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Abstract

Aircraft flight planning is impacted by weather uncertainties.
Existing approaches to flight planning are either determin-
istic and load additional fuel to account for uncertainty, or
probabilistic but have to plan in 4D space. If constraints are
imposed on the flight plan these methods provide no formal
guarantees that the constraints are actually satisfied. We in-
vestigate constrained flight planning under weather uncer-
tainty on discrete airways graphs and model this problem
as a Constrained Stochastic Shortest Path (C-SSP) problem.
Transitions are generated on-the-fly by the underlying aircraft
performance model. As this prevents us from using off-the-
shelf C-SSP solvers, we generalise column-generation meth-
ods stemming from constrained deterministic path planning
to the probabilistic case. This results in a novel method which
is complete but computationally expensive. We therefore also
discuss deterministic and heuristic approaches which average
over weather uncertainty and handle constraints by scalaris-
ing a multi-objective cost function. We evaluate and compare
these approaches on real flight routes subject to real weather
forecast data and a realistic aircraft performance model.

1 Introduction
Aircraft trajectory optimisation is key for successful flight
operation; it ensures aircraft safety and is valuable for air-
lines, as it helps to minimise fuel consumption and to reduce
the environmental impact of the flight. The task is to com-
pute a flight plan for a given aircraft mission which min-
imises some objective function — traditionally a combina-
tion of two conflicting components, fuel and time, weighted
according to a ratio known as the cost index (AIRBUS Cus-
tomer Services 1998). Weather phenomena play an impor-
tant role when planning flights. Convective activity, i.e. man-
ifestations of convection in the atmosphere, indicates show-
ers and thunderstorms, and such areas have to be avoided.
Weather is inherently uncertain, yet airline operations today
are mainly based on deterministic weather forecasts (Che-
ung et al. 2014) and do not take uncertainty into account
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when optimising the flight trajectory. Finding the most cost-
efficient flight plan is often not enough. In reality, a plan has
to satisfy multiple constraints: for safety reasons, air traf-
fic control rules may require a minimum amount of fuel re-
serve throughout the flight; airline operations may require
the flight to arrive at a specified arrival time while concur-
rently avoiding convective areas.

In this paper, we view the problem of constrained flight
planning under uncertainty as a Constrained Stochastic
Shortest Path Problem (C-SSP) (Altman 1999; Trevizan et
al. 2016). Like an ordinary SSP, a C-SSP consists in finding
a plan with minimum expected cost from an initial state to a
goal state. In addition, a C-SSP has a number of secondary
cost functions (e.g. travel time, distance travelled through
convection), and the plan must ensure that the expectation
of each of these secondary costs remains within the given
constraint.

We model constrained flight planning under uncertainty
as a C-SSP where the uncertainty is obtained from Prob-
abilistic Ensemble Weather Forecasts (Palmer 2019), and
transitions and their costs are computed on the fly based
on a realistic aircraft performance model (Nuic, Poles, and
Mouillet 2010). This allows us to estimate fuel burn and
flight time in a much more realistic fashion than is typically
done with a model-based approach. However, a serious lim-
itation of having a black box simulator to compute transi-
tions, costs and probabilities, is that we cannot use state-
of-the-art C-SSP solvers (Trevizan, Thiébaux, and Haslum
2017) which require a factored description of the problem to
be available in advance.

To solve the resulting C-SSP, we therefore resort to Col-
umn Generation, which allows us to iteratively solve the
Linear Program (LP) associated with the C-SSP. Each itera-
tion solves an increasingly larger LP that typically remains
much smaller than the original LP. Column generation is
commonly used to solve deterministic constrained shortest
path problems (Desrosiers and Lübbecke 2005), i.e., a spe-
cial case of a C-SSP in which all actions are deterministic.
We generalise that column generation approach to handle
C-SSPs, which results in a sound and complete algorithm
that allows us to compute optimal policies for constrained
flight planning under weather uncertainty. As the policies re-
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turned by column generation are stochastic, we also briefly
discuss options to compute deterministic policies, which are
currently viewed as more acceptable for safety-critical ap-
plications.

Optimally solving C-SSPs, especially in conjunction with
an expensive performance model to compute transitions, can
be computationally prohibitive. To assess the benefits of this
approach and the computational trade-offs, we therefore in-
vestigate and compare with two simpler approaches. The
first follows Franco, Rivas, and Valenzuela (2017) and com-
putes a flight plan for a deterministic problem that averages
over the members of the ensemble forecast. Since even this
deterministic state space can be too large for efficient search,
the second additionally decomposes the problem into a 2D
search (ignoring altitude and speed), and a greedy choice of
altitude and speed from a set of heuristic strategies. While
this provides no guarantees, it allows reasoning over a larger
state space and is therefore able to solve larger problems.

We evaluate these three approaches on real flight routes
between different city pairs and consider constraints such as
arrival time and distance spent in convective areas. Weather
uncertainty is based on an ensemble prediction system for
three different dates where weather was reported to be the
most important factor for flight delays.

2 Related Work
Existing work on probabilistic flight planning dates back to
at least the early 2000s. Nilim, El Ghaoui, and Duong (2002)
model the uncertain flight planning problem as a Markov de-
cision process with unknown but bounded transition proba-
bilities and provide dynamic programming algorithms that
minimise the expected delay or the expected probability to
encounter storms. More recently, Franco, Rivas, and Valen-
zuela (2017) reason over wind uncertainty obtained from en-
semble weather forecasts. They propose to either compute a
flight plan minimising fuel consumption over a determinis-
tic problem that represents the average of the ensemble fore-
casts, or to compute a flight plan for each forecast separately
and apply a function that represents the probability distribu-
tion of the resulting cost on the ensemble. Neither of these
approaches handles constraints.

