
Concurrent Probabilistic Planning in the Graphplan Framework

Iain little and Sylvie Thiébaux
National ICT Australia & Computer Sciences Laboratory

The Australian National University
Canberra, ACT 0200, Australia

Abstract

We consider the problem of planning optimally in potentially
concurrent probabilistic domains: actions have probabilis-
tic effects and may execute in parallel under certain condi-
tions; we seek a contingency plan that maximises the proba-
bility of reaching the goal. The Graphplan framework has
proven to be highly successful at solving classical planning
problems, but has not previously been applied to probabilis-
tic planning in its entirety. We present an extension of the
full framework to probabilistic domains that demonstrates a
method of efficiently finding optimal contingency plans using
a goal regression search. Paragraph, the resulting planner,
is competitive with the state of the art, producing acyclic or
cyclic plans that optionally exploit a problem’s potential for
concurrency.

Introduction
Probabilistic planning—planning when action effects are
probabilistically determined—differs from classical plan-
ning in the need to consider courses of action contingent on
the actual outcomes of executed actions. Here, an effective
solution is a contingency plan with maximal probability of
reaching the goal within a given time horizon.

Most recent research in probabilistic planning is focused
on Markov decision process (MDP) models and dynamic
programming or state-space search methods (Boutilier,
Dean, & Hanks 1999). MDP models typically assume that
actions are executed sequentially, and yet real-world prob-
lems often require a degree of concurrency. For instance,
military operations planning generally involves concurrent
tasks for different units, e.g. air and ground forces, each of
which may fail with some probability (Aberdeen, Thiébaux,
& Zhang 2004); and Mars rover control involves the use of
instruments while the robot is moving in a manner that is not
completely predictable (Bresina et al. 2002).

In this paper, we consider probabilistic planning problems
described in the Probabilistic Planning Domain Definition
Language (PPDDL) (Younes & Littman 2004), but allowing
concurrency. These are equivalent to concurrent Markov de-
cision processes, i.e., MDPs allowing multiple actions per
decision step as considered by Mausam and Weld (2004).
Concurrent MDPs are interesting in their own right; they
also constitute a useful stepping stone in assessing the fea-
sibility of our approach for the more general probabilistic

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

temporal planning problem (Little, Aberdeen, & Thiébaux
2005; Mausam & Weld 2005). Unfortunately, concurrent
MDPs cause an exponential blowup in dynamic program-
ming and state-space search techniques. This leads us to in-
vestigate approaches that efficiently deal with concurrency
in the deterministic setting, and to mitigate the penalty for
allowing concurrency by appropriately extending them to
probabilistic planning.

The Graphplan framework (Blum & Furst 1997) is one
such approach. Extensions of this framework for probabilis-
tic planning have been developed (Blum & Langford 1999),
but either dispense with the techniques that enable concur-
rency to be efficiently managed, or are unable to produce
optimal contingency plans. Specifically, PGraphplan
finds optimal (non-concurrent) contingency plans via dy-
namic programming, using information propagated back-
wards through the planning graph to identify states from
which the goal is provably unreachable. This approach
takes advantage of neither the state space compression inher-
ent in Graphplan’s goal regression search, nor the prun-
ing power of Graphplan’s mutex reasoning and nogood
learning. TGraphplan is a minor extension of the origi-
nal Graphplan algorithm that computes a single path to
the goal with a maximal probability of success; replanning
could be applied when a plan’s execution deviates from this
path, but this strategy is not optimal.

Our main contribution is a framework for applying the
Graphplan algorithm to (concurrent) probabilistic plan-
ning. It enables much of the existing research into the
Graphplan framework to be transfered to the probabilis-
tic setting. Paragraph is a planner that implements some
of this potential, including: a probabilistic planning graph,
powerful mutex reasoning, nogood learning, and a goal re-
gression search. The key to this framework is an effi-
cient method of finding optimal contingency plans using
goal regression. This method is fully compatible with the
Graphplan framework, but is also more generally applica-
ble. Other Graphplan optimisations that could be applied
to Paragraph include explanation-based learning, invari-
ant synthesis, and constraint-based search techniques.

We start by defining the probabilistic planning problem
that we consider, and the properties of the contingency plans
generated by Paragraph. We then give an overview of the
original Graphplan framework, followed by a description
of our probabilistic planning graph. We continue with the
descriptions of Paragraph’s search space and search algo-
rithms for generating both acyclic and cyclic plans. Finally,



we compare the performance of Paragraph with state of
the art probabilistic planners.

Probabilistic Planning Problem
The probabilistic planning problems we consider consist of
a finite set of propositions P , an initial state s0 ⊆ P , a goal
G ⊆ P , a finite set of actions A, a finite set of outcomes O,
and a time horizon h. Every action a has a set of precondi-
tions pre(a) ⊆ P , and a set of outcomes out(a) ⊆ O. Each
outcome o belongs to exactly one action act(o), and has a
set of add effects add(o) ⊆ P and a set of delete effects
del(o) ⊆ P . For each action a, there is a probability distri-
bution Pra(o) over the outcomes out(a). The horizon h is
finite when acyclic plans are sought, and infinite otherwise.
Paragraph adopts a (reward-less) PPDDL-like syntax

(Younes & Littman 2004); it directly supports negative pre-
conditions and goals, but as this impacts on the algorithms
in only obvious ways we have decided to use the simpler
model described above.

Concurrency
A joint outcome of a given set of actions A ⊆ A is a set
consisting of exactly one outcome of each action in A. We
define the set of possible joint outcomes of A as Out(A) =
{O ⊆ O | ∀a ∈ A ∃!o ∈ O ∩ out(a)}. Every joint outcome
O belongs to exactly one action set Act(O) =

⋃
o∈O act(o),

and occurs with probability Pr(O) =
∏

o∈O Pract(o)(o).
A set of actions A can be concurrently executed in a state

s ⊆ P when: (1) the action preconditions are satisfied in s:⋃
a∈A pre(a) ⊆ s, and (2) the actions have at least one con-

sistent joint outcome. We say that a joint outcome is consis-
tent if: (a) no proposition is both added and deleted, and (b)
no proposition that is deleted by one outcome is a precondi-
tion of another’s action. That is, ∃O ∈ Out(A) such that:
(a)

⋃
o∈O add(o) ∩

⋃
o∈O del(o) = ∅, and

(b) ∀o ∈ O del(o) ∩
⋃

a∈A\{act(o)} pre(a) = ∅.

The result of joint outcome O occurring in state s is
res(s,O) = (s \

⋃
o∈O del(o)) ∪

⋃
o∈O add(o) if O is con-

sistent and ⊥ otherwise. It might be reasonable to insist that
all joint outcomes be consistent for a set of actions to be ex-
ecuted, but as we explain in (Little, Aberdeen, & Thiébaux
2005), it can be useful to find solutions that only satisfy the
weaker condition. Allowing potential conflicts can some-
times be necessary for a solution to be possible at all. More-
over, the probability of a failure, e.g. arising from a conflict-
ing set of outcomes, is naturally minimised by optimising
planners.

