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Abstract

Existing ship scheduling approaches either ignore constraints
on ship draft (distance between the waterline and the keel),
or model these in very simple ways, such as a constant draft
limit that does not change with time. However, in most ports
the draft restriction changes over time due to variation in en-
vironmental conditions. More accurate consideration of draft
constraints would allow more cargo to be scheduled for trans-
port on the same set of ships.
We present constraint programming (CP) and mixed integer
programming (MIP) models for the problem of scheduling
ships at a port with time-varying draft constraints so as to op-
timise cargo throughput at the port. We also investigate the ef-
fect of several variations to the CP model, including a model
containing sequence variables, and a model with ordered in-
puts. Our model allows us to solve realistic instances of the
problem to optimality in a very short time, and produces bet-
ter schedules than both scheduling with constant draft, and
manual scheduling approaches used in practice at ports.

Introduction
Ship scheduling deals with assigning arrival and departure
times to a fleet of ships, as well as the amount and sometimes
type of cargo that is carried on each ship. Ship scheduling is
a problem with significant real-world impact, as the majority
of the world’s international trade is transported by sea, so
even a small improvement in schedule efficiency can have
significant benefits to industry (Christiansen, Fagerholt, and
Ronen 2004).

One consideration in ship scheduling which does not oc-
cur in other transportation problems is that most ports have
restrictions on the draft of ships that may safely enter the
port. Draft is the distance between the waterline and the
ship’s keel, and is a function of the amount of cargo loaded
onto the ship. Ships with a deep draft risk running aground
when entering or leaving the port; therefore most ports re-
strict the draft of ships allowed to transit through the port.
In existing ship scheduling algorithms, only constant maxi-
mum draft constraints have been considered (Christiansen et
al. 2011) (Song and Furman 2010).

In practice, most ports restrict ship sailing drafts using
safety rules that estimate the under-keel clearance (UKC) –
the depth of water under a ship’s keel. These safety rules
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are dependent on environmental conditions such as tide, and
therefore in practice, the allowable sailing draft at most ports
varies with time. Existing ship scheduling algorithms do not
consider time-varying draft restrictions at ports, and there-
fore may produce suboptimal schedules, where ships sail
with less cargo than they could have carried if the schedule
had allowed for the extra draft allowable at high tide.

Our work aims to develop ship scheduling algorithms that
can take environmentally-dependent time-varying draft con-
straints into account. In this paper, we consider the problem
of scheduling ships with time-varying drafts to maximise
cargo throughput over a single high tide, at a single bulk
export port. In practice, our models can be used to schedule
ships for any time range, including multiple tides; however,
a problem with multiple tides would likely be solvable by a
decomposition approach, as discussed in future work.

We present Constraint Programming and Mixed Integer
Programming models for the deterministic single-port ship
scheduling problem with time-varying environmentally-
dependent draft constraints. These models have been imple-
mented in the MiniZinc constrained optimisation modelling
language, and solved using the G12 finite domain CP solver
and MIP OSI CBC solver (Nethercote et al. 2007). The prob-
lem without tug constraints, as described in Section , has
been implemented in a prototype application, and has un-
dergone user testing at Port Hedland, Australia’s largest iron
ore export port (Kelareva 2011). We then compare the per-
formance of the CP and MIP models, and investigate vari-
ations on our CP model. The final two sections present our
conclusions and discuss future work.

Draft and Under-Keel Clearance
Draft is the distance between the waterline and the ship’s
keel, and most ports have safety restrictions on the draft of
ships allowed to transit through the channel to reduce the
risk of deep-draft ships running aground in shallow water. At
draft-restricted ports, accurate modelling of draft constraints
allows more cargo to be loaded onto each ship in good envi-
ronmental conditions without compromising safety, which
increases profit for shipping companies. In practice, draft
constraints at ports are usually calculated by estimating the
under-keel clearance of a ship – the amount of water under
the ship’s keel.

Under-keel clearance rules vary between ports, but may
include the following components (O’Brien 2002):



• the depth of water at each point along the channel.
• the predicted tide height at the time the ship will be tran-

siting through the channel.
• the draft of the ship.
• squat – a phenomenon caused by the Bernoulli effect,

which causes a ship travelling faster in shallow water to
sit lower in the water.

• heel – the effect of a ship leaning to one side under the
effect of centripetal force due to turning, or due to the
force of wind. Heel causes one side of the ship to sit lower
in the water, thus decreasing under-keel clearance.

• wave response – the vertical component of a ship’s motion
in response to waves.

Equation (1) shows an example under-keel clearance con-
straint for a port. A vessel v will be allowed sail at time t
if the constraint expressed in Equation (1) is met, ie. if the
sum of the positive UKC factors (depth D and tide height T ),
minus the sum of the negative UKC factors (draft d, squat s,
heel h, wave response w, etc) exceeds some safety factor F .

