
Planning Via Petri Net Unfolding: Generalisation and Improvements

Blai Bonet
Dept. de Computación

Universidad Simón Bolı́var
Caracas, Venezuela

Patrik Haslum
National ICT Australia &

Australian National University
Canberra, Australia

Sarah Hickmott
National ICT Australia &

University of Adelaide
Adelaide, Australia

Sylvie Thiébaux
National ICT Australia &

Australian National University
Canberra, Australia

Abstract

Recent research has connected automated planning and tech-
niques for analysing reachability in Petri nets. One outcome
is a new forward search approach to partial-order planning,
based on translating planning problems into Petri nets and
guiding a Petri net reachability technique called unfolding
with planning heuristics. Unfolding is an attractive method
for planning as it naturally enables the recognition and sep-
arate resolution of independent subproblems, and can be ex-
ponentially more efficient than state-space search. Unfortu-
nately, existing requirements for the soundness and complete-
ness of unfolding have confined the approach to the genera-
tion of optimal plans, given additive action costs and mono-
tonic heuristics. In this paper, we establish a relaxation of
these requirements under which we are able to generalise the
unfolding technique to optimise non-additive criteria such as
makespan, and to exploit inadmissible heuristics. This opens
the way to using unfolding in the temporal and suboptimal
planning settings. We also describe a number of improve-
ments to the translation which reduce the size of the Petri net
produced. Our experiments show that planning via unfolding
is competitive across a range of problem settings.

Introduction
The past year has witnessed a number of works that effec-
tively exploit the relationship between planning and Petri net
analysis (Edelkamp & Jabbar 2006; Hickmott et al. 2007;
Bonet et al. 2007). From the planning perspective, one out-
come is a new heuristic forward search method for partial
order planning, implemented in the PUP planner (Hickmott
et al. 2007). PUP translates planning problems into Petri net
reachability problems, which are solved using a technique
known as unfolding (McMillan 1992; Esparza, Römer, &
Vogler 2002). The translation preserves the explicit action-
variable dependencies present in planning operators. In ad-
dition, the concurrency semantics of Petri nets gives the abil-
ity to reason about partially ordered sets of actions without
considering their interleavings. This is exactly what unfold-
ing does, and for this reason, it can be exponentially more
efficient than state-space search.

In Petri net analysis, where the problem is often to prove
the absence of deadlocks, unfolding traditionally amounts
to a breadth-first search that explores the entire space of par-
tially ordered event sets. An important contribution of Hick-
mott et al. (2007) was to show that the unfolding can be
guided towards a goal, using monotonic heuristics. Under
this guidance, PUP produces cost-optimal non-linear plans

for additive action costs, i.e., the sum of the costs of the ac-
tions in the non-linear plan is minimal. One of the greatest
limits of PUP is that additive costs and monotonicity of the
heuristic appear to be required to ensure the soundness and
completeness of the approach. This confines the unfolding
technique to a restricted form of optimal classical planning.

This paper significantly generalises the scope of applica-
bility of the unfolding technique. Our contributions are as
follows. We establish relaxed requirements for the sound-
ness and completeness of unfolding, under which even inad-
missible heuristics can be used to guide it. This generalisa-
tion not only opens the way to using unfolding in a subopti-
mal planning context, but is also particularly relevant in the
context of Petri net reachability analysis, where it scales up
to problems beyond reach of existing unfolding tools. More-
over, we extend the unfolding approach beyond the additive
cost framework, enabling it to optimise makespan and han-
dle temporal planning problems. We also offer a more ef-
ficient translation of planning problems into Petri nets, ad-
dressing some of the avoidable causes for explosion. Finally,
we show that these extensions, incorporated into PUP, lead
to performances that range from honorable to state of the art,
depending on the problem setting considered: (sub-)optimal
classical planning, optimal temporal planning, and Petri net
reachability analysis.

The paper is organised as follows. We start with a brief
introduction to Petri nets and unfolding. We go on with a de-
scription of our improved translation of planning problems
into Petri nets. We then lay the foundations for guiding un-
folding using general heuristics, when additive costs are in-
volved. We follow with optimisation of non-additive cost
criteria such as of makespan, and its application to temporal
planning. Finally, we present experimental results across a
range of problem settings, and conclude with a summary of
our contribution, related and future work.

Petri Nets and Unfoldings
This section briefly describes the syntax and semantics of
Petri nets, presents the reachability problem for Petri nets,
and outlines the technique of unfolding. The next section
deals with the translation of a planning problem into a suit-
able Petri net reachability problem.

Place Transition Nets
A place transition (PT) net is a low level Petri net (see left-
hand side of Fig. 1). It consists of a net N and its initial
marking M0. The net is a directed bipartite graph where



the nodes are places P and transitions T . Typically, places
represent the state variables and transitions the events of the
underlying system. The dynamic behavior is captured by a
flow relation, F : (P × T ) ∪ (T × P ) → {0, 1}, indicating
the presence (1) or absence (0) of arcs. The marking M of
a PT-net represents the state of the system by assigning to
each place zero or more tokens, M : P → N. In this paper
we only consider safe (or 1-safe) nets, meaning it is never
possible for more than one token to exist in a place.