It can often be desirable to restrict the degree of concur-
rency that is allowed, e.g., to reduce the size of the search
space. This applies particularly to domains that do not admit
concurrent solutions. We consider three different models for
managing concurrency (the second of which only applies to
goal-directed planners):
Unrestricted: actions are permitted to execute concurrently

as defined above, without any additional restrictions.
Restricted: a pair of actions are additionally prevented

from executing concurrently when a pair of ‘preferred
outcomes’ both add or both delete the same proposition.

By ‘preferred outcomes’, we mean a pair of outcomes that
the search algorithm has determined to be desirable for
achieving the goal, and not a chance contingency that inci-
dentally needs to be considered to make a plan complete.
This model is intended to allow the planner to produce
plans that attempt to achieve each subgoal in one way at a
time, but to not prohibit chance occurrences that just hap-
pen to achieve a subgoal in multiple ways. In many do-
mains, solving a problem using this concurrency model
will produce the same solution as the unrestricted model.

Non-concurrent: actions are not permitted to execute con-
currently under any circumstance.

Paragraph implements the non-concurrent and restricted
concurrency models. Its algorithms could easily be applied
to the unrestricted concurrency model, although there is
likely to be a significant performance overhead.

Plans
In order to encompass both acyclic and cyclic solutions,
we define a plan as a deterministic finite state automaton
〈Q, q0,M, δ, F 〉, where Q is the finite set of plan states or
“steps”, q0 ∈ Q is the initial plan step, M : Q → 2A is
the labelling function that prescribes the set of actions to be
concurrently executed at a given plan step, δ : Q× 2O → Q
is the plan’s partial transition function such that δ(q, O) is
defined iff O ∈ Out(M(q)), and F ⊆ Q is the set of final
plan steps. All final plan steps—and no others—are labelled
with the empty action set.

We define the function L : Q → 2P ∪{⊥} that intuitively
maps each plan step to the world’s state when that step is
executed. A plan is valid iff the length of longest path from
q0 to a final step in F does not exceed the horizon h, and
there exists an L such that: L(q0) = s0, L(q) 6= ⊥ for every
non-final plan step q ∈ Q \ F ; and for every plan step q ∈
Q, the set of actions M(q) can be concurrently executed in
world state L(q) and L(δ(q, O)) = res(L(q), O) for every
joint outcome O ∈ Out(M(q)).

The cost C(q0) of a plan is the expected probability of fail-
ing to reach the goal1and is defined recursively as follows:

C(q) =

8>><>>:
0 q ∈ F and L(q) ⊇ G
1 q ∈ F and L(q) 6⊇ GX
O∈Out(M(q))

Pr(O)× C(δ(q, O)) otherwise

A plan is optimal when its cost is minimal for the given
solution space. We say that a plan is non-redundant when it
contains no actions that could be omitted without affecting
the plan’s validity or cost.2 There always exists a plan that is
both non-redundant and optimal (e.g. any optimal plan with
all redundant actions removed).

1Although we only minimise probability of failure here,
Paragraph could be used to generate optimal plans for (con-
current) stochastic shortest path problems (Bonet & Geffner 2003;
Mausam & Weld 2004), given the cost of individual actions (and
assuming additive costs for action sets).

2Testing whether an action can be omitted could be done by
setting the precondition of this action to true and the effects of all
its outcomes to ∅, leaving the structure of the plan intact.



A (valid) trajectory q0
O0→ q1 . . .

On−1→ qn with n ≤ h is a
path in the plan from the initial step to a final step at which
the goal is reached, i.e., it satisfies L(q0) = s0, L(qn) ⊇ G,
and for i = 0 . . . n− 1, the actions in M(qi) can be concur-
rently executed in L(qi) and L(qi+1) = res(L(qi), Oi) 6=
⊥. We say that a trajectory is non-redundant when it con-
tains no action that could be omitted without affecting the
validity of that trajectory.

A composite contingency plan is a contingency plan
where for each step there exists a plan trajectory that is con-
tributed to by all of the step’s actions: none of the actions
could be omitted without affecting the trajectory’s validity.
Intuitively, a composite contingency plan is composed of an
interleaving of non-redundant trajectories. For any given
problem, an optimal composite contingency plan will al-
ways have the same cost as an optimal contingency plan as
long as the solution size is not restricted; a naive mapping
from contingency to composite contingency plans would
split plan steps containing multiple actions into smaller steps
until the composite contingency property is satisfied.

Given a problem and concurrency model, Paragraph
will find a (non-redundant) optimal solution from the space
of valid composite contingency plans.

Graphplan
The Graphplan framework defines an efficient method
of solving classical planning problems. The original
Graphplan planner (Blum & Furst 1997) could find po-
tentially concurrent solutions to STRIPS domains. The
framework has since been extended in a variety of ways. Ex-
amples include negative preconditions, conditional effects
(Kambhampati, Parker, & Lambrecht 1997; Koehler et al.
1997), and durative actions (Smith & Weld 1999).
Graphplan’s most notable contribution is the concept

of a planning graph, which is a polynomial size data struc-
ture based on a relaxation of the reachability problem; it
yields a necessary but insufficient condition for the reach-
ability of a set of propositions. A planning graph consists of
alternate levels of proposition and action nodes; each level
represents the union of what might be reachable by a given
time step. The initial level consists of nodes for each of
the initial propositions, and the first action level consists of
nodes for each of the initially executable actions. The sec-
ond proposition level consists of the add effects of the first
action level. Successive levels are generated by inference ac-
cording to action preconditions and effects. Special actions
are used to represent the persistence of a proposition from
one time step to the next. Such persistence actions have a
single proposition as both a precondition and add effect, and
for algorithmic purposes are included in the set of actions.

Planning graphs can be made a more accurate representa-
tion of action and proposition reachability by the use of bi-
nary mutual exclusion relationships; referred to as mutexes.
For any given level, we say that a pair of nodes are mutex
when they might be individually reachable, but cannot both
be achieved concurrently. There is a set of rules that are used
to determine some of the situations when a pair of proposi-
tions or actions are mutex. These rules are based on reason-
ing about impossible situations and resource contention.

The Graphplan algorithm starts by creating a planning
graph for the given problem. The graph is incrementally ex-
panded until the final level includes nodes for all goal propo-
sitions and there are no binary mutex relationships between
them, at which point the goal might be reachable. A back-
ward search through the structure of the planning graph is
then performed to extract a potentially concurrent solution
of a length equal to the number of action levels. If no such
solution exists, then the planning graph is expanded again
and another search is performed. This continues until either
a solution is found or the termination condition is met. When
the content of the final level does not change between suc-
cessive expansions, the graph is said to have levelled off. If
the problem does not have a solution, this can then be proven
after a finite number of additional expansions (Blum & Furst
1997); it can be proven immediately if the graph levels off
before all goal propositions are present, or while there are
still mutexes between goal propositions.