D(t) + T (t)− d(v)− s(v, t)− h(v, t)−w(v, t) ≥ F (1)

The simplest UKC requirement for ship scheduling is that
schedules must satisfy safety rules at the port. However,
scheduling approaches that use overly simple approxima-
tions to under-keel clearance and draft constraints may miss
the opportunity to load a ship to a deeper draft at high tide,
or when waves are low, leading to suboptimal schedules.

Constraint Programming Model
Key Features
There are several key features of the ship schedule optimi-
sation problem which make it computationally difficult.

Optimality: At a draft-constrained port, such as Port
Hedland in Western Australia, even a single centimetre of
extra draft can allow 130 extra tonnes of cargo to be carried
on an average-sized bulk carrier (Port Hedland Port Author-
ity 2011b). At a large bulk export port, with around 1300
bulk carriers departing from the port in a year (Port Hedland
Port Authority 2011a), even a 1cm increase in the average
draft would result in up to 170,000 tonnes of extra cargo.
Even a small reduction in schedule quality is undesirable, so
in this paper we always aim to find an optimal schedule.

Oversubscribed Problems: The problem is undersub-
scribed in general, as all ships can sail on the tide, but it
is oversubscribed at the peak of the high tide, since not all
ships will be able to carry the maximum amount of cargo.

Time-indexed Formulation: The allowable draft
changes rapidly with the tide. We therefore use a time-
indexed formulation with five-minute time increments,
to model the draft with sufficient accuracy. This high
time resolution results in large variable domain sizes, and
therefore longer solution times.

Sequence-Dependent Constraints: Both the basic con-
straints, and the constraints on availability of tugs (discussed
in Section ) depend on the order in which ships sail. Con-
straints are thus highly interdependent, which makes it hard
to find optimal solutions.

Variables and Parameters
The CP model of our problem involves the following vari-
ables and parameters.

Parameters
V is the set of all ships to be scheduled.
[1, Tmax] is the range of allowable time indices.
E(v) is the earliest time when vessel v can sail.
ST (vi, vj) defines the minimum separation time required

between ships vi, vj ∈ V .
D(v, t) defines the maximum allowable sailing draft for

the vessel v at time slot t, accounting for all safety rules at
this port, including the effects of tide, waves, squat, etc. The
maximum draft may also be limited by the ship structure, or
by the amount of cargo available for transport.

B is the number of pairs of incoming and outgoing ships
which share the same berth as their origin and destination.

Bi(b) and Bo(b) are the incoming and outgoing ships in
pair b which share a common berth.
d(b) is the minimum allowable delay (in time slot incre-

ments) between the sailing time for the outgoing ship Bo(b)
departing from its berth, and the sailing time for the incom-
ing ship Bi(b) due to arrive at the same berth.
C(v) is the tonnage per centimetre of draft for vessel v.

Explanation
Each ship v ∈ V – incoming or outgoing – has an associ-
ated berth. For each pair of ships there is a minimum sepa-
ration ST (vi, vj) between their sailing slots, which depends
on their associated berths. If vi is an incoming ship whose
berth is the same as that of outgoing ship vo, in addition to
their minimum separation, vi can only be scheduled after vo.
If vo is not included in the schedule, then nor can vi be.

Decision variables
s(v) ∈ [0, 1] specifies whether the ship v is included in
the schedule, since it is possible that some ships cannot be
scheduled at all, if, for example, a scheduler tries to schedule
too many ships on one tide.

T (v) ∈ [1, Tmax] is the time slot when vessel v is sched-
uled to sail.

Constraints
Earliest Departure Time Constraints

s(v) = 1⇒ T (v) ≥ E(v), ∀ v ∈ V (2)
Every vessel v that is included in the schedule (s(v) = 1)

sails no earlier than its earliest possible departure time E(v).

Berth Availability Constraints
s(Bi(b)) = 1⇒ (3)

s(Bo(b)) = 1 ∧ T (Bo(b)) ≤ T (Bi(b))− d(b),

∀ b ∈ B

For every pair of incoming and outgoing ships Bi(b) and
Bo(b) that share the same berth as their destination and ori-
gin, if the incoming ship is included in the schedule, then the
outgoing ship must also be included in the schedule, and the
scheduled sailing time T (Bi(b)) of the incoming ship must
be later than the sailing time T (Bo(b)) of the outgoing ship
by a delay of at least d(b), which gives the outgoing ship
enough time to clear the berth.



Figure 1: Optimal schedule vs. constant draft and manual schedule.

Separation Time Constraints

s(vi) = 1 ∧ s(vj) = 1⇒ (4)
T (vj)− T (vi) ≥ ST (vi, vj) ∨
T (vi)− T (vj) ≥ ST (vj , vi),

∀ vi, vj ∈ V

Each pair of ships vi, vj has a minimum separation time
ST (vi, vj) or ST (vj , vi) between their scheduled sailing
times, depending on the order in which they sail.

