}, {Q(x, y)}, {W (x, y)}, ∅〉,
G = {W (a, b), W (b, a)}, s1

0 = {Q(a, a), Q(b, b)} and
s2

0 = {Q(a, b), Q(b, a)}.
We have that h∗(Π1) = ∞ as the problem Π1

is unsolvable, while h∗(Π2) = 2 as an optimal plan
contains actions o(a, b) and o(b, a). DL features are
able to distinguish the two planning tasks by consid-
ering the role-value map (Q = W )(s) defined by
{x | ∀y : Q(x, y) ∈ s ⇐⇒ W (x, y) ∈ s}, and the corre-
sponding numerical feature |Q = W | (s) = |(Q = W )(s)|.
We have that |Q = W | (s1

0) = 0 and |Q = W | (s1
0) = 2,

meaning that DLF can distinguish between Π1 and Π2.
On the other hand, the ILG representations of Π1 and Π2

are indistinguishable to our definition of the edge-labelled
WL algorithm. Fig. 5 illustrates this example and we note
that it is similar to the implicit Muninn graph representations
of the pair of planning tasks from Thm. 4.2.

[∃>] We identify a pair of problems with ternary pred-
icates which compile to the same problem with only
binary predicates for which DL features are defined.
For problems with at most binary predicates, DL in-
troduces base roles on each predicate P (x, y) ∈ P
by P s = {(a, b) | P (a, b) ∈ s} where s is a plan-
ning state. Then given an n-ary predicate R(x1, . . . , xn),
DL introduces n(n − 1)/2 roles defined by Rsi,j =
{(a, b) | ∃o1, . . . , oi−1, oi+1, . . . , oj−1, oj+1, . . . , on ∈ O,
R(o1, . . . , oi−1, a, oi+1, . . . , oj−1, b, oj+1, . . . , on) ∈ s}
for 1 ≤ i < j ≤ n. Now consider the problems Π1 =
〈P,O,A, s1

0, G〉 and Π2 = 〈P,O,A, s2
0, G〉 now with P =

{P}, O = {a, b, c, d}, A = ∅, G = {P (a, b, c)}, and

s1
0 = {P (a, b, a), P (c, b, c), P (a, d, c), P (c, d, a)}
s2

0 = {P (a, b, c), P (c, b, a), P (a, d, a), P (c, d, c)}.

We have that h∗(Π1) =∞ since there are no actions and
the initial state is not the goal condition, while h∗(Π2) = 0
since G ⊆ s2

0. The ILG for the two tasks are distinguished
by the WL algorithm as the ILG of Π1 has no achieved goal
colour while Π2 does. However, DL features view the two
states s1

0 and s2
0 as the same due after the compilation from

ternary to binary predicates:

P1,2(a, b) P1,2(a, d) P1,2(c, b) P1,2(c, d)
P1,3(a, a) P1,3(a, c) P1,3(c, a) P1,3(c, c)
P2,3(b, a) P2,3(b, c) P2,3(d, a) P2,3(d, c).

Thus any DL features will be the same for both s1
0 and s2

0
and thus cannot distinguish Π1 and Π2.



Our final theorem combines previous results and states
that there exist domains for which all feature generators de-
fined thus far are not powerful enough to perfect learn h∗,
with proof in the appendix. Although this is not a surprising
result, we hope to bring intuition on what is further required
for constructing more expressive planning features.
Corollary 4.5 (All feature generation models thus far can-
not generate features that allow us to learn h∗ for all do-
mains.). Let F ∈

{
WLF ILG,GNN ILG,Muninn,DLF

}
.

There exists a domain D with a pair of planning tasks Π1,
Π2 such that for all parameters Θ for F , we have that
FΘ(Π1) = FΘ(Π2) and h∗(Π1) 6= h∗(Π2).