Mutexes play a direct role in speeding up the solution ex-
traction search. When a branch is encountered that violates
a known mutex relationship, then search is able to backtrack
and consider the next possibility. New, potentially larger
exclusion conditions (nogoods) can also be ‘learnt’ when
branches are closed due to the exhaustion of possibilities.
This form of learning is a powerful technique, and benefits
both current and future attempts to extract a solution.
Paragraph extends this framework for finding opti-

mal (composite) contingency plans in the probabilistic set-
ting. Importantly, Paragraph does this while retaining the
framework’s distinctive features: the planning graph, a goal
regression search for solution extraction, and the use of mu-
tual exclusion information for search space pruning.

Probabilistic Planning Graph
A structural change to the standard planning graph is re-
quired to accurately represent actions with probabilistic ef-
fects (Blum & Langford 1999; Little, Aberdeen, & Thiébaux
2005). Paragraph does this through the addition of a node
for each of an action’s possible outcomes, so that there are
three different types of nodes in the graph: proposition, ac-
tion, and outcome. Action nodes are then linked to their re-
spective outcome nodes, and edges representing effects link
outcome nodes to proposition nodes. Each persistence ac-
tion has a single outcome with a single add effect. We refer
to a persistence action’s outcome as a persistence outcome.

The mutex rules that Paragraph uses are similar to the
standard ones. The differences all relate to the introduction
of outcome nodes. We only consider mutex relationships
between nodes of the same level. This gives us three differ-
ent types of mutexes: action, outcome and proposition. The
conditions for recognising action node mutexes are:

1. The actions have competing needs. This occurs when a
pair of respective precondition nodes are mutex.

2. All pairs of respective outcome nodes are permanently
mutex. We refer to this condition as contention.3

3As mentioned previously, it could be reasonable to use a
stronger model that prohibits the possibility of any inconsistencies
between outcomes, in which case this condition should be changed
to consider a pair of actions mutex if any of their outcomes are.



The graph alternates layers of propositions, action, and outcome nodes
P0, A1, O1, P1, A2, O2, . . . , Ak, Ok, Pk and records mutex pairs µAi, µOi,
µPi at each layer and permanent mutexes µO∞, such that:

1. P0 = s0,
2. µP0 = ∅,
3. Ai+1 = {a ∈ A | pre(a) ⊆ Pi ∧ ∀{p, p′} ∈ µPi {p, p′} 6⊆ pre(a)},
4. µAi+1 = {{a, a′} ⊆ Ai+1 | Out({a, a′}) ⊆ µO∞

∨ ∃{p, p′} ∈ µPi p ∈ pre(a) ∧ p′ ∈ pre(a′)},
5. Oi+1 =

S
a∈Ai+1

out(a),

6. µOi+1 = {{o, o′} ⊆ Oi+1 | Act({o, o′}) ∈ µAi+1} ∪ µO∞

7. Pi+1 =
S

o∈Oi+1
add(o),

8. µPi+1 = {{p, p′} ⊆ Pi+1 | ∀o, o′ ∈ Oi+1 (p ∈ add(o)

∧ p′ ∈ add(o′)) ⇒ {o, o′} ∈ µOi+1}, and
9. µO∞ = {{o, o′} ⊆ O | act(o) = act(o′)

∨ del(o) ∩ (pre(act(o′)) ∪ add(o′)) 6= ∅}.

Figure 1: The definition of Paragraph’s planning graph.

In the non-concurrent model, all pairs of non-persistence ac-
tions are always mutex (giving us a serial planning graph).
The conditions for permanent outcome node mutexes are:

1. The outcomes have inconsistent effects: when a proposi-
tion added by one outcome is deleted by the other.

2. There is interference between the effects of one outcome
and the preconditions of the other’s action. This is when
one outcome deletes a precondition of the other’s action.

3. The outcomes are exclusive. This occurs when both out-
comes belong to the same action.

These conditions are independent of the level in the planning
graph, and can be precomputed before generating the graph.
A pair of outcome nodes are non-permanently mutex when
the respective action nodes are mutex. A pair of proposition
nodes are mutex when they have inconsistent support. This
occurs when all pairs of outcomes that support the respective
propositions are themselves mutex. A formal definition of
Paragraph’s planning graph is given in Figure 1.

The implementation of Paragraph’s planning graph is
loosely based on the compact representation described by
Long and Fox (1999). We have made an effort to minimise
the amount of computation required to determine the mutex
relationships by taking advantage of the planning graph’s
monotonicity properties (Smith & Weld 1999) and reasoning
about how mutexes can change from one level to another.

Search Space
The solution extraction step of the Graphplan algorithm
relies on a backward search through the structure of the plan-
ning graph. In classical planning, the goal is to find a sub-
set of action nodes for each level such that the respective
sequence of action sets constitutes a valid trajectory. The
search starts from the final level of the graph, and attempts
to extend partial trajectories one level at a time until a solu-
tion is found.

Solution extraction can also be described as a regression
search over the space of goal sets. Each extension of a par-
tial plan requires a set of actions to be selected to support
a set of goal propositions. The preconditions of the actions
selected for one extension make up the goal set that must be
supported by the next. In classical planning, a problem is

considered solved when a trajectory is found from the initial
conditions to the goal. In the probabilistic setting a single
trajectory is generally not considered sufficient, as we want
plans to include the contingencies needed to maximise their
probability of executing successfully.
Paragraph uses this type of goal-regression search with

an explicit representation of the expanded search space. This
search is applied exhaustively, to find all trajectories that the
Graphplan algorithm can find. An optimal contingency
plan is formed by linking these trajectories together. This
requires some additional computation, and involves using
forward simulation through the search space to compute the
possible world states at reachable search nodes. The search
space is defined as:

1. a set of nodes N ,
2. an initial node n0,
3. a set of goal nodes G ⊆ N ,
4. a state function W : N → 22P ,
5. a cost function C : N × 2P → [0, 1],
6. a selection function S : N → 22A ,
7. a successor function T : N × 2O → 2N , and
8. a conditional successor function J : N×2O×2P → 2N .

The exact definition of a node depends on whether the search
is cyclic or acyclic. The cyclic search nodes are defined
along with the cyclic search’s description. An acyclic search
node is defined as: a time step tn, a goal set Gn ∈ P , and
a label ln ∈ {success,failure,unknown}. A node’s
time is the index of an associated proposition level; a node
of time t can only have predecessors of time t− 1. The ini-
tial node n0 has a time of 0. The goal sets of the initial and
goal nodes are derived from the problem, giving Gn0 = s0

and ∀n ∈ G Gn = G. Each goal node g ∈ G is created for
a particular iteration of the solution extraction step; its time
is that of the current final graph level. A node is uniquely
identified by its time and goal set; there can be at most one
node with a particular goal set for any given time. These
constraints make the search acyclic. A node’s label is used
by the search to keep track of whether the node is reachable
or provably unreachable—in the forwards direction—from
the initial state, or that we do not have enough information
yet to determine the node’s status.

