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Abstract

This paper considers a residential market with real-time elec-
tricity pricing and flexible electricity consumption profiles for
customers. Such a market raises an optimisation problem for
home automation systems where they need to schedule con-
sumption activities to reduce costs, whilst maintaining a base
level of comfort and convenience. This optimisation problem
faces uncertainty in real-time prices, weather conditions, and
occupant behaviour. The paper presents an online stochas-
tic combinatorial optimisation algorithm that produces fast,
high-quality solutions to this problem. This algorithm is com-
pared with reactive control strategies and an approach using
an expected scenario. Our results demonstrate the value of
stochastic information and online stochastic optimisation in
residential demand response.

1 Introduction
Electricity consumption in residential markets will undergo
fundamental changes in the next decade due to the availabil-
ity of solar panels and novel pricing mechanisms, progress
in batteries and electric cars, and the emergence of smart ap-
pliances and home automation. These technologies provide
residential customers with the ability to actively participate
in smart grid activities such as demand response where loads
are shifted to times favourable for the network as a whole.

Having an intelligent Home Automation System (HAS)
within each home is a key component in this vision. The
HAS receives information about device operating charac-
teristics, usage requests and network signals, and can send
control actions back to smart devices. Apart from providing
useful feedback to occupants on their consumption habits,
it can also autonomously make control decisions. Through
this control the HAS can target one or more of the following
objectives:

1. Improve occupant comfort,

2. Reduce overall electricity consumption,

3. Perform demand response for network.

These objectives are often conflicting, so in order to get
the right balance, occupants need to indicate how they value
comfort against cost savings. The task of the HAS is then
to decide on a series of control actions to take over time,

which produces an optimal solution for the weighted combi-
nation of objectives. The HAS can implement simple poli-
cies to try and meet these conflicting objectives. Or, more
interestingly, it can use sophisticated stochastic optimisation
technology which exploits forecasts and observed patterns in
prices, weather, residential activities and smart device usage.

This paper aims to determine the benefits of online
stochastic optimisation for a HAS that is exposed to Real-
Time Pricing (RTP) as a demand response mechanism. A
number of research projects have started examining this very
issue (see the related work section) but they often give an
incomplete picture of the benefits of optimisation and the
value of stochastic information. These projects often con-
sider simpler uncertainty models, which give a partial un-
derstanding of the true benefits that optimisation can bring
to this setting. In contrast, this paper makes two primary
contributions: one conceptual and one algorithmic.

At the conceptual level, the paper presents a composi-
tional architecture for HAS optimisation, where each device
can be modelled independently in terms of a collection of
functions that encapsulate its behaviour. These devices are
then assembled into a model of a home, from which the HAS
optimisation problems can derive.

At the algorithmic level, the paper presents a comprehen-
sive study of the value of HAS optimisation in the presence
of uncertainty about future prices, occupant behaviour, and
environmental conditions. Our formulation uses models rep-
resentative of physical devices and stochastic models trained
on real weather and network demand data. These device and
stochastic models are used in two online stochastic optimi-
sation algorithms which are compared to simple control sys-
tems based on reactive policies.

The experimental results not only show the value of
stochastic information, but also that stochastic optimisation
provides solutions that are close to the clairvoyant solutions
which have perfect knowledge of the future. The online
stochastic algorithms using MILP technology are fast and
they produce significantly better solutions than the reactive
controllers. Also of interest is the comparison between the
two online stochastic algorithms, and an experiment that
shows the distance into the future that needs to be consid-
ered when making a decision.

The rest of the paper presents the deterministic HAS opti-
misation problem, its stochastic version, the stochastic mod-



els, and the experimental results.

2 Deterministic HAS Optimisation
A house contains a collection of controllable devices which
influence the amount of power consumed in the house and
the level of comfort that residents experience. We consider
the operation of these devices over discrete time steps1: ∀i ∈
Z : ti ∈ R where ti > ti−1 and ∀i ∈ Z : tstpi = ti − ti−1.

Given a real time price for electricity and other input pa-
rameters (e.g., external temperatures and device requests),
optimal operation of these devices is achieved by minimis-
ing the sum of monetary and comfort costs. The optimi-
sation problem decision variables are the device actions at
each time step, which are constrained by device characteris-
tics and total power limits on the house.

