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Abstract. Heating, ventilation and air-conditioning (HVAC) is the lar-
gest consumer of electricity in commercial buildings. Consumption is im-
pacted by group activities (e.g. meetings, lectures) and can be reduced by
scheduling these activities at times and locations that minimize HVAC
utilization. However, this needs to preserve occupants’ thermal comfort
and be responsive to dynamic information such as new activity requests
and weather updates. This paper presents an online HVAC-aware occu-
pancy scheduling approach which models and solves a joint HVAC con-
trol and occupancy scheduling problem. Our online algorithm greedily
commits to the best schedule for the latest activity requests and notifies
the occupants immediately, but revises the entire future HVAC control
strategy each time it considers new requests and weather updates. In
our experiments, the quality of the solution obtained by this approach
is within 1% of that of the clairvoyant solution. We incorporate adaptive
comfort temperature control into our model, encouraging energy saving
behaviors by allowing the occupants to indicate their thermal comfort
flexibility. In our experiments, the integration of adaptive temperature
control further generates up to 12% of energy savings when a reasonable
thermal comfort flexibility is provided.

1 Introduction

Heating, ventilation and air-conditioning (HVAC) dominates the energy con-
sumption of commercial buildings, accounting for roughly 40% of the total build-
ing electricity consumption per annum [11,28]. With rising energy costs and in-
creasingly stringent regulatory environments, improving the energy efficiency of
HVAC operations in buildings has become an important issue.

Recent studies show that energy-oriented occupancy scheduling can lead to
significant savings in energy consumption [5,19,20,21,22,23,24,26,27]. The idea is
to proactively control occupancy in commercial offices and university buildings
by scheduling energy-hungry activities such as meetings, workshops, lectures and
exams, at times and locations that are favorable from an energy standpoint. Lim
et al.’s “HVAC-aware” occupancy scheduling approach implements this idea by
solving the joint HVAC control and occupancy scheduling problem [21,22], which
consists in simultaneously optimizing the times and locations of the various
activities and the HVAC control parameters at each time and building zone.
By exploiting the synergy between HVAC control and occupancy scheduling,



this approach achieves a much higher rate of energy savings than works that
are based on (data-driven) black-box models of the HVAC control [5,20] or that
minimize energy consumption proxies (e.g. number of rooms used) [24,27].

Unfortunately, with few exceptions [20], previous works focus on off-line
scheduling, and assume that all activities to schedule and other parameters such
as the weather forecast are known in advance. Existing approaches also adopt
a fixed comfort temperature control, keeping the allowable temperature of oc-
cupied locations strictly within narrow bounds (e.g. 21◦-23◦C). Although both
settings generate energy-efficient schedules, they nevertheless limit the practica-
bility of the models in the real-world, and prevent further energy savings that
could be obtained with more flexible temperature bounds. This paper presents
two novel contributions which address these shortcomings. First, we extend Lim
et al.’s HVAC-aware occupancy scheduling approach to process activity requests
in an on-line manner. Second, we encourage energy saving behavior by allow-
ing the occupant to indicate their thermal comfort flexibility, and use it in a
principled way to introduce adaptive comfort temperature control in our model.

In more detail, we propose an on-line approach that models and solves the
joint HVAC control and occupancy scheduling problem. Our on-line algorithm
greedily optimizes (and commits to) the times and locations for the latest re-
quests, leaving the rest of the future schedule fixed but revising the entire future
HVAC control strategy. This ensures that whilst participants are instantly no-
tified of the scheduled time and location for their requested activity, the HVAC
control is constantly re-optimized and adjusted to the full schedule and weather
updates. Our experiments demonstrate that the quality of the online solution is,
on average, within 1% of that of the solution returned by the original clairvoyant
HVAC-aware algorithm [22].

Adaptive comfort temperature control shifts away from fixed indoor comfort
bands towards wider temperature operating bands. Recent work [1] shows that
even a narrow variation of comfort temperatures can achieve significant energy
savings. We introduce the notion of thermal comfort flexibility in our model by
allowing occupants to indicate their level of tolerance to temperature fluctuation
in the form of a) a threshold limiting the probability of temperature violation,
and b) the maximum deviation allowed at any time. We then solve a robust op-
timization model which provide these probabilistic guarantees. Our experiments
show that, when occupants are reasonably flexible, the integration of adaptive
temperature control generates up an extra 12% of energy savings.

As an additional advantage, adaptive temperature control reduces the con-
strainedness of our online scheduling and control problem. This can make the
problem solvable whereas fixed temperature bounds cannot be met, which often
occurs for instance when a late request needs to be scheduled in the immedi-
ate future in a room whose current temperature is far away from the comfort
band. In our experiments, adaptive temperature control solves 73% of the 700
instances that are unsolvable under the fixed temperature control model.