The selection function maps a node to its set of selectable
action sets. We use the term successor in the sense of taking
a step towards the goal. The successor function maps a node
and a joint outcome to a set of potential successor nodes.
That individual joint outcomes can have more than one suc-
cessor is an artifact of the goal regression search, as a joint
outcome is able to support multiple goal sets.

The state function maps a node to a set of possible world
states: the world states that are possible when the node is
reached during a simulation of the known trajectories. The
conditional successor function maps a node, a joint outcome,
and a world state to a set of potential successor nodes. It is
used to link disparate trajectories together when some suc-
cessors only apply to a subset of a node’s possible world
states. We define the union of all applicable successor nodes
as N(n, O, sn) = T (n, O) ∪ J(n, O, sn).

The cost function maps a search node and a world state to
a probability of failure. It is a consequence of the conditional



successors that a node does not have a unique cost. The cost
function initially maps every node and state to a cost of 1.
As the search space is expanded, the costs are updated using
the following formula:

C(n, sn) :=

(
0 n ∈ G
min

A∈S(n)
CA(n, sn, A) otherwise

where

CA(n, sn, A) :=X
O∈Out(A)

Pr(O)× min
n′∈N(n,O,sn)

C(n′, res(sn, O)).

The backward search algorithms that Paragraph uses
with this search space both determine a node’s predecessors
in the same way: using the sets of outcomes that consis-
tently support the node’s goal set. We say that a set of non-
mutex outcomes OP consistently supports a set of proposi-
tions P when all outcomes add at least one proposition in P ,
no outcomes delete any propositions in P , and every propo-
sition in P is supported by at least one of the outcomes. So
that the regression corresponds to the Graphplan search,
we only consider outcome sets where every outcome has a
corresponding node in one of the planning graph’s levels.4
We also disregard outcome sets that either consist entirely
of persistence actions or include persistence actions that are
unnecessary to support all goal propositions. Using the re-
stricted concurrency model to prohibit multiple support for
individual subgoals adds the rule

⋂
o∈OP

add(o) = ∅, and
OP is required to contain exactly one non-persistence action
when concurrency is disallowed entirely.

Each resulting consistent set of outcomes OP leads to a
predecessor node nOP

. The goal set of each predecessor
node is determined by the preconditions of the respective
outcome set’s actions

⋃
a∈Act(OP ) pre(a). Persistence ac-

tions are not included in the selection function’s action sets,
and the corresponding outcomes are not included in succes-
sor function outcome sets. It is possible for a node to be a
predecessor of another in multiple ways.

Acyclic Search
Paragraph’s search uses goal regression to exhaustively
search for trajectories and links them together to form an
optimal contingency plan. As observed by Blum and Lang-
ford (1999), the difficulty with combining probabilistic plan-
ning with Graphplan-style regression is in correctly and
efficiently combining the trajectories. Our solution to this
problem is a key part of our contribution.
Paragraph’s acyclic search preserves the structural

framework of the Graphplan algorithm: a planning graph
is incrementally expanded until it might be possible to reach
the goal, a backward search is then alternated with future
graph expansions, and a solution is ultimately extracted. The
difference is that Paragraph is looking for contingency
plans: it does not (normally) terminate when a single trajec-
tory is found, and needs to do some extra computation to be
sure to solve all of the contingencies.

4The exact level depends on whether the search is cyclic or
acyclic and is detailed in the respective sections.

a2a1

o3 o4

p1 p2

pg p2

o2 o1

p1

o3 o1

a2 a1

p1

a1 a2

p2

o1 o3
o2 o4

t: 0 p1

p2

pg

t: 1 pg

t: 2

Figure 2: An action-outcome-proposition dependency graph
and search space for an example problem.

Nogoods
Paragraph keeps track of nogood tuples for each time
step. These nogoods are sets of propositions that cannot
be achieved by the given time, and initially consist of the
planning graph’s proposition mutexes. New nogoods are
learnt from the goal sets of nodes labelled a failure due
to an exhaustion of possibilities. The search space is pruned
whenever a node can be proved not to be part of a successful
trajectory: when for a given node n of time t, there exists
a nogood P of time t′ such that P ⊆ Gn and t ≤ t′. The
reasoning over different times is sound because if P cannot
be part of a trajectory at a given time, then it also cannot be
part of a trajectory at any earlier, more constrained time.

Nogood pruning is implemented using a data structure
that we refer to as a subset memoizer. This data structure is
responsible for maintaining a set of stored—or memoized—
tuples. It is based on the trie data structure, and enables us to
efficiently determine when one of the stored tuples is a sub-
set of a given set. Paragraph’s subset memoizer is similar
to that described by Koehler et al. (Koehler et al. 1997). The
most important difference is that Paragraph’s memoizer
for nogoods recognises that a nogood which is valid for a
given time also applies to all earlier times. This is achieved
by labelling the trie’s nodes with expiry times.

Joining Trajectories
Paragraph’s search is able to find a trajectory for each
way of achieving the goal from the initial state. Sometimes
these trajectories will ‘naturally’ join together during the re-
gression, which happens when nodes share a predecessor
through different joint outcomes of the same action set.

Unfortunately, the natural joins are not sufficient to find
all contingencies. Consider the problem shown in Fig-
ure 2, which we define as:5 the propositions p1, p2 and pg;
s0 = {p1, p2}; G = {pg}; the actions a1 and a2; and the
outcomes o1 to o4. a1 has precondition p1 and outcomes
{o1, o2}; a2 has precondition p2 and outcomes {o3, o4}.
Both actions always delete their precondition; o1 and o3
both add pg. To simplify the example, we prohibit a1 and
a2 from executing concurrently. The optimal plan for this
example is to execute one of the actions; if the first action
does not achieve the goal, then the other action is executed.

5This problem was used by Blum and Langford (1999) to il-
lustrate the difficulty of using goal-regression for probabilistic
planning, and to explain their preference of a forward search in
PGraphplan.



The backward search will correctly recognise that execut-
ing a1–o1 or a2–o3 will achieve the goal, but it fails to re-
alise that a1–o2, a2–o3 and a2–o4, a1–o1 are also valid tra-
jectories. The longer trajectories are not discovered because
they contain a ‘redundant’ first step; there is no way of relat-
ing the effect of o2 and the precondition of a2, or the effect
of o4 with the precondition of a1. While these undiscovered
trajectories are not the most desirable execution sequences,
they are necessary for an optimal contingency plan. In clas-
sical planning, it is actually a good thing that trajectories
with this type of redundancy cannot be discovered, as redun-
dant steps only hinder the search for a single shortest trajec-
tory. Identifying the missing trajectories requires some addi-
tional computation beyond the goal regression search. When
the distinction is necessary, we refer to trajectories that can
be found using unadorned goal regression as natural trajec-
tories. For Paragraph, the set of natural trajectories is
equivalent the set of non-redundant trajectories.