Regarding constraints, Erzberger et al. (2016) describe al-
gorithms that generate trajectories avoiding convection ar-
eas and compute scheduled arrival times, but they assume
that convection areas are detected a priori by radar sen-
sors. Taylor et al. (2018) apply a multi-objective genetic al-
gorithm that treats constrained flight planning as a multi-
objective problem and computes a Pareto set of solutions.
However, they do not reason about weather uncertainty, and
the genetic algorithm does not provide any guarantees. On
the other hand, González-Arribas, Soler, and Sanjurjo-Rivo
(2016) consider uniform distribution ensemble forecasts and
provide an ad-hoc solution to compute a set of Pareto-
optimal trajectories by sequential scalarisation of a multi-
objective cost function. However, computing the Pareto-
optimal trajectories quickly becomes infeasible once mul-
tiple constraints are involved. Knudsen, Chiarandini, and
Larsen (2017) handle European airways constraints explic-
itly during A? search. These constraints capture e.g. loca-

tions whose visit prevents or mandates the visit of others,
and are very different from the expected cost constraints we
focus on.

3 Modelling the Problem
We model flight planning under weather uncertainty as a
Constrained Stochastic Shortest Path problem (C-SSP), i.e.
as an SSP that incorporates constraints on the expectation
of various cost functions. In the following, we give the nec-
essary background for SSPs and C-SSPs, and formally in-
troduce the problem of constrained flight planning under
weather uncertainty.

3.1 Stochastic Shortest Path Problems
A stochastic shortest path problem (SSP) (Bertsekas and
Tsitsiklis 1996) is a tuple S = 〈S, s0,G,A, P, C〉, where S
is the finite set of states, s0 ∈ S is the initial state, G ⊂ S is
the non-empty set of goal states, A is the finite set of actions,
A(s) is the subset of actions applicable in state s, P (s′|s, a)
represents the probability that s′ ∈ S is reached after apply-
ing action a ∈ A(s), and C(s, a, s′) ∈ R∗+ is the immediate
cost of applying action a to transition from state s to s′. A
solution for S is a deterministic stationary policy π : S→ A
such that π(s) ∈ A(s) is the action to be applied in state s.
A policy is proper if it reaches G from s0 with probability 1.
Assuming S has at least one proper policy and all improper
policies have an infinite cost, there exists an optimal policy
minimising the total expected cost of reaching G from s0.

3.2 Constrained SSPs
A constrained SSP (C-SSP) is an SSP with k + 1 cost
functions, for k ∈ N, in which one cost function is op-
timised while the remaining k costs are constrained by
an upper bound.1 Formally, a C-SSP is the tuple C =

〈S, s0,G,A, P, ~C, ~u〉 where S, s0,G,A, and P are defined
as for the SSP, ~C = [C0, . . . , Ck] is the cost function vec-
tor and ~u = [u1, . . . , uk] is the cost upper bound vector. We
refer to C0 as primary cost and all other cost functions as
secondary costs.

Differently from SSPs, a solution for a C-SSP is a
stochastic stationary policy π (Altman 1999), i.e., π maps
a state s to a probability distribution over A(s). We denote
by π(s, a) the probability of executing a in s. Let E[Ci|π]
be the total expected costCi when following a policy π from
s0 to the goal, then π is feasible (i.e., respects all cost con-
straints) if E[Ci|π] ≤ ui, for all i ∈ {1, . . . , k}. An optimal
policy π for a C-SSP is any feasible and proper policy that
minimises the total expected cost C0 of reaching G from s0,
i.e., minimises E[C0|π].

In contrast to SSPs, there is no guarantee that the opti-
mal policy for C-SSPs is deterministic. Moreover, whilst
the complexity of finding the (potentially stochastic) optimal
policy for C-SSPs is polynomial, finding the optimal deter-
ministic policy is NP-complete (Dolgov and Durfee 2005).
However, since stochastic flight planning policies are not yet

1Lower bounds x ≥ b can be modelled as −x ≤ −b.
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used in the industry, we will also consider the generation of
deterministic policies.

Notice that cost constraints limit the maximum expected
value of the cost functions, i.e., E[Ci|π]. Although a limit
on the maximum observed cost might be desired, they are of-
ten too pessimistic in a stochastic environment. For instance,
under weather uncertainty, a transcontinental route requires
more fuel than the plane’s capacity in order to account for
the extremely rare event of flying through heavy head wind
for tens of thousands of kilometres.

3.3 Flight Planning under Weather Uncertainty
In the problem of flight planning under weather uncertainty,
we are given an airway graph representing possible routes
between waypoints, a source (the waypoint of a departure
airport) and a target (the waypoint of an arrival airport). We
want to find a policy from the source to the target that min-
imises expected fuel consumption and complies with con-
straints about the arrival time of the flight and the distance it
spends in convection areas.