In this section, we concluded that our WLF ILG features
are one of the most expressive features thus far in the liter-
ature for representing planning tasks, the other being DLF
features. We have done so by drawing an expressivity hi-
erarchy between our WLF ILG features and previous work
on GNN architectures (Ståhlberg, Bonet, and Geffner 2022).
We further constructed explicit counterexamples illustrating
the difference between WLF ILG and DLF features, high-
lighting their respective advantages and limitations.

5 Experiments
In this section, we empirically evaluate WL-GOOSE1

for learning domain-specific heuristics using WL features
against the state-of-the-art. We consider the domains and
training and test sets from the learning track of the 2023 In-
ternational Planning Competition (IPC) (Seipp and Segovia-
Aguas 2023). The domains are Blocksworld, Childsnack,
Ferry, Floortile, Miconic, Rovers, Satellite, Sokoban, Span-
ner, and Transport. Actions in all domains have unit cost.
Each domain contains instances categorised into easy,
medium and hard difficulties depending on the number of
objects in the instance. For each domain, the training set
consists of at most 99 easy instances and the test set consists
of exactly 30 instances from each of the three easy, medium
and hard difficulties that are not in the training set.

The hyperparameters considered for WL-GOOSE are the
number of iterations L for generating features using the WL
algorithm and the choice of a machine learning model used
and its corresponding hyperparameters. In all our experi-
ments with WL-GOOSE, we use L = 4 and, since our
learning target is h∗, we consider the following regression
models: support vector regression with the dot product ker-
nel (SVR) and the radial basis kernel (SVR∞), and Gaussian
process regression (Rasmussen and Williams 2006) with the
dot product kernel (GPR). We choose SVR over ridge re-
gression for our kernelised linear model due to its sparsity
and hence faster evaluation time with use of the ε-insensitive
loss function (Vapnik 2000). The choice of Gaussian process
allows us to explore a Bayesian treatment for learning h∗,
providing us with confidence bounds on learned heuristics.

Furthermore, we experiment with the 2-LWL algo-
rithm (Morris, Kersting, and Mutzel 2017) with L = 4 for
generating features alongside SVR with the dot product ker-
nel (SVR2-LWL). The 2-LWL algorithm is a computationally

1Source code available at (Chen, Trevizan, and Thiébaux 2024)

feasible approximation of the 2-WL algorithm (Morris, Ker-
sting, and Mutzel 2017), which in turn is a generalisation of
the WL algorithm where colours are assigned to pairs of ver-
tices. While the features computed by the 2-WL algorithm
subsume those of the WL algorithm, it is requires quadrati-
cally more time than the WL algorithm.

For any configuration of WL-GOOSE, we use optimal
plans returned by scorpion (Seipp, Keller, and Helmert
2020) on the training set with a 30-minute timeout on
each instance for training. States and the corresponding
cost to the goal from each optimal plan are used as train-
ing data. As baselines for heuristics, we use the domain-
independent heuristic hFF and GNNs. For the GNNs, we
use GOOSE (Chen, Thiébaux, and Trevizan 2024) oper-
ating on the ILG representations of planning tasks with
the max aggregator and Muninn adapted to learn heuris-
tics for use in GBFS only (Ståhlberg 2024). Every GOOSE
model and SVR model is trained and evaluated 5 times
with mean scores reported. GPR’s optimisation is determin-
istic and thus is only trained and evaluated once. All GNNs
use 4 message passing layers and a hidden dimension of
64. All heuristics are evaluated using GBFS. We include
LAMA (Richter and Westphal 2010) using its first plan out-
put as a strong satisficing planner baseline that uses multi-
queue heuristic search and other optimisation techniques.
All methods use a timeout of 1800 seconds per evaluation
problem. Non-GNN models were run on a cluster with sin-
gle Intel Xeon 3.2 GHz CPU cores and a memory limit
of 8GB. GOOSE used an NVIDIA RTX A6000 GPU, and
Muninn an NVIDIA A10. Other competition planners were
not considered because they do not learn a heuristic.

Tab. 1 summarises our results with the coverage per do-
main for each planner and their total IPC score. We discuss
our results in detail and conclude this section by describing
how to analyse the learned features of our models using an
example. More results can be found in the appendix.