The preset •x of node x is the set {y ∈ P ∪T : F (y, x) =
1}, and its postset x• is the set {y ∈ P ∪ T : F (x, y) = 1}.
The marking M enables a transition t if M(p) > 0 for all
p ∈ •t. The occurrence, or firing, of an enabled transition t
absorbs a token from each of its preset places and puts one
token in each postset place. This corresponds to a transition
M

t→M ′ in the system, moving the net from M to the new
marking M ′ given by M ′(p) = M(p)−F (p, t)+F (t, p) for
each p. A firing sequence σ = t1, . . . , tn is a legal sequence
of transition firings, i.e. there exist markings M1, . . . ,Mn

such that M0
t1→· · · tn→Mn; denoted as M0

σ→Mn. A marking
M is reachable if there is a sequence σ such that M0

σ→M .

Unfoldings
Unfolding is a method for reachability analysis which gen-
erates all possible firing sequences of the net, from the initial
marking, whilst maintaining a partial order of events based
on the causal relation induced by the net. Unfolding a PT-
net produces a pair β = 〈ON, ϕ〉 where ON = 〈B,E, F ′〉
is an occurrence net, which is a PT-net without cycles or
backward conflicts, and ϕ is a homomorphism from ON
to N that associates the places/transitions of ON with the
places/transitions of the PT-net. A backward conflict is the
case when two transitions output to the same place. Such
cases are undesirable since in order to decide whether a to-
ken can reach a place in backward conflict, it would be nec-
essary to reason with disjunctions such as from which tran-
sition the token came from. Therefore, the process of un-
folding involves breaking all reachable places in backward
conflict by making independent copies of such places, and
thus the ON net may contain multiples copies of the places
and transitions of the original net which are identified with
the homomorphism ϕ. In the occurrence net ON , places
and transitions are called conditions B and events E respec-
tively. The initial marking M0 defines a set of initial condi-
tions B0 in ON such that the places initially marked are in
1-1 correspondence with the conditions in B0. The set B0

constitutes the “seed” of the unfolding.
The right-hand side of Fig. 1 shows a prefix of the unfold-

ing of the PT-net on the left-hand side. Notice the multi-
ple instances of place g due to the different firing sequences
through which it can be reached (multiple backward con-
flicts). Note also that transition 0 does not appear in the
unfolding, as there is no firing sequence that enables it.

Configurations
To understand how an unfolding is built, the most important
notions are that of a configuration and local configuration.
A configuration represents a possible partial run of the net.
It is any set of events C such that:

1. C is causally closed: e ∈ C ⇒ e′ ∈ C for all e′ ≤ e, and
2. C contains no forward conflict: •e1 ∩ •e2 = ∅ for all

e1 6= e2 in C,
where e′ ≤ e means there is a path from e′ to e in ON .
Clearly, a configuration C is a fragment of ON such that all
events in C can be ordered into a firing sequence with re-
spect to B0. The local configuration of an event e, denoted
[e] is the minimal configuration containing event e. For in-
stance, in the finite prefix in Fig. 1, [e5] = {e1, e3, e4, e5}.

A configuration C can be associated with a marking
Mark(C) of the original PT-net by identifying which condi-
tions will contain a token after the events in C are fired from
the initial marking; i.e. Mark(C) = ϕ((B0 ∪ C•) \ •C)
where C• (resp. •C) is the union of postsets (resp. presets)
of all events in C. The marking of C identifies the resultant
marking of the original PT-net when (only) the events in C
occur. For instance, in Fig. 1, the marking of [e5] is {g, b}.

Constructing a Finite Prefix
The unfolding process involves identifying which transitions
are enabled by the conditions, currently in the occurrence
net, that can be simultaneously marked. The identified tran-
sitions are referred to as the possible next events. A new
instance of each such event is then added to the occurrence
net, as are instances of the places in each of their postsets.

The unfolding process starts from the seed B0 and extends
it iteratively. In most cases, the unfolding β is infinite and
thus cannot be built. However, it is not necessary to build the
complete unfolding β but a complete finite prefix β′ of β that
contains all the information in β. Formally, a prefix β′ of β
is complete if for every reachable marking M , there exists
a configuration C ∈ β′ such that Mark(C) = M , and for
every transition t enabled by M , there exists a configuration
C ∪ {e} such that e /∈ C and ϕ(e) = t.

The key to obtaining a complete finite prefix is to identify
those events at which we can cease unfolding without loss
of information. Such events are referred to as cut-off events
which are defined with the help of an adequate order on
configurations (McMillan 1992; Esparza, Römer, & Vogler
2002). In the following, C ⊕ E denotes a configuration that
extends C with the finite set of events E disjoint from C.
Definition 1 (Adequate Order) A partial order ≺ on finite
configurations is adequate if
• ≺ is well founded, i.e. it has no infinite descending chains,
• if C ⊂ C ′ then C ≺ C ′, and
• ≺ is preserved by finite extensions, i.e. if C1 ≺ C2

and Mark(C1) = Mark(C2), then for all finite extensions
C1⊕E1 and C2⊕E2 such that E1 and E2 are isomorphic,
we have C1 ⊕ E1 ≺ C2 ⊕ E2.

Without threat to completeness, we can cease unfolding
from an event e, if e takes the net to a marking which can
be caused by some other event e′ such that [e′] ≺ [e]. This is
because the transitions (and thus markings) which proceed
from e will also proceed from e′ (Esparza, Römer, & Vogler
2002).