2.1 Formal Definition
We start with a new formal definition of a device, which is
a collection of functions that govern the device operation.
These include functions for permissible device actions, state
updates, the electrical power transferred with the house,
and any non-power related operation costs. Operation costs
are always positive and may include any occupant comfort
costs, fuel consumption or wear and tear on the equipment.
By convention power consumed by the device is negative,
and power generated, e.g., by a rooftop photovoltaic system
is positive.

Definition 1 (Device)
A device is a tuple d = (Ad, Sd, Rd, qd, gd, fd, ld), where:

• Ad ⊆ Rmd × Zm′d is the set of device actions
• Sd ⊆ Rkd × Zk′d is the set of device states
• Rd ⊆ Rwd × Zw′d is the set of device input parameters
• qd : Sd × Rd −→ P(Ad) is the permissible action func-

tion
• gd : Ad × Sd ×Rd −→ Sd is the state update function
• fd : Ad × Sd −→ R is the electrical power function
• ld : Ad × Sd × Rd × R −→ R is the operational cost

function

A house is simply a set of devices, together with bounds
on the instantaneous amount of power the house can transfer
to or from the grid:

Definition 2 (House)
A house is a tuple h = (Dh, ph, p̄h), where:

• Dh is the set of devices
• p

h
, p̄h ∈ R are the lower and upper power limits

We now turn to the deterministic formulation of the HAS
optimisation problem which will be later used as a building
block for our stochastic formulation. The deterministic for-
mulation assumes that the input parameters are known over
a horizon of n time steps. The task is to choose device ac-
tions at each step to reduce the total cost over the horizon.

1Variable time step sizes will be used to focus computational
time where most needed.

Inputs include the device initial states, the RTP, the house
background power2 and the device input parameters at each
step. We account for the fact that the RTP is often differ-
ent depending on whether power is bought from or sold to
the grid. The optimisation variables at each time step in-
clude the device actions and states, and the device and house
power consumptions and costs. These variables and inputs
are linked together via the device functions in Definition 1
and house power limit constraints in Definition 2.

We use the following notation: (a)+ = |a| if a > 0 and
0 otherwise, and similarly (a)− = |a| if a < 0 and 0 other-
wise, where a ∈ R.

Definition 3 (Deterministic HAS Optimisation Problem)
Let h = (Dh, ph, p̄h) be a house. The HAS optimisation
problem over a horizon n ∈ N∗ for h is the following:

Inputs:
for each device d = (Ad, Sd, Rd, qd, gd, fd, ld) ∈ Dh

• sd,0 ∈ Sd is the device initial state
for each device d ∈ Dh and time step i ∈ {1 . . . n}
• rd,i ∈ Rd are the device input parameters
for each time step i ∈ {1 . . . n}
• pbh,i ∈ R− is the house background power

• vi ∈ R2 is the real-time price (buying, selling)
Decision variables:

for each device d ∈ Dh and time step i ∈ {1 . . . n}
• ad,i ∈ Ad are the device action variables

Other variables:
for each device d ∈ Dh and time step i ∈ {1 . . . n}
• sd,i ∈ Sd are the device state variables
• pd,i ∈ R is the device power
• cd,i ∈ R+ is the device operation cost
for each time step i ∈ {1 . . . n}
• ph,i ∈ [p

h
, p̄h] is the total power

• ch,i ∈ R is the total cost
Constraints:

for each device d ∈ Dh and time step i ∈ {1 . . . n}
• ad,i ∈ qd(sd,i−1, rd,i) is the action permissibility con-

straint
• sd,i = gd(ad,i, sd,i−1, rd,i) is the state update con-

straint
• pd,i = fd(ad,i, sd,i) is the device power constraint

• cd,i = ld(ad,i, sd,i, rd,i, t
stp
i ) is the device cost con-

straint
for each time step i ∈ {1 . . . n}
• ph,i =

∑
d∈Dh

pd,i+p
b
h,i is the house power constraint

• p
h
≤ ph,i ≤ p̄h is the house power limits constraint

• ch,i =
∑

d∈Dh
cd,i + tstpi vi,1(ph,i)− − tstpi vi,2(ph,i)+

is the house cost constraint
Objective:

min
∑n

i=1 ch,i

2This aggregates uncontrollable electrical consumption, e.g.,
lighting, entertainment and cooking.