Formally, an airway graph is a tuple (N,E), where each
node (x, y) ∈ N ⊂ R2 is a waypoint representing latitude
and longitude, and an edge (ni, nj) ∈ E ⊆ N × N repre-
sents a path between ni and nj . To compute the fuel required
to travel between waypoints we rely on an aircraft perfor-
mance model. This model computes the fuel consumption
between two waypoints ni and nj based on the following pa-
rameters: the current mass m ∈ M ⊆ R∗+ of the aircraft, its
current altitude h ∈ H ⊂ N and speed2 v ∈ V ⊂ (0, 1], the
current time t ∈ T ⊆ N, and the current weather w ∈ W ,
which we will formally define below. Therefore, we can
model the fuel consumption when travelling between ni and
nj by the function f : E×M×H×V ×T ×W → R∗+. The
time t and distance d travelled between waypoints, as well
as the distance c travelled through convective areas, are com-
puted in a similar fashion using the performance model.3

We assume there exists a set of weathers W and the prob-
ability of observing w ∈W at time t is given by the weather
model Pw(w|ni, nj , t). In principle, altitude could be an in-
put as well, but the weather data available to us does not
consider this. We consider weather ensemble forecasts as
the source of weather uncertainty, where each member of the
weather ensemble W is a specific weather scenario and we
assume a uniform probability distribution over the ensem-
ble members. We want to emphasise that our approach is in
principle independent of the underlying weather model with
the only requirement that there exists a well-defined proba-
bility distribution on W . In our implementation, a particu-
lar weather consists of several attributes such as temperature
and wind data, which is used by the performance model for
its computations. But from the point of view of the C-SSP,
the weather and performance model is just a black box.

We are now able to specify the state space, action space
and transition function of the underlying SSP. Each state

2More precisely: the ratio between the aircraft speed and the
speed of sound for current atmospheric conditions, known as Mach.

3These functions do not necessarily need all the parameters re-
quired by f.

consists of a location, the current mass, altitude, and speed
of the aircraft, and the current time, i.e. S = N × M ×
H × V × T . The action space A is defined such that
for each edge e = (ni, nj) ∈ E we can fly from ni
to nj at a specified speed level, targeting a specific al-
titude, i.e. A = {ae,h,v|e ∈ E, h ∈ H, v ∈ V }.
The transition probability function is determined by the
weather model and the aircraft performance model: given
state s = (ni,m, h, v, t) and action ae,h′,v′ with e =
(ni, nj) we have P (s′ = (nj ,m

′, h′, v′, t′)|s, ae,h′,v′) =∑
w∈W ′⊆W Pw(w|ni, nj , t) where W ′ is the set of weath-

ers w ∈ W such that m − f(e,m, h′, v′, t, w) = m′ and
t + t(e,m, h′, v′, t, w) = t′. Informally, the set of succes-
sor states is computed by calling the performance model for
each weather at time t, which yields the mass and time of a
successor state.

The primary cost to optimise is determined by the dif-
ference in mass induced by the fuel consumption, i.e.
C(s, ae,h′,v′ , s

′) = m′−m, wherem andm′ are the mass of
s and s′, respectively. Finally, the secondary cost constraints
we consider capture bounds on the expected travel time or
on the expected percentage of the distance that was travelled
through convective areas. The first constraint uses a sec-
ondary cost functionCt(s, ae,h′,v′ , s

′) = t′−twhere t and t′
are the time in states s and s′ respectively, and time bounds
[lt, ut] representing the arrival time window. For the second
constraint we denote the maximum percentage of the dis-
tance that is allowed to go through convective areas as α. We
are interested in policies that satisfy c(π) ≤ α · d(π), where
c(π) denotes the distance that policy π travels through con-
vection, and d(π) the total travel distance. Since constraints
are defined over transition cost functions we break this con-
straint down to the transition level, resulting in the secondary
cost functionCc(s, ae,h′,v′ , s

′) = c(e, t, h, h′)−αd(e, h, h′)
where t is the time in state s, h and h′ are the altitude in
states s and s′ respectively, and the upper bound for the con-
straint is 0.

Given an airway graph (N,E), departure node nI , ar-
rival node n?, the C-SSP corresponding to our problem
is 〈S, s0,G,A, P, [C,Ct,−Ct, Cc], [ut,−lt, 0]〉, where S, A,
P , C, Ct, Cc, ut, and lt are defined as above, s0 =
(nI ,m

0, 0, v0, t0) wherem0, v0 and t0 are the takeoff mass,
speed and time, and G is the set of states representing n?.

4 Solving the Flight Planning C-SSP
The size of the full state space of the C-SSPs underly-
ing the flight planning problem makes it infeasible to solve
them using any algorithm that requires enumerating the full
state space a priori. Moreover, since the aircraft performance
model simulates the physical properties (e.g., drag and lift)
of the aircraft, as well as, its engine efficiency for the given
altitude, computing a single state expansion is expensive.
Thus, even if we could represent the complete state space,
it would be computationally expensive to generate it.

Unfortunately, the state-of-the-art heuristic search planner
for C-SSPs, i2-dual (Trevizan, Thiébaux, and Haslum 2017),
cannot be used with black box models since it requires a
factored representation of the problem to compute its inte-
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grated heuristic. To the best of our knowledge, the only other
heuristic search planner for C-SSPs is i-dual (Trevizan et al.
2016). I-dual can be used with black box models; however it
requires k+ 1 heuristic functions, one for each cost func-
tion Ci, used to prune infeasible solutions. For our flight
planning application, this requirement is not feasible since
finding non-trivial lower bounds for cost functions such as
convection is still an open topic. Moreover, non-informative
heuristics (e.g., h = 0) would provide no early pruning, and
in the presence of conflicting objectives (violating a con-
straint can save fuel), i-dual with non-informative heuristics
would result in expanding almost the complete infeasible re-
gion of the state space before finding a feasible solution.

For the reasons above, we develop a new algorithm for
C-SSPs based on column generation. Column generation is
an Operations Research technique that allows Linear Pro-
grams (LPs) with a large number of variables (columns) to
be solved by considering only a subset of them. Due to space
limitations, we cannot provide an in-depth overview of col-
umn generation and instead refer the reader to the work by
Desrosiers and Lübbecke (2005).