Objective Function
The objective function for the ship scheduling problem at a
single port varies per port. Some ports may have an objective
function that purely optimises throughput; other ports may
need to prioritise fairness to competing clients above opti-
mising the total throughput for the port. In this paper, we
only consider a simple generic objective function that opti-
mises total throughput at the port, shown by equation (5).∑

v∈V
s(v) . C(v) . D(v, T (v)) (5)

Equation (5) shows an objective function that optimises
the total cargo throughput at the port by maximising the
sum of the drafts D(v, T (v)) at the scheduled sailing time
T (v) for each vessel v, weighted by the tonnage per cen-
timetre of draft C(v) for each ship, since the amount of ex-
tra cargo allowed by an increase in draft varies depending on
the size and shape of the ship. The objective function is also
weighted by the binary variable s(v) that specifies whether
the ship was included in the schedule.

Comparison Against Existing Approaches
Constant Draft: In existing ship scheduling problems
with multiple ports such as (Fisher and Rosenwein 1989),
only constant draft restrictions are considered. Constant
draft restrictions produce good schedules for problems with
small (ie non-draft-restricted) ships, or for non-tidal ports.
However, the majority of the world’s sea ports are affected
by tides, which will cause the draft restrictions at the port
to vary with time. For ports that have time-varying draft re-
strictions, scheduling draft-limited ships using constant draft
restrictions can result in sub-optimal schedules.

Figure 1 shows one example of a schedule with three ships
sailing on a tide, with time-varying or constant draft restric-
tions. This problem has three outgoing ships A to C, with

maximum drafts of 18.1m for ship A, and 18.0m for ships
B and C. For simplicity, we assume that the separation time
between each pair of ships is 30 minutes, regardless of order.

Time-varying draft restrictions will allow ship A to sail
with 18.1m draft, as shown in Figure 1(a). Constant draft
restrictions, on the other hand, require the draft restriction to
be set low enough to allow all ships to sail with the constant
draft. This results in all ships sailing with 18.0m draft, as
shown in Figure 1(b).

Manual Scheduling: Schedules produced by our time-
varying draft model can be compared against schedules pro-
duced by naive manual optimisation algorithms. Two algo-
rithms that can be used for manual scheduling are: sched-
ule the ship with the highest objective function component
first – ie. the ship with the highest tonnage per cm draft –
or schedule the ship with the highest allowable draft first. In
both cases, each ship is scheduled at the earliest time it can
sail with its highest possible draft.

Both these algorithms produce suboptimal schedules for
some problems, such as the example shown in Figure 1. This
example is simpler than a real-world scenario; however, the
drafts, amounts of cargo, and sailing windows for the maxi-
mum drafts used in this example are realistic. Constraints at
real ports are more complex, and less likely to be solved
to optimality by these simple manual algorithms. For the
larger, more realistic example problems presented in Sec-
tion (ONEWAY NARROW problems without tugs) the opti-
mal schedules allowed an average of 120cm more draft for
the set of ships compared to scheduling with constant draft
constraints, and 15.8cm more draft per set of ships compared
with manually scheduling the biggest ships first.

Impact of Suboptimal Schedules: Assuming that all
ships can carry 130 tonnes of cargo per centimetre of draft –
the average for iron ore bulk carriers at Port Hedland (Port
Hedland Port Authority 2011b) – the fixed-draft and man-
ual schedules above result in 1300 tonnes less iron ore be-
ing carried on these three ships. This is around US$221,000
less iron ore, at the January – October 2011 average iron ore
price of around US$170/tonne (Index Mundi 2011).

Around 1300 ships sailed from Port Hedland in the 2009-
10 financial year (Port Hedland Port Authority 2011a). A
10cm reduction in draft of every 3rd ship will result in 563Kt
less iron ore being shipped on the same set of ships over a
year, or around US$96 million less iron ore per year.

Constant draft restrictions may reduce draft even more for
some ships, as the height of each tide varies with the spring-



neap tidal cycle by up to several metres. Any scheduling
approach which uses constant draft restrictions would have
to set the draft restriction low enough to allow ships to sail
even at neap tides, thus reducing the draft of ships sailing at
higher tides even further.

This shows that problems involving large draft-restricted
ships sailing through tidally-affected ports have a high po-
tential for improvement in schedule quality by incorporating
time-varying draft restrictions. As shown by this example,
even a small difference from the optimal schedule has a high
cost, which makes this problem worth solving to optimality
even for a single port.

Tug Constraints
Many ports require tugs – small boats – to guide large cargo
ships in and out of the port. Tugs attach to outgoing ships at
berth, and detach from the ship after it clears the most con-
strained part of the channel. Tugs attach to incoming ships
while the ship is at sea, and detach as the ship arrives at
berth. At some ports, tugs may also need to push incom-
ing ships onto the berth. Tug availability may constrain ship
schedules, as found in user testing of a prototype of our CP
model at Port Hedland (Kelareva 2011).