The ERV Algorithm
A finite complete prefix can be built using the ERV algo-
rithm depicted in Algorithm 1. The algorithm maintains a



b

a

1

2

3

c

d

e 4
f

g

6

7

5

0

b (c1) 3 (e3) e (c5)

a (c2)

2 (e2)

1 (e1)

d (c4)

c (c3) 4 (e4)
g (c6)

f (c7)

5 (e12)

g (c17)

f (c18)

7 (e6) a (c9)

6 (e5) b (c8) 3 (e9) e (c12)

2 (e8)

1 (e7)

d (c11)

c (c10)
4 (e11)

g (c15)

f (c16)

5 (e10)

g (c13)

f (c14)

Figure 1: Example PT-net (left). Finite Prefix of its Unfolding (right). Places=circles, transitions=squares and tokens=dots.

Algorithm 1 The ERV Unfolding Algorithm
Add the conditions in B0 to the prefix
Initialise the priority queue with the events possible in B0

Note: the queue is sorted in increasing order wrt ≺
while the queue is not empty:

Remove the first event in the queue
if it is not a cut-off

Add the event and its postset to the prefix
Insert new possible events into the queue

endif
endwhile
Add the postsets of all cut-off events to the prefix

priority queue in which the events to be added to the un-
folding are ordered in increasing order of ≺ (wrt. their lo-
cal configuration). At each iteration, a minimal event is ex-
tracted from the queue and added to the unfolding together
with all the conditions in its postset. Additionally, all the
events enabled by the new conditions are inserted into the
priority queue. The algorithm finishes with a complete un-
folding when the queue becomes empty.

The prefix in Fig. 1 is the complete finite prefix that
MOLE1, a publicly available implementation of the ERV al-
gorithm, generates for our example. The events e10, e11,
and e12 are all cut-off events. This is because each of their
local configurations has the same marking as the local con-
figuration of event e4, i.e. {f, g}, and each of them is greater
than the local configuration of e4 with respect to the ade-
quate partial order implemented by MOLE.

Reachability via Unfoldings
The reachability problem for 1-safe PT-nets is the following:

REACHABILITY: Given a PT-net 〈P, T, F 〉, initial
marking M0, and P ′ ⊆ P ; determine whether there
is σ such that M0

σ→M where M(p) = 1 for all p ∈ P ′.
This problem is in general PSPACE-complete, yet several al-
gorithms have been designed for it. We are interested in the
on-the-fly approach, which experimental results have shown
to be most efficient when considering just a single marking
(Esparza & Schröter 2001). This method was first suggested

1
http://www.fmi.uni-stuttgart.de/szs/tools/mole/

by McMillan (1992). It involves introducing a new transi-
tion tR to the original net, such that •tR = P ′. The net is
then unfolded, as described previously, but stops when an
event eR, such that ϕ(eR) = tR, is generated. At this point
we can conclude that the set of places P ′ is reachable. If no
such event is identified, the prefix of the unfolding is gener-
ated completely, indicating that P ′ is not reachable.

Typically, the adequate order used to unfold a PT-net is the
partial order induced by cardinality, C ≺ C ′ iff |C| < |C ′|
(McMillan 1992), or some extensions of it (Esparza, Römer,
& Vogler 2002). This amounts to a breadth-first search since
the priority queue in such case becomes a FIFO queue.

Planning Problems and Their Translation
A planning problem is a tuple 〈A, I, O, G〉 where A is a
set of propositions, I ⊆ A is the initial state, O is a set
of grounded operators (actions), and G is a set of goal lit-
erals. Operators are characterized by their preconditions
pre(o) and their effects eff(o), which are both sets of literals.

As usual, a valid sequence of operators for a planning
problem is one that maps the initial state to a state satisfy-
ing the goal. A non-linear plan for the problem is a multiset
of operator instances π together with a transitive precedence
relation≤ such that any consistent ordering of the actions in
π with respect to ≤ is a valid sequence for the problem.

Overview of the Translation
The reader may now be able to visualise the planning do-
main in the Petri net world. There is a set of places which
represent literals. The presence of a token in a place indi-
cates that the literal is true. The transitions represent the
operators. When an operator is executed, the tokens move
out and in the relevant places, capturing the change in state.

The automatic translation of a planning problem into a
Petri net, as proposed by Hickmott et al. (2007), proceeds
in two steps, as does our improved translation. The first step
transforms all operators into 1-safe operators (defined be-
low) without negative preconditions. The second step trans-
lates the modified problem into a Petri net. The 1-safety of
the planning operators ensures that the resulting net is also
1-safe, which is essential for the ERV algorithm. Compiling
away negative preconditions is necessary because a transi-
tion in a Petri net can only be conditioned on the presence
of tokens in a place, not their absence. Before translation,



the planning problem is subjected to standard preprocessing
techniques like reachability and relevance analysis. This re-
duces the size of the grounded problem, which improves on
both the size of the final Petri net and the speed of the trans-
lation process. Our improvment targets the first step of the
translation; details are presented below.

Ensuring 1-safety
An operator is 1-safe iff every literal in the operators effects
is necessarily false in any reachable state satisfying the oper-
ators preconditions. The naive way to ensure that this holds
is to include among the preconditions the negation of every
literal appearing in the effects. An unsafe operator can thus
be converted into collection of safe ones, by creating one
“copy” of the operator per combination of values for miss-
ing preconditions, and removing, in this new operator, any
effect literal contained in the extended precondition (Hick-
mott et al. 2007). However, the number of copies thus cre-
ated is exponential in the number of missing preconditions,
and often it is the case that an operator is safe even though
for some of its effects no explicit negation appears in the pre-
conditions. Consider, as an example, an operator for moving
a vehicle ?v between locations ?a and ?b in a transporta-
tion domain such as Logistics: the effects are at(?v,?b)
and ¬at(?v,?a), and only the negation of the second,
at(?v,?a), is in the operators precondition. But the nega-
tion of the first, ¬at(?v,?b) is implied by the fact that the
two propositions at(?v,?a) and at(?v,?b) are mutu-
ally exclusive, i.e. both cannot hold in any reachable state.