4.1 Problem Formulation
Let Πdet be the set of all deterministic proper policies, feasi-
ble or not, for a given C-SSP C = 〈S, s0,G,A, P, ~C, ~u〉. Our
approach consists in finding the optimal convex combina-
tion of deterministic policies (i.e., a probability distribution
on Πdet) while enforcing that the resulting stochastic pol-
icy is feasible. This problem is formalised in LP1 where the
decision variables are the probabilities pπ of applying policy
π ∈ Πdet andE[Ci|π] is a constant for LP1 that is computed
beforehand. C1 and C2 enforce that ~p is a probability distri-
bution over Πdet and C3 enforces the cost constraints. Given
the optimal solution ~p∗ of LP1, the optimal stochastic policy
for C is π∗(s, a) =

∑
π∈Πdet

π(s, a)p∗π where, by abuse of
notation, π(s, a) = 1 if π(s) = a and 0 otherwise. LP1 is
a reformulation of the usual LP based on occupation mea-
sures (Altman 1999) used for computing optimal policies
for C-SSPs and it is obtained by applying a generalisation of
the arc to path reformulation from constrained deterministic
shortest paths (Ahuja, Magnanti, and Orlin 1993, Sec. 3.5)
where arcs are probabilistic actions and paths are policies.

min
~p

∑
pπ

E[C0|π]pπ (LP1)

s.t. pπ ≥ 0 ∀π ∈ Πdet (C1)∑
π

pπ = 1 (C2)∑
pπ

E[Ci|π]pπ ≤ ui ∀i ∈ {1, · · · , k} (C3)

4.2 Iterative Improvement
Since Πdet can be large and expensive to compute, we can-
not solve LP1 directly and instead apply column genera-
tion to solve a sequence of increasingly larger LPs. In col-
umn generation, LP1 is known as the Master Problem (MP)

and the generated LPs are known as Reduced Master Prob-
lem (RMP). Let Π̂ ⊆ Πdet, then our RMP is LP1 with Πdet

replaced by Π̂. A key concept in column generation is the
reduced cost of a column, which is a function that estimates
the impact of adding this column to the RMP. For our ap-
plication, columns are deterministic proper policies and the
reduced cost of a policy π ∈ Πdet \ Π̂ is

rc(π) = E[C0|π]− λconv −
∑

i∈{1,··· ,k}

λcost-iE[Ci|π],

where λconv and λcost-i are the optimal value for the dual
variable associated with the constraints C2 and C3, respec-
tively (Desrosiers and Lübbecke 2005, p.7).

Since LP1 is a minimisation problem, we want to find one
or more policies with strictly negative reduced cost to add to
the RMP as they can potentially improve the solution qual-
ity of the RMP. Thus, given a feasible RMP, column gener-
ation performs the following iterative improvement loop: (i)
solve the RMP; (ii) find one or more negative reduced cost
columns; (iii) add these columns to the RMP and; (iv) re-
peat. The main theorem of column generation provides the
termination condition of this iterative procedure: the RMP
is equivalent to the MP (i.e., they have the same solution) iff
rc(π) ≥ 0 for all π ∈ Πdet \ Π̂. The key insight of our ap-
proach is that, finding a policy π with negative reduced cost
or proving that one does not exist can be done by solving a
single unconstrained SSP as we explain next.

Consider the problem of finding the policy π∗rc with the
most negative reduced cost rc∗ for an RMP over Π̂ with
dual optimal solution ~λ = [λconv, λcost-1, · · · , λcost-k].
Formally, this problem is rc∗ = minπ∈Πdet\Π̂E[C0|π] −
λconv −

∑
i∈{1,··· ,k} λcost-iE[Ci|π]. Let Crc(s, a) =

C0(s, a)−
∑
i∈{1,··· ,k} λcost-iCi(s, a), then, by linearity of

expectations, we have that rc∗ = minπ∈Πdet\Π̂E[Crc|π] −
λconv . The search space of this minimisation problem can
be extended to all deterministic policies (i.e., Πdet) without
changing its solution since the reduced cost of all policies in
the RMP are guaranteed to be non-negative (Bertsimas and
Tsitsiklis 1997). Next, we exploit this property to compute
rc∗ by solving an SSP.

Let Src = 〈S, s0,G,A, P, Crc〉 be the SSP obtained
from C by replacing C0 by Crc and removing all other cost
functions. Suppose, w.l.o.g. that Src has a single (determin-
istic) optimal policy π∗Src . Since E[Crc|π] − λconv equals
rc(π) and π∗Src is optimal, we have that π∗Src equals π∗rc.
Thus, any optimal solver for SSPs (e.g., Nilsson; Hansen
and Zilberstein (1968; 2001)) can be used for finding a pol-
icy with negative reduced cost or proving that one does not
exist (i.e., when E[Crc|π∗Src ] − λconv ≥ 0). However, the
optimal solution for Src is only required to prove that the
RMP and MP are equivalent, thus it is enough to find any
policy for Src with negative reduced cost for the intermedi-
ate iterations. This allows us to use non-optimal SSP solvers
for policy improvement and use an optimal solver only for
proving optimally.
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4.3 Initialisation
Our method so far is capable of iteratively adding columns
to the RMP until it finds the optimal solution; however, it
requires a feasible RMP to start with in order to obtain the
dual optimal solution ~λ. Thus, we need to provide a method
to initially populate Π̂. This is done by a similar approach
as the reduced cost search using the SSP Src except that
the Farkas cost (Lübbecke 2010, p.6) is used instead of the
reduced cost. For our RMP, the Farkas cost of a policy is
fc(π) = −

