
Probabilistic Planning vs Replanning

Iain Little and Sylvie Thiébaux
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Abstract

A theoretical comparison of probabilistic planning and replan-
ning techniques, in the context of the planning competition.
Our main contribution is a baseline test for probabilistic inter-
estingness, along with some examples of its application. We
also attempt an analysis of the latest probabilistic competition
problems, and suggest some improvements that could be made
for future instances of the competition.

Introduction
The name probabilistic planning usually refers, somewhat re-
strictively, to planning with probabilistic action effects, with
a view to optimising the success probability of the plan. It
is commonly accepted that probabilistic planning and classi-
cal planning are appropriate under rather different circum-
stances. For instance, classical planning, with replanning
upon failure, is the option of choice when there is so little or
so much uncertainty about the world that it is not worth mod-
elling and reasoning about it. On the other hand, probabilistic
planning is seen as the way to go when classical planning is
not robust enough to avoid irreparable or costly failures, and
when an accurate and well-confined probabilistic uncertainty
model can be built.

Another popular belief about probabilistic planning is that
it involves computing a plan that handles many or even all
foreseeable contingencies. Or rather, such a contingent plan
comes as a by-product of doing the required analysis. There-
fore, probabilistic planning is particularly appropriate to gen-
erate plans for close-loop control situations, where the exec-
utive must react quickly. It also avoids solving the same sub-
problems over and over again. Plan reuse does not come for
free with a replanning approach, although a limited contin-
gency plan could in principle be built by a replanner over a
period of time.

Replanning is an online process while probabilistic plan-
ning is typically performed offline. There are situations
where there is no other choice but online planning and re-
planning. For instance, this occurs when goals dynamically
change or when the probabilistic problem is too large to be
solved at once. Symmetrically, there are critical situations
where we have to resort to offline probabilistic planning;
where a contingency plan has to be pre-generated and care-
fully analysed to ensure safety requirements are met. The
replanning strategy can be adapted to the offline setting by re-
cursively solving a deterministic problem for every possible
contingency of the corresponding probabilistic plan. How-

ever, this would likely undermine the efficiency of planning
and the quality of the plans produced.

The probabilistic track of the International Probabilistic
Competition (IPC) (Younes et al. 2005; Bonet & Givan
2005) is a forum where planning systems compete to solve
probabilistic planning problems described in a probabilis-
tic extension of PDDL (Younes et al. 2005). The mode
of evaluation, by execution of the plan over a number of
trials, enables both probabilistic planners and replanners to
compete. Following the report that the replanner FF-replan
(Yoon, Fern, & Givan 2007) outperforms all the probabilistic
planners featuring in the two editions of the IPC (2004,2006),
the commonly accepted view of the territories covered by
probabilistic planning and replanning has been shaken.

Here, we seek to more finely characterise the boundaries
between the planning and replanning approaches to solving
probabilistic planning problems. Our main contribution is a
declarative test for when a problem is ‘probabilistically in-
teresting’. Problems that fail this test are classical planning
problems in disguise, and for those, replanning is definitely
the technique of choice. When combining the definition with
an understanding of how a replanner makes its choices, it is
trivially easy to design problems where this replanner will
perform both incredibly well, and incredibly badly.

We illustrate this definition with some simple examples
as well as some larger instances of probabilistically interest-
ing problems. These exhibit structures that present an insur-
mountable challenge to a replanning strategy, showing that
probabilistic planning isn’t quite a lost cause. We then ex-
amine the domains and instances of the IPC-5 probabilistic
track. We show that the problem instances for 5 out of the 9
domains satisfy the baseline test for interestingness. In these
domains, the main reason why replanners can do compara-
tively well on the chosen problem instances is that the smaller
instances tend to be adequately or even optimally solvable
via replanning, the larger ones are often too large for current
probabilistic planners to get any result at all, and the crucial
intermediate region is hardly covered.

We should say upfront that the primary focus of our anal-
ysis is the case where the goal satisfaction probability is the
only criterion for evaluating the quality of plans. This is es-
sentially what ended up being the case in the IPC-5. But
this competition still featured problems that are best seen as
stochastic shortest path problems, and an extension of our
analysis based on this perspective would also be of value.



Probabilistic Planning
For the purpose of this analysis, we define a probabilistic
planning problem as:
• a finite set of states S;
• an initial state s0 ∈ S;
• a set G ⊆ S of (absorbing) goal states;
• a set O of outcomes; the probability of o ∈ O is Pr(o);
• a (total) deterministic transition function T (o, s) ∈ S for

all outcomes o ∈ O and states s ∈ S; and
• sets A(s) of applicable actions for each s ∈ S, together

with a function out(a) ⊆ O mapping each action to
a set of outcomes in such a way that (i) each outcome
o ∈ O belongs to exactly one action act(o), and (ii)∑

o∈out(a) Pr(o) = 1 for all a.

A trajectory is a possibly infinite sequence τ = o1, o2, . . .
of outcomes such that the respective actions are applicable
in sequence from the initial state, i. e. for all i ∈ 1, 2, . . .
act(oi) ∈ A(T (oi−1, . . . T (o1, s0))). A finite trajectory
o1, . . . , on reaches the goal if T (on, . . . T (o1, s0)) ∈ G. The
probability Pr(τ) of a trajectory is the product of the proba-
bilities of its outcomes.

A contingency plan π : S 7→ A is a (partial) mapping from
states to actions such that π(s) ∈ A(s). Such a plan induces
a possibly infinite set of trajectories T (π) = {o1, o2, . . . |
oi ∈ out(π(T (oi−1, . . . T (o1, s0))))}. We write TG(π) for
the subset of those that are goal trajectories.

The goal-satisfaction probability G(π) of plan π is the
sum of the probabilities of the goal trajectories induced by
π: G(π) =

∑
τ∈TG(π) Pr(τ). Plan π′ is better than plan π

iff G(π′) > G(π). A contingency plan is optimal if no other
plan is better.

A probabilistic contingent planner, or, perhaps abusively,
probabilistic planner for short, takes as input the probabilis-
tic planning problem description, and builds and outputs a
(possibly optimal) contingency plan for the problem.