We use standard reachability analysis techniques (com-
puting mutexes and state invariants, as in e.g. (Bonet &
Geffner 1999; Helmert 2006)) to try to detect when the nega-
tion of a literal in the effects is implied by the literals already
present in the preconditions. If this is not the case, we resort
to making the negation explicit, creating multiple copies of
the operator. The analysis uses polynomial-time approxima-
tions of mutual exclusions, so it is still possible that it adds
explicit negations that are in fact not needed, but in practice
the number of cases where we need to do this are few; many
of the standard benchmark domains are 1-safe, or nearly 1-
safe, and we are able to detect this.

Eliminating Negative Preconditions
After the problem has been made (or found to already be)
1-safe, negations can be removed following the standard
procedure of replacing each negative literal ¬a with a new
proposition â and modifying all operators so those that make
a true make â false, and vice versa, thus ensuring that ex-
actly one of a and â will hold in every reachable state. (Note
that this preserves 1-safety of the problem.) However, even
here we can sometimes do better. In many planning prob-
lems, there exists already pairs of propositions that are “im-
plicitly” each others negation, and thus we do not need to
introduce new propositions for this purpose. A binary mutex
is a pair of propositions such that at most one holds in any
reachable state: to determine if the two atoms are in fact an
implicit negation pair, i.e. if exactly one of them holds in any
reachable state, we construct a (hypothetical) state invariant
out of the two propositions and run an invariant verification
procedure, like that of Helmert (2006).

Conversion into a PT-net
Finally, the 1-safe and negation free planning problem is
translated into a Petri net by a straightforward mapping of
propositions to places and actions to transitions. Formally,
a planning problem 〈A, I, O, G〉 with safe operators and no
negative preconditions is translated into a PT net 〈P, T, F 〉
with initial marking M0 where
• the places P are the propositions A plus a place R;
• the transitions T are the operators O plus a transition tR;
• the preset of each transition o ∈ O is •o = pre(o), i.e.,

the set of places in pre(o);
• the postset of each transition o ∈ O is o• = eff(o) ∪ {p :

p ∈ pre(o) and¬p 6∈ eff(o)}, the places for eff(o) plus the
places for the preconditions that o does not delete;

• the preset of the goal transition is •tR = G, i.e., the set of
goal places; it postset is tR

• = {R} (goal reached);
• M0(p) = 1 if and only if p ∈ I .
The additional places in the postsets are due to the semantics
of Petri nets: unlike a planning operator a transition always
consumes its preconditions. Non-deleted preconditions are
modeled by having the transition output a token back into the
corresponding place. In classical planning, this models the
semantics of the planning problem faithfully, in the sense
that a plan is valid for the planning problem exactly when
the corresponding set of transition firings is a configuration
of the Petri net, and their costs are the same. However, in
temporal planning the correspondance is not exact, because
there are cases in which two operators are allowed to execute
concurrently according to the planning semantics (as defined
by Smith & Weld 1999), but where the corresponding tran-
sitions in the Petri net are not concurrent. This happens only
when the operators share a non-deleted precondition. An al-
ternative translation uses a separate place for each “reader”
and preserves the planning semantics (Vogler, Semenov, &
Yakovlev 1998).

Planning via Unfolding
The planning problem can now be cast as the reachability of
tR in the PT-net generated by translation. This reachability
problem is solved using on-the-fly unfolding, as explained
earlier. When tR is reached, its local configuration gives a
non-linear plan for the planning problem. The PUP planner
is based on this idea and uses the MOLE implementation of
the ERV algorithm as the underlying unfolding tool.

However, as pointed out earlier, the standard cardinality
based ordering implemented in MOLE leads to a breadth-
first search. Hickmott et al. (2007) identified that the order-
ing can be changed in such a way as to implement heuristic
search. In particular, provided that the costs of the actions
in a plan are additive, any monotonic heuristic yields an ad-
equate order. They also pointed out that non-monotonic, let
alone inadmissible heuristics do not fullfill the adequacy re-
quirements, and therefore lead to a potential incompletness
of the planner. The next section extends Hickmott’s results
to arbitrary heuristics, including inadmissible ones.