How well do heuristics learned from WL features per-
form? Considering total coverage and total IPC score
(Tab. 1), we notice that SVR and GPR outperform all the
other planners with the exception of LAMA-first, i.e., all
learning-based approaches as well as hFF. Domain-wise,
both SVR and GPR outperform Muninn and GOOSE on
9 domains. Both SVR and GPR outperform or tie with
LAMA on 4 domains, namely Blocksworld, Ferry, Mi-
conic and Spanner. GPR is able to return better plans than
LAMA on 5 domains (Blocksworld, Childsnack, Ferry, Mi-
conic, Sokoban), while the reverse is true only on 3 do-
mains (Rovers, Satellite, Spanner). For Spanner, this is be-
cause LAMA’s heuristics are not informative for this do-
main, which leads to it performing like blind search and
hence returning better plans on problems it can solve.

SVR and GPR also outperform or tie with hFF on 6 and
7 domains, respectively. We compare GPR and hFF in more
detail in Fig. 6 by showing plan cost and nodes expanded
per problem. We observe that the better performing plan-
ner on a domain generally has better plan quality and fewer
node expansions. An exception is Sokoban where GPR ex-
pands more nodes but solves more problems due to its faster
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blocksworld 61 28 53 63 72 19 22 75
childsnack 35 26 12 23 25 13 10 29
ferry 68 68 38 70 76 32 60 76
floortile 11 12 1 0 2 0 0 2
miconic 90 90 90 89 90 30 67 90
rovers 67 34 24 26 38 28 34 37
satellite 89 65 16 31 46 29 19 53
sokoban 40 36 31 33 38 30 31 38
spanner 30 30 76 46 73 30 52 73
transport 66 41 24 32 31 27 34 29

all 557 430 365 413 491 238 328 502

Table 1: Coverage of planners. The bottom-most row pro-
vides their overall IPC 2023 learning track score. Our new
models are the WLF models. Models marked ‡ are run 5
times with mean scores presented. LAMA-first is the only
planner not performing single-queue GBFS. The top three
single-queue heuristic search planners in each row are in-
dicated by the cell colouring intensity, with the best one in
bold. The best planner overall in each row is underlined.
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Figure 6: Returned plan cost and number of expanded nodes
of hFF and GPR. Problems that were not solved by one plan-
ner has their respective metric set to the axis limit. Points on
the top left triangle favour GPR while points on the bottom
right triangle favour hFF.

heuristic evaluations. Overall, the domains in which GPR
performs worse are domains that require traversing a map
which WL features cannot express with limited iterations.

Are our methods more computationally efficient to
train? To answer this question, we compare the training
time of GNNs using ILGs, SVR and GPR. Their mean and
standard deviation in seconds are 77.2 ± 33.7 (GOOSE),
0.2±0.1 (SVR) and 3.8±4.6 (GPR). Comparing against the
more efficient GNN model per domain, we have that SVR is
between 187x (Satellite) to 922x (Childsnack) more efficient
and GPR is between 8x (Floortile) and 615x (Childsnack)
more efficient. Note that the GNNs have access to GPUs
and would take even more time to train on a CPU. Lastly,
the GNNs have between 54529 and 74561 number of pa-
rameters in the range, while the WLF models have between
108 and 23202 parameters.

h error Expanded

Domain E. M. H. all E. M. H. all

blocksworld +0.9 +0.9 +0.9 +1.0 +0.3 +0.2 +0.3 +0.6
childsnack +0.7 +0.9 - +0.9 +0.6 +0.5 - +0.2
ferry +0.9 +1.0 +1.0 +1.0 +0.9 +0.9 +0.8 +0.9
floortile - - - - - - - -
miconic +0.6 +0.7 +1.0 +1.0 +0.6 +0.8 +1.0 +1.0
rovers +0.9 +0.9 - +1.0 +0.3 +0.2 - +0.5
satellite +0.7 +1.0 - +1.0 +0.1 +0.1 - +0.2
sokoban +0.3 +0.9 - +1.0 +0.3 +0.8 - +0.8
spanner +0.3 +0.5 +1.0 +0.9 +0.4 +0.5 +1.0 +0.9
transport +0.8 - - +0.8 +0.4 - - +0.4