One way of finding all necessary trajectories would be to
allow the backward search to consider all non-mutex out-
come sets when computing a node’s predecessors, as op-
posed to only considering outcomes that support the node’s
goal propositions. We consider it likely that this solution
would be prohibitively expensive; certainly it compromises
a lot of the pruning power inherent in goal regression.

Non-concurrent Trajectories The solution that we have
developed is based on constructing all non-redundant con-
tingency plans by linking together the trajectories that goal
regression is able to find. This is sufficient to find an optimal
solution, as there always exists at least one non-redundant
optimal plan. We first consider the non-concurrent case. The
key observation—that makes this approach feasible—is that
all undiscovered trajectories required for a non-redundant
contingency plan consist entirely of subsets of the natural
trajectories. We now give a proof of this.

Proof. Assume that some non-redundant plan contains ex-
actly one non-terminal node n that is not a member of any
natural trajectory.6 Let A be n’s action set in the plan, giving
n a goal set of Gn =

⋃
a∈A pre(a). If there exists a set of

outcomes O ∈ Out(A) and persistence outcomes O′ such
that OP = O ∪ O′ consistently supports a successor of n,
then either the successor is not a natural trajectory node, or n
would be found using goal regression and either be unreach-
able from the initial state or a member of a natural trajectory.
All of these cases violate an assumption, and so there is no
OP that consistently supports a successor. Now, as the plan
is non-redundant, there must be at least one successor that is
supported by at least one (non-persistence) outcome o ∈ O
for some O ∈ Out(A); A is irrelevant to the success of the
plan if no joint outcome O adds at least one successor’s goal
p /∈ Gn. But the plan is non-concurrent, so such an O = {o}
would mean that there exists an OP that does consistently
support a successor, and we have a conptradiction. �

This proof can be generalised to the case where there are
multiple nodes not of a natural trajectory by realising that
there must always be some node that has only natural and

6Every plan trajectory corresponds to a search space trajectory.

a2

p2

a1

p1

pg

pg

a1

p1

a2

p2

{p1,p2}{p1,p2}

{p2,pg}

o2 o1 o3 o4

{p1,pg}{p2} {p1}

{pg}o3 o1

t: 1

t: 2

t: 0

Figure 3: The previous example’s search space after join-
ing trajectories using world state information. Each possible
world state is shown below its respective search node.

terminal successors, and applying induction. We do not need
to consider terminal nodes in the proof as they must either
be a failure or a goal node. A node of the former case is
irrelevant, and in the later case a goal node that is part of any
trajectory is necessarily a member of some natural trajectory.
This result means that it is sufficient to link together pairs of
known trajectories to construct an optimal non-concurrent
solution; the contingency trajectories that consist of more
than two natural trajectory subsets can be formed with suc-
cessive joins.

Concurrent Trajectories The previous proof also gives
us some insight into the concurrent case, as the proof itself
relies on a lack of concurrency. In fact, it is possible to con-
struct a problem where an optimal solution that fully exploits
concurrency must contain a node that is not a member of any
natural trajectory. This happens when steps from disparate
trajectories can be executed in parallel to reduce the size of
the solution, and requires a set of non-persistence outcomes
that the goal regression search will never consider. So in ad-
dition to linking together subsets of the natural trajectories,
fully exploiting concurrency may require that some nodes be
merged. It would seem that merging nodes could be made
feasible, but we have not attempted to do this. In practice,
we can produce useful concurrent solutions even if we ig-
nore this potential source of unexploited concurrency.

To clarify, Paragraph can produce a given non-
redundant concurrent solution iff this solution requires only
search nodes that are a member of some natural trajectory.
That is, Paragraph can find all composite contingency
solutions to concurrent planning problems, at least one of
which will be an optimal composite contingency plan.

Join Operation Paragraph combines pairs of trajecto-
ries by making a node in one trajectory a conditional succes-
sor of a node in the other. This can be done when a possible
world state of the earlier node has a resulting world state
that subsumes the goal set of the later node. Specifically, we
define the join operation J (n, O, s, n′), where n, n′ ∈ N ,
O ∈ Out(A) for some A ∈ S(n), s ∈ W (n) is a possible
world state for n, res(s,O) ⊇ G(n′), and n is for the time
step immediately preceding that of n′. This operation makes
n′ a successor of n that is conditional on s; the conditional



successor function is updated so that n′ ∈ J(n, O, s). For a
given join, we say that n is the source node, and that n′ is the
target successor node. The result of applying the join oper-
ation to our previous example is shown in Figure 3, where
all of the trajectories needed for an optimal contingency so-
lution are now part of the search space.

The world states needed for this operation are computed
by simulating the possible search space trajectories in the
forward direction. This simulation starts with the initial state
at the success nodes of time 0, and recursively visits all
applicable successor nodes. Every success node will be
visited at least once; any node that is not a success is not
part of a successful trajectory, and cannot be reached by a
forward traversal of the search space.

A potential join can only be detected when the target node
has been visited by the backward search, and the applicable
world state of the source node has also been computed. Con-
sequently, Paragraph looks for potential trajectory joins
whenever either of these events occur: when a search node
is visited for the first time, and when a world state is com-
puted for a success node. To facilitate this detection, all
success nodes are indexed according to their goal set, and
all node/joint outcome pairs are indexed according to their
possible join target world states.

Join detection for a newly computed world state s of node
n looks up each success node n′ where res(s,O) ⊇ Gn′

for some joint outcome O ∈ Out(A) for each selectable
action set A ∈ S(n). This lookup is implemented using an-
other subset memoizer, which is the data structure used to
index success nodes according to their goal sets. In con-
trast to nogood memoization, these nodes are indexed only
for their own specific time: the trie nodes are not labelled
with expiry times, and a separate memoizer is maintained
for each of the planning graph’s proposition levels. The sub-
set memoization test is adapted into a procedure that col-
lects each detectable join target n′. Join detection when the
search first visits a node n′ is similar: potential join source
nodes are looked up using the subset memoizer data struc-
ture, where node/joint outcome pairs are indexed according
to target world states for the respective target node time.
There is a slight complication due to each target state s′ be-
ing a superset of the node’s goal set: we really need to do a
superset lookup for Gn′ , which is not what the subset mem-
oizer is optimised for. We transform the superset test into
a subset test by taking the complement of both the goal set
and candidate target states. The memoizer then finds each
world state complement that is subsumed by the node’s goal
set complement, where P \ s′ ⊆ P \Gn′ .

Backward Search
A depth-first search is used by Paragraph for goal regres-
sion. We chose this in preference of a breadth-first search to
increase the chance that nogood sets are found early enough
to be effective at pruning the current iteration of the back-
ward search. The recursive algorithm for the backward
search is given in Figure 4. It takes a node n as input. If
the node has been previously solved, then there is nothing to
do. A node is a failure if its goal set subsumes a nogood.
If neither of the previous conditions apply, then the search
is recursively called on each of n’s predecessors. A node n

BACKWARD-SEARCH(n): Expand node n in a recursive depth-first search.