Directed Unfolding with Additive Costs
As done in heuristic search, we are interested in order re-
lations induced by functions f defined on configurations



which are decomposed in two parts as

f(C) = g(C) + h(C) ,

where g(C) defines the ‘cost’ of the current configuration
C and h(C) ‘estimates’ the distance from C to transition
tR. To simplify the exposition, we assume that all costs are
unit costs; the generalization to arbitrary positive costs is
straightforward as just need to replace the expression |C| by∑

e∈C c(e) where c(e) is the cost for event (operator) e. In
this case, g(C) = |C| is the number of events in C while
h(C) is any non-negative valued function such that h(C) =
0 if tR ∈ C, and h(C1) = h(C2) if Mark(C1) = Mark(C2).
Such function f defines an ordering ≺f given by

C ≺f C ′ iff
{

f(C) < f(C ′) if f(C) < ∞
|C| < |C ′| if f(C) = f(C ′) = ∞

which is adequate if the heuristic function is monotonic.
In order to define notions of monotonic and admissi-

ble heuristics, let us define the optimal heuristic function
h∗(C) = |C ′| − |C| where C ′ ⊇ C is the minimum2 con-
figuration C ′ that contains tR if such exists, and ∞ other-
wise. Then, h is an admissible heuristic if h(C) ≤ h∗(C)
for all finite configurations C, and h is a monotonic heuristic
if h(C) ≤ |C ′|− |C|+h(C ′) for all finite C ′ ⊇ C. Observe
that monotonic heuristics are also admissible. Additionally,
let us say that a configuration C∗ is optimal if tR ∈ C∗ and
C∗ is of minimum cardinality among such configurations.

It is not hard to show that monotonic heuristics induce ad-
equate orders (Hickmott et al. 2007), but that there is no
such guarantee for admissible and non-admissible heuris-
tics. The problem lies in the second condition in Defini-
tion 1. However, such condition can be relaxed by requiring
that in every sufficiently large chain C1 ⊂ C2 ⊂ · · · ⊂ Cm

there are 1 ≤ i < j ≤ m such that Ci ≺ Cj . The result-
ing orderings will be referred to as semi-adequate orderings.
Our first result is that semi-adequate orders can be used to
define the cut-off events in a sound manner.

Theorem 2 Let the order relation ≺ be semi-adequate.
Then, the ERV algorithm solves REACHABILITY; i.e. finds
transition tR if such transition is reachable, or generates a
complete finite prefix otherwise.

Moving from adequate to semi-adequate orders permit to
plug admissible and inadmissible heuristics into the search.

Theorem 3 Let g(C) = |C|, h be a non-negative valued
function such that h(C) = 0 if tR ∈ C, and h(C1) ≤ h(C2)
if C1 ⊆ C2 and Mark(C1) = Mark(C2), and ≺f defined as
above for f = g+h. Then,≺f is a semi-adequate order and
thus ERV solves REACHABILITY. Moreover, if h is admissi-
ble and tR is reachable, ERV finds an optimal configuration.

Directed Unfolding for Makespan
For temporal planning, we set the cost of the actions, and
thus the cost of the transitions, to the durations of the op-
erators, i.e. c(e) = dur(o) if event e corresponds to op-
erator o. Since the makespan of a partial plan is the dura-
tion of the critical path in the plan, we define the cost of a

2Cardinality wise.

configuration as the costlier chain in the configuration, i.e.
g(C) = maxσ∈C

∑
e∈σ c(e), where the max is over all

chains σ in configuration C. Likewise, each place p in the
(final) marking of C has a corresponding cost that refer to
the time at which p is asserted in the configuration C. In
symbols,

c(C, p) = max
σp∈C

∑
e∈σp

c(e)

where the max is over all chains σp that support p. Clearly,
g(C) = max{c(C, p) : p ∈ Mark(C)}. The optimal
makespan heuristic is then defined as h∗(C) = minC′ g(C ′)
where the min is over all C ′ ⊇ C that contain tR.

The heuristic h(C) must estimate the cost of reaching tR
from Mark(C) while considering the relative times at which
the places p ∈ Mark(C) are asserted. We thus define the
relatives times t(p) as t(p) = c(C, p)− g(C). Observe that
these quantities are always less than or equal to zero.

We consider a heuristic htmp similar to the hmax heuristic
used in classical planning by means of dynamic program-
ming seeded at the relative times; i.e.

htmp(C) = max{0, dis(C, tR
•)} ,

dis(C,F ) =

{ maxp∈F t(p) F ⊆ M
mint∈•p c(t) + dis(C, •t) F = {p}, p 6∈ M
maxp∈F dis(C, {p}) otherwise

where M = Mark(C). It is not hard to show that if C ⊆ C ′,
then g(C) + htmp(C) ≤ g(C ′) + htmp(C ′) and therefore, this
heuristic is admissible and monotonic.

Unfortunately, in the case of temporal planning, the order
≺f induced by f(C) = g(C)+htmp(C) is not semi-adequate
since the third condition in Definition 1 no longer holds. To
see this, consider two configurations C and C ′ with identical
markings {a, b}, and makespans g(C) = 4 and g(C ′) = 5
given by the assertion times:

c(C, a) = 3 , c(C, b) = 4 , c(C ′, a) = 2 , c(C ′, b) = 5 .

Let e be an event with unique preset •e = {a} and cost 5,
and f be the final event tR with •f = {b} and cost 1. On
one hand we have, f(C) = g(C) + htmp(C) = 4 + 1 and
f(C ′) = g(C ′) + htmp(C ′) = 5 + 1. On the other hand, for
D = C ∪{e} and D = C ′∪{e}, f(D) = 8 and f(D′) = 7.
Thus, f(C) < f(C ′) and f(D) > f(D′).

As shown, the problem is that subcritical paths in a con-
figuration can become critical once the configuration is ex-
tended with an event, and thus the ordering of two configura-
tions can be reversed after the extension. The fix is to require
extra conditions when one goes from f to ≺f . Let us define
the makespan order ≺ms, induced by f , as C ≺ms C ′ iff

(i) f(C) < f(C ′), or g(C) < g(C ′) if f(C) = f(C ′) =
∞, and

(ii) if Mark(C) = Mark(C ′), then c(C, p) ≤ c(C ′, p) for
all p ∈ Mark(C).

