
Solving Power Supply Restoration Problems with
Planning via Symbolic Model Checking

Piergiorgio Bertoli1, Alessandro Cimatti1, John Slaney2 and Sylvie Thiébaux2

Abstract. The past few years have seen a flurry of new approaches

for planning under uncertainty, but their applicability to real-world

problems is yet to be established since they have been tested only

on toy benchmark problems. To fill this gap, the challenge of solv-

ing power supply restoration problems with existing planning tools

has recently been issued. This requires the ability to deal with incom-

pletely specified initial conditions, fault conditions, unpredictable ac-

tion effects, and partial observability in real-time. This paper reports

a first response to this nontrivial challenge, using the approach of

planning via symbolic model-checking as implemented in the MBP

planner. We show how the problem can be encoded in MBP’s input

language, and report very promising experimental results on a num-

ber of significant test cases.

1 Introduction

It has long been recognized that real-world planning requires cop-

ing with uncertainty arising from exogenous events, nondeterminis-

tic actions, and partial observability. Accordingly, a wide range of

approaches for planning under uncertainty have been proposed; see

[4, 5, 8, 9, 10] for recent examples. While theoretically well-founded,

these approaches have only been tested on very artificial examples

(tigers behind doors, bombs in toilets) and, at a practical level, there

is no evidence that they will scale up to address interesting problems.

Therefore, one of the most significant outstanding tasks for the field

is to demonstrate the applicability of these approaches to realistic

problems, identify their bottlenecks, and suggest improvements.

Recently, Thiébaux and Cordier made a concrete proposal in this

direction [14]. They recast the problem of power supply restoration

(PSR) as a benchmark for planning under uncertainty, and issued the

challenge of solving PSR problems with existing planning tools. PSR

consists in planning actions to reconfigure a faulty power distribu-

tion network, with a view to resupplying the customers affected by

the faults. Due to sensor and actuator uncertainty, the location of

the faulty areas and the current network configuration are only par-

tially observable. This results in a tradeoff between acting to achieve

a suitable configuration, and acting (intrusively) for the purpose of

acquiring additional information. This tradeoff is typical not only of

planning for partially observable domains, but also of diagnosis, re-

pair, and reconfiguration problems [6, 13, 2]. Even relatively small

instances of this benchmark stretch the limit of what can be achieved

with state of the art general purpose planning approaches.

1 IRST – Istituto per la Ricerca Scientifica e Tecnologica, Trento, I-38050,
Italy. email: {bertoli, cimatti}@irst.itc.it

2 Computer Sciences Laboratory, The Australian National Uni-
versity, Canberra, ACT 0200, Australia. email: {John.Slaney,
Sylvie.Thiebaux}@anu.edu.au

In this paper, we take on the PSR challenge via one such approach:

planning via symbolic model-checking, as implemented in the MBP

planner [4]. MBP makes aggressive use of binary decision diagrams,

and generates conditional plans which are guaranteed to achieve the

goal. We show how PSR can be encoded in MBP’s input language

AR [7], and present experimental evidence that MBP is able to ex-

ploit network topology and solve problems whose complexity is rep-

resentative of that of real situations in better than real-time. Given the

difficulty of the benchmark, these results are beyond the expectation

with which we began this investigation.

This paper is organized as follows. Section 2 outlines the PSR

benchmark, Section 3 introduces the planning as model checking

paradigm, Section 4 discusses the modeling of PSR in AR, Section 5

reports the experimental results, and Section 6 concludes with some

remarks about related and future work.

2 The PSR Benchmark

We start with a short statement of the power supply restoration prob-

lem given in [14], to which we refer for a more detailed description.

As shown in Figure 1, a power distribution system is a network of

electric lines connected by switching devices (the small squares in

the figure) and fed by circuit-breakers (represented by large squares).

Switching devices and circuit-breakers are connected to at most two

lines, and have two possible positions: closed or open (open devices,

e.g. SD8, are white in the figure). When a circuit-breaker is closed,

it supplies power to the network, and this power propagates down-

stream until an open switching device stops the propagation. The

positions of the devices are initially set so that each circuit-breaker

feeds a given area of the network (e.g. the area fed by CB4 is boxed in

the figure), with no line being fed by more than one circuit-breaker.

In the figure, gray and dark are used to distinguish adjacent areas.

Permanent faults can affect one or more lines of the network.