2.2 Modelled Devices
In our experiments we consider a modern house with elec-
trical HVAC, hot water heating, solar panels, washing ma-
chine, clothes dryer and dish washer. We also include two
devices that are expected to become standard within the next
decades, an electric vehicle (EV) and a dedicated battery
bank for storing electrical energy. Descriptions of these de-
vices are given in this section. Some liberty has been used
in these descriptions to aid understanding, but with slight re-
formulation they all fit into the rigorous device definition.
Device electrical powers and operational costs are consis-
tently represented by the variables pi and ci, where a nega-
tive power represents power consumed by a device.

The physical behaviour of devices has been approximated
by linearising their physical equations and discretising time.
Only significant steps of this process are mentioned in the
device descriptions. For the experiments parameters were
selected to be representative of typical devices. For example,
the EV battery capacity is equal to that of a Nissan Leaf,
and the house floor area for heating purposes is typical of an
average-sized house. Due to the difficulty in obtaining some
parameters, for example the charging efficiency of a Nissan
Leaf, and since our models are an approximation of these
real systems anyway, some estimates had to be made.

Battery. A battery has a stored energy stateE ∈ [0, Ē] and
a charge/discharge power p ∈ [p, p̄] action variable. Energy
is lost through a fixed efficiency η when power is charged
into the battery. The stored energy state update function is
given by:

Ei = Ei−1 + tstpi (η(pi)− − (pi)+) (1)
A battery lifetime cost c is associated with any power that is
discharged from the battery through a lifetime price v:

ci = v(pi)+ (2)
Electric Vehicle. An electric vehicle (EV) is essentially
the same as the battery just presented, but with a few ad-
ditional constraints. Firstly the EV battery can only be
charged/discharged when it is at home, which is indicated
by the input parameter xh ∈ {0, 1}:

xhi = 0 =⇒ pi = 0 (3)
The input parameter pd ∈ R+ represents the power drawn
from the battery whilst it is driving. This modifies the state
update function as follows:

Ei = Ei−1 + tstpi

(
η(pi)− − (pi)+ − pdi

)
(4)

The final constraint is on the amount of energy stored in
the battery. The house occupants provide an input param-
eter Em ∈ [0, Ē] that represents the minimum energy that
the EV battery should have in it at each point in time. This
value represents how much energy the occupant expects to
need if they drive away in the car at a given time. This is not
a hard constraint as the draw from driving can bring the bat-
tery charge below this limit, but it ensures that if the battery
power does fall below this limit, then it charges back up as
fast as possible.

xhi = 1 =⇒
Ei ≥ min

[
Ei−1 + tstpi

(
−ηp− pdi

)
, Em

i

]
(5)

Hot Water Heating. The hot water system is made up of a
storage tank and an electric heating element. We ignore the
details of the interaction between hot and cold water in the
tank and consider the state of the tank as being the amount
of energy E ∈ [0, Ē] it contains above the inlet cold wa-
ter temperature. The tank is considered empty of hot water
when this value is zero. The action variable is the power set-
ting of the electric heater p ∈ [p, 0] at each time step. An
amount of power, given by the input parameter pd ∈ R+, is
drawn from the tank at each time step in order to meet oc-
cupant demand. The energy state update function is given
by:

Ei = Ei−1 + tstpi

(
−pi − pdi − pli + pui

)
(6)

The variable pl ∈ R+ represents thermal losses from the
tank to the outdoor environment. The rate of loss depends
on how full the tank is and the difference in temperature
between the water set point T s ∈ R and the outdoor temper-
ature T o ∈ R through a resistivity R ∈ R+:

pli =
1

R

Ei

Ē
(T s − T o

i ) (7)

The variable pu ∈ R+ is a recourse variable that is used to
indicate the amount of hot water demand which goes unmet,
i.e. water drawn from the tank when it is empty. This is
heavily penalised as a cost c through an unmet demand price
v:

ci = vpui (8)
The hot water system has a minimum stored energy level

Em ∈ [0, Ē], much like the electric vehicle. If drawn water
brings the energy level of the tank below this value then the
heater must work as hard as possible to bring the energy
back up. This value is fixed in time and is used to represents
a safety margin that the occupants impose in order to reduce
the likelihood of running out of cold water.