In this way, we avoid such inversions and thus the third con-
dition of semi-adequate orderings is restored. Observe that
in the case Mark(C) = Mark(C ′), condition (ii) implies
condition (i), and so the implementation should check (ii)
first. The main result for temporal planning follows.



100

90

80

70

60

50

40

30

20

10

0
30010050.50.10.050.030.01

%
 P

R
O

B
LE

M
S

 S
O

LV
E

D

run time (sec)

DARTES

original
hmax

hff
hsum

100

10

1

1e-1

1e-2

1e-3
502010

15105110511051

R
U

N
 T

IM
E

 (s
ec

)

nb states per component

RANDOM PT-NETS

nb components

original
hsum

Figure 3: Results for Reachability Analysis on DARTES
(top) and on RANDOM PT-nets (bottom)

Theorem 4 Let h be a non-negative valued function on con-
figurations such that h(C) = 0 if tR ∈ C. Then, the order-
ing ≺ms induced by f = g + h is semi-adequate and thus
ERV solves REACHABILITY. Furthermore, if h is admissi-
ble, then ERV finds optimal configurations.

In the next section, we present experimental results of our
approach with this ordering on temporal planning problems,
with unit and non-unit durations.

Experiments
We extended MOLE, the unfolder underlying PUP, to use
the different orderings induced by adaptation of the plan-
ning heuristics hmax, hsum, and hFF for planning with addi-
tive costs, and of the htmp heuristic for optimising makespan
in classical and temporal planning. hmax and hsum are the
usual h1 distance heuristics with max and sum, and hFF is
the FF heuristic. hmax and htmp are monotonic, the others are
inadmissibe. We performed experiments on four types of
problems: Petri net reachability problems, suboptimal and
optimal classical planning, and optimal temporal planning.
Below, we also report results concerning our translation.

Reachability Analysis for Petri Nets
The original version of MOLE is a state of the art tool for
Petri net reachability analysis. Here we show that the di-
rected version of MOLE solves problems that were previ-
ously beyond reach of its parent.

DARTES is a challenging Petri net benchmark which mod-
els the communication skeleton of an Ada program (Corbett
1996). The top graph in Fig. 3 compares the performance
of the original version of MOLE to versions directed by the
heuristics. We recorded the time taken by each version to

av. incr. av. red. nb. av. red.
Domain actions size solved time

AIRPORT
old
new

90%
39% 88% 18

21 x14

PIPESWORLD
old
new

900%
0% 89% 10

14 x20

Table 1: Benefits of the Improved Translation

decide the reachability of each of the 253 DARTES transi-
tions. The graph shows the percentage of problems solved
within increasing computation time limits from 0.01 to 300
sec. The original breadth-first version of MOLE is systemat-
ically outperformed by all of the directed versions. Overall,
the original version solves 185 of the 253 problem instances
(73%), whereas the version directed by hsum solves 245 of
them (97%). The instances solved by each directed version
is a strict superset of those solved by the original.

To study the scalability of directed unfolding, we consider
random Petri nets obtained by connecting a set of component
automata in an acyclic dependency network. The random
problems feature 1− 15 component automata of 10, 20, and
50 states each. The resulting Petri nets range from 10 places
and 30 transitions to 750 places and over 4000 transitions.
The bottom graph in Fig. 3 shows the run times of the orig-
inal version of MOLE and of the version directed by hsum.
Evidently, the latter can solve much larger problems. For
the largest instances we considered, the gap reached over 2
orders of magnitude in speed and 3 in the size of the unfold-
ing produced. The original version could merely solve the
easier half of the problems.

Translation
Table 1 illustrates the benefits of our improved transla-
tion using the IPC4 domains AIRPORT (instances 1-21) and
PIPESWORLD (no-tankage, instances 1-30). The table suc-
cessively reports the average increase in the number of ac-
tions required to ensure 1-safety under the old and new trans-
lations, the average reduction (new vs old) in size (number
of nodes) of the Petri net, the number of problems optimally
solved by PUP with the hmax heuristic, and the average re-
duction (new vs old) in the run-time of PUP.

For PIPESWORLD, the new translation is able to entirely
eliminate the need to introduce new operators. In both
benchmarks, the reduction in size that follows is important
(90%), and the gains in terms of ability to solve problems
and run-time (14 and 20 times faster) are significant.

Suboptimal Classical Planning
Turning to planning, we first performed experiments with
PUP guided by the inadmissible hFF and hsum heuristics, to
evaluate its qualities as a suboptimal planner. Using the
hsum heuristic resulted, almost consistently, in worse results,
so below we consider only PUP with hFF. For comparison,
we ran two other suboptimal planners: LPG-Td (Gerevini,
Saetti, & Serina 2006) and SGPlan (Chen, Wah, & Hsu
2006), using the AIRPORT and PIPESWORLD domains. The
run-times are presented in the left-hand graphs of Fig 2.

In the AIRPORT domain, PUP and the other planners find
plans of the same length, which also equal the best (i.e.