Table 2: Pearson’s correlation coefficient ρ rounded do 1
d.p. between standard deviation obtained by GPR against
heuristic estimate error and node expansions of initial states
from solved problems. Statistically significant coefficients
(p < 0.05) are highlighted in bold font and italics otherwise.
Strongly correlated values (|ρ| ≥ 0.5), medium correlated
values (0.3 ≤ |ρ| < 0.5), and low correlation (|ρ| < 0.3)
values are denoted by cell colouring intensity. Entries for
which we solved fewer then 10 problems are omitted.

Does kernelising help? As commonly done in classical
machine learning, we combine our WL features with non-
linear kernels to obtain new non-linear features that can
increase the expressivity of the regression models. Unfor-
tunately, as shown in Tab. 1, this generally results in a
decrease in the performance of the learned heuristic: the
SVR∞ model has significantly worse coverage than SVR
despite theoretically having more expressive implicit fea-
tures. The drop in performance can be explained by over-
fitting to the more expressive features which do not bring
any obvious semantic information for planning tasks.

Do higher order WL features help? The motivation for
using higher-order WL features is similar to using higher-
order kernels: to introduce more expressive features that
may be correlated with the optimal heuristic. In Tab. 1, we
see that the performance of 2-LWL is generally worse on all
domains except for Transport. This again can be attributed to
poorer generalisation. Furthermore, computing the 2-LWL
features are slower to generate than WL features as they take
time cubic in the size of the ILGs in the worst case, and in
the case of Floortile runs out of memory when generating
features. We also note that attempting to generate 3-LWL
features causes out of memory problems during training as
the size of features generated is extremely large, on the order
of 107 and above.

Are Bayesian variance estimates meaningful? One ad-
vantage of Bayesian models is that by assuming a prior dis-
tribution on the weights of our models, we are able to de-
rive uncertainty bounds on the outputs of the learned pos-
terior model. In Tab. 2, we analyse the Pearson’s correla-
tion coefficient between the standard deviation obtained by
GPR and (1) the error between output mean and h∗, and
(2) the number of expanded nodes using the learned heuris-
tic with greedy best first search. We see that there is a sta-



c0 : (ag,on-table)
achieved on-table goal

c1 : ob
block

c2 : (ag,on)
achieved on goal

c3 : (c0,{{(c1,0)}})
achieved on-table goal

c4:(c1,{{(c0,0),(c2,1)}})
block correctly on table
with correct block above

c5:(c2,{{(c1,0),(c1,1)}})
achieved on goal

c6 : (c3,{{(c4,0)}})
block correctly on table
with correct block above

c7 : (c4,{{(c3,0),(c5,1)}})
block correctly on table
with correct block above

c8 : (c6,{{(c7,0)}})
block correctly on table
with correct block above

Figure 7: The dependency subgraph of generated WL fea-
tures on Blocksworld. The first row of each node indicates
the feature colour, followed by the initial colour the feature
corresponds to or the input to the hash function which gen-
erated the colour. The second row describes the semantic
meaning of the feature. Edges describe the dependency of
the feature on previous features based on the hash function.

tistically significant strong correlation between the heuristic
estimate error and the GPR variance outputs. This is reason-
able given that the derivation of the Bayesian model com-
putes the uncertainty on its output prediction. The story is
different for the number of expansions during search where
for easy problems there is no significant correlation depend-
ing on the domain. Interestingly, the correlation is more sig-
nificant and stronger on harder problems for more domains.
Thus, the Bayesian model is able to determine the difficulty
of solving a problem within a domain by looking at the pre-
dicted standard deviation for h(s0) but the quality of this
prediction will depend on the domain.