∑
i∈{1,··· ,k} λ

ray
cost-iE[Ci|π] where λray

cost-i is the
dual ray of the infeasible RMP. The dual ray is trivially ob-
tained by any LP solver as the “proof of infeasibility” of an
LP and it represents a direction in which the dual of the RMP
is unbounded. The main results related to Farkas cost are: (i)
fc(π) ≥ 0 for all π ∈ Π̂; (ii) if fc(π) ≥ 0 for all π ∈
Πdet \ Π̂, then the MP (i.e., C for us) is infeasible; and (iii)
adding a policy π ∈ Πdet\Π̂ s.t. fc(π) < 0 bounds the value
of the RMP’s dual in the ~λray direction; therefore, either the
RMP becomes feasible or a new dual ray can be found. Thus,
similarly to Crc and Src, we can find new policies to be
added to the RMP or prove that the original problem is infea-
sible by solving the SSP Sfc = 〈S, s0,G,A, P, Cfc〉 where
Cfc(s, a) = −

∑
i∈{1,··· ,k} λ

ray
cost-iCi(s, a). This allows us

to initialise the RMP with any policy or set of policies. Sim-
ilarly to the policy improvement procedure, the optimal so-
lution for Sfc is only required to prove the infeasibility of the
MP and any policy with negative Farkas cost can be used for
the initialisation procedure.

It is important to notice that both Crc and Cfc can be neg-
ative depending on the values of ~λ and ~λray, respectively, and
the secondary cost functions. This can lead to negative cost
cycles and thus to potential algorithmic and theoretical is-
sues regarding the solutions of Src and Sfc; however, this is
not an issue for our application because the state space S of
our application is acyclic, as fuel monotonically decreases.

4.4 Optimal Deterministic Policy
As mentioned before, our approach computes an optimal
stochastic policy for C; however, this might not always
be desired. For instance, current regulations do not allow
stochastic policies and instead a deterministic policy needs
to be provided. When a deterministic policy is required, we
return the policy π ∈ Π̂ that is feasible and has the minimum
total expected cost. This procedure is quite efficient since,
for all cost functions and all policies in Π̂, their expected cost
is already known. Since we do not search the complete set
of deterministic policies Πdet in this procedure, the obtained
solution is not guaranteed to be optimal; however, the opti-
mality gap (i.e., the extra cost w.r.t. the optimal determinis-
tic solution) of π is upper bounded by E[C0|π∗]− E[C0|π]
since E[C0|π∗] ≤ E[C0|π∗det] ≤ E[C0|π], where π∗ is the
optimal stochastic policy computed by our approach. Also,
notice that this approach to find a deterministic policy is not
complete, i.e., it might not find a solution even if one exists.
When all π ∈ Π̂ are infeasible, then a Mixed Integer LP
needs to be solved in order to find a solution or prove that

none exist (Dolgov and Durfee 2005), increasing the com-
plexity of the problem to NP-complete.

5 Deterministic Flight Planning
Column generation allows us to solve the C-SSP corre-
sponding to our flight planning problem in a sound and com-
plete way and provides us with an optimal stochastic policy.
However, as mentioned above, we might not find a determin-
istic feasible policy, even if one exists. Additionally, com-
puting reduced cost policies requires solving the underlying
SSP multiple times. While the overhead of the performance
model is mostly relevant for the initial iteration (for subse-
quent calls we can cache calls to the performance model),
for larger problems even solving the initial SSP can become
prohibitive. Therefore this section considers simpler deter-
ministic approaches as a possible alternative.

5.1 Scalarising Constraints
Both deterministic approaches below handle constraints in
a naı̈ve fashion by incorporating them into the primary cost
function. Given a cost function vector ~C = [C0, . . . , Ck], we
define a vector of scalars ~Ω = [ω[1], . . . , ω[k]] and replace
the primary cost function C0 with the scalarised cost func-
tion Cs = C0 +

∑k
i=1 ω[i]Ci, i.e. a linear combination of

secondary cost functions. We emphasise that this does not
give any guarantees. In particular, an arbitrary ~Ω does not
necessarily correspond to an optimal solution of the C-SSP.

5.2 Average Determinisation
The first approach we consider, which we call average deter-
minisation, follows Franco, Rivas, and Valenzuela (2017) by
averaging uncertain weathers and therefore ending up with a
deterministic planning problem. More formally, given state
s = (ni,m, h, v, t) and action ae,h′v′ with e = (ni, nj),
the resulting state s′ = res(s, ae,h′,v′) is defined as fol-
lows: s′ = (nj ,m

′, h′, v′, t′), wherem′ = m−
∑
w∈W f(s,w)

|W |

and t′ = t+
∑
w∈W t(s,w)

|W | . The resulting deterministic prob-
lem, equipped with the scalarised cost function, can then be
solved using classical search algorithms.

5.3 Heuristic Decomposition
While this deterministic transition system is considerably
smaller than the probabilistic one, it can still be too large
to allow reasoning over the full state and action space within
the feasible planning time. We therefore consider a third ap-
proach, which we call heuristic decomposition. As is com-
mon in the industry, we decompose the above determinis-
tic problem into two separate problems (Murrieta Mendoza
2013): 1) a horizontal (2D) planning phase that computes
a least cost path between departure and arrival node based
on the earth surface (i.e. without the use of a performance
model), and 2) a vertical planning phase, where each node
in the 2D plan is assigned a corresponding altitude and a
speed level. We follow this idea and apply a heuristic ap-
proach for the vertical planning phase, which considers a
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pre-determined set of possible altitudes/speed strategies, and
chooses greedily amongst them for each step in the 2D plan.