When a line is faulty, the circuit-breaker feeding this line opens in

order to protect the rest of its area from overloads. As a result, not

just the faulty line but the entire area is left without power. The supply

restoration problem consists in reconfiguring the network by opening

and closing devices so as to electrically isolate the faulty lines and re-

supply a maximum of non-faulty lines on the lost areas. This must be

done within minutes. For instance, suppose that l20 becomes faulty.

This leads CB4 to open and the boxed area to be without power.

Assuming that the location of the fault and the current network con-

figuration are known, an adequate restoration plan would be the fol-

lowing: open SD16 and SD17 to isolate the faulty line, then close

SD15 to have CB7 resupply l19, and finally re-close CB4 to resup-

ply the others. Unfortunately, as we now explain, fault locations and

device positions are not always known with certainty, which makes

plan construction very difficult.



CB1

CB5

CB2

CB3

CB6

CB7

switching device

closed

circuit−breaker

area supplied by

CB4

CB4

open

SD1 SD2 SD3

SD26

SD4

SD6

SD7SD8SD9

SD12 SD13

SD22 SD25

SD14SD23

SD15SD16SD17

SD21SD20SD19

SD10SD11

SD24

SD18

SD5

l1 l2 l3 l4

l15

l5

l6

l7

l8l9

l10

l11l12

l13

l14

l16

l17

l18

l19l20l22 l21

l23 l24

l26 l25

Figure 1. Rural Power Distribution System (from [14])

Opening and closing operations are the only available actions in

the benchmark. A first source of uncertainty is that these actions can

fail and that failures are not always observable. More specifically, in

normal operation the actuator of the prescribed switching device exe-

cutes the requested action and sends a positive notification. However,

the actuator sometimes fails to alter the device’s position and sends

a negative notification – this is called the “out of order” mode – or

fails to alter the position but still sends a positive notification – this is

called the “liar” mode. Both abnormal modes are permanent. Clearly,

only the out of order mode is directly observable via the notification.

In addition to action-triggered notifications, two types of action-

independent sensing information are continuously provided. Firstly,

each device is equipped with a position detector which, when in nor-

mal mode, indicates the device’s current position. Unfortunately, the

position detector can be “out of order” for an indeterminate time,

during which it does not return any information. Because of the liar

actuator mode, the position of an operated device cannot be known

with certainty while its position detector remains out of order. It is

then difficult to know whether faults have been correctly isolated.

Secondly, each switching device is equipped with a fault detector

which senses the presence of faults. In normal operation, as long as

the device is fed, its fault detector indicates whether there exists a

fault downstream of it on the area. If the device is not fed, its fault

detector keeps the status it had when last fed. For example, if l20 is

faulty, only the fault detectors of SD17 and SD18 should indicate a

fault downstream. Then CB4 should open and the fault information

returned by the devices on its area should remain the same until they

are fed again. If position detectors were reliable, this scheme would

be sufficient to locate single faults, as well as multiple faults on dif-

ferent areas. Unfortunately, fault detectors sometimes do not return

any information at all (“out of order mode”), or can lie and return the

negation of the correct status (“liar mode”). Both modes are perma-

nent and again only the out of order mode is directly observable.

It follows that several fault location hypotheses are consistent with

the observations, and that each of them corresponds to an assumption

about the modes (normal or liar) of the detectors. The same applies to

positions. The only hope of gaining sufficient information to invali-

date a hypothesis is to change the network configuration and compare

the new sensing information with the predicted one. This results in a

tradeoff between acting to resupply and acting to reduce uncertainty,

which is typical of partially observable domains.

3 Planning via Symbolic Model Checking

In this section we briefly outline the Planning via Symbolic Model

Checking (PSMC) approach, which we use to solve PSR problems. In

PSMC, planning domains are represented as nondeterministic finite

state automata (see [4] for formal definitions). Modeling a domain

involves the two following steps. Firstly, the state and dynamics of

the system (e.g. in PSR, the plant to be restored) are specified. A state

of the domain is an assignment to a set of variables (e.g. whether a

switch is open or closed, or whether a line is faulty or not). The ef-

fects of (possibly indeterministic) actions are modeled by relating a

starting state and an action with one or more target states. Secondly,

the only information available at execution comes from observation

variables that are assigned values depending on the state of the sys-

tem. For instance, in PSR it is impossible to directly observe whether

a line is fed or faulty, but it is possible to observe the fault-status of

switches via (possibly untrustworthy) detectors.