Replanning
For the purpose of this paper, the object of a replanner is to
solve a probabilistic planning problem through the exclusive
use of a deterministic planner. This involves the compilation
of a probabilistic problem into a deterministic one. We as-
sume that the deterministic problem has the following char-
acteristics:
• a finite set of states Sd;
• an initial state sd

0 ∈ Sd;
• a set Gd ⊆ Sd of goal states;
• a set Ad(s) of applicable actions for each s ∈ Sd;
• a deterministic transition function T d(a, s) ∈ Sd for all

actions a ∈ Ad(s) and states s ∈ Sd; and
• a cost cd(a) for each action a.

Here, a trajectory is a sequence of actions, applicable from
the initial state. Goal trajectories are defined similarly as
before; these are the solutions to the deterministic planning
problem. The cost C(τ) of a trajectory is the sum of the costs
of the respective actions:

∑
i c(τi).

Compilations
A compilation from probabilistic to deterministic plan-
ning problems is a function ∆ satisfying the follow-
ing properties: for each probabilistic planning problem
P = 〈S, s0, G,O, T,A〉 and its compilation ∆(P ) =
〈Sd, sd

0, G
dAd, T d, cd〉, there are two functions σ : Sd 7→ S

and α : Ad 7→ O such that:

1. σ(sd
0) = s0;

2. s ∈ Gd iff σ(s) ∈ G; and

3. for each trajectory a1, a2, . . . in ∆(P ), there is a corre-
sponding trajectory o1, o2, . . . in P such that for all i

(a) α(ai) = oi, and
(b) σ(T d(ai, . . . T

d(a1, s
d
0))) = T (oi, . . . T (o1, s0)).

These properties ensure the correctness of the plans produced
by the replanner. Moreover, we say that a compilation pre-
serves trajectories iff the reverse of the third condition above
hold: for each trajectory o1, o2, . . . in P there is a corre-
sponding trajectory a1, a2, . . . in ∆(P ), such that for all i
(a) and (b) above hold. Preservation of trajectories is related
to the completeness of the replanning approach.

Two Specific Compilations
In the following, we will consider compilations that leave
the set of states intact, that is Sd = S, and σ(s) = s. The
interesting parts of these compilations are the derivations of
the action set, the transition function, and of the cost function
of the deterministic problem from the probabilistic one. In
this paper, we focus on the two following compilations:

∆1: only the most probable outcome (ties are broken arbi-
trarily) of each probabilistic action is kept to form the ac-
tions of the deterministic problem: Ad(s) = {o∈O | ∃a∈
A(s) s.t.act(o) = a and o = arg maxo′∈out(a) Pr(o′)}.
This compilation does not preserve trajectories. It makes
sense when the highest probability outcome corresponds
to the ‘successful’ execution of an action, and all other
outcomes correspond to a ‘failure’.

∆2: there is exactly one deterministic action built per out-
come of a probabilistic action: Ad(s) = {o ∈ O | ∃a ∈
A(s) s.t. act(o) = a}. Obviously, this compilation pre-
serves trajectories.

In both cases T d = T . We additionally consider two possi-
bilities for the cost function of the deterministic problem:

shortest: cd(a) = 1. Here, trajectories are preferred accord-
ing to their length.

most-likely: cd(a) = − log Pr(α(a)). Here, trajectories are
preferred according to their probabilities. Since probabil-
ities are multiplicative and in the [0, 1] interval, the stan-
dard trick to turn them into positive additive costs is to use
negated logarithms. This function leads an optimal deter-
ministic planner to generate the most likely trajectory to
the goal, among those allowed in the deterministic prob-
lem.

One can easily imagine more complex ways of discriminat-
ing between trajectories, for instance by using probabilities
as the primary criterion and length to break ties.



Replanner
A replanner, such as those we consider, is a type of online
planner which uses a deterministic planner to produce a so-
lution trajectory for the compiled problem. It attempts to ex-
ecute this solution. Whenever the current state deviates from
the expected one, it replans, generating a new trajectory from
the current state to the goal.

A replanner naturally induces a contingency plan, by map-
ping each state to the first action in the trajectory that the re-
planner would generate from that state. Only a few of the
trajectories induced by this contingency plan will typically
be generated by the replanner. In general this plan is subopti-
mal, even if generated with an optimal deterministic planner.

Below, we will consider the following replanners, which
are both based on an optimal deterministic planner, i. e., one
that generates the trajectory τ with minimal cost C(τ). This
optimality assumption is mainly to simplify our analysis of
the IPC problem instances:

REPLAN1: uses compilation ∆1 with cost function
shortest. Except for the assumption of optimality of the
underlying planner, the version of FF-replan that was en-
tered in the IPC-4 is an implementation of REPLAN1. FF-
replan is based on FF (Hoffmann & Nebel 2001), a subop-
timal planner.

REPLAN2: REPLAN2 (shortest) uses compilation ∆2 with
cost function shortest; REPLAN2 (most-likely) uses com-
pilation ∆2 with cost function most-likely. Except for
the optimality assumption, the 2006 version of FF-replan
which was evaluated on the IPC-5 problems is an imple-
mentation of REPLAN2 (shortest).

Probabilistically Interesting Problems
We have identified a number of structural properties that
probabilistic planning problems can have which are use-
ful when comparing probabilistic planning with replanning.
These include:

1. the presence—or lack thereof—of ‘dead end’ states;
states from which the goal is unreachable through any
combination of chance and choice,

2. the degree to which the probability of reaching a ‘dead
end’ state can be reduced through the choice of actions,

3. the number of distinct trajectories from which the goal
can be reached from the initial state, and

4. the presence of mutual exclusion; of choices that exclude
other (useful) courses of action later.

(Avoidable) Dead Ends
Dead end states are a fundamental feature of probabilistic
planning problems; it is what distinguishes probabilistic from
conformant planning. When one considers how the replan-
ning strategy interacts with planning problems that do not
have any dead ends, it becomes immediately obvious that—
assuming that there are no other constraints—a replanner
will always reach the goal with 100% probability, as there
is no possible deviation from a planned deterministic trajec-
tory from which the goal becomes unreachable. Moreover,
if the probability of achieving the goal is the only evaluation

criteria, then both a probabilistic planner and a replanner will
produce the same quality (i. e. ‘perfect’) solutions. The only
difference will be in how long the respective planners take to
achieve the goal. In any such setting where finding some goal
trajectory is much faster than finding an optimal contingency
plan, it is likely that the replanner will be faster. For plan-
ning problem where there are dead ends, it is possible that a
probabilistic planner will be able to produce a higher qual-
ity solution than a replanner. The replanner is still likely to
achieve the solution that it does find more quickly, however.