Formally, let π→ be a horizontal plan, i.e. a sequence
of nodes 〈nI , . . . , n?〉, where nI and n? are the departure
and arrival node, respectively. We denote the i-th node in
the sequence with π→i . A vertical strategy π↑ : N →
H×V assigns each node in π→ a corresponding altitude and
speed. This induces a plan π4D for the original (determinis-
tic) flight planning problem which applies to the successive
states si = (π→i ,m, h, v, t) the action aπ→

i ,h
′,v′ such that

(h′, v′) = π↑(π→i ).
Computing π→ can be achieved by a standard best-

first search on the airways graph with a transition function
that is not based on a performance model and is therefore
cheaper to compute. For vertical planning, we consider a
pre-determined set of vertical strategies Π↑ and construct the
final vertical strategy as a greedy combination of strategies
in Π↑. This greedy combination is constructed iteratively,
starting from s0, by selecting, at each state si the strategy
π↑i = argminπ↑∈Π

∑|π→|
j=i Cs(sj , π

↑, res(sj , π
↑)). That is,

at each step, we select the strategy which would minimise
the scalarised cost if it was to be applied consistently at all
future steps of the horizontal plan.

We construct the pre-determined set Π↑ of vertical strate-
gies based on a lookup table of the aircraft performance
model that maps a given state to a recommended altitude
and speed. Π↑ consists of the following strategies:

1. A single strategy that just returns the recommendation of
the performance model.

2. As before, but instead of choosing the speed recom-
mended by the performance model we use varying speed
levels, starting from 0.7 up to the maximum possible
speed allowed for the aircraft in 0.01 steps. The number
of resulting strategies depends on the aircraft and ranges
from 12 up to 20 strategies.

3. Let h be a fixed altitude level. We consider again the rec-
ommendation of the performance model, but restrict the
maximum altitude to h. For h, we consider an altitude
range between 30000 feet to 42000 feet with a step size
of 1000 feet, resulting in 13 strategies.

4. As in 3), but instead of using the speed recommended
by the performance model we use the maximum possible
speed, again: 13 strategies.

5. Finally, a single strategy that keeps the current altitude
and speed levels.

Thus, Π↑ contains roughly 40–50 different vertical strate-
gies.

6 Empirical Evaluation
We evaluate all approaches (column generation based on the
C-SSP model, search on the average determinisation, and the
heuristic decomposition) on a benchmark set of 9 city pairs
(3 short, 3 medium, and 3 long distance flights); for each
city pair we consider weather data of the 7th, 9th, and 11th
of June 2018. On these dates, the weather was shown to be

the most significant factor for the delay in public air trans-
port (Eurocontrol 2018). Weather forecasts are provided by
the European Center for Medium-Range Weather Forecasts
(https://www.ecmwf.int/), and we use an ensemble size of 10
forecasts with uniform probability. We consider the BADA
model (Nuic, Poles, and Mouillet 2010) as the underlying
aircraft performance model to compute fuel burn, travel time
and distance spent in convective areas. While we keep the
airway graph size considerably small (around 20 waypoints
for each problem; each waypoint connected to two to five
neighbours with directed edges), the action space allows a
speed between 0.7 and 0.9 Mach with 0.02 step size, and an
altitude level between 30000 and 40000 feet, with a step size
of 2000. This results in 50 combinations of altitude/speed
levels and therefore between 100 and 250 applicable actions
in each state. For the heuristic decomposition the horizontal
planning phase considers a fixed altitude of 33000 feet and
0.8 Mach.

We note that when one wants to consider larger graphs,
e.g. the complete European airspace, an additional precom-
putation step that prunes waypoints based on shortest lat-
eral paths (i.e. 2D) is an option. However, even the smaller
graphs we consider present a challenge: with potentially 250
applicable actions and each action resulting in 10 different
outcomes (due to 10 different weathers), we end up with
a branching factor of 2500 and nearly no duplicate states,
since each weather can have a different (albeit small) effect
on mass and time. We measured that 2500 transition calls to
the performance model require on average 3 seconds. As a
consequence, search on the C-SSP (as well as on the average
determinisation) was not able to handle the complete state
space in reasonable time. We therefore consider an abstrac-
tion of the state space instead of the full problem, and keep
mass, speed4 and time hidden from the state space. With this
abstraction we still have to consider 2500 successors, but
the number of non-duplicate successor states is much lower.
In the experiments we use the abstraction of the problem
to compute policies, but we evaluate all policies on the full
problem, as described further below.

Recall that the weather model is a function dependent on
waypoints and time. Not considering time in the state space
therefore does not allow reasoning over uncertainty. Thus,
for the C-SSP we additionally consider a weather flag in the
state space that determines if the transition went through a
convective area, leading to potentially two stochastic out-
comes per transition.

Column generation requires a subsolver to iteratively
solve the underlying unconstrained SSPs (cf. Section 4.2).
In the following, we evaluate column generation with AO?
(Nilsson 1968) as the underlying SSP search algorithm (de-
noted as C-SSP) against the average determinisation solved
with A? (Hart, Nilsson, and Raphael 1968), as well as the
heuristic decomposition. We refer to the plans of the latter
as policies, to preserve a consistent terminology throughout
this section. Both search algorithms (AO? and A?) perform

4We also ran experiments that considered speed in the state
space; this resulted in a more precise fuel burn estimation, but the
outcome of the overall evaluation did not change.
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blind search. We compute policies on the abstraction of the
problem, but evaluate all policies on the full problem: given
a policy π, for each weather in the ensemble forecast we
will simulate the trajectory induced by π starting from the
initial state. We record the outcome of this trajectory for the
relevant primary and secondary (constraint) cost functions.
Since the probability distribution of the weather ensemble is
uniform it is sufficient to do this once for each weather and
average the outcomes. Clearly, evaluating a policy based on
an abstraction of the model on the full problem may intro-
duce some inaccuracies. We will discuss this when it was a
relevant factor for an experiment.