In planning under uncertainty and with partial observability, the

problem is to reach a given goal condition (e.g. feed every non-faulty

line that can be fed) starting from a given, possibly uncertain, initial

condition. A solution to the problem is a strong plan that, when exe-

cuted, guarantees that all possible executions starting from any initial

state will reach a goal state. In general, the search space of plan-

ning under partial observability can be seen as an AND-OR graph in

the space of belief states, i.e. sets of states that represent uncertain

situations. OR nodes represent choices among possible actions and

observations, and AND nodes represent the effect of observations:

while an action maps a belief state into a belief state, an observation

conveys information by splitting the belief state into smaller belief

states, one per possible observation value, which must be all planned

for. Plan formation amounts to finding an AND-OR subtree within

the search space.

MBP [3] is a general purpose planner that provides for different

styles of planning, e.g. conformant, strong and strong cyclic plan-

ning, and extended goals, allowing for partial observability and un-

certainty. One of its strengths lies in the use of Binary Decision Di-

agrams (BDDs) to represent and manipulate belief states. BDDs are

compact data structures for the representation and manipulation of

propositional formulae. In particular, in MBP the effect of actions and

observations is efficiently computed by means of symbolic relational

operations on BDDs.

4 Modelling PSR in AR

We designed a tool to automatically generate models of PSR prob-

lems (including domain descriptions and supply restoration goals)

in MBP’s input language, starting from a description of the network

topology. MBP’s input language is an extension of the AR language

[7]; it allows for describing domains where fluents may be inertial

or not, where actions may feature preconditions, conditional effects

and uncertain effects, and where observations may or may not be

triggered by an action. The tool can easily be adapted to other lan-

guages with similar features, and is based on the following formal

description of the core elements of PSR: network topology, network

states, problem dynamics, and observations.

Network topology. The basic elements of the network are circuit-

breakers, switching devices, and lines connecting them. By device,

we mean either a breaker or a switch. A device d has two sides d+,

d−. By convention, a breaker b has side b− attached to the power

supply, and b+ attached to the network. If ds is a device side, we

indicate by ds its complementary side. A connection either links two

device sides via a line, or consists of a “hanging” line from a device

side to earth (see e.g. l15 in Figure 1). Thus, a side-to-side connection

is a triple 〈δ; l; δ′〉, and a hanging connection is a pair 〈δ; l〉, where δ

and δ′ are device sides, δ 6= δ′, and l is a line.



A supply network is a 4-tuple N = 〈B, S, L, C〉 where B is a set

of breakers, S is a set of switches, L is a set of lines and C is a set of

connections over B, S and L, satisfying the conditions:

1. Each side of a switch in S occurs in some connection in C.

2. For each breaker b ∈ B, b+ occurs in some connection in C and

b− in no connection in C.

3. Every line in L occurs in some connection in C.

4. No device side is incident on more than one line:

if 〈δ; l[; δ′]〉 and 〈δ; l′[; δ′′]〉 occur in C then l = l′.

5. The connection relation is symmetric, and transitive up to identity:

〈δ; l; δ′〉 ∈ C =⇒ 〈δ′; l; δ〉 ∈ C

{〈δ; l; δ′〉, 〈δ′; l; δ′′〉} ⊆ C, δ 6= δ′′ =⇒ 〈δ; l; δ′′〉 ∈ C

To describe power propagation we use the notion of a path: a se-

quence of connected devices and lines in the network, starting from a

breaker and ending with a line. Formally, a path P of N is a sequence

b−, b+, l1[, d
si

i
, d

si

i
, li]

∗ where each subsequence [δ, l, δ′] ∈ P cor-

responds to a side-to-side connection 〈δ; l; δ′〉 ∈ C, and the tail [δ, l]
of P corresponds either to a hanging connection 〈δ; l〉 of C, or to

a side-to-side connection 〈δ, l, δ′〉 in C. We indicate by dev(P ) the

set of devices in P , by lin(P ) the set of lines in P , and by last(P )
the last line of P . A path is acyclic iff it does not contain duplicate

lines, cyclic otherwise. A cyclic path P is minimal iff no prefix of P

is a cyclic path. We define AP(N) as the set of all acyclic paths of

network N , and CP(N) as the set of all minimal cyclic paths of N .

Reasoning about N amounts to determining the properties of AP(N)
and CP(N), which are explicitly built by the model-builder tool by

a visit of the topology graph.