1. If ln 6= unknown then return.
2. If Gn is a nogood applicable to time t where tn ≤ t, then set ln := failure

and return.
3. Determine the predecessors of n; for each computed predecessor n′:

(a) recursively call BACKWARD-SEARCH(n′), and
(b) if ln′ = success then ln := success.

4. If s0 ⊇ Gn then ln := success; if ln 6= success then ln := failure.

Figure 4: The acyclic goal regression search algorithm.

is a success if any of its predecessors are, or if it satisfies
the initial conditions s0 ⊇ Gn; if n is not a success then
it is a failure. Not all trajectories include a time 0 node,
although they will include the same sequence of actions and
outcomes as a trajectory that does. We compute these ‘du-
plicate’ trajectories because the optimal contingency plan
needs to be able to combine structurally identical trajecto-
ries at different time offsets, and there would be a (limited)
potential for cycles if we were to allow a join’s source node
to have a later time than its target.
Paragraph does not use any heuristics to guide the

backward search (beyond the planning graph). Since this
search must be exhaustive to guarantee that all contingencies
are found, it is not obvious what the best way of incorporat-
ing search heuristics into Paragraph’s framework would
be. Perhaps there is some way of guiding the search to find
effective nogood sets quickly, or some test for determining
when a trajectory is unlikely to have much impact on the
final solution. At present, Paragraph relies on nogood
pruning and the compressed search space for efficiency.

The forward simulation for computing the possible world
states is performed after each iteration of the backward
search. Paragraph keeps track of the search iteration in
which each node is first encountered so that this simulation
can avoid unnecessarily recomputing world states. This op-
portunity is also used to update the cost function: node/state
cost values are propagated in the backwards direction using
the cost update formula.

Each node/state pair corresponds to a potential step in a
plan. The search space’s success nodes represents the
union of all solutions that have been found. Paragraph
extracts an optimal solution for the current horizon through a
greedy simulation in the forward direction. The construction
of a solution automaton starts by making the initial plan step
q0 correspond to a minimal-cost node/world state pair with
time 0. Each time a new step q is added to the automaton,
M(q) is set to the optimal action set for the node/state pair
(n, s) corresponding to q, that is to the set of actions A max-
imising CA(n, s, A). For each O ∈ Out(A), another step
q′ is added for the optimal successor in N(n, O, s) and its
world state res(s,O) (unless this step is already in the plan);
a new transition δ(q, O, q′) is also added. If N(n, O, s) = ∅,
then q′ is added to the set of final states F . In principle, a so-
lution could be extracted from the search space at any time.
Paragraph computes the world states and updates the cost
values used to determine which solution to extract en masse
after each search iteration, but this could be done incremen-
tally during the search.



Algorithm
Now that we have built up the necessary foundation, we give
a detailed description of Paragraph’s acyclic search algo-
rithm. The first step is to generate a planning graph from
the problem specification. This graph is expanded until all
goal propositions are present and not mutex with each other,
or until the graph levels off to prove that no solution ex-
ists. Assuming the former case, a depth-first goal regression
search is performed from a goal node for the graph’s final
level. This search exhaustively finds all natural trajectories
from the initial conditions to the goal. Once this search has
completed, the possible world states for each trajectory node
are computed by forward-propagation from time 0, and the
node/state costs are updated by backward-propagation from
the goal node. Potential trajectory joins are detected each
time a new node is encountered during the backward search,
and each time a new world state is computed during the for-
ward state propagation. Unless a termination condition has
been met, the planning graph is then expanded by a single
level, and the backward search is performed from a new goal
node that is added to the existing search space. This alterna-
tion between backward search, state simulation, cost prop-
agation, and graph expansion continues until a termination
condition is met. An optimal contingency plan is then ex-
tracted from the search space by traversing the space in the
forward direction using a greedy selection policy.

It is interesting to note that Paragraph alternates the
use of forward and backward reasoning, with: forward plan-
ning graph expansion, backward goal regression, forward
state simulation, backward cost propagation, and forward
solution extraction.

Deciding when to terminate a search is not always trivial.
Paragraph generally terminates when: a solution of cost
0 is found, the planning graph proves that no solution is pos-
sible by levelling off before the backward search can start,
or a finite horizon is exceeded. These conditions work well
enough as long as a reasonable finite horizon can be spec-
ified. However, this might not always be possible. A real
time limit is likely to be needed in such situations, where the
best discovered solution is extracted from the search space
when this limit is reached. In some situations other con-
ditions might be appropriate, such as terminating when the
optimal cost exceeds a probability threshold, or when the
change in the optimal cost has been small enough over a
given number of horizon extensions.

Cyclic Search
Classical planning problems have the property that the short-
est solution to a problem will not visit any given world
state more than once. This is no longer true for probabilis-
tic planning, as previously visited states can unintentionally
be returned to by chance. Because of this, it is common
for probabilistic planners to allow for cyclic solutions. We
now describe Paragraph’s method of producing such so-
lutions. This method departs further from the Graphplan
algorithm than the acyclic search does: fundamental to the
Graphplan algorithm is a notion of time, which we dis-
pense with for Paragraph’s cyclic search.

The cyclic search does not preserve Graphplan’s alter-
nation between graph expansion and backward search: the

planning graph is expanded until it levels off, and only then
is the backward search performed. As there is no notion of
time, the backward search is constrained only by the infor-
mation represented in the final level of the levelled-off plan-
ning graph. A search node is defined as: a goal set Gn ∈ P
and a label ln ∈ {success,failure,unknown}. A
search node n is not associated with a time at all, and is
uniquely identified by its goal set Gn. This divorce with
time make it possible for solutions to contain cycles, and
ensures that the search space is finite.
Paragraph uses either a depth-first or iterative deepen-

ing algorithm for its cyclic search. In both cases, the search
uses the outcomes supporting the planning graph’s final level
of propositions when determining a search node’s prede-
cessors. The same principal is applied to nogood pruning:
only the mutexes in the final level of the planning graph—
those that are independent of time—can be safely used. An
important consequence of only using universally applica-
ble nogoods is that any new nogoods learnt from failure
nodes are also universal. Neither search strategy is clearly
superior. The depth-first search is usually preferable when
searching the entire search space, as it is more likely to
learn useful nogoods. A consequence of this is that there
is no predictable order in which the trajectories are discov-
ered. In contrast, the iterative deepening search will find the
shortest trajectories first, which can be advantageous when
only a subset of the search space might be explored. Both
search algorithms propagate node labels backwards so that a
node is a success when any of its predecessors are, and a
failure when they all are.