Modelling Approaches
Tug constraints depend on the number of tugs available at
the port, the number of tugs required for each ship, and how
long the tugs are in use for on each job. Tug job durations
depend on the origin and destination of the ship, the tug’s
travel time between jobs, whether the tug is required to as-
sist in berthing, and port operational rules, such as the lo-
cations where tugs attach to and detach from ships. Tug job
durations are therefore highly sequence dependent.

There has been some prior research on tug scheduling,
such as (Yan et al. 2009). However, in our problem, tug
availability only needs to be considered as a constraint in
the larger ship schedule optimisation problem.

Our first attempt at modelling tug constraints assigned in-
dividual tugs to ships. However, this was too slow to find
optimal solutions, since the large number of interactions
caused by sequence-dependent waiting times between ships
were compounded by the highly sequence-dependent wait-
ing times between successive tug jobs.

Our second tug model only tracked the number of tugs
busy at each point in time, rather than allocating tugs to
ships. However, as the delay between successive jobs for a
tug depends on the sequence of jobs it performs, this new
model still required tracking origins and destinations for
tugs, and was still too slow to find an optimal solution.

Successful CP Model
Our third attempt at modelling tug constraints successfully
used features of the problem to simplify the constraints, en-
abling realistic-sized ship schedules to be solved to optimal-
ity within a few minutes.

There are two problem features, or simplifying assump-
tions, that were critical to simplifying the tug constraints.

1. The port we considered in our model has a single channel,
which can only be used in one direction at a time.

2. The berths are close enough together that the travel time
for tugs moving from a berth to sea or vice versa can be
considered independent of the berth location. This is the
case at Port Hedland, and is likely to apply at the major-
ity of ports. However, at ports where berths are spaced
far apart compared to the length of the channel, a model
based on this assumption would need extension to avoid
reducing schedule quality.
Assumption 1 implies that a schedule of ships can be split

up into component scenarios of four possible types:
1. A sequence of outgoing ships
2. A sequence of incoming ships
3. An outgoing ship followed by an incoming ship
4. An incoming ship followed by an outgoing ship

The tug availability constraints can be considered sep-
arately for each scenario, thus making the combined ship
schedule optimisation problem much simpler.

Scenarios 1 and 2: For a sequence of outgoing ships or
a sequence of incoming ships, the turnaround time between
successive jobs for any tug is independent of berth location
(Assumption 2), and therefore also of the sequence of jobs,
as long as both jobs are in the same direction.

Scenario 3: At the port we modelled in our problem, the
tugs transfer from the outgoing ship to the incoming ship
while the ships are in transit, so no additional delay is re-
quired. For ports where there is a delay for tug transfer from
an outgoing ship to an incoming ship, Scenario 3 can be
modelled similarly to Scenario 4 below.

Scenario 4: Tugs moving from an incoming ship followed
by an outgoing ship require a delay between the end of the
first job and the start of the second job. This can be modelled
by introducing an extra variable for outgoing ships, to spec-
ify how many tugs are still busy prior to that ship’s departure
time due to having recently completed an incoming job. The
duration of the extra delay for tugs moving from an incom-
ing to an outgoing ship may vary based on the locations of
the destination and origin berths.

Variables and Parameters
Adding tug availability constraints to the CP model requires
the following additional parameters and variables.

Parameters
Umax is the total number of tugs available at the port.

G(v) is the number of tug groups required for vessel v,
where a tug group is a set of tugs that spend the same length
of time working on that ship.

H(v, g) is the number of tugs in group g for vessel v.
Gmax is the maximum number of tug groups for any ship.
I is the set of incoming ships.
O is the set of outgoing ships.
r(v, g) (the ”turnaround time”) specifies the time taken

for the tugs in group g of vessel v to become available for
another job in the same direction (incoming vs outgoing).

X(vi, vj) specifies the extra delay required for tugs
moving from an incoming vessel to an outgoing ves-
sel, compared to the usual maximum turnaround time
maxg∈G r(vi, g). In this paper, X(vi, vj) is 0 for tugs mov-
ing from an outgoing ship to an incoming ship; however, this
may not be the case for other ports.



Dependent variables
U(v, t, g) is the number of tugs busy for tug group g of ves-
sel v at time t, assuming the next job for these tugs is in the
same direction (incoming/outgoing).

x(v, t) defines the number of extra tugs that are busy at
time t for an outgoing vessel v, due to still being in transit
from the destination of an earlier incoming job.

L(v, t) is an “overlap” flag. L(v, t) is true iff vessel v has
its extra tug delay time x(v, t) overlapping with the transit
start time for another vessel travelling in the opposite direc-
tion.

Constraints
Scenarios 1 and 2: One-Directional Sequence of Ships

s(v) = 1 ∧ t ≥ T (v) ∧ t < T (v) + r(v, g)⇒ (6)
U(v, t, g) = H(v, g),

∀ v ∈ V, t ∈ [1, Tmax], g ∈ [1, Gmax]

s(v) = 0 ∨ t < T (v) ∨ t ≥ T (v) + r(v, g)⇒ (7)
U(v, t, g) = 0,

∀ v ∈ V, t ∈ [1, Tmax], g ∈ [1, Gmax]

For a one-directional sequence of ships, at each time t,
the number of tugs busy U(v, t, g) in group g of vessel v is
equal to the total number of tugs in that tug group, H(v, g),
if and only if the vessel has already sailed at time t, but the
turnaround time r(v, g) has not yet passed.