Ei ≥ min
[
Ei−1 + tstpi

(
−p− pdi − pli + pui

)
, Em

]
(9)

Under Floor Heating/Cooling. The heating system of the
house includes a heat pump which heats/cools water which
is then pumped through piping embedded in the floor of the
house. The temperatures of the floor and the air in the room
T f , T a ∈ R are the device states. The action variable is
the amount of thermal energy that is supplied to the floor of
the house pt ∈ R. This is limited by the heat pump electri-
cal power consumption p ∈ [p, 0] through heating and cool-
ing Coefficients of Performance (COP) ηh ∈ [ηh, η̄h], ηc ∈
[ηc, η̄c]:

pi = − 1

ηhi
(pti)+ −

1

ηci
(pti)− (10)

The COPs depend on the temperatures of the two thermal
wells between which the heat pump is operating. We assume
the internal thermal well is at a constant temperature, and
the external well is at the outdoor temperature T o ∈ R. We
have the COPs as linear functions of T o for some constants
ah, ac ∈ R+ and bh, bc ∈ R, with hard upper and lower
limits:

ηhi = min
[
max

[
ahT o

i + bh, ηh
]
, η̄h
]

(11)



ηci = min
[
max

[
−acT o

i + bc, ηc
]
, η̄c
]

(12)
Heat can transfer between the floor and the outdoor en-

vironment pfo ∈ R, the floor and the air in the room
pfa ∈ R, and the air in the room and the outdoor environ-
ment pao ∈ R. We use simple lumped thermal resistivities
Rfo, Rfa, Rao ∈ R+ to govern these heat flows:

pfoi =
1

Rfo
(T f

i − T
o
i ) (13)

pfai =
1

Rfa
(T f

i − T
a
i ) (14)

paoi =
1

Rao
(T a

i − T o
i ) (15)

The temperature state update functions are given by:

T f
i = T f

i−1 +
tstpi

mfκf

(
pti − p

fo
i − p

fa
i +AfIi

)
(16)

T a
i = T a

i−1 +
tstpi

maκa

(
pfai − p

ao
i + pgi

)
(17)

where mf ,ma, κf , κa ∈ R+ are the floor and air, mass and
specific heat capacity coefficients respectively. Sunlight en-
ters through the windows at an irradiance of Ii, and lands
on a floor area of Af . The input pgi ∈ R+ is thermal power
generated by occupant metabolisms and background electric
appliances, that contributes to heating the air in the room.

The final relation we have is for the comfort cost c which
depends on the difference between the air temperature and
an occupant specified set point temperature T s ∈ R. Two
occupant specified time varying comfort prices va, vb are
used, one of which is only included after a threshold tem-
perature difference ∆T b:

ci =

{
vai |T a

i − T s| if |T a
i − T s| < ∆T b

(vai + vbi )|T a
i − T s| otherwise

(18)

Shiftable Loads. Shiftable loads are devices that need to
run once within a time window. An occupant sets two input
parameters: a start time is and a last allowed start time il, be-
tween which the controller must schedule the device to run.
Examples of this kind of device include washing machines,
clothes dryers and dish washers. We model non-preemptive
shiftable loads which can have time varying power con-
sumptions.

The start of run indicators x ∈ {0, 1} act as both the de-
vice action and state variables. A shiftable load has a cumu-
lative energy consumption function ψ : R+ −→ R+ which
takes a run duration and returns the cumulative amount of
energy that the device has consumed for that duration. Con-
straints on the run indicator variables and the device power
p ∈ R− are given by:

il∑
k=is

xk = 1 (19)

pi = −
i∑

k=is

xk
ψ(ti − tk−1)− ψ(ti−1 − tk−1)

tstpi

(20)

Photovoltaics. The photovoltaic (PV) panels have no ac-
tion variables, the amount of electricity they generate is
purely determined by the solar irradiance input parameter.
We model a PV system ignoring temperature and shading
effects and by assuming the panels lay on a horizontal sur-
face. The generated electric power p ∈ R+ is then a simple
function of the panel area A ∈ R+, efficiency η ∈ [0, 1] and
global irradiance input parameter I ∈ R+:

pi = ηAIi (21)

3 Stochastic HAS Optimisation
So far we have considered the deterministic home automa-
tion formulation that requires perfect foresight about what
will happen in the future. However in practice, almost all
the input parameters are uncertain, and their uncertainty is
only revealed in real time (e.g., outdoor temperature) or in
some cases a few time steps in advance (e.g., RTP). This mo-
tivates the use of online stochastic optimisation (Van Hen-
tenryck and Bent 2006), which exploits statistical models of
the uncertain parameters in order to make the best decisions
on average.

3.1 The Stochastic Model
In the stochastic HAS problem, the RTP vi, background
house power pbh,i and device input parameters rd,i are ran-
dom variables. We denote their real-world realisations (i.e.
their values when the uncertainty is revealed) with the sym-
bol ∗. For instance, T o∗

i denotes the real outdoor tempera-
ture at time step i. For notational convenience, all inputs are
combined into one vector

zi = (vi, p
b
i,h, rd1,i, rd2,i, . . .)