Most other aspects of the cyclic search are either the same
as acyclic case, or only need minor amendment: trajectories
are joined in the same way, although the subset memoiz-
ers used for join detection only need to be maintained for
the final graph (proposition) level; forward state simulation
only needs to ensure termination by keeping track of which
node/state pairs have been encountered previously; and so-
lution extraction does not need to change. Cost propagation
does differ significantly from the acyclic case in order to ac-
commodate cycles. As in many MDP algorithms, the cost
function is updated by iterating Bellman backups until con-
vergence within an ε.

The cyclic search’s termination conditions are simpler
than for the acyclic search. Except in the special cases where
plan optimality or the lack of a solution can be proved early,
the search terminates when the search space has been ex-
hausted; there is no finite horizon. Other termination condi-
tions can still be useful, but are not necessary.

The cyclic search has several clear advantages over the
acyclic one. First and foremost is the potential for cyclic
solutions. The cyclic search can find optimal solutions to in-
finite horizon problems in general, while the acyclic search
cannot. In terms of performance, the cyclic search also has
the advantage of a smaller search space and less redundancy;
the acyclic search repeatedly searches over some of the same
structure each time the search horizon is extended, while the
cyclic search need consider at most one node for each goal
set. And the cyclic search does not require any arbitrary re-
strictions to guarantee termination. The acyclic search does
retain some important advantages. In particular, the restric-



tions on its search space allow much more specific mutex
conditions to be applied to individual search nodes. For
many problems, this additional pruning power more than
makes up for the redundancy in the search space. And some-
times there are real limits to how long a plan has to achieve
the goal, in which case optimality requires a finite horizon.

Experimental Results
We benchmark Paragraph using a selection of concurrent
and non-concurrent problems; we compare our results with
the state of the art heuristic search planner mGPT (Bonet &
Geffner 2005) and with the probabilistic temporal planner
Prottle (Little, Aberdeen, & Thiébaux 2005). Prottle
implements the unrestricted model of concurrency, and in
some instances can exploit concurrency to a greater degree
than Paragraph. mGPT only finds non-concurrent so-
lutions. Prottle and Paragraph are implemented in
Common Lisp, and were both compiled using CMUCL ver-
sion 19c. mGPT is implemented in C++, and was compiled
using gcc 2.95. All experiments were performed on a ma-
chine with a 3.2 GHz Intel processor and 2 GB of RAM. The
solution costs for both Paragraph and Prottle were
computed analytically; the costs for mGPT were computed
empirically through simulation.

We present results for the following planner configu-
rations. We ran mGPT with LRTDP (Bonet & Geffner
2003), ε = 0.001 and the min-min state relaxation heuris-
tic (M-GPT). Some of the heuristics that mGPT supports
are stronger than the min-min state relaxation; we used it
because the stronger heuristics resulted in suboptimal solu-
tions for some problems without leading to significant time
gains. We ran Prottle with ε = 0 and its cost-based plan-
ning graph heuristic (PRTTL). We use the max-propagation
variant of Prottle’s heuristic; it is admissible under con-
ditions similar to those of the restricted concurrency model,
but slightly less permissive. We run Paragraph with its
acyclic search using either the restricted concurrency model
(CA-PG) or no concurrency (NA-PG); cyclic Paragraph
with restricted concurrency and either a depth-first (CCD-
PG) or iterative deepening (CCI-PG) search, and cyclic
Paragraph without concurrency (NCD-PG,NCI-PG).

We consider five different problems: g-tire, maze,
machineshop, zeno-travel and teleport. The PDDL
definitions are given at http://rsise.anu.edu.au/˜thiebaux/

benchmarks/pddl/. Both the g-tire and zeno-travel problems
are from the probabilistic track of the 2004 International
Planning Competition (IPC-04); maze and teleport are
timeless versions of problems used to benchmark Prottle
in (Little, Aberdeen, & Thiébaux 2005); machineshop is
a problem from (Mausam & Weld 2005). The results are
shown in Figure 5. Times are in seconds.

The objective of the g-tire problem is to move a vehicle
from one location to another, where each time the vehicle
moves there is a chance of it getting a flat tire. There are
spare tires at some of the locations, and these can be used
to replace flat tires. This problem is not concurrent. The re-
sults compare Prottle to Paragraph’s acyclic search;
Paragraph is faster for the earlier horizons, but Prottle
scales better. mGPT finds the optimal solution in ∼0.1 sec-
onds, faster than both Prottle and Paragraph.

Horizon PRTTL Time NA-PG Time Cost
10 14.0 0.23 0.728
15 21.6 0.73 0.607
20 25.1 12.5 0.486
25 36.0 52.2 0.429
30 40.6 103 0.429

(a) g-tire

Horizon PRTTL Time CA-PG Time PRTTL Cost CA-PG Cost
5 4.38 0.08 0.272 0.204
6 14.9 0.13 0.204 0.193
7 168 0.26 0.178 0.156
8 554 0.71 0.151 0.149
15 − 613 − 0.078

(b) maze

CCD-PG CCI-PG NCD-PG NCI-PG
132 14.7 90.1 1.52

(c) machineshop

Planner Horizon Time Cost
CA-PG 5 0.18 0.978
CA-PG 15 − −
NA-PG 5 0.16 0.978
NA-PG 15 691 0.925

NCD-PG ∞ 5.35 0.000
NCI-PG ∞ 1.63 0.000
M-GPT ∞ 15.8 0.000

(d) zeno-travel

Planner Horizon Time Cost
PRTTL 3 2.29 0.344
PRTTL 5 74.5 0.344
CA-PG 3 0.11 0.344
CA-PG 5 0.56 0.344
NA-PG 3 0.07 1.000
NA-PG 5 0.09 0.344

CCD-PG ∞ 0.72 0.344
CCI-PG ∞ 1.57 0.344
NCD-PG ∞ 0.14 0.344
NCI-PG ∞ 0.21 0.344
M-GPT ∞ 0.89 0.346

(e) teleport

Figure 5: Experimental Results.

The maze problem involves a number of connected
rooms and doors, some of which are locked and require
a specific key to open. This problem has some potential
for concurrency, although mostly of the type not allowed in
composite contingency plans. None of the planner configu-
rations fully expoit it. Paragraph scales much better than
Prottle this time.

In the machineshop problem, machines apply manufac-
turing tasks (such as paint, polish, etc.) to objects. This
problem has a significant potential for concurrency. These
results compare the performance of the cyclic planner con-
figurations; the non-concurrent configurations do better than
the concurrent, and iterative deepening does better than the
depth-first search. This is because there exists a proper pol-
icy (with a zero cost) that the iterative deepening search can
find without exploring the entire search space. The com-
bination of acyclic and iterative deepening does better than
mGPT, which solves this problem in 2.06 seconds.

In the zeno-travel problem, the goal is to move a plane
from one city to another without disturbing the people in
the respective cities. Solutions to this problem are non-
concurrent, and must repeat actions sequences until a low-
probability outcome occurs, making this problem imprac-
tical for non-cyclic planners. The NCI-PG configuration
solves this problem an order of magnitude faster than mGPT.