Scenario 4: Incoming Followed By Outgoing

L(vi, t) ⇐⇒ ∃ vo ∈ O s.t. (8)
t = T (vo) ∧ T (vi) ≤ T (vo) ∧

T (vi) + max
g∈[1,G(vi)]

r(vi, g) +X(vi, vo) > T (vo),

∀ vi ∈ I, t ∈ [1, Tmax]

x(vi, t) = bool2int(L(vi, t)).
∑

g∈[1,G(vi)]

H(vi, g), (9)

∀ vi ∈ I, t ∈ [1, Tmax]

The constraints in Equation (8) specify that the “overlap”
flag, L(vi, t) is true iff the extra tug delay time X(vi, vo)
overlaps with the scheduled sailing time T (vo) of at least
one incoming vessel, vo.

The constraints in Equation (9) express the requirement
that for any incoming vessel vi, the tugs from that vessel are
still considered busy for vessels travelling in the opposite
direction if the “overlap” flag L(vi, t) is true.

Scenario 3: Outgoing Followed By Incoming

x(vo, t) = 0, ∀ vo ∈ O, t ∈ [1, Tmax] (10)

For our port, there is no additional delay required for tugs
to transfer from an outgoing ship to an incoming ship. For
ports where this is not the case, the additional delay for tugs
to transfer from an outgoing ship to an incoming ship can be
modelled similarly to the Scenario 4 constraints above.

Tug Availability Constraints∑
v∈I

∑
g∈G(v)

U(v, t, g) ≤ Umax, ∀ t ∈ [1, Tmax] (11)

∑
vo∈O

∑
g∈G(vo)

U(vo, t, g) +
∑
vi∈I

x(vi, t) ≤ Umax, (12)

∀ t ∈ [1, Tmax]

At each time t, the total number of tugs in use, U(v, t, g)
over all tug groups g, for all incoming vessels v ∈ I is no
greater than the total number of tugs available at the port,
Umax. Equation (11) ensures that the schedule satisfies the
tug availability constraints for all sequences of incoming
vessels (Scenario 2).

Equation (12) represents the same requirement for outgo-
ing vessels – Scenario 1. However, the total number of busy
tugs also needs to include any tugs that were still busy at
time t due to having recently completed an incoming job
and not yet having had time to transfer to the outgoing ship
(X(vi).(t = T (v)) – Scenario 4.

Mixed Integer Programming Model
We modelled the ship scheduling problem with time-varying
draft as a Mixed Integer Programming model, as MIP has
been effective for solving other maritime scheduling prob-
lems (Christiansen, Fagerholt, and Ronen 2004). Our MIP
model is similar to the CP model, but with non-linear con-
straints converted to linear forms.

Variables and Parameters
The MIP model uses the same parameters as the CP model
presented in Section , but adds some new variables.
s(v, t) ∈ [0, 1] is a binary variable which specifies

whether the ship v is scheduled to sail at time t.
T (v) ∈ [0, Tmax] is a dependent variable specifying the

time slot when vessel v is scheduled to sail:

T (v) =
∑

t∈[1,Tmax]

s(v, t) . t, ∀ v ∈ V (13)

Constraints
Some CP constraints need to be converted to linear form for
the MIP model. Modified constraints are shown below.

Ship Uniqueness Constraints∑
t∈[1,Tmax]

s(v, t) ≤ 1, ∀ v ∈ V (14)

Earliest Departure Time Constraints

T (v) ≥ E(v), ∀ v ∈ V (15)

Berth Availability Constraints

T (Bo(b)) ≤ T (Bi(b))− d(b) (16)∑
t∈[1,Tmax]

s(Bo(b), t) ≥
∑

t∈[1,Tmax]

s(Bi(b), t), ∀ b ∈ B



Separation Time Constraints

s(vi, t) +
∑

t′∈[t,min (Tmax,t+ST (vi,vj)−1)]

s(vj , t
′) ≤ 1 (17)

s(vj , t) +
∑

t′∈[t,min (Tmax,t+ST (vj ,vi)−1)]

s(vi, t
′) ≤ 1

∀ vi, vj ∈ V, t ∈ [1, Tmax]

Scenarios 1 and 2: One-Directional Sequence of Ships

U(v, t, g) = H(v, g).
∑

t′∈[min (1,t−r(v,g)+1),t]

s(v, t′) (18)

∀ v ∈ V, t ∈ [1, Tmax], g ∈ [1, Gmax]

Scenario 4: Incoming Followed By Outgoing

x(vi, t) = L(vi, t).
∑

g∈[1,G(v)]

H(vi, g) (19)

∀ vi ∈ I, t ∈ [1, Tmax]