Network state. The state of a supply network is described by:

• The position of each device, modeled by a dynamic predicate

closed(d), defined on B∪S. We say that a path P is active iff it

brings power to every line in lin(P ), which it does when every de-

vice in P is closed: active(P ) = ∀d ∈ dev(P ) : closed(d).
We say that P is active upon closing d iff closing d leads to P be-

ing active: active upon closing(P, d) = ∀d′ ∈ dev(P ) :
((d′ = d) ∨ closed(d′)).

• The permanent modes of the lines (faulty or not), modeled by a

predicate faulty(l), statically defined on L.

• The fault-status of each device, i.e., whether there was a fault

downstream of the device when it was last fed. It is modeled by a

dynamic predicate affected when last fed(d) which is set

every time d is part of an active path whose last line is faulty, and

is reset when d is fed with no fault downstream.

• The permanent modes of the devices’ actuators, fault de-

tectors and position detectors. These are modeled by

predicates AC correct(d), AC liar(d), FD liar(d),

PD correct(d), FD correct(d), statically defined on B ∪S.

In AR, statically defined predicates, whose value is known in the

given problem, and derived predicates, can be compiled away as DE-

FINEs. For instance, active(P ) is defined as a propositional con-

junction. Dynamic predicates, and static predicates whose value is

not known, are fluents and build the actual state of the domain. Un-

der the current assumptions, every such fluent is inertial.

Dynamics. Two kinds of phenomena may affect the state of the

network: (a) user-induced actions on a device d may affect d’s posi-

tion, and (b) faults and power propagation may affect the fault-status

of various devices and the positions of breakers. Their effects can be

described as follows:

a1 When opening [closing] a device d, if the actuator of d is correct,

d opens [resp. closes]. Otherwise, it keeps its current position.

b1 If there exists an active path P whose last line is faulty and d ∈ P ,

then the fault-status of d is set. If d is a breaker, it opens; other-

wise, it keeps its current position.

b2 If d is in an active path, but in no active path ending in a faulty

line, then the fault-status of d is reset. d keeps its current position.

b3 If no active path P exists such that d ∈ P , then position and fault-

status of d are unchanged.

Several options are possible for modeling the above dynamics. We

adopted a modeling style where the combined effects of (a) and (b)

are computed as a “one-step” consequence of each user-triggered

action. This proved experimentally superior to other “interleaved”

modelings where the effects of (a) and (b) are considered in turn.

In our modeling, the description of an action upon a device d0

considers the effects on every device d as follows:

1. As a consequence of closing d0, a non-active path P , whose last

line is faulty, becomes active, and d belongs to P . In this case the

fault-status of d is set. If d is a breaker, it opens; otherwise it keeps

its current position. We say that closing d0 has affected d.

2. d0 does not affect d and, as a consequence of closing d0, a non-

active path P , whose last device is d, becomes active. The device

d0 is said to have fed d. In this case, the fault-status of d is reset.

d’s position is unchanged.

3. As a consequence of closing d0, neither case (1) nor case (2) ap-

plies. In this case, closing d0 has no effect on d.

4. As a consequence of opening d0, an active path becomes inactive.

This does not change the position or fault-status of any device d

other than d0 itself.

5. As a consequence of opening [closing] d0, d0 opens [resp. closes]
if its actuator is correct, unless d0 is a breaker whose closing af-

fects itself (in which case it reopens, see (1)).

The definitions above amount to logical statements that can be di-

rectly encoded into AR . For instance, a propositional definition

for closing SD17 affects CB4 can be provided as a DEFINE

consisting of the propositional expansion of the following instantia-

tion of def.1:

closing SD17 affects CB4 =
∃P ∈ AP(N) :

((CB4 ∈ P )∧
active upon closing(P,SD17)∧
faulty(last(P )))

Given this, the AR encoding of actions is a direct translation of

defs. 1-5 taking into account every possible cause-effect relationship.

For instance, the effect of closing switch SD17 upon breaker CB4’s

position (see b1) is described as follows:

CAUSES act = close_SD17

next(closed_CB4) := 0

IF

AC_correct_SD17 &

closing_SD17_affects_CB4;

In addition, we must take into account the possibility of situations

where breakers feed cyclic paths, or in which devices are fed both

ways. In these situations, the direction of the electricity flow can-

not uniquely be established (unless additional physical data are mod-

eled); thus, the status of fault sensors is not uniquely determined.