We distinguish between avoidable and unavoidable dead
ends. An unavoidable dead end is a dead end state where for
any given plan:

1. there is a positive probability of reaching it when execut-
ing the plan, and

2. the probability of reaching the state cannot be reduced
without also reducing the probability of achieving the goal.

Conversely, an avoidable dead end is a dead end state with
a positive probability of being reached when executing some
plan that can be reduced without also reducing the probabil-
ity of reaching the goal.

We view unavoidable dead ends as uninteresting, in a
probabilistic sense. The reason for this is that they are a fea-
ture that makes a problem look like a probabilistic problem,
but its structure is such that—as with problems that have no
dead ends at all—it is impossible to improve on the solution
that one finds when using a replanning strategy (again, as-
suming that the probability of achieving the goal is the only
evaluation criteria).

Multiple Goal Trajectories
The number of different ways in which the goal can possibly
be achieved is another important property when considering
the suitability of planning vs replanning for a given prob-
lem. In the extreme case when there is only a single way of
achieving the goal, it is clear that a replanning strategy will
(by definition) find it. Moreover, in problems with only a sin-
gle goal trajectory, a probabilistic planner just doesn’t have
anything to work with. There is no point in trying to optimise
the contingent probability of success when there aren’t even
any contingencies!

It might seem that the more goal trajectories there are, the
better a probabilistic planner will compare to a replanner.
This is not necessarily the case. In fact, if there are too many
different possibilities, then a probabilistic planner might get
bogged down trying to find the best way of integrating all
of them, while a replanner might quickly and directly find a
decent (and possibly even optimal) solution.

And more to the point: while multiple goal trajectories are
a necessary condition for a problem to be considered proba-
bilistically interesting, it is not sufficient. Consider, for ex-
ample, the case when there are no common actions between
any pair of goal trajectories. Again, a probabilistic planner
isn’t needed to construct a contingency plan if there is no
possibility of needing to plan for contingencies.

We expand the previous statement to formulate the first
two conditions of our definition of probabilistic interesting-
ness. A probabilistically interesting planning problem in-
cludes: (1) multiple goal trajectories; and (2) at least one



pair of distinct goal trajectories, τ and τ ′, that share a com-
mon sequence of outcomes for the first n − 1 outcomes, and
where τn and τ ′n are distinct outcomes of the same action.

The second condition is really a refinement of the first,
since it cannot be satisfied unless there are multiple goal tra-
jectories; it specifies the minimum structural requirement for
it to be possible to find a solution that actually contains con-
tingencies. We shall nevertheless keep the first condition to
make it clear that multiple goal trajectories are necessary.

Mutual Exclusion
To further develop our definition of a probabilistically inter-
esting planning problem, we now return to the idea of ‘avoid-
able dead ends’. For it to be possible that there be avoidable
dead ends, there has to be a degree of mutual exclusion in the
problem structure. Specifically, there have to be choices as to
which course of action to take that can—either potentially or
necessarily—exclude alternative choices. This can be seen
by going back to the conceptual definitions of avoidable and
unavoidable dead ends; for if there is no possibility of ex-
cluding potential courses of action, then eluding dead ends is
entirely due to chance, and not influenced by choice.

We now state these ideas more formally. A probabilisti-
cally interesting planning problem additionally satisfies the
property that: (3) there exist two distinct goal trajectories
τ and τ ′ and outcomes o ∈ τ and o′ ∈ τ ′ of two distinct
actions a = act(o) and a′ = act(o′) such that executing
a strictly decreases the maximum probability1 of reaching a
state where a′ can be executed.

As a useful aside, a property that is sufficient to show
the presence of mutual exclusion is the presence of non-
reversible exclusive choices. This is a stronger condition than
what we require for a problem to be considered probabilis-
tically interesting that can arise from either propositional or
metric resource constraints. In particular, if one can show
that there are exclusive sets of actions (that have goal tra-
jectory outcomes) such that executing any action on one set
permanently excludes the possibility of executing any action
in another set, then this is sufficient to show the presence of
mutual exclusion.

Putting It All Together
Definition 1 (Probabilistically Interesting Problem). A prob-
abilistic planning problem is considered to be ‘probabilis-
tically interesting’ if and only if it has all of the following
structural properties:

1. there are multiple goal trajectories;
2. there is at least one pair of distinct goal trajectories, τ

and τ ′, that share a common sequence of outcomes for the
first n − 1 outcomes, and where τn and τ ′n are distinct
outcomes of the same action; and

3. there exist two distinct goal trajectories τ and τ ′ and out-
comes o ∈ τ and o′ ∈ τ ′ of two distinct actions a = act(o)
and a′ = act(o′) such that executing a strictly decreases
the maximum probability of reaching a state where a′ can
be executed.
1To clarify: executing a rules out any plan with a maximal prob-

ability of executing a′.

We assert that unless a probabilistic planning problem sat-
isfies all of the structural conditions in this definition, then
it is inevitable that a well-written replanner will outperform
a well-written probabilistic planner. Unless a probabilistic
problem contains these structural properties, then it is effec-
tively a deterministic planning problem in disguise.

It is important to remember that it is possible that a replan-
ner will perform optimally even for probabilistically inter-
esting planning problems. In fact, this will occur whenever
attempting the ‘most promising’ goal trajectory is the cor-
rect thing to do, which can occur quite often for constructed
or generated problems. When combining the definition with
an understanding of how a replanner makes its choices, it is
trivially easy to design problems where this replanner will
perform both incredibly well, and incredibly badly.

There looks to be a true challenge when deciding what are
the appropriate structural properties to include in the prob-
lems for future probabilistic planning competitions. We con-
sider our definition of a probabilistically interesting planning
problem to be a useful tool to aid in this process.