L(vi, t) ≥ s(vo, t) +
∑

t′∈[max (1,t−trange),t]]

s(vi, t)− 1 (20)

∀ vi ∈ I, vo ∈ O, t ∈ [1, Tmax],where
trange = t−X(vi, vo)− max

g∈[1,G(vi)]
(r(vi, g)) + 1

Experimental Results
The models described in Sections , and were formulated in
MiniZinc 1.4, and solved with the finite domain CP solver
and MIP OSI CBC solver included in G12 (Nethercote et
al. 2007) (Nethercote et al. 2010). The G12 finite domain
CP solver uses standard backtracking search, and allows a
choice of variable selection and domain reduction strategies
to be used for solving the problem. For MIP, the search strat-
egy is set by the solver. The choice of solver was constrained
by commercial requirements, as this model was going to be
used in a commercial system.

The CP calculation time is highly dependent on the search
strategy used by the solver. We analysed the effectiveness of
several variable selection and domain reduction strategies,
such as searching on time vs draft first. In this paper, we
use the fastest search strategy for all CP model comparisons,
searching first on the dependent variable – draft, D(v, T (v))
– and searching on time as a second step.

Problem Instances
The CP and MIP models were tested on four different prob-
lem types that varied in how tightly constrained they were.

1. ONEWAY NARROW (ON): all ships sail in the same di-
rection (outbound), and have high maximum drafts, lead-
ing to narrow windows at the peak of the tide, and the
problem being oversubscribed at high tide.

2. MIXED NARROW (MN): ships are split evenly between
inbound and outbound, and outbound ships have high
maximum drafts with narrow peak draft windows.

3. ONEWAY WIDE (OW): all ships are outbound, but with
lower maximum drafts, leading to wider windows and a
less constrained schedule.

Problem CP MIP
MW 10 (3.17) 8 (39.1)
OW 10 (0.45) 9 (41.8)
MN 10 (7.99) 8 (11.4)
ON 8 (42.5) 7 (11.4)

MWT 10 (115) 6 (180)
OWT 8 (1.76) 8 (273)
MNT 8 (4.06) 6 (126)
ONT 6 (10.3) 5 (7.66)

Table 1: Comparison of MIP vs CP.

4. MIXED WIDE (MW): ships are evenly split between in-
bound and outbound, and with low maximum drafts and
wide sailing windows.

WIDE problems are less constrained than NARROW
problems, and MIXED problems are less constrained than
ONEWAY problems, though MIXED problems also result in
more complex tug constraints coming into effect.

Each problem type was solved with 4–10 ships sail-
ing on a single tide. These are realistic sized problems –
Port Hedland, Australia’s biggest iron ore port, set a record
of five draft-constrained ships sailing on a single tide in
2009 (OMC International 2009). The problems are based on
a fictional but realistic port, similar to the ship scheduling
data set used for the 2011 MiniZinc challenge (University
of Melbourne 2011). Each set of problems was solved both
with and without tugs (eg. MWT vs MW respectively).

Computational Results
All tests were run on a Windows 7 machine with an Intel i7-
930 quad-core 2.80 GHz processor and 12.0 GB RAM, and
with a 5-minute (300-second) cutoff time.

Table 1 presents the largest number of ships for each prob-
lem type that could be solved to optimality with each model
within the 300-second cutoff time. (Suboptimal heuristics
are left for future work, so we do not present the best so-
lution obtained for problems where an optimal solution was
not found.) Numbers in brackets indicate the time taken to
find the optimal solution for the largest problem where an
optimal solution was found. Bold font indicates the model
that was fastest to solve the largest problem. The 300-second
cutoff time was chosen to allow schedulers time to try differ-
ent inputs, and to allow rescheduling in response to delays,
equipment breakdowns and weather.

Discussion
Tugs vs No Tugs
The results in Table 1 show that, as expected, the addition of
tug constraints significantly increases the calculation time
required to solve the problems.

ONEWAY problems are more severely affected, probably
because ONEWAY problems are more tightly constrained
than MIXED problems, due to the incoming ships in the
MIXED problems having low draft and therefore wide sail-
ing windows. This results in tug constraints causing more
disruption to ONEWAY problems than to MIXED problems.

CP vs MIP
Table 1 shows that CP with a good choice of search strat-
egy was able to solve larger problem sizes to optimality



within the cutoff time for almost all problem types, and was
the fastest to solve all problems. MIP was particularly slow
for MIXED problems, possibly indicating that the tug con-
straints for incoming ships followed by an outgoing ships,
which occur only for MIXED problem types, were particu-
larly inefficient in the MIP model.

One possible reason for CP being faster than MIP for this
set of problems is that searching on draft allows large areas
of the search space to be eliminated quickly by the solver.
The search strategy chosen by the MIP solver is ignorant of
this aspect of the problem structure.