Although a deployed system would have to be extended somewhat to

model these eventualities, in the benchmark, they must be prevented

from arising. This is easily achieved by determining “cycle-causing”



and “multiple-feed-causing” conditions for any device, and precon-

ditioning the action of closing of a device to the absence of such

conditions. We omit details, for reasons of space.

Observations. Modeling sensing is straightforward, and indepen-

dent of the modeling of actions. The observation returned by the sen-

sors and actuators of a device depend on their mode and on the actual

fault-status and position of the device. For instance, the position de-

tector of CB1 signaling that CB1 is open is captured by the boolean

observation:

OBSERVE says_open_CB1: PD_correct_CB1 & !closed_CB1;

5 Solving PSR Problems with MBP

We used MBP to generate strong plans resupplying every feedable

line, for different topologies. The first topology we considered was a

simple linear one with a single breaker, making it easy to test scala-

bility by varying the network size and the reliability of lines, sensors

and actuators. Then we considered a still “simple” but slightly more

complex network allowing for a greater variety of configurations, and

experimented by varying the reliability of the lines. Finally, we con-

sidered a realistic problem taken from [14], based on the topology

of Figure 1. Every experiment was run on a 700 Mhz Pentium III

Linux machine with 6 GBytes of RAM, but in no case more than 140

MBytes of RAM were used by MBP.

MBP makes it possible to encode search strategies either by incor-

porating control knowledge into the action descriptions, or by adding

ad-hoc heuristics. To speed up the search, we used the following sim-

ple ideas which appear to be generic to the benchmark rather than

specific to the topologies we considered: (a) do not open a device

which is fed or which has previously been fed, (b) favor closing ac-

tions to opening actions. Idea (a) is obvious, given that a fed device

cannot be incident on a faulty line. Idea (b) comes from the fact that

open actions are only useful to isolate faults while close actions

either lead towards the goal by feeding more lines or give the planner

information by unexpectedly refeeding a fault.

Linear topology. For the linear topology, we first considered the

problem of restoring supply given that (a) exactly n, and (b) at most

n of the lines are faulty, starting from a state where all devices are

open and all sensors and actuators are reliable, but the locations of

the faults are unknown. Figure 3 shows the results for problem (a),

considering linear topologies of size varying from 5 to 20 lines, plot-

ted against the exact percentage of faulty lines.

An easy-hard-easy pattern emerges. It is not too hard to see why

this might happen: if there is no fault the problem is trivial; if there

are faults, the lines downstream of the first fault are essentially irrel-

evant because they can never be fed, so the more faults there are, the

less likely it is that a given line needs to be reasoned about. Problem

(b), by contrast, showed no such cost peak: when only the maximum

number of faults is known, the problem difficulty is roughly constant

for any maximum number of faults greater than zero (search times

are always below 7 seconds). This is because the difficulty of prob-

lem (b) is roughly the integral of that of problem (a), which for linear

networks is dominated by the first few values. In summary, the results

of the experiments with the linear topology are intuitively explicable,

but it is important to note that MBP achieves these results, as it shows

that the planner is able to exploit the structure of the problem.

To experiment with varying reliability of the actuators and sensors,

we selected one of the problems above: a linear network of 9 lines,

with at most 6 faults. We independently considered that:

1. at least (exactly) n fault detectors are reliable;

2. at least (exactly) n actuators are reliable;

3. at least (exactly) n position detectors are reliable;

4. at most (exactly) n fault detectors are liars;

5. at most (exactly) actuators are liars.

Again, in the initial situation all devices are open; we try to feed lines

that are reachable through reliable devices. Fig.4 shows the results;

FDc(=), ACc(=), PDc(=), FDl(=), ACl(=) refer to problem 1,2,3,4,5

respectively, in both their versions. As in the case of faulty lines,

problems become more constrained and therefore easier if it is known

that most devices are unreliable. Of course, combining of faults upon

lines with “issues” upon sensors/actuators adds to the complexity of

the problems, leading to higher search times than the previous ones.