Understanding Learned Models
Another advantage of WL-GOOSE is that its set of features
is explainable, and it is possible to see which features are
chosen when using a linear inference model. The models
can be understood by analysing the features with the highest
corresponding linear weights, and by observing the distri-
bution of such weights. The semantic meaning of the fea-
tures can be understood by examining the generation of WL
colours. This can be achieved by representing the observed
WL colours as a directed acyclic graph (DAG) where each
WL colour is a node and there is a directed edge from κ to
κ′ if κ′ = hash(x,M) and x = κ or ∃ι, (κ, ι) ∈M . We pro-
vide an example of how to interpret the learned models by
briefly studying the learned GPR model on Blocksworld. In
this domain, a total of 10444 features were generated from
the training data and Fig. 7 illustrates the DAG representa-
tion of feature c8’s generation. Consider feature c4 in Fig. 7,
it computes the number of blocks that are correctly on the
table and also have the correct block above it. We have that
c4 = hash(c1, {{(c0, 0), (c2, 1)}}), meaning that the colour
c4 is generated from an object node (c1 = ob) which is
part of an achieved on-table goal (c0 = (ag, on-table)) and
achieved on goal (c2 = (ag, on)). The corresponding edge

label of the node colours indicate the position of the block
object in the proposition indexed from 0. Thus, blocks bwith
colour c4 are in the first and only argument of on-table and
the second argument of on. This means that the colour c4 is
assigned to blocks correctly on the table and correctly un-
derneath another block.

Moreover, we observed that certain subsets of features
were evaluated to the same value on all training states. As
a result, the same learned weight value was assigned to each
feature in these subsets. This can be seen in Fig. 7 where fea-
tures c4, c7, c6 and c8 are semantically equivalent. The sum
of their weight values is −1.76, the largest in value from
subsets of features. Thus, the learned weight rewards states
satisfying this condition as blocks correctly on the table do
not have to be moved.

Note that it is possible for features to evaluate to the
same values on the training set but have different semantic
meanings because the training set is finite. For example, in
Blocksworld, a training set may satisfy that a block is cor-
rectly on the table if and only if it has the correct block above
it. In this case, the count of colours c0 and c4 would be the
same on all states despite not being semantically equivalent.

6 Conclusion
We introduced WL-GOOSE, a novel approach that makes
use of the efficiency of classical machine learning for learn-
ing to plan. We developed the Instance Learning Graph
(ILG), a novel representation of lifted planning tasks and
provided a method to generate features for ILGs based on
the WL algorithm, agnostic to the downstream model. Sim-
ilar to Description Logic Features for planning, our gen-
erated features are agnostic to the learning target and can
be used without the need for backpropagation. Furthermore,
some of our models can be trained in a deterministic fashion
with minimal parameter tuning in contrast to DL-based ap-
proaches. To validate the benefits of WL-GOOSE, we used
two classical SML models, support vector regression (SVR)
and Gaussian process regression (GPR), to learn domain-
specific heuristics and compared them to the state of the art.

The experimental results showed that WL-GOOSE can
efficiently and reliably learn domain-specific heuristics from
scratch. Compared to GNNs applied to ILGs, our learned
heuristics are up to 3 orders of magnitude times faster to
train and have up to 2 orders of magnitude fewer parame-
ters. Our results also showed that both SVR and GPR are the
first learned heuristics capable of outperforming hFF in terms
of total coverage. Moreover, our learned heuristics outper-
form or tie with LAMA on 4 domains. To our knowledge,
this is the best performance of learned heuristics against
LAMA. We also showed the theoretical connections be-
tween our novel feature generation method with Description
Logic Features and GNNs. Our future work agenda includes
exploring how to best use the uncertainty bounds provided
by GPR to improve search, making use of generated WL
features for learning different forms of domain knowledge
such as policies, landmarks and sketches (Bonet and Geffner
2021), and combining stronger satisficing search algorithms
to further improve the performance of WL-GOOSE.
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