1e3

100

10

1

1e-1

1e-2

1e-3
 1  3  5  7  9  11  13  15  17  19  21  23  25  27  29

R
U

N
 T

IM
E

 (s
ec

)

IPC-4 instance ID

AIRPORT SUBOPTIMAL

sgplan
pup hff

LPG 100

10

1

1e-1

1e-2

1e-3
 1  3  5  7  9  11  13  15  17  19  21  23  25  27  29

IPC-4 instance ID

AIRPORT

satplan06
pup htmp

1e3

100

10

1

1e-1

1e-2

1e-3
 1  3  5  7  9  11  13  15  17  19  21  23  25  27  29

IPC-4 instance ID

AIRPORT TEMPORAL

CPT
pup htmp

1e3

100

10

1

1e-1

1e-2

1e-3
 1  3  5  7  9  11  13  15  17  19  21  23  25  27  29

R
U

N
 T

IM
E

 (s
ec

)

IPC-4 instance ID

PIPESWORLD SUBOPTIMAL

sgplan
pup hff

LPG

1e3

100

10

1

1e-1

1e-2
 1  3  5  7  9  11  13  15  17  19  21

IPC-4 instance ID

PIPESWORLD

satplan06
pup htmp

1e3

100

10

1

1e-1

1e-2
 1  3  5  7  9  11  13  15  17  19  21

IPC-4 instance ID

PIPESWORLD TEMPORAL

CPT
pup htmp

Figure 2: Run Times for Suboptimal Classical Planning (left), Optimal Classical Planning (center), and Optimal Temporal
Planning (right). Benchmarks are AIRPORT (top), PIPESWORLD (bottom). Times do not include translation.

shortest) plan length reported by any suboptimal planner in
IPC4. We conjecture that these problems have a single, ob-
vious solution that all planners find. For most problems, PUP
is faster than LPG-Td and comparable with SGPlan, but on
larger problems SGPlan is faster.

Results in PIPESWORLD are more interesting. PUP’s run-
time is very competitive with LPG-Td and falls short of SG-
Plan’s, but in this domain, PUP finds plans of superior qual-
ity, not only to the two planners in the comparison but in
many cases shorter than the best result reported by any plan-
ner in IPC4. See Table 2.

Optimal Classical Planning

Hickmott et al. have shown that PUP is competitive with
the HSP planner (Haslum 2006) which is the state of the art
for optimal classical planning with arbitrary additive costs.
Here, we therefore only consider optimal parallel planning,
that is, makespan optimisation with unit costs, for which
the leading planner is SATPLAN06 (Kautz, Selman, & Hoff-
mann 2006). The center graphs in Fig. 2 show the run-times
of SATPLAN and PUP (run with the htmp heuristic) on AIR-
PORT and PIPESWORLD. In both domains, the concurrency
in the net generated by our translation is guaranteed to coin-
cide with that allowed in the original planning problem.

PUP clearly outperforms SATPLAN on AIRPORT, solving
more problems faster, but is equally clearly outperformed
by SATPLAN on PIPESWORLD. These results are not sur-
prising: SATPLAN is well known to excel on problems with
short optimal parallel plans, as is the case for PIPESWORLD,
while the directed version of PUP can handle longer optimal
plans, provided independent subproblems exist.

Optimal Temporal Planning
We compared the temporal version of PUP, using the htmp

heuristic, with the CPT planner (Vidal & Geffner 2006).
CPT, like PUP, is optimal w.r.t. makespan, and uses non-
directional branching together with constraint propagation
techniques for pruning in search. It is likely the best optimal
temporal planner, overall, at the moment. We also ran blind
PUP and the TP4 planner (Haslum 2006), but since both are
completely outperformed by CPT and PUP with htmp we do
not include their results. As shown in the right-hand graphs
of Fig 2, the results of CPT are generally better in the AIR-
PORT domain. In PIPESWORLD, however, results of the two
planners are more mixed, with both solving some problems
not solved by the other, and both being sometimes faster.

Conclusion, Related, and Future Work
Directed unfolding is a promising approach for planning
since it combines the power of heuristic forward search with
the ability to reason directly about partially-ordered plans.
In this paper, we have presented important extensions and
generalisations of this technique. We have shown that it
can safely be used in conjunction with inadmissible heuris-
tics for suboptimal planning and Petri net reachability analy-
sis. We have extended it to optimise makespan for temporal
planning. Even though PUP does not resort to the sophis-
ticated heuristics and search strategies deployed by state of
the art planners, its performance across a range of problem
settings is extremely encouraging.

Edelkamp and Jabbar (Edelkamp & Jabbar 2006) recently
introduced a method for directed model-checking Petri nets.
It operates by translating the deadlock detection problem



id 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
PUP 14 13 18 20 24 16 30 26 42 22 30 26 32 14 31 18 24 35 39 28 35 33 40
best 10 14 20 20 24 20 30 26 70 22 30 28 38 14 35 18 37 42 55 30 47 40 51

Table 2: Plan length reported by PUP with hFF vs best length reported by any suboptimal IPC4 planner (PIPESWORLD)

into a metric planning problem, solved using a heuristic
state-space search planner (metric-FF planner (Hoffmann
2003)). Such methods however, do not exploit concurrency
in the powerful way that unfolding does. In contrast, our ap-
proach combines heuristic search with the best of Petri net
reachability analysis.