SD3

SD7

l5 l6 l4

l1

l7

l3l2

CB1

CB2

CB3

SD6

SD4

SD5

SD2

SD1

Simple. Here we considered the topology above and an experi-

mental setting similar to those we used upon the linear topology,

varying the (maximum/exact) fault percentage F of lines. The re-

sults appear very similar to those for lines, and show that MBP is able

to effectively exploit a more complex structure. Considering exactly

n faults, the easy-hard-easy pattern reaches its top when F ≈ 40%,

with 1.2 seconds of search time. Considering up to n faults, prob-

lems are increasingly hard up to F ≈ 50%; the higher search times

are around 13 seconds. Of course, higher times are expected due to

the fact that the topology is more complex than a simple line, and

a strong restoration plan is more complex to build. The results are

presented in Fig.5.

Rural. This is an example taken from [14], see fig. 1. The initial

situation is that in the figure, except that CB1 is open; no fault sensor

signals a fault, and every line/device/sensor is known to be correct

apart from: lines l3 and l15, the fault sensors of SD1, SD2, SD3,

SD26, the actuator of SD26, the position detector of SD26. For these

devices, no hypothesis is made. Supply restoration must feed every

feedable line. Here, this means that, if the actuator of SD26 is correct,

then every non-faulty line must be fed; if the actuator of SD26 is not

working and l15 is faulty, then neither l15 nor l1 can be fed.

The AR description is 8.5 megabytes; however, it takes MBP only

30 seconds to parse and to construct the automata for the machine.

Once this is done, a plan is found in 1.2 seconds, using approxi-

mately 140 megabytes of RAM. Vital to this is the fact that a “good”

ordering for the variables is automatically established by MBP; this

is achieved by a reusable off-line pre-computing which depends on

the model (but not on the problem), and thus has to be performed

only once for a given topology. In this case, precomputing takes ap-

proximately 30 minutes. Given that the complexity of that particular

instance is representative of that of real-life situations (see [14] for

details), the generated plan, presented in fig. 2, attests to the feasibil-

ity of the approach.

6 Conclusion, Related and Future Work

This paper demonstrates that the planning via symbolic model check-

ing paradigm, as implemented in the MBP planner, is not limited to

insignificant artificial examples, but is able to solve realistic supply



�.��

�.�

�

��

� �� �� �� �� ���

�PU
 �e

arc
h t

ime
 (s

ec)

Fau�ty �ines %

Fig.�: Linear Topo�ogy (� to �� �ines)

����

���

�

��

� �� �� �� �� ���

�PU
���

���
h��

�m�
���

���

U������b������%

�����:�L����T�p��������������,�m�x����f�u����������

A��
A��
���
���
P��

A��=
A��=
���=
���=
P��=

����

���

�

��

���

� �� �� �� �� ���

���
���

���
h��

���
���

���

��u����������%

�����:����p���T�p�����

<�
�

close_SD4; -- feed every line

if says_fault_SD4 then -- l3 and/or l15 faulty

open_SD3; -- MBP assumes l15 ok

open_SD2; -- and isolates l3

close_CB5; -- refeed...

close_SD26;

close_SD6;

if says_fault_SD6 then -- l15 faulty

open_SD1; -- MBP assumes l3 ok

close_SD2; -- and isolates l15

close_CB6; -- refeed...

if says_fault_SD6 then -- both l3, l15 faulty

open_SD26; -- try isolating l15

open_SD2; -- isolate l3

close_CB1; -- ...and refeed.

close_SD8;

else -- l3 ok

open_SD26; -- try isolating l15

close_CB1; -- ...and refeed.

Figure 2. Plan for Rural Network problem

restoration benchmark problems. We have developed a systematic

representation of the dynamics of the plant as a finite state automa-

ton in MBP’s input language, modeled fault conditions, and reformu-

lated power supply restoration as a problem of planning under partial

observability. A key difficulty of the planning task is the need to in-

tertwine diagnosis (identifying the causes of the problem) with the

search for corrective actions. An experimental evaluation shows that

MBP is able to manage some basic plant configurations, and to auto-

matically produce strong plans for problems when different degrees

of information are available. The underlying symbolic machinery of

Binary Decision Diagrams is able to compactly store and efficiently

traverse the automaton.

Although the model-based diagnosis community has investigated

similar power supply restoration problems in the context of distri-

bution and transport networks, to our knowledge, MBP is the first

general-purpose system able to cope with the presence of uncertainty

in such problems. For instance, SyDRe, the reactive supply restora-

tion system in [15] is able to handle the full PSR benchmark includ-

ing sensor and actuator uncertainty, but is entirely domain-specific.