While our MIP model resulted in slower solution times
than CP, the use of MIP for this scheduling problem may be
worth investigating further. There may be ways to improve
the MIP constraints to make them more efficient, and other
MIP solvers may also be faster at solving this problem. Fur-
ther investigation of the MIP model is left for future work.

We briefly explored other solvers (Gecode, CPLEX and
Gurobi). Though calculation times varied, the overall picture
stayed the same, namely that CP was significantly faster.

Improving the CP Model
After the initial investigation of the CP and MIP model cal-
culation times, we also experimented with modifying the
model itself to make it faster to solve.

We implemented a modified Constraint Programming
model for the ship scheduling problem with additional vari-
ables specifying the ordering between every pair of vessels
in the schedule, to investigate whether setting the order in
which ships sail prior to choosing the exact sailing times
would reduce the search, and thus speed up the time required
to find an optimal solution. This approach produced little
improvement on its own, but was much more effective when
combined with other improvements.

One variation to the CP model which made the sequence
variables significantly faster to solve was to convert multi-
dimensional array lookups with a variable index to use one-
dimensional arrays instead. The objective function uses the
term D(v, T (v)), where v is a constant and T (v) is a vari-
able. Constraints on variables which index into arrays are in-
efficiently handled in MiniZinc; a better model is achieved
by replacing D(v, T (v)) with D′v(T (v)) where D′v is the
projection of D on v.

Another modification that improved calculation time was
sorting ships into ascending order of maximum objective
function component maxt∈[1..Tmax] D(v, t).C(v), where
D(v, t) is the maximum allowable draft for vessel v at time
t, and C(v) is the tonnage per centimetre of draft for vessel
v. This improved the efficiency of the search slightly, as it
allowed sailing times to be searched in order of ship size.

Sequence Variable Model
Adding sequence variables to the CP model required the fol-
lowing modifications to variables and constraints.

Dependent variables
sb(vi, vj) ∈ [0, 1] – SailsBefore(vi, vj) – is a binary variable
which is set to 1 if the vessel vi sails earlier than the vessel
vj , ie. if T (vi) < T (vj), and 0 otherwise.

Problem OLD SEQVARS ONEDIM SORT ONEDIMSORT

MW 10 (3.17) 10 (2.09) 10 (0.22) 10 (1.00) 10 (0.56)
OW 10 (0.45) 10 (2.09) 10 (2.62) 10 (0.56) 10 (0.34)
MN 10 (7.99) 9 (298) 10 (0.22) 10 (8.30) 10 (0.56)
ON 8 (42.5) 8 (57.9) 10 (190) 8 (37.1) 10 (157)

MWT 10 (115) 10 (14.1) 10 (14.3) 10 (124) 10 (19.4)
OWT 8 (1.76) 8 (14.4) 9 (124) 8 (2.09) 9 (100)
MNT 8 (4.06) 8 (137) 10 (166) 8 (4.16) 10 (121)
ONT 6 (10.3) 6(13.0) 9 (228) 6 (7.75) 9 (211)

Table 2: Comparison of modified CP models.

Sequence Variable Constraints

sb(vi, vj) = 1↔ T (vi) < T (vj),∀vi, vj ∈ V ; vi 6= vj (21)
sb(vi, vj) = 1↔ sb(vj , vi) = 0,∀vi, vj ∈ V ; vi 6= vj (22)

sb(vi, vi) = 0,∀vi ∈ V (23)

The constraints in Equations (21), (22) and (23) define the
values of the sequence variables sb(vi, vj) introduced above.

Equation (21) specifies that the vessel vi “sails before” vj
if the scheduled sailing time T (vi) for vi is earlier than the
scheduled sailing time T (vj) for vj .

Equation (22) specifies that if vessel vi “sails before” vj ,
then vj cannot sail before vi, and Equation (23) specifies that
no vessel can sail before itself.

Separation Time Constraints

s(vi) = 1 ∧ s(vj) = 1⇒ (24)
(sb(vi, vj) = 1⇒ T (vj)− T (vi) ≥ ST (vi, vj)),

∀ vi, vj ∈ V

The separation time constraints originally introduced in
Section are modified to depend on the “sails before” se-
quence variables sb(vi, vj). The modified constraints above
represent the requirement that for each pair of ships vi, vj ,
with vi sailing first, vi’s sailing time must predate vj’s by at
least the minimum separation time ST (vj , vi).

Calculation Results
The modified CP models were compared against the model
introduced in Sections and , with the same set of example
problems as used for earlier tests. The original CP model
was tested with the fastest search strategy – searching on
draft first, followed by time. The improved CP models were
tested with the search strategies that were fastest for each
model, as discussed in Section below.

Table 2 shows that sequence variables on their own were
not effective in speeding up calculation time for most prob-
lems. However, the CP model with one-dimensional arrays
performed significantly better than the basic CP model for
all problem types, solving problems with an average of 2
more ships than the original CP model. The CP model with
sorted ships only gave a very small improvement on the ba-
sic CP model, and in some cases resulted in slower solution
time. However, when combined with one-dimensional ar-
rays, sorted inputs had faster calculation times for the most
difficult problems – ONEWAYNARROW with and without
tugs, and MIXEDNARROW and ONEWAYWIDE with tugs.