T (22)

where we index elements with a k (e.g., zi,k). Random vari-
ables at time step i may be dependent on each other and on
the variables at previous time steps. Therefore the joint dis-
tribution for random variables up to time step i is given by:

P (zi, zi−1, . . .) (23)

Let t∗ represent the current real world time. Each input
zi,k is revealed a fixed amount of time ∆trevk ∈ R+ in ad-
vance (or in real time if ∆trevk = 0). This means, that for a
given t∗ an input zi,k is known to be z∗i,k if ti ≤ t∗+ ∆trevk ,
otherwise it is a random variable. Given i and t∗ we use
Ki,t∗ = {k|ti ≤ t∗ + ∆trevk } to denote the set of known
input indices.

3.2 Online Stochastic Optimisation
In an online stochastic algorithm decisions are made one
step at a time using stochastic information about future
events. After each time step the uncertainty and the effect
of all actions is revealed, updating the state of the system.
Decisions for the next period are computed and the pro-
cess is repeated. Online stochastic optimisation has been
used successfully on a wide variety of problems (e.g., (Pow-
ell, Simao, and Bouzaiene-Ayari 2012; Van Hentenryck and
Bent 2006)).

Our algorithms use a rolling finite horizon as illustrated in
Figure 1, where the time steps 1, . . . , n are aligned to each



horizon with t0 = t∗. Optimisation is performed within each
horizon using stochastic information for any unrevealed in-
puts, and then the actions for the first time step are executed
in the real world.

1 2

1 2

1 2 n

n

n

Figure 1: Rolling horizon for 3 consecutive iterations.

It might not be possible to execute actions produced by
the optimisation if the real world input parameters z∗1 dif-
fer from what the optimisation anticipated. For example, if
the optimisation decides to run the hot water heater at full
power, and the tank unexpectedly reaches its capacity (due
to less demand for hot water than expected), then the power
of the heating action will need to be reduced so as to remain
within the tank’s capacity. Our HAS handles this automati-
cally in the execution step, by using very simple executives
for each device which select the closest feasible action.

In the following sections we introduce two approaches
to solving the stochastic optimisation problem within each
horizon: the expectation and the 2-stage algorithms.

3.3 Expectation Formulation
The expectation online stochastic algorithm takes the con-
ditional expected value of any unrevealed inputs in the op-
timisation horizon, and solves the deterministic version of
the problem given in Definition 3. We use the term ex-
pected value loosely because in truth we calculate the ex-
pected value only where it makes sense, which is typically
for continuous inputs. For the rest of the inputs the most
likely value is calculated instead. For example, expected
value is used for outdoor temperatures and most likely value
for the washing machine requests. Both of these calcula-
tions are performed using the joint distribution for inputs in
the horizon, conditioned on any known inputs in and prior
to the horizon:

P (zn, zn−1, . . . , z1|(z∗n,k,∀k ∈ Kn,t0), . . . ,

(z∗1,k,∀k ∈ K1,t0), z∗0 , . . .) (24)

3.4 2-Stage Formulation
In this algorithm 2-stage stochastic programming is used
within each horizon. This provides an approximation to
a full multi-stage stochastic program which are, in gen-
eral, known to be extremely challenging computationally
(Shapiro 2006). The first stage includes time step 1, and the
second stage time steps 2, . . . , n. Traditionally, in 2-stage
stochastic programming there is no uncertainty in the first
stage (Shapiro, Dentcheva, and Ruszczyński 2009). How-
ever in our problem, we are required to make decisions be-
fore some inputs in the first stage are revealed. To resolve
this, first stage inputs are set to their real values if known,
otherwise their conditional expected value is taken (as de-
scribed in 3.3).