Demonstration Problems
To demonstrate the application of the preceding theory, we
have created a number of very simple problems that ex-
plore the issue of probabilistic planning vs replanning. We
start with a probabilistically uninteresting problem that is
not solvable by FF-replan and continue with two problems
that are probabilistically interesting in different ways. We
have also identified a series of tireworld problems as
an example application of the theory to scalable problems.
Experimental results obtained by various IPC planners for
these problems are given in Table 1. The PDDL source
for these problems can be found at http://rsise.anu.
edu.au/∼thiebaux/benchmarks/pddl/.

Climber
The first problem is called climber, and is described by
the following story: “You are stuck on a roof because the
ladder you climbed up on fell down. There are plenty of peo-
ple around; if you call out for help someone will certainly lift
the ladder up again. Or you can try the climb down with-
out it. You aren’t a very good climber though, so there is a
40% chance that you will fall and break your neck if you do
it alone. What do you do?”

The climber problem consists of the actions
climb-with-ladder, climb-without-ladder
and call-for-help. There are two solution trajectories:
the short path, where one climbs without the ladder but risks
a 40% chance of dying; or the slightly longer path where
one calls for help then climbs with the ladder, which has no
risk at all. This problem is not probabilistically interesting
because it violates the second condition of Definition 1.
As ridiculously simple as this problem is, it is still not
(optimally) solvable by either REPLAN1 or REPLAN2
(shortest). In general, the alternative that a replanner
will choose depends on how it measures the cost of goal
trajectories; whether by length or probability. Our optimal
planners REPLAN1 and REPLAN2 (shortest) would both
choose the option with a 40% chance of dying. So would
both versions of FF-replan.



climber river bus-fare tire1 tire2 tire3 tire4 tire5 tire6

OPTIMAL 100% 65% 100% 100% 100% 100% 100% 100% 100%
REPLAN1 60% 50% 1% 50% 13% 3% 1% 0% 0%

REPLAN2 (shortest) 60% 50%/65% 1% 50% 13% 3% 1% 0% 0%
REPLAN2 (most-likely) 100% 50% 1% 50% 13% 3% 1% 0% 0%

FF-replan 60% 65% 1% 50% 0% 0% 0% 0% 0%
FPG 100% 65% 22% 100% 92% 60% 35% 19% 13%

Paragraph 100% 65% 100% 100% 100% 100% 3% 1% 0%

Table 1: Results for the demonstration problems. OPTIMAL, REPLAN1 , REPLAN2 (shortest), and REPLAN2 (most-
likely) show the theoretically expected success percentages for an optimal probabilistic planner and for the various replanners
we consider in this paper. The bottom part of the table shows experimental results obtained with IPC-5 planners: FF-replan
(Yoon, Fern, & Givan 2007) is a replanner, FPG (Aberdeen & Buffet 2007) is a suboptimal probabilistic planner, and Paragraph
(Little & Thiébaux 2006) is an optimal probabilistic planner. Each planner was given 10 minutes to solve each problem. The
river result for FF-replan changes to 50% if the action order is reversed in the domain description. Paragraph’s results for
tire4, tire5 and tire6 reflect the solutions that were found in 10 minutes; they improve as the time limit is increased.

River
The second problem is called river, and its story is as fol-
lows: “You are on one side of a river, and want to get to the
other side. There are some rocks that look like they could
be traversed. They are slippery though, so there is a 75%
chance you would slip and fall. If that happened, there would
be a 1 in 3 chance that you would drown in the current, but
you would probably be able to make it to a small island in
the middle of the river. An as alternative, there is a place fur-
ther down the river where you might be able to swim across.
The current is strong through, so you give yourself an even
chance of making it. If you could get to the island you would
have a better chance, around 80%. There is no way of swim-
ming there directly, though; the current is just too strong.
What do you to to maximise your chance of getting to the
other side without drowning?”

This problem describes a slightly more complicated situ-
ation than the first. There are three goal trajectories: swim-
ming across the river with a 50% chance of success, travers-
ing the rocks with a 25% chance of success, and slipping on
the rocks then swimming from the island with a 40% chance
of success (50% chance of making it to the island, then 80%
chance of swimming from the island). This problem is fun-
damentally based on an exclusive choice between traversing
the rocks and swimming across the river. Because the highest
probability trajectory is through initially swimming, that is
the option that a replanner that optimises trajectory probabil-
ities will choose. However, the optimal solution is to attempt
to traverse the rocks, as the contingent probability of success
is 65%, the sum of both goal trajectory probabilities that are
associated with this option.

For this problem, a replanner that optimises trajectory
length might find the optimal solution, but then again it might
not. If the replanner happens to choose to swim initially,
then the solution won’t be optimal. However, if it was lucky
enough to choose the (equal length) trajectory where one tra-
verses the rocks, then the replanner will correctly swim from
the island when that contingency arises.

This problem is probabilistically interesting, having mul-
tiple goal trajectories, contingencies and mutual exclusion.
The river problem embodies the essence of situations
where goal trajectory probabilities (or lengths) do not cor-

relate to contingent probabilities of success. We believe that
this is the most important distinction between problems that
can be solved satisfactorily with a replanner, and problems
that require full probabilistic reasoning.

Bus Fare
The final simple problem is called bus-fare: “You are at
a bus stop, and need to buy a bus fare to get home. Unfortu-
nately, you only have 1 dollar, and you need 3 dollars to buy
the bus fare. There is a man sitting to the side of the bus stop
playing with some dice, and he agrees to give you the money
for the bus fare if you correctly guess the roll of a 10-sided
die twice in a row. However, he doesn’t do things for free,
and charges a dollar each time you want to try this. There
is another man who is raising some beer money by washing
car windscreens at a nearby intersection. He is willing to
take a break and let you take over for a time, but requires
compensation for lost earnings. Since the amount that the
drivers pay is unpredictable—typically 1 or 2 dollars—the
car washer wants you to empty your pockets before washing
each car, but will let you keep the earnings. How can you get
home with the highest probability?”

This problem is structured as follows: (1) if at any time
you run out of money, then it is game over, (2) if you have 1
dollar, then you have the option of a single shot at winning,
but with only a 1% success probability, (3) it is always pos-
sible to (eventually) get 2 dollars as long as you have some
money, and (4) if you have 2 dollars, you have the same 1%
shot at winning, but it isn’t game over if it doesn’t work.