Before we move on, we briefly discuss the impact of han-
dling uncertainty through averaging. For this, we considered
all problems without any constraints and we compared the
fuel burn of policies computed by AO? on the SSP model
and A? on the average determinisation. The results show
that there is no significant difference between the optimal
value of both policies for our benchmark set. This mirrors
the observation of Franco, Rivas, and Valenzuela (2017) and
is partially attributed to the underlying probabilities of the
ensemble forecasts: as we assume a uniform probability dis-
tribution on the ensemble, reasoning over averages is a valid
strategy.

In the following, we consider two sets of experiments:
1) We target a specific arrival time window, resulting in two
constraints on the allowed arrival time. For this experiment
we only consider C-SSP and heuristic decomposition, as the
policies generated by A? were never able to satisfy any of
the constraints. 2) We constrain the allowed distance trav-
elled through convective areas. Convective cells are one of
the main root cause of delays in aircraft operations, and are
highly subject to forecast uncertainty.

In the case where all approaches satisfy the given con-
straint we compare the fuel consumption (i.e. cost) of the
associated policies. Additionally, we evaluate the potential
loss of committing to a deterministic policy. While we do
not compare run-time in these experiments, in general one
set of all 27 flight problems took less than 3 hours of to-
tal run-time for a single algorithm. For the C-SSP approach,
the first iteration of column generation, i.e. the initial call to
AO? to compute a policy for the original SSP, had the most
impact on run-time. For subsequent iterations many calls of
the performance model were already cached, so AO? solves
the reduced cost SSP quickly.5

We implemented all algorithms in the scikit-decide library
(AIRBUS - Artificial Intelligence Research 2020). While we
can not release the implementation of the flight planning do-
main that uses the performance model, the column genera-
tion code is available in scikit-decide.

6.1 Time Window Constraints
For our first experiment we restrict the allowed arrival time
for each problem, as described in Section 3. The chosen cost
scalarisation, cf. Section 5.1, penalises constraint violation

5A representative example for short distance flights is 120 sec-
onds runtime for the initial call to AO? and 5 seconds for subse-
quent calls.

with a factor of 500 per missed second. It is possible that
the constraints we impose are too strict and there does not
even exist a solution based on a stochastic policy. Therefore,
we first determined which problems are feasible in the first
place. We emphasise that this is one of the advantages of the
C-SSP based approach: if there is no (stochastic) policy that
is able to satisfy the constraints the problem is proven to be
unsolvable. For the time constraints, all of the problems we
consider were determined to be feasible.

For each problem, we computed a (deterministic) policy,
evaluated this policy on all 10 weather scenarios, and com-
pared the number of problems where the constraint was vi-
olated. The constraint penalty imposed on the heuristic de-
composition is quite large, and as a result this approach al-
ways arrived within the given bound. This was not always
true for the deterministic policies returned by C-SSP. Re-
call that column generation computes a stochastic policy,
but we evaluate an extracted deterministic policy. The cost
of the stochastic policy is a lower bound on the optimal cost
we can get for a problem, but this does not imply that the
deterministic policy returned by the solver is always able
to satisfy the constraint. Intuitively, this makes sense: the
stochastic policy can consist of two deterministic policies;
one policy violates the constraint in one direction (i.e. is al-
ways below the bound), and the other always violates the
constraint in the other direction (always above the bound).
Clearly, a combination of both policies is able to satisfy the
constraint in expectation. Nevertheless, comparing the C-
SSP policies against the policies provided by heuristic de-
composition shows that while the heuristic decomposition
never violates the constraint, the policy cost, i.e. fuel con-
sumption, is much higher than for the policies provided by
the C-SSP. Figure 1 depicts the average fuel burn and the
constraint violation for short (left), medium (mid) and long
(right) distance flights. For most of the problems where con-
straints are not satisfied the time window was missed by less
than 20 seconds. At the same time, deterministic policies
provided by the C-SSP are more conservative on fuel burn,
in some instances with a difference of up to 5 tons of fuel.
Table 1 additionally shows the total flight time in minutes
of the C-SSP policies; for each city-pair, we only show the
problems with the worst-case constraint violation over the
three different weather dates we considered.

Where the deterministic policy is feasible we also evalu-
ate the optimality gap between the stochastic and the deter-
ministic policy, i.e. the difference between the optimal cost
of a stochastic policy and the cost of the extracted determin-
istic policy. For 9 of the 27 problems, usually long distance
flights, a stochastic policy would have allowed saving more
than 2 tons of fuel. On the other hand, for 9 other problems
the gap is less than 20 KG of fuel. For the remaining prob-
lems where the deterministic policy is feasible the gap varies
between 200 and 300 KG of fuel.

6.2 Convection Constraints
In the second set of experiments we evaluate all three ap-
proaches and introduce a constraint on the expected distance
that a flight is allowed to travel through convective areas. To
determine distance in convection we use the convection in-
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Figure 1: Comparison of time constraint violation and fuel consumption between C-SSP and heuristic decomposition.
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Figure 2: Comparison of average fuel consumption between the different techniques for short distance flights.
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Figure 3: Comparison of average fuel consumption between the different techniques for medium and long distance flights.

dicator provided by the EPS forecast in conjunction with the
performance model to estimate the convection value for any
traversed edge. Recall that α ∈ R denotes the maximum
percentage of the distance that is allowed to go through con-
vective areas. We perform several experiments with different
bounds α ∈ {0.01, 0.05, 0.1, 0.15, 0.2, 0.25}, which results

in a total of 27 · 6 = 162 problems. For the convection cost
scalar used by the deterministic approaches, we empirically
chose ω(α) = 5 + 95 · (α−0.25)