The second stage uses sampled scenarios to represent the
uncertainty in the input parameters. We define a second

stage scenario s as being a sample from the joint distribu-
tion of random variables in the second stage, conditioned on
any revealed inputs in the second stage, and inputs in and
prior to the first stage:

s ∼ P (zn, zn−1, . . . , z2|(z∗n,k,∀k ∈ Kn,t0), . . . ,

(z∗2,k,∀k ∈ K2,t0),

z1, z
∗
0 , . . .) (25)

We use the Sample Average Approximation (SAA)
(Shapiro, Dentcheva, and Ruszczyński 2009) to limit the
number of scenarios S ∈ N that we need to consider in
the second stage. Each scenario in the second stage needs
to have its own set of variables in the optimisation problem.
For example we denote the power of device d at time step
i in scenario s by pd,i,s. The 2-stage objective function is
given by:

min

c1 +
1

S

∑
s∈{s1,...,sS}

n∑
i=2

ci,s

 (26)

3.5 Stochastic Inputs
Stochastic inputs include the real-time pricing (RTP), out-
door temperature, solar irradiance, background power, in-
ternal heat generation, hot water demand, EV usage and
shiftable load requests. Accurately modelling any of these
random processes is a significant undertaking in itself. The
models we developed, while not the most sophisticated, suit
the purposes of our experiments by capturing the fundamen-
tal nature of these stochastic processes. We investigated a
number of different model types before settling on Gener-
alised Additive Models (GAM) (Hastie and Tibshirani 1990)
for the continuous variables like temperature, and Markov
Models for the more discrete occupant driven behaviours
such as shiftable device requests.

Generalised Additive Models. In order to predict future
values, the GAMs models take advantage of weather fore-
casts that can be readily obtained from national weather ser-
vices. These forecast values include daily maximum and
minimum temperatures, as well as morning and afternoon
cloud cover and wind speed. They also take in the value
from the previous time step and temporal information. The
models were trained on data obtained from the Bureau of
Meteorology3 and Australian Energy Market Operator4 rel-
evant to the states of New South Wales (NSW) and the Aus-
tralian Capital Territory (ACT) in Australia.

The best way of implementing RTP in retail markets is
still an open question and so is worth particular mention. It
is unlikely that it will be a simple replication of the whole-
sale spot market price due to its high volatility. More likely
it will be controlled by the retailer, but have a shape repre-
sentative of the wholesale market. We designed our RTP to
be a quadratic function5 of the amount of power that fossil

3Bureau of Meteorology, www.bom.gov.au
4Australian Energy Market Operator, www.aemo.com.au
5The quadratic is representative of an increasing marginal sup-

ply price (Ramchurn et al. 2011).



fuel sources must supply to meet total network load. This is
the total network demand minus the generation from renew-
able sources such as wind and solar. We used a GAM for
the total network demand. The generation from renewables
is a function of wind speed and solar irradiance. The RTP is
only revealed to a house 30 minutes in advance.

Markov Models. Input parameters arising from the be-
haviour of house occupants were captured via semi-Markov
models representing the activities and consumption patterns
(e.g., hot water, shiftable load requests and EV usage) of
the four occupants of a specific house in the ACT. Each
model identifies the key activities of an occupant (e.g., sleep-
ing, taking a shower and leaving for work), and specifies
the probabilities of transiting from one activity to the next
within certain time windows. Each activity is associated
with a series of actions (e.g., watching TV, requesting the
dish washer to operate) that trigger changes in input param-
eters. Conditional sampling through these models is used to
generate scenarios.

Whilst this scheme was convenient for our experiments,
other more data-driven options are possible: we could sim-
ply gather and use a database of raw scenarios, or learn
model parameters from disaggregated demand data (Kolter,
Batra, and Ng 2010; Parson et al. 2012).

4 Experiments
We implemented the 2-stage and expectation online algo-
rithms using Gurobi as a backend to solve the MILP within
each horizon. The devices in Section 2.2 were implemented
and included in the experimental house, and conditional
samplers were created for the uncertain input parameters in
Section 3.5. We created a simple simulator that uses the
same physical equations as the optimisation to simulate the
execution of actions in the real world. We compare the
performance of the 2-stage and expectation controllers with
naive and smart reactive controllers, and a controller that has
perfect information.

The Naive reactive controller represents a household that
either has no ability or no desire to respond to a RTP. It starts
shiftable devices as soon as a request is received, fills up the
hot water tank in off-peak hours, charges the EV only if it is
below the requested minimum level, maintains the room at
the set point temperature and never uses the battery bank.

The Smart reactive controller uses simple device action
policies to decide how to respond to changes in RTP. It de-
lays running a shiftable device until it reaches a cheap price
or the last available start time, uses thresholds about a mov-
ing average of the RTP to decide when to charge or discharge
energy from the batteries, EV and hot water system, and
maintains the room at the set point temperature like the naive
controller.