This problem is a more extreme example of trajectory
probabilities not corresponding to full contingent probabili-
ties, because the low probability trajectory can be tried again
and again until it works, and the (marginally) higher proba-
bility trajectory can be tried only once. While this particular
problem might seem unlikely, it serves as a microcosm of re-
source management scenarios where it is important to keep
something in reserve. It is also intended to demonstrate that
it doesn’t take a large number of actions for the penalty of
not using full probabilistic reasoning to become obscenely
large. All that is needed is for there to be a greater degree
of repeatability for the contingencies on the ‘bad trajectory’
branch of an exclusive choice.



Triangle Tireworld
To give a demonstration of how the theory can be applied
to scalable problems, we have identified a series of problems
for the IPC tireworld domain. The basic idea is that a car
can move between different locations via (directional) roads,
with the goal being to get from a ‘start’ to an ‘end’ location.
However, for each move between locations there is a chance
of getting a flat tire; so the idea is to find the shortest path to
the goal to maximise the probability of success. To compli-
cate matters, it is possible to replace a flat tire with a spare.
Some locations contain a spare, and the car itself is equipped
to carry a single spare. This means that the best course of ac-
tion can depend on which route has the highest proportion of
‘spare’ locations, and also whether or not the car is already
carrying a spare.

Significantly, versions of this domain have featured in both
probabilistic planning competitions. In the most recent com-
petition, it was perhaps the only domain where probabilis-
tic planners got systematically better results than replanners.
The problem instances, however, were randomly generated,
and did not contain much structure. They did not reflect the
typical performance gap we expect to see between proba-
bilistic planners and replanners on this domain. Here, we
demonstrate one possible way of systematically constructing
a series of problems with exponentially larger state spaces
that are guaranteed to be probabilistically interesting.

There are two ways in which this domain was modified
between IPC-4 and IPC-5. The first is that the action for
replacing a flat tire was given a probability of failing, and
the second was that the probability of getting a flat tire when
moving was increased. Neither of these changes affect how
probabilistically interesting this domain is, although the first
affects the size of the search space. The probability of getting
a flat tire can also affect whether or not it is worth going on
a detour to pick up a spare tire, and how close a replanner’s
solution will be to the optimal.

For this problem series, we have made the probability of
getting a flat tire 50% for each move, and have re-eliminated
the probability of needing to retry the replace tire action. We
also decided to prevent the car from storing a spare tire. This
change was primarily to make a completely optimal solution
easier to distinguish from suboptimal ones, but also to sim-
plify the analysis of individual problems. As it is, there is a
50% chance of getting stuck for every ‘mistake’ that is made.
If the car was able to carry a spare then the penalty for mak-
ing a mistake is potentially much less than this. It does not
make this domain less probabilistically interesting, and does
not affect a replanner’s performance in any significant way.

We refer to this series of tireworld problems as
triangle-tireworld, in reference to the fundamental
shape that it is patterned after. A visual representation of the
first three problems is given in Figure 1. The series has the
following significant properties:

1. there is a single optimal solution with a 100% success rate
to every problem, and the next best solution(s) will have a
50% success probability;

2. the difficulty of finding the optimal solution increases ex-
ponentially with each problem; and

3. a solution based on the shortest (or most likely) trajectory

start start start

goal

goal

goal

Figure 1: The first three triangle tireworld problems. White
locations do not have a spare, while black locations do. The
roads are all ‘one way’.

will have a success probability of 0.5(2n−1), where n is the
problem number.

For example, in the 3rd problem there are five trajectories
that imply 50% solutions, ten 25% solution trajectories, and
many more lower probability solutions. Each problem’s op-
timal solution is based on the longer route around the outer
edge of the largest triangle.

This series of problems is expected to provide a challenge
even for many probabilistic planners. Certainly a replan-
ning strategy is not expected to find a satisfactory solution.
Even a replanner that was extended to do basic probabilis-
tic reasoning—for example by using a look-ahead—would
be expected to find a progressively worse solution for each
successive problem. This is because a completely optimal
solution to any problem in this series must be based on one
of the longest possible (and lowest probability) ‘best case’
trajectories, when there are numerous goal trajectories that
are both shorter and have a higher probability.

Competition Problems
In 2004 and 2006, the International Planning Competition
featured a probabilistic track. The goal of this track is “to
assess the state of the art in probabilistic planning, to evaluate
and motivate research in the field, and to identify lines for
future research” (Bonet & Givan 2005).

Planners competing in the probabilistic track are given a
series of problem instances from various domains described
in a probabilistic extension of PDDL (Younes et al. 2005).
They are not required to produce an explicit solution, but are
instead evaluated by completing, for each instance, a certain
number of random trials within a certain amount of time.
Each trial corresponds to a possible trajectory of the underly-
ing contingency plan: starting from the initial state, the plan-
ner supplies an action, the evaluator randomly chooses one
of the possible resulting states, the planner supplies an action
for that state, and so on. The trial ends when a goal state is
reached, when the planner explicitly abandons the trial (typi-
cally because it has identified the current state as a dead end),



or when the number of steps taken exceeds a large bound.
The number of success trials, as well as the run time and cost
for each trial are recorded. In the IPC5, cost was measured
as the length (number of steps) of the trial.

The above mode of evaluation opens the possibility for re-
planners to compete in the probabilistic track. In 2004, a
version of FF-replan using compilation ∆1 (i. e. it ignores
any but the most likely effect of each operator), was entered
in the competition. This was a useful initiative to remind
the organisers that problems which have no dead ends, and
for which action costs are irrelevant, do not require reason-
ing about uncertainty at all. As expected, FF-replan won the
sub-track that consisted of deadend-free goal-achievement
problems, but was ineffective on probabilistically interesting
benchmarks. Since the first type constituted the vast majority
of problems, it was declared the overall winner.