Supply restoration of power transmission systems using a general-

purpose diagnosis and planning engine has been studied e.g. in [6],

but a crucial difference with the PSR benchmark is that observa-

tions and actions are assumed to be reliable. Another work related

to ours is the application of the model-based reactive planner Burton

to spacecraft engine reconfiguration [16]. Burton’s compilation of a

transition system into prime implicants is clearly related to the com-

pilation into BDDs performed by MBP, but again Burton does not

handle partial observability, the main source of difficulty in PSR.

This work is the first step towards the integration of MBP into a

complex real-world domain such as PSR. In the future, we plan to

proceed with a more in-depth experimental analysis of the PSR prob-

lem. This will require some extensions and improvements to MBP.

First, realistic restoration plans must often obey a number of con-

straints that cannot be expressed as reachability goals; e.g., that some

lines must be “safe” throughout the restoration process. These can be

expressed by extending temporally extended goals [11] to partially

observable domains. Moreover, when dealing with very large net-

works, trying to construct strong plans considering every possible

contingency is overkill (even when feasible). Thus, we intend to in-

vestigate the potential for an on-line integration as in [15], interleav-

ing probability-based diagnosis, planning and execution modules. In-

terleaving planning with action might have a dramatic impact on the

search times, by restricting the search to only that part of the belief

space which is admissible given the current observations. Further, we

intend to identify ways to cut the search space, e.g. by means of user-

defined strategies [1], or by automatically-detected heuristics, where

promising results have been shown in [12] for conformant planning.

References

[1] F. Bacchus and F. Kabanza, ‘Using temporal logic to express search
control knowledge for planning’, Art. Int., 116(1-2), (2000).

[2] C. Baral, S. McIlraith, and T. Son, ‘Formulating diagnostic problem
solving using an action language with narratives and sensing’, in Proc.

KR, (2000).
[3] P. Bertoli, A. Cimatti, M. Pistore, M. Roveri, and P. Traverso, ‘MBP: a

Model Based Planner’, in Proc. of the IJCAI’01 Workshop on Planning

under Uncertainty and Incomplete Information, (2001).
[4] P. Bertoli, A. Cimatti, M. Roveri, and P. Traverso, ‘Planning in non-

deterministic domains under partial observability’, in Proc. IJCAI, pp.
473–478, (2001).

[5] B. Bonet and H. Geffner, ‘Planning with incomplete information as
heuristic search in belief space’, in Proc. AIPS, pp. 52–61, (2000).

[6] G. Friedrich and W. Nejdl, ‘Choosing observations and actions in
model-based diagnosis-repair systems’, in Proc. KR, pp. 489–498,
(1992).

[7] E. Giunchiglia, N. Kartha, and V. Lifshitz, ‘Representing action: inde-
terminacy and ramifications’, Art. Int., 95, 409–443, (1997).

[8] E. Hansen and Z. Feng, ‘Dynamic programming for POMPDs using a
factored state representation’, in Proc. AIPS, (2000).

[9] F. Kabanza, M. Barbeau, and R. St-Denis, ‘Planning control rules for
reactive agents’, Artificial Intelligence, 95, 67–113, (1997).

[10] S.M. Majercik and M.L. Littman, ‘Contingent planning under uncer-
tainty via stochastic satisfiability’, in Proc. AAAI, pp. 549–556, (1999).

[11] M.Pistore and P.Traverso, ‘Planning as model checking for extended
goals in non-deterministic domains’, in Proc. IJCAI’01, (2001).

[12] P.Bertoli and A.Cimatti, ‘Improving heuristics for planning as search in
belief space’, in Proc. AIPS’02, (2001).

[13] Y. Sun and D. Weld, ‘Beyond simple observation: Planning to diag-
nose’, in Proc. AAAI, pp. 182–187, (1993).

[14] S. Thiébaux and M.-O. Cordier, ‘Supply restoration in power distribu-
tion systems — a benchmark for planning under uncertainty’, in Proc.

ECP, pp. 85–95, (2001).
[15] S. Thiébaux, M.-O. Cordier, O. Jehl, and J.-P. Krivine, ‘Supply restora-

tion in power distribution systems — a case study in integrating model-
based diagnosis and repair planning’, in Proc. UAI, pp. 525–532,
(1996).

[16] B. Williams and P. Nayak, ‘A reactive planner for a model-based exec-
utive’, in Proc. IJCAI, pp. 1178–1185, (1997).