The Perfect controller has perfect foresight about what
will happen in the future. It optimises the deterministic
problem in Definition 3 over the whole experiment duration
with full knowledge of z∗i . This controller (which is infeasi-
ble in practice) is used to give a lower bound on the objective
that can be achieved by the other controllers.

4.1 Controller Comparison
Nine sets of input parameters typical for the month of Febru-
ary were generated. These were used in 9 separate experi-
mental runs, each with a duration of 7 days. The online
algorithms had 16 hour optimisation horizons, with 15 min-
utes for the first two time steps and 30 minute time steps
for the remainder of the horizon6. The reactive and perfect
controllers had 15 minute time steps. The 2-stage algorithm
sampled 30 scenarios in its second stages.

The controller costs are plotted in Figure 2a for each of the
9 experimental runs. These results are adjusted to account
for any energy that remains in the battery, EV, or hot water
system at the end of an experimental run. This is done by
valuing the left-over energy at the average RTP for the last
24 hours. Without this adjustment it would not be fair to
compare the controllers, since any controller that anticipates
the need to store energy for a future purpose, would perform
poorly if it does so just before the experiment ends. This
is an artefact of the finite length of our experimental runs;
with very long durations this problem goes away as the costs
associated with left-over stored energy become insignificant.

We see that the 2-stage and expectation algorithms get
quite close to the performance of the controller with perfect
foresight. They produce significant cost reductions over the
two reactive controllers. In run 5 the performance of the 2-
stage and expectation controllers is drastically reduced. This
is caused by large spikes in hot water consumption that occur
during this run. The expectation algorithm fails to account
for these spikes. The 2-stage anticipates them, but their ef-
fects are heavily discounted because of their low likelihood.
When the spikes eventuate both algorithms are hit by a large
cost for not being able to supply enough hot water. The
2-stage fares better because it has done some preparation,
which is the amount that on average will give the optimal
outcome. The two reactive controllers are not significantly
affected by these unlikely spikes because they have to plan
for the worst case and always keep the tank relatively full.

The expectation algorithm does just as well or better than
the 2-stage controller for a majority of the experimental
runs, but on average the 2-stage outperforms it by 7.4%. The
expectation algorithm performs poorly when it fails to antic-
ipate an important scenario, such as the possibility for large
spikes in hot water consumption. The amount of time spent
optimising in Gurobi per day is on average 64 seconds for
the 2-stage algorithm and 0.9 seconds for the expectation
algorithm (using a single core of an Intel i7-2600 3.4GHz
CPU). Whilst the 2-stage is much slower than the expecta-
tion algorithm, its computational time remains insignificant
when spread out over a day.

Figure 2b shows the costs for each controller in run 1
disaggregated into those associated with each device, ignor-
ing the PV. We see cost savings for all devices when using
the online stochastic controllers over the reactive ones. The
greatest area where the 2-stage and expectation controllers
can be improved is in hot water heating; in this experiment

6By using larger time steps for more uncertain values further
into the future we reduce the computational burden with only a
minor reduction to solution quality.
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Figure 2: Costs for each experimental run and disaggregated costs for run 1.

the smart reactive controller is even outperforming them.
Aside from this their performance is close to that of the per-
fect controller.

Figure 3a gives an example of the power exchanged be-
tween the house and the grid for one day, along with the
RTP. As expected most consumption occurs when the prices
are low, and when the price is high power is sold back to
the grid from the battery, EV and PV. The 2-stage and ex-
pectation controllers follow the general trend of the perfect
controller with some small divergences.

4.2 Parameter Tuning
Figure 3b shows the results of an experiment where we in-
vestigated how performance changes with the horizon dura-
tion. This plot shows the performance of the perfect con-
troller running as an online algorithm where it is restricted
to only having perfect foresight a certain distance into the
future. The experiment is performed on run 1 for a number
of different horizon durations, and the results are compared
to the original perfect controller that can see the full 7 days.
The results show that there is little to be gained by looking
any further into the future than 20 hours.

We reran the 2-stage experiments 3 times using different
starting sampler seeds. The standard deviation of the results
was typically less than 2 cents for each run except run 5
where we had a standard deviation of 42 cents. This seems
to suggest the 2-stage algorithm could have benefited from
more samples in its second stage for run 5. Indeed initial ex-
periments show some improvements when using more sam-
ples but more comprehensive testing is still required.