(0.01−0.25) for the average deter-
minisation as well as for the vertical planning phase of the
heuristic decomposition, and ω(α) = 0.5+24.5 · (α−0.25)

(0.01−0.25)

for the horizontal planning phase. We observed that due to
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City Pair Fuel Diff. (KG) Flight Time (m) Violation (s)
BOD–AGP 67 100.4 0.0
TLS–PRG 49 115.9 75.0
MUC–JMK 62 150.4 0.0
DXB–FCO 1494 369.7 9.4
DXB–LGW 490 448.5 13.5
JFK–MXP 1076 448.5 24.8
FRA–BKK 437 613.7 21.2
LAX–DXB 2588 909.1 9.7
DXB–IAH 2530 936.7 101.0

Table 1: Worst case constraint violation (in seconds) and
flight times (in minutes) of policies generated by column
generation for different city pairs. Fuel diff. is the difference
of fuel burn compared to the policy generated by heuristic
decomposition.

abstraction some policies that were determined to satisfy the
constraints marginally miss the constraint when evaluated
on the full problem. To compensate for this, we consider a
constraint as satisfied if it holds for the bound α+0.01. Once
again, we first determine (with the C-SSP) which problems
are solvable. In total, 28 problems are proven to be unsolv-
able, resulting in 134 remaining problems.

Again, with each approach we compute a policy for the
problem and evaluate this policy on all 10 weather scenarios.
Heuristic decomposition and average determinisation do not
guarantee that a constraint is satisfied, and the abstraction
underlying the C-SSP can also result in inaccuracies. How-
ever, all algorithms satisfied the constraint in 130 out of the
134 problems. We compare the average fuel burn between
the algorithms for the problems where every algorithm satis-
fied the constraint. Figure 2 shows short distance flights, and
Figure 3 depicts medium to long distance flights. Each data
point corresponds to one flight problem on a specific convec-
tion constraint. Data points below the diagonal correspond
to problems where the algorithm on the y axis required less
fuel. The policy provided by C-SSP almost always results
in less fuel consumption while guaranteeing constraints, al-
though the difference is mostly less than one ton of fuel. A
notable exception is a problem for a convection constraint
of 0.1 – a consequence of the underlying deterministic pol-
icy. Results between the heuristic decomposition and aver-
age determinisation are mixed, but slightly in favour of the
latter. We also evaluated the gap between the stochastic and
the deterministic policies, which is in most cases below one
ton of fuel, sometimes even below 50 KG. In 11 cases it ex-
ceeds a ton, up to of 2700 KG fuel in the best case.

7 Discussion
The experiments demonstrate some of the advantages and
disadvantages of the C-SSP approach. First, the optimality
guarantees allow us to determine beforehand if the prob-
lem is feasible in the first place. This is a useful property,
as a reasonable constraint bound is not always clear from
the beginning. Second, the approach significantly minimises
fuel consumption and produces cheaper policies, and the ex-
pected cost of the stochastic policy provides a lower bound

on what is possible to achieve.
The graphs we considered in the experiments were rela-

tively small. While we also conducted experiments on larger
graphs with more than 1000 nodes, the impact of the inac-
curacy introduced by abstraction was significant; as a conse-
quence, the policies returned by the C-SSP solver often vio-
lated the constraints when evaluated on the full problem. We
conclude that the unavailability of heuristics for constraint
cost functions, such as convection distance, is a serious hin-
drance and requires more research. Once such heuristics ex-
ist they are easily integrated into our framework.

Another drawback of the C-SSP approach is the current
requirement of deterministic policies, as these do not al-
ways guarantee that constraints are met. However, we con-
jecture that once airline operations are fully autonomous, a
stochastic policy will be a realistic solution. Moreover, we
argue that for some constraints it is reasonable that they are
guaranteed in expectation, i.e. when evaluated over multiple
flights. A possible application is the avoidance of condensa-
tion trails (contrails) which manifest in the atmosphere as a
result of aircraft traversal through specific areas, and which
have been shown to have a significant impact on climate (Yin
et al. 2018). Here, a stochastic policy that guarantees a lower
bound on contrail manifestation in expectation can become
an important tool to oppose the ongoing climate change.
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Lübbecke, M. E. 2010. Column generation. Wiley encyclo-
pedia of operations research and management science.
Murrieta Mendoza, A. 2013. Vertical and lateral flight op-
timization algorithm and missed approach cost calculation.
Ph.D. Dissertation, École de technologie supérieure.
Nilim, A.; El Ghaoui, L.; and Duong, V. 2002. Robust dy-
namic routing of aircraft under uncertainty. In Proceedings
of the 21st Digital Avionics Systems Conference, volume 1,
1.A.5–1–1.A.5–13.
Nilsson, N. J. 1968. Searching problem-solving and game-
playing trees for minimal cost solutions. In Information Pro-
cessing, Proceedings of IFIP Congress 1968, 1556–1562.
Nuic, A.; Poles, D.; and Mouillet, V. 2010. BADA: An
advanced aircraft performance model for present and future
atm systems. International Journal of Adaptive Control and
Signal Processing 24:850 – 866.
Palmer, T. 2019. The ECMWF ensemble prediction system:
Looking back (more than) 25 years and projecting forward
25 years. Quarterly Journal of the Royal Meteorological
Society 145(S1):12–24.
Taylor, C.; Liu, S.; Wanke, C.; and Stewart, T. 2018. Gener-
ating diverse reroutes for tactical constraint avoidance. Jour-
nal of Air Transportation 26(2):49–59.
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