There is much scope for further developments to the plan-
ning via unfolding approach. Our priority for future work is
to investigate Petri nets with read-arcs (Vogler, Semenov, &
Yakovlev 1998). Such arcs do not consume tokens and are
therefore useful to model the accurate semantics of concur-
rent planning in the presence of shared non-deleted precon-
ditions. This has the potential to greatly improve the perfor-
mance of PUP, as it will not need to examine the interleav-
ing of events which only conflict on read places. Unfolding
with read-arcs is rather complex, and is a hot research topic
in Petri net reachability analysis (Baldan et al. 2007)

There is also further room for improvement in the trans-
lation of planning into Petri nets, which can occasion-
ally be the bottleneck of the approach. We experimented
with a translation linear in the number of propositions, but
quadratic in the number of actions in the domain as it re-
quires “mutex” places to ensure 1-safety. But we found that
in many benchmarks, the number of mutex places greatly
dominates the size of the Petri net. This legitimates the
translation we and Hickmott et al. consider, which is linear
when the actions are 1-safe, but is exponential in the number
of operators effects in the worst case. However, it would be
beneficial to combine the two translations as appropriate.

More ambitious developments concern more compact
translations into high-level nets making use of multi-valued
variables. The use of heuristic strategies to guide the un-
folding of higher level Petri nets, such as coloured nets
(Khomenko & Koutny 2003), is also interesting in its own
right. Well developed tools such as PUNF3 could be adapted
accordingly for experiments in this area.

Finally, the connections between unfolding and structural
and complexity analysis for planning should be studied.
This includes e.g. determining whether a precise relation-
ship holds between the size of the unfolding and the width
of the causal graph or other structural parameters.

Acknowledgements
Thanks to Stefan Schwoon for his help with MOLE and in-
teresting discussions. Special thanks to Lang White for sug-
gesting we explore the connections between planning and
unfolding-based reachability analysis, and discussing op-
timisation in the unfolding framework. The authors also
thank NICTA and DSTO for their support via the DPOLP
project. NICTA is funded through the Australian Govern-
ment’s Backing Australia’s Ability initiative, in part through
the ARC.

3
http://homepages.cs.ncl.ac.uk/victor.khomenko/tools/punf

References
Baldan, P.; Corradini, A.; König, B.; and Schwoon, S. 2007.
Mcmillan’s complete prefix for contextual nets. Submitted for
publication.

Bonet, B., and Geffner, H. 1999. Planning as heuristic search:
New results. In Proceedings of the Ninth International Confer-
ence on Automated Planning and Scheduling (ICAPS/ECP-99),
360–372.

Bonet, B.; Haslum, P.; Hickmott, S.; and Thiébaux, S. 2007.
Directed unfolding of petri nets. Submitted to the Workshop on
Unfolding and Partial-Order Techniques (UFO-07).

Chen, Y.; Wah, B.; and Hsu, C. 2006. Temporal planning us-
ing subgoal partitioning and resolution in SGPlan. Journal of AI
Research 26:323–369.

Corbett, J. C. 1996. Evaluating deadlock detection methods for
concurrent software. IEEE Transactions on Software Engineering
22(3).

Edelkamp, S., and Jabbar, S. 2006. Action planning for directed
model checking of petri nets. Electronic Notes Theoretical Com-
puter Science 149(2):3–18.

Esparza, J., and Schröter, C. 2001. Unfolding based algorithms
for the reachability problem. Fundamentia Informatica 46:1–17.

Esparza, J.; Römer, S.; and Vogler, W. 2002. An improvement
of McMillan’s unfolding algorithm. Formal Methods in System
Design 20(3):285–310.

Gerevini, A.; Saetti, A.; and Serina, I. 2006. An approach to
temporal planning and scheduling in domains with predicatable
exogenous events. Journal of AI Research 25:187–231.

Haslum, P. 2006. Improving heuristics through relaxed search –
an analysis of TP4 and HSP∗a in the 2004 planning competition.
Journal of AI Research 25.

Helmert, M. 2006. Solving Planning Tasks in Theory and Prac-
tice. Ph.D. Dissertation, Institut für Informatik, Albert-Ludwigs
Universitaẗ Freiburg.

Hickmott, S.; Rintanen, J.; Thiébaux, S.; and White, L. 2007.
Planning via Petri net unfolding. In Proceedings of the Twentieth
International Joint Conference on Artificial Intelligence (IJCAI-
07), 1904–1911.

Hoffmann, J. 2003. The metric-FF planning system: Translat-
ing ignoring delete lists to numerical state variables. Journal of
Artificial Intelligence Research 20.

Kautz, H.; Selman, B.; and Hoffmann, J. 2006.
SATPLAN: Planning as satisfiability. In 5th Inter-
national Planning Competition Booklet. Available at
http://zeus.ing.unibs.it/ipc-5/.

Khomenko, V., and Koutny, M. 2003. Branching processes of
high-level petri nets. In Proceedings of the Ninth International
Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS-03), 458–472.

McMillan, K. L. 1992. Using unfoldings to avoid the state ex-
plosion problem in the verification of asynchronous circuits. In
Proceedings of the Fourth International Workshop on Computer-
Aided Verification (CAV-92), 164–177.



Smith, D., and Weld, D. 1999. Temporal planning with mutual
exclusion reasoning. In Proc. 16th International Joint Conference
on Artificial Intelligence (IJCAI’99), 326–333.
Vidal, V., and Geffner, H. 2006. Branching and pruning: An op-
timal temporal POCL planner based on constraint programming.
Artificial Intelligence 170(3):298–335.
Vogler, W.; Semenov, A. L.; and Yakovlev, A. 1998. Unfold-
ing and finite prefix for nets with read arcs. In Proceedings
of the ninth International Conference on Concurrency Theory
(CONCUR-98), 501–516.