5 Related Work
Much of the existing literature on residential demand re-
sponse focuses on deterministic formulations over fixed
horizons where the scheduler has perfect foresight (Ram-
churn et al. 2011; Gatsis and Giannakis 2012). Those that
have considered uncertainty in the problem typically focus
on just one aspect (e.g., real-time pricing) (Mohsenian-Rad

and Leon-Garcia 2010), or use very simple models for ran-
dom variables (Tischer and Verbic 2011).

Model-predictive control has been used to account for the
uncertainty of estimated device model parameters and mea-
surement noise (Yu et al. 2012), but not the uncertainty of
the type we model. In general, model-predictive control is
best suited to unconstrained, purely continuous settings with
limited uncertainty.

Dynamic programming (Tischer and Verbic 2011; Kim
and Poor 2011) and Q-learning (Levorato, Goldsmith, and
Mitra 2010) have been used in conjunction with Markov De-
cision Process (MDP) formulations of the residential load
scheduling problem, to generate policies that allocate power
to each device. MDP approaches suffer from severe scala-
bility issues, especially since the state space needs to be dis-
cretised. Moreover, MDPs seem somewhat excessive for our
problem, given that uncertainty does not depend on the de-
cisions taken. Our stochastic programming approach which
uses scenario sampling is more scalable and more natural in
the presence of exogenous uncertainty.

One paper (Tischer and Verbic 2011) found that acting
on the basis of the optimal dynamic programming solution
did not provide any benefit over acting on expectations. For
many of our experiments we found this to be true, but we
did identify certain cases where the more cautious nature of
the 2-stage algorithm is superior. The difference in our two
results is thought to be due to our use of more sophisticated
uncertainty models and differences in device models.

The paper closest to ours compares two-stage stochas-
tic programming and robust optimisation techniques for
scheduling residential loads (Chen, Wu, and Fu 2012). Un-
certainty is restricted to the RTP which is known for the first
stage but becomes uncertain thereafter. The objective in-
cludes minimising expected price and the probability mass
of “risky” scenarios whose price exceeds a certain thresh-
old. Comfort is handled by imposing hard constraints under
which appliances must run, rather than by inclusion into the
objective. In this setting, two-stage stochastic programming
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Figure 3: House power profiles over one day and performance for different horizon durations.

was observed to provide benefits over robust scheduling.
The scope of our analysis goes significantly beyond these

results, by exploring uncertainty from a large range of
sources and by identifying the value of stochastic informa-
tion. We enable richer sources of uncertainty to be consid-
ered in our framework, by allowing inputs to be revealed at
arbitrary points in time.

6 Conclusion and Future Work
This paper contributes to the growing body of work on resi-
dential control of loads and storage under real-time pricing,
by developing a framework that accounts for uncertainty. To
our knowledge, it is the first work that provides a scalable
and accurate solution in the presence of uncertainty about
future prices, occupant behaviour and environmental condi-
tions. Using models representative of physical devices and
random processes, we have shown the monetary and comfort
cost savings that can be achieved by using online stochas-
tic algorithms over reactive control, and the performance in-
crease of a 2-stage approach over acting on expectations.
Studies such as the one in this paper are import for rallying
industry and customers towards more effective energy man-
agement schemes.

Further research is needed to investigate how closely re-
ality can be modelled with random processes, and if in turn
they are suitable for online learning. We also need to further
investigate how time step sizes and the number of second
stage scenarios influence performance, and to conduct more
experiments for different months of the year. The experi-
mental set up we have developed can be used to experiment
with and compare different pricing schemes. For example,
time of use pricing and schemes where the price offered for
generation is lower than that for consumption. We also plan
on investigating how multiple houses react to a RTP and
what sort of emergent behaviour develops when they are all
learning their statistical models online.

Commercially available residential DR solutions7 typi-
cally focus or direct load control or simple reactive policies.
Such systems could experience more optimal DR perfor-
mance and greater residential customer satisfaction by us-
ing our algorithms. However, there are two practical chal-
lenges that need to be addressed before our technology can
have widespread adoption in homes. Firstly there needs to
be a standard smart device interface for communication with
HASs. The proposed Australian demand response appliance
standards in AS4755 are a move in the right direction, but
true two-way communication would enable better control
outcomes. All new appliances should come with such an
interface, while some existing appliances could be retrofit.
The second requirement is for utilities to start offering RTP
services to residential customers. The HAS could receive
the RTP signal directly8 or use existing smart meters as an
intermediate. Customers will be attracted to these schemes
and to the purchase of a HAS with DR capabilities by the
potential electricity bill savings.
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