ONEDIMSORT ONEDIM SORT
Problem DRAFT SEQVARS DRAFT SEQVARS DRAFT SEQVARS

MW 10 (0.45) 10 (0.56) 10 (0.22) 10 (0.22) 10 (1.00) 8 (179)
OW 10 (0.33) 10 (0.34) 10 (2.40) 10 (2.62) 10 (0.56) 8 (136)
MN 10 (0.33) 10 (0.56) 10 (0.22) 10 (0.22) 10 (8.30) 8 (54.5)
ON 8 (22.8) 10 (157) 8 (18.4) 10 (190) 8 (37.1) 9 (204)

MWT 10 (50.7) 10 (19.4) 10 (48.8) 10 (14.3) 10 (124) 7 (9.83)
OWT 8 (0.89) 9 (100) 8 (1.43) 9 (124) 8 (2.09) 8 (257)
MNT 9 (40.1) 10 (121) 9 (27.8) 10 (166) 8 (4.16) 7 (21.9)
ONT 7 (119) 9 (211) 7 (98.3) 9 (228) 6 (7.75) 8 (282)

Table 3: Searching on draft vs sequence variables for three modified CP models.

Search Strategies
Table 3 compares searching on draft or sequence variables
first for the modified models. Bold font indicates the fastest
search strategy for each model. The calculation times for
the improved CP model with one-dimensional arrays (with
or without sorted inputs) were faster when searching on
sequence variables compared to searching on draft. How-
ever, for the CP model with sorted inputs only, searching
on sequence variables is much slower than searching on
draft. This is also the case for the basic CP model with se-
quence variables only. This implies that sequence variable
constraints in particular propagate better when expressed
with one-dimensional rather than multi-dimensional arrays.

Discussion
Improvements to the model significantly improved calcula-
tion time. Converting constraints on variables which index
into multi-dimensional arrays to use one-dimensional arrays
instead led to the largest improvements, particularly when
combined with sequence variable search.

Whereas other improvements presented in this paper were
highly problem-dependent, conversion of multi-dimensional
arrays to more efficient one-dimensional arrays could be
built into a CP solver or modelling language. This issue is
worth considering in the design of CP solvers, and may be
worth investigating as a potential improvement to MiniZinc.

Conclusions
In this paper, we presented CP and MIP models for the
problem of scheduling ships at a port with time-varying
draft constraints. We compared these models against both
fixed-draft schedules of the sort produced by existing ship
scheduling algorithms, and against manual scheduling ap-
proaches used in practice at ports. Our models produced
schedules that allowed more cargo throughput for some
problems than the fixed-draft and manual scheduling ap-
proaches, and were able to solve problems of realistic size.

Our CP and MIP models included constraints on the avail-
ability of tugs, which were highly sequence dependent and
made the problem computationally difficult. We were able to
solve this problem by splitting the tug constraints into sev-
eral scenarios which could be handled separately.

We found that the CP model with a good choice of search
strategy was significantly faster and was able to solve larger
problems than the MIP model. We also compared several
variations on our original CP model, and investigated their
effects on solution time. We found that converting CP con-
straints that used multi-dimensional array lookups with a

variable index to use one-dimensional arrays significantly
improved calculation time, particularly when searching first
on additional sequence variables specifying the order in
which ships sail. Sorting the input data prior to passing it
into the CP model also improved calculation time slightly.

Future Work
As this is the first paper considering a novel problem in mar-
itime logistics, there are several avenues for future research.

Other CP solvers may achieve faster calculation times for
this problem. In the 2011 MiniZinc Challenge, the Chuffed
and Gecode solvers achieved the fastest performance on the
closely related ship scheduling problem (University of Mel-
bourne 2011). However, it would be worth investigating a
wider array of solvers, including some that incorporate re-
cent advancements in global scheduling constraints, such
as constraints on optional interval variables (Laborie and
Rogerie 2008) and reservoir resource constraints (Laborie
2003).

In this paper, we only looked at optimising throughput
on a single tide. The multi-tide scheduling problem would
likely be suited to a Logic-Based Benders Decomposition
approach, similar to the manual scheduling approach used
in practice at some ports, where ships are first allocated
to tides, and then the schedule for each tide is optimised.
This is similar to other allocation and scheduling problems
where Logic-Based Benders Decomposition has proved ef-
fective (Hooker 2007) (Bajestani and Beck 2011).

Larger ship routing or mining supply chain optimisation
problems may also benefit from time-varying draft con-
straints. As shown in this paper, finding optimal schedules
with time-varying draft is a non-trivial problem even for a
single port. Multi-port problems may be solvable with a de-
composition approach, or using heuristic search.

Finally, this problem involves uncertainty due to variation
in environmental conditions, loading delays and equipment
breakdowns. Uncertainty may be a rich area for future work.
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