Finally, teleport is a problem where it is possible to move
between ‘linked’ locations, and to change the pairs of loca-
tions that are linked. This domain admits concurrency, as
demonstrated by the NA-PG configuration’s inability to find
a solution for horizon of 3. All of Paragraph’s configura-
tions are able to deal well with the branching in this domain
in comparison to Prottle, and most outperform mGPT.

These results show that Paragraph is competitive with
the state of the art. As expected, it has the best compara-
tive performance on problems with a high forward branch-
ing factor and relatively few paths to the goal.



Conclusion, Related, and Future Work
The contribution of this paper is an approach that extends the
Graphplan framework for concurrent probabilistic plan-
ning. Optimal concurrent contingency plans are generated
using state information to combine the trajectories that are
found by Graphplan’s goal-regression search. This re-
quires storing an explicit trace of the backward search; a
technique that has been previously investigated by Zimmer-
man and Kambhampati (2005) in the deterministic setting.
The search retains the compression inherent in goal regres-
sion, and benefits from mutex and nogood reasoning.

In contrast, Paragraph’s predecessors PGraphplan
and TGraphplan (Blum & Langford 1999) do not fully
exploit the Graphplan framework. PGraphplan merely
uses the planning graph as a reachability analysis tool
and dispenses with Graphplan’s techniques for efficiently
managing concurrency. TGraphplan lacks the ability to
explicitly reason about contingencies and their cost. Dear-
den et. al (2003) show how some of the shortcomings inher-
ent in TGraphplan’s approach can be remedied in the con-
text of decision-theoretic temporal planning. They describe
a method based on back-propagation through the planning
graph to estimate the utility of individual contingencies.
Prottle (Little, Aberdeen, & Thiébaux 2005) is more ex-
pressive than Paragraph, as it additionally reasons about
(probabilistic) action durations and effect timings. But like
PGraphplan, Prottle uses the planning graph primar-
ily for computing heuristic estimates for a forward search.

Probabilistic planning approaches that are based on an ex-
plicit MDP formulations do not typically allow for concur-
rency; a notable exception is the work by Mausam and Weld
(2004) on concurrent MDPs. The techniques they have de-
veloped for managing concurrency are orthogonal to ours.
They include admissible pruning based on properties of the
Bellman equation, and computing lower and upper bounds
by solving weaker and stronger versions of the problem.

Whereas most of the current research on decision-
theoretic and probabilistic planning is directed towards
MDP models and algorithms, our work falls in the camp
of some of the early attempts at extending classical (mostly
partial order) planning to the probabilistic case, see (On-
der & Pollack 1999) for a synthesis and references.
Paragraph revisits this line of research; but by building
on more recent advances in classical planning it is, unlike its
predecessors, competitive with state of the art probabilistic
planners. Given the recent spectacular progress in classical
and temporal planning, we believe that this line of research
is likely to flourish again.

One of the main advantages of Paragraph’s approach is
that it can exploit much of the research into the Graphplan
framework. We have already applied some of this research
to Paragraph, but we would like to take this further. We
have some evidence that a small amount of control knowl-
edge in the form of mutex invariants can make a substan-
tial impact on Paragraph’s efficiency. This suggests that
there would also be a benefit in investigating ways strength-
ening the planning graph’s mutex reasoning and in incorpo-
rating explanation-based learning. Currently, Paragraph re-
lies on the optimisations built into the Graphplan frame-
work, and is not able to additionally benefit from any search

heuristics. We would like to investigate the possibilities for
applying such heuristics to Paragraph. Finally, the most
important future direction of this research is the extension of
Paragraph to the probabilistic temporal setting, where ac-
tions are durative in addition to being concurrent and having
probabilistic effects.

Acknowledgements
We thank Rao Kambhampati and the reviewers for interest-
ing discussions and comments, and National ICT Australia
(NICTA) and the Australian Defence Science & Technol-
ogy Organisation (DSTO) for their support, in particular via
the DPOLP (Dynamic Planning, Optimisation & Learning)
project. NICTA is funded through the Australian Govern-
ment’s Backing Australia’s Ability initiative, in part through
the Australian National Research Council.

References
Aberdeen, D.; Thiébaux, S.; and Zhang, L. 2004. Decision-
theoretic military operations planning. In Proc. ICAPS.
Blum, A., and Furst, M. 1997. Fast planning through planning
graph analysis. Artificial Intelligence 90:281–300.
Blum, A., and Langford, J. 1999. Probabilistic planning in the
Graphplan framework. In Proc. ECP.
Bonet, B., and Geffner, H. 2003. Labeled RTDP: Improving the
convergence of real-time dynamic programming. In Proc. ICAPS.
Bonet, B., and Geffner, H. 2005. mGPT: A probabilistic plan-
ner based on heuristic search. Journal of Artificial Intelligence
Research 24:933–944.
Boutilier, C.; Dean, T.; and Hanks, S. 1999. Decision-theoretic
planning: Structural assumptions and computational leverage.
Journal of Artificial Intelligence Research 11:1–94.
Bresina, J.; Dearden, R.; Meuleau, N.; Ramakrishnan, S.; Smith,
D.; and Washington, R. 2002. Planning under continuous time
and resource uncertainty: A challenge for AI. In Proc. UAI.
Dearden, R.; Meuleau, N.; Ramakrishnan, S.; Smith, D.; and
Washington, R. 2003. Incremental contingency planning. In
Proc. ICAPS Workshop on Planning under Uncertainty and In-
complete Information.
Kambhampati, S.; Parker, E.; and Lambrecht, E. 1997. Under-
standing and extending graphplan. In Proc. ECP.
Koehler, J.; Nebel, B.; Hoffmann, J.; and Dimopoulos, Y. 1997.
Extending planning graphs to an ADL subset. In Proc. ECP.
Little, I.; Aberdeen, D.; and Thiébaux, S. 2005. Prottle: A prob-
abilistic temporal planner. In Proc. AAAI.
Long, D., and Fox, M. 1999. Efficient implementation of the
plan graph in STAN. Journal of Artificial Intelligence Research
10:87–115.
Mausam, and Weld, D. 2004. Solving concurrent Markov deci-
sion processes. In Proc. AAAI.
Mausam, and Weld, D. 2005. Concurrent probabilistic temporal
planning. In Proc. ICAPS.
Onder, N., and Pollack, M. 1999. Conditional, probabilistic plan-
ning: A unifying algorithm and effective search control mecha-
nisms. In Proc. AAAI.
Smith, D., and Weld, D. 1999. Temporal planning with mutual
exclusion reasoning. In Proc. IJCAI.
Younes, H., and Littman, M. 2004. PPDDL1.0: The language for
the probabilistic part of IPC-4. In Proc. International Planning
Competition.
Zimmerman, T., and Kambhampati, S. 2005. Using memory
to transform search on the planning graph. Journal of Artificial
Intelligence Research 23:533–585.