In 2006, FF-replan did not enter the competition, as one
of its authors was one of the organisers of the track. Nev-
ertheless, it was reported that a version of FF-replan using
compilation ∆2 (i. e. it splits each probabilistic action into
one action per probabilistic outcome), was still able to sig-
nificantly outperform all competition participants. At first
glance, this seemed much more surprising, as there had been
some effort to include many more domains with dead ends
and which, a priori, required reasoning under uncertainty.

As those results tend to positively reflect on replanning,
and rather negatively on probabilistic planning, it is impor-
tant that they be carefully analysed. Otherwise, they might
cause an inaccurate perception of the worth of the respective
approaches, and maybe even precipitate the abandonment of
promising avenues of research. In this section, we present a
first attempt at such an analysis.

Probabilistically Interesting Domains
We start with the 5 competition domains which have proba-
bilistically interesting instances. Each of these domains has
potential, but we believe that the instance selection should be
improved.

Drive This domain describes a path planning problem in a
grid of locations. To move between the locations, it is nec-
essary to risk dying. The actual risk of death is a function
of several variables (the direction in which the car is head-
ing, light settings, length of segments), which determine how
many times the dangerous actions (e. g. waiting for a traffic
light to turn green or proceeding through a segment) need to
be repeated to successfully move. Some risk is unavoidable,
but some paths through the grid have a slightly higher risk
than others.

The problems for this domain satisfy the definition of a
probabilistically interesting problem, but this needs to be in-
terpreted carefully. Most importantly, it needs to be under-
stood that there is a relatively small difference between the
best possible route and the worst possible route. This is to the
point that the extra computation needed to work out which
route is optimal might only make a small difference in the
actual results. And with the competition evaluation method-
ology, this can easily be cancelled out by getting unlucky
with statistical variance.

In short, replanners using the ∆2 compilation can be ex-

pected to do reasonably well on problems for this domain,
even though one would expect a probabilistic planner that
could handle large enough problems to have a noticeably
higher success rate at least some of the time. The ∆1 compi-
lation is ineffective here, as the most likely outcomes imple-
ment the less desirable effects of actions.

Exploding Blocksworld This is a domain that appeared
in the 2004 competition, with slightly different probabili-
ties. This is a stochastic variant of the blocks world with 4
operators (pick-up, pick-up-from-table,put-down, put-down-
on-block) where blocks are set to detonate. When putting
down an undetonated block onto another block or the table,
the block detonates with probability 1/10 (resp. 2/5), result-
ing in the object it is being put onto being destroyed and not
available any longer to achieve the goal. Once detonated,
blocks behave as normal. The encoding has flaws as it en-
ables a block to be put onto itself, which makes it easy to get
rid of irrelevant blocks without destroying anything else.

The domain is probabilistically interesting and was in
fact especially designed for a replanning strategy to perform
poorly. The reason why FF-replan performs better than its
competitors here is twofold. The small 5-blocks problem in-
stances selected, to which probabilistic planners can easily
scale, are trivial. They are solved optimally by all the re-
planners we consider, including FF-replan, and by all IPC-
5 probabilistic planners.2 Moreover, probabilistic planners,
unlike (suboptimal) deterministic ones, have trouble scaling
to the next size (10 blocks), for which it is easy to randomly
generate difficult instances. So from 10 blocks onwards, we
have a situation were replanners are killed by their inability
to do probabilistic reasoning, and probabilistic planners by
their inability to scale.

Pitchcatch This domain looks to be based on baseball
ideas, with a cycle between pitching and catching phases.
The goal is to ‘deposit’ a ball for each of a given set of ball
types. We note that this is another domain for which the ∆1
compilation is inappropriate.

The problem instances for this domain are probabilis-
tically interesting. Multiple goal trajectories are a given,
several of the critical actions have multiple outcomes from
which the goal is reachable, and there is an interaction be-
tween at least two of the actions (setting an individual ‘bit’
and ‘pitching’) that allows choice to minimise the probability
of ‘dying’ to a degree.

Although it is clear that the probability of dying can be re-
duced through action selection, it is not clear how big the dif-
ference between planning and replanning is for this problem.
Most of these problems are too large to be solved effectively
by any of the probabilistic planners entered into the compe-
tition. The problems for this domain have a search space that
blows up fairly quickly, due to the number of possible proba-
bilistic outcomes. There aren’t that many things that one can
do, however, irrespective of which outcome occurs. It might
be that the potential for improvement over a replanning solu-
tion for these problems is minimal.

2The difference across planners on P04 is due to the variance
over a small number of trials. The optimal success probability for
this problem is 60%.



Schedule This domain is based on the concept of packet
scheduling. The basic idea is that packets are ‘arriving’ and
need to be ‘served’ before they are ‘dropped’. If a packet
is dropped, then we ‘reclaim’ it, but there is an chance of
dying. The arrival of packets in determined probabilistically,
one minimises the chance of dying by optimising the order
in which packets that have arrived are dealt with. As in Drive
and Pitchcatch, the ∆1 compilation is not appropriate for this
domain.

It is the probabilistic arrival of multiple packets, along with
the potential to minimise the chance of dying that makes the
problems of this domain probabilistically interesting. The
smaller problems do not exhibit much of this potential, and
the need for probabilistic reasoning is minimised by having
fewer classes of packets than time steps before a packet is
dropped. The 6th problem is where the probabilistic potential
starts to be realised, and the 11th problem onwards are par-
ticularly good. Unfortunately FF-replan cannot handle them,
and the probabilistic planners cannot scale well enough to
handle them either.

We believe that this selection of problems would have been
improved if all problems had more packet classes than time
steps before dropping a packet. This would have made prob-
abilistic reasoning a requirement right from the start, and not
just for the later problems.

There was also an issue with some successive instances
being highly similar, the only difference being slightly dif-
ferent probabilities for some of the outcomes. In fact, some
of the problems were identical to one another: problem P06
is exactly the same as problem P07, problem P09 is exactly
the same as problem P10, and problem P11 is exactly the
same as problem P12. This shows that more care needs to be
taken when randomly generating problems.
Tireworld We gave an overview of that domain earlier. To
recap, there are three actions: moving the car between con-
nected locations, loading a spare tire, and replacing a flat tire
with a spare. In the version used for the latest planning com-
petition, the probability of getting a flat tire when moving
is 40%, and there is also a 50% probability of failing to re-
place a flat tire (without penalty, so the action can always be
repeated).

In the set of generated problems that was used, a num-
ber of locations were randomly connected by (bi-directional)
roads, and spares assigned to random locations. All prob-
lems generated for this domain are probabilistically interest-
ing. Specifically, they all contain multiple goal trajectories,
they all have the potential of getting to the goal irrespective of
whether certain individual movement actions have a flat tire
or not, and there is definitely a possibility of getting stuck in
a dead end that can be reduced by choosing a different route.

Here FF-replan doing well is due to a combination of fac-
tors. The first is that despite their definitional interestingness,
the problems instances are rather trivial. 3 of them have sin-
gle step solutions (P02, P10, P12) and together with another
(P04) are solved optimally by all replanners considered in
this paper. Moreover, 14 out of 15 problems (all except for
problem 1) have shortest goal trajectories of three steps or
less. This leads to a reasonably high chance that FF-replan
could get lucky, which happens for instance on P05, P11 and

P13. Finally, there are some anomalies between the theo-
retically expected performance of FF-replan and the official
competition results on some problems that is large enough
not to be explainable by statistical variance. This showed
up most clearly for problems P07 and P08. An investigation
of this in collaboration with Sungwook Yoon revealed that
there must be a bug in the competition server. We are unsure
as to whether or not this affected any other domains or com-
petitors, but do not believe that it affected the competition
results in any significant way.

Probabilistically Uninteresting Domains
Finally, we end with the four domains that do not have
dead ends and are therefore probabilistically uninteresting.
Viewed from a goal-satisfaction probability angle, these
problems are best solved by a replanner. However, it would
be useful to know whether they would be more interesting, if
viewed as stochastic shortest paths problems (SSPP) instead.
In an SSPP, there exists at least one contingency plan with
goal-satisfaction probability 1, and the problem is to find one
such plan with minimum expected cost (which we take to be
length here). The analysis in this paper does not cover SSPPs
yet. Nevertheless, we shall informally report observations re-
lated to the potential suitability of the competition domains
and instances for that purpose.

Blocks World This is an extension of the traditional blocks
world with 4 operators. The first extension is that 3 of the
basic operators have a 1/4 probability of failing, changing
nothing or dropping the block held on the table. The second
extension is the presence of 3 actions that manipulate towers
of blocks at once; 2 of those have a very high probability 9/10
of failing, again either changing nothing or putting the tower
on the table. Unfortunately, the domain description used in
the IPC is flawed, and leads to inconsistent states. It is not
possible to fix the problem without resorting to quantified
preconditions or to using ‘above’ as a predicate. Below we
are assuming a correct version.

REPLAN2 (shortest) often does not find optimal plans
here, as minimal-length trajectories may use highly unlikely
outcomes which will lead to a large number of repeats of
failed actions. This was often the case in the competition
where FF-replan generated longer plans than its competitors.

On the other hand, REPLAN1 and REPLAN2 (most-
likely) will generate the plan with minimal expected length
for most problems of reasonable size. This happens because
(1) the ‘failure’ outcomes of the basic actions are not needed
to solve the SSPP optimally, and (2) the unlikely ‘success’
outcomes of the tower actions can only help when one can
move towers of 8 blocks at once. In an n-block random in-
stance of the IPC, the expected tower height is

√
n (Slaney &

Thiébaux 2001), so it takes large instances for this to happen
in non-pathological cases; much larger than even domain-
independent deterministic planners can handle. In particular,
all 5-blocks IPC instances can be solved optimally by RE-
PLAN1 and REPLAN2 (most-likely), and the optimal plan-
ner underlying our implementation of REPLAN2 could not
scale to the next size (10 blocks) instances.

Altogether, we do not expect to find challenging Blocks
World SSPPs that are of manageable size for current planning



systems. This means that the domain is probably better suited
to deterministic replanning than probabilistic planning at this
stage.

Elevators Someone needs to collect a number of coins at
various places in a two dimensional building. Vertically, a
number of elevators enable getting from one floor to the next.
Elevator shafts can be located at several locations of the hor-
izontal dimension. There are actions for an elevator going
up and down, and for getting in or or out of an elevator. On
each floor, one can walk to the left or right. The only un-
certainty is at a so called ‘gate’ location, where one falls to
the leftmost location on the bottom floor with probability 1/2.
Clearly, the goal is always reachable, and so the problem is
not probabilistically interesting.

When viewed as a SSPP, none of the replanners we con-
sidered can solve the problem optimally in general. In brief,
this is because optimal solutions can sometimes use the gate
uncertainty to their advantage. Other observations concern
the instances. The first is that the size of the competition in-
stances chosen seems reasonable in this domain. The second
is that just looking at the 10 first SSPP instances, the first 7
are solved optimally by REPLAN1 as there is no need to use
gates, all 7 but the first are solved optimally by REPLAN2
(shortest), and the first 5 are solved optimally by REPLAN2
(most-likely).

Random We have not analysed this domains in detail. A
precise analysis is made difficult because there is no generic
PDDL domain description for Random, but just a random
generator of domain/problem instances. A Random domain
is obtained by generating predicates and action templates
with random arities, fleshing out the latter by randomly gen-
erating preconditions and probabilistic effects. Then, initial
and goal states are selected in such a way as to guarantee
that the problem has at least one goal trajectory with a max-
imum length of 100 and whose probability is above a cer-
tain threshold (20%). Finally, FF is used to check that some
goal trajectory can be found easily (within less than 10 ms)
– those problems for which it can’t are discarded. To rule
out the existence of dead ends, there is a pair of determinis-
tic reset actions which, when applied in sequence, return one
to the initial state from any other. The first action resets to
a state where all propositions are false, and the second from
that state to the initial one.

It is worth noting that the size of the problem instances
generated is huge. P01 for example has about 300 atomic
propositions and 4000 outcomes. This did not prevent FF-
replan and to a large extent FPG to do well in terms of achiev-
ing the goal. However, we conjecture that the IPC random
instances viewed as SSPPs will prove quite difficult to solve
optimally: our implementation of REPLAN2, which is based
on an optimal planner couldn’t scale up to P01; an implemen-
tation of forward search using the admissible h1 heuristic did
not manage to find a goal trajectory for that same problem
within 2 hours.

So altogether, it would seem that Random shows promise
as an SSPP, but the size of the instances should be decreased.

Zeno This domain was (in a very similar form) also present
at the IPC-4, whose organisers pointed out that it “presented

no real challenge because [they] neglected to include action
costs” (Younes et al. 2005). Zeno is about getting a num-
ber of people from an initial to a goal location using a num-
ber of airplanes. There is uncertainty about the duration
of boarding and disembarking from an airplane. This un-
certainty is modelled via two actions for each activity (e. g.
start-boarding and complete-boarding), the lat-
ter succeeding with probability 1/k and failing with probabil-
ity 1 - 1/k, thereby modelling a geometric duration distribu-
tion. Flying from a location to another consumes a certain
amount of fuel which is independent of the actual duration
of the trip: either 1 unit of fuel for normal flying, or 2 units
for zooming. Again, the duration of flying and zooming have
geometric distributions, with flying taking longer on average
than zooming. Finally, there is an action for getting 1 unit of
fuel, also with a geometric duration.

There are no dead ends, as it is always possible to fly pro-
vided that the maximum possible fuel level is at least 1 (and
if it isn’t the problem is trivially unsolvable). So a trajectory-
preserving replanner like REPLAN2 will always reach the
goal. REPLAN1 cannot solve the problem in most cases be-
cause the most likely outcomes lead to failure.

Zeno seems more interesting when viewed as an SSPP.
Both versions of REPLAN2 do not necessarily find the opti-
mal SSPP solution. The shortest trajectory to the goal never
needs to make use of zooming, as it might require additional
refuelling actions. Unless the planes have so much fuel that
there is never any need to refuel even when zooming, the
probabilities are such that the most likely trajectory will be
identical to the shortest one, and so does not need to make
use of zooming either. Yet the optimal solution to the SSPP
is not always a concatenation of most likely or shortest tra-
jectories. The difference occurs when we can upgrade from
flying to zooming by refuelling one additional level.

While Zeno could turn out to be an interesting SSPP, the
IPC-5 results clearly show that unless the size of the Zeno
instances is reduced to be commensurable with the state of
the art in SSPP solving, probabilistic planners will inevitably
be outperformed by replanners.

Conclusion
Following our analysis, we can safely say that the pre-IPC-
5 understanding of where replanning and probabilistic plan-
ning are respectively appropriate has not suddenly become
obsolete. The competition results should not be surprising. A
large proportion of the instances were either probabilistically
uninteresting, too trivial to present any challenge for replan-
ners, or insurmountably large for probabilistic planning to be
suitable. It is rather inevitable that a replanner would ‘win’
in such a situation.3

Consequently, we believe that the current negative percep-
tion of probabilistic planning by the ICAPS community is in-
accurate. If anything, there has been significant progress and

3Domains, instances, and set up, are not the only factors influ-
encing the results of competitions. As it is well-known from the de-
terminstic track, the language also has an influence on participation
and results. For instance, despite efforts from the IPC-4 organisor
in providing translations to ADDs, the choice of PPDDL seems to
have discouraged many structured-MDP approaches that were flor-
ishing a few years ago to participate in the probabilistic track.



innovation since IPC-4.4 Noticeably, some of the IPC-5 com-
petitors are designed to be much more expressive than re-
quired by the competition problems and address difficult ar-
eas of research. For instance, FOLDP produces generalised
policies for first-order Markov decision processes (Sanner &
Boutilier 2007). FPG is originally designed for probabilistic
temporal planning problems which may contain continuous
variables and distributions, uncertain durations, and where
makespan, resources, and failure probability need to be op-
timised (Aberdeen & Buffet 2007). So, the fact they could
perform reasonably well in a very restricted setting is a rather
remarkable accomplishment.

We believe that the most important lesson from the com-
petition probabilistic track is that a synthesis of planning and
replanning techniques could make a much larger number of
probabilistic planning problems practicably solvable than is
currently possible. In a panel talk at the ICAPS-06 Work-
shop on Planning under Uncertainty, David Smith pointed
out that while the field has developed reasonably powerful
approaches to replanning, conformant planning, and contin-
gent planning, the most important thing it is missing is a the-
ory of how to integrate them all. In such an integration, re-
planning should be the baseline. When uncertainty is not uni-
formly neglectable in a problem, we might want to build parts
of plans that are robust (or conformant) to certain sources of
uncertainty. Unfortunately, robustness also has a cost, be-
cause it may prevent taking advantage of certain opportuni-
ties. If such opportunities are important, then, and only then,
contingent planning should be used to account for them. This
integration of replanning with limited conformant and con-
tingency planning should become one of the main priorities
in field’s research agenda. See (Buffet & Aberdeen 2007;
Foss, Onder, & Smith 2007) for works in this direction.

Finally, we have demonstrated that while it is easy to de-
sign benchmarks that are optimally solvable with a replan-
ner, it is just as easy to design benchmarks that require a sig-
nificant amount of probabilistic reasoning to obtain a satis-
factory solution. Therefore, (unless perhaps it featured real-
world problems) a single probabilistic planning track is un-
likely to be measuring anything but which camp the major-
ity of problems selected belong to. It would be much more
interesting to have two tracks. The first should encourage
the field to develop planners that integrate replanning and
probabilistic planning. It would use a mixed set of prob-
lems and would retain the current mode of evaluation. The
second track would measure progress in solving problems
that require a significant amount of probabilistic reasoning
to obtain an even remotely satisfactory solution. It would
require contestants to compute an explicit policy or contin-
gency plan, and then compute its ‘score’ exactly. The current
set of probabilistically interesting benchmark domains, cou-
pled with a careful selection of problem instances might even
suffice as a basis for both tracks.

4For what this observation is worth, mGPT (Bonet & Geffner
2005), which we consider as the best performing probabilistic plan-
ner in the IPC-4, is outperformed by FPG, the official IPC-5 winner,
on all IPC-5 domains except Tireworld. The IPC-4 version of FF-
replan, the official IPC-4 winner, is also outperformed by FPG glob-
ally, and on four of the five probabilistically interesting domains
(Yoon, Fern, & Givan 2007).
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