To summarize, the main contributions of the paper are: a) an efficient online
model for the joint HVAC control and occupancy scheduling problem, b) a new



notion of thermal comfort flexibility in energy-aware scheduling, c) experiments
showing substantial energy reduction and improvement of solution feasibility
over the state-of-the-art.

2 Related Work

Our work differs from previous work given its focus on: (i) a joint HVAC control
and occupancy scheduling model which handles dynamically arriving schedul-
ing requests, and (ii) an adaptive temperature control approach that allows the
occupant to specify their thermal comfort flexibility. Existing works on energy-
aware occupancy scheduling [5,21,22,23,24,26,27] focus on offline scheduling, and
assume fixed comfort temperature setpoints. In reality, scheduling requests can
arrive at any time of the day using existing room booking systems. A recent
survey shows that 56% of meeting requests were made within 1 day before the
actual meeting day [20]. Thus, the ability to handle impromptu requests is cru-
cial. Moreover, the ability to update HVAC control following a change in forecast
is also essential.

Kwak et al. [19,20] propose an online stochastic MILP model to schedule
meetings. Their work calculates energy consumption based on historical data and
exploits flexibility in the time and location at which a meeting can take place.
However, it does not optimize HVAC control, nor does it take thermal comfort
flexibility into account. Our results show that combining meeting scheduling with
HVAC control, and enabling adaptive temperature control based on occupant
thermal comfort flexibility, significantly impacts energy savings.

Conventionally, room temperature is maintained within strict comfort bounds
while occupied. Such control is not the most effective, since the HVAC system
tries to achieve fixed temperature setpoints regardless of ambient conditions or
the comfort levels of the individual occupants. More recent work enables adap-
tive thermal comfort control [1,6,7,18,25,31,32], exploiting the observation that
when occupants have some form of input to the control, their subjective view
of comfort changes and they are more willing to accept wider operating condi-
tions than those mandated by traditional comfort models. For example, when
controlling the emissivity of dynamic windows to reduce HVAC consumption in
a smart home, Ono et al. [25] allow for temperature bound violations, but limit
their probability using chance constraints with occupant-specified thresholds.
Inspired by these works, we introduce the notion of thermal comfort flexibility
into our scheduling model. We incorporate occupants’ tolerance level as an input,
allowing the scheduler to identify the best location and time slots that optimize
energy saving while satisfying occupant thermal comfort.

Energy-oriented scheduling has gained more attention in recent years due to
the significant cost saving opportunities. Ifrim et al. [17] present a MIP-based
energy-price savings scheduling model to reduce cost in production scheduling.
Dupont et al. [8] use CP to develop an energy aware framework for virtual ma-
chine placement in cloud-based data centers. Scott et al. [29] describe an online
stochastic MILP to schedule home appliances based on real-time pricing. Most



works focus on energy-aware scheduling in production lines, data centers and res-
idential buildings whilst our work specifically targets energy-efficient scheduling
in the smart building space, which is dominated by HVAC consumption.

3 Online Occupancy Scheduling

This section presents our online occupancy scheduling problem. We start by
describing the scheduling setting and our notations. We then cover the scheduling
constraints and variables which, later on in Section 4, will interact with the
HVAC control model to form a more complex joint scheduling and control model.
We formulate our model as a mixed-integer program (MIP). It can be solved
using a MIP solver, or when scaling up to problems of practical size, by combining
MIP with large neighborhood search (LNS) as explained in [22].

In our online setting, the scheduler runs recurrently and each run is called
an online session. Each online session i ∈ I starts at time τi and ends before the
next session starts at time τi+1. The scheduling and control model discretizes
time into a set K of time steps. Each time step k ∈ K starts at time tk. Two
consecutive time steps k and k+ 1 are separated by a fixed duration tk+1− tk =
∆t ∈ R+. Each on-line session i considers a horizon of n time steps K(i) =
{k(i), . . . , k(i)+n−1} where k(i), the first time step in that horizon, is the least
time step in K such that tk(i) ≥ τi.

Let L be the set of locations (or, interchangeably, zones) in the building, andP
be a set of participants. An activity request m is a tuple 〈am,Km,Lm,Pm,dm,Fm〉
where am ∈ R+ is the request arrival time, Km ⊆ K is the set of time steps at
which the activity is permitted to start in the future (for each k ∈ Km,am <
tk), Lm ⊆ L is the set of locations at which the activity is permitted to take
place, Pm ⊆ P is the set of attendees for the activity, dm ∈ N is the activity
duration (number of time steps), and Fm represents the comfort temperature
flexibility parameters which will be explained in Section 4.4. Note that the sets
Km and Lm can be used to encode a variety of situations, such as room capacity
requirements, availability of special equipment such as video conferencing, time
deadlines for the activity, and attendee availability constraints. We write C(M)
for the set of attendee conflicts w.r.t. a set of requests M ; each conflict C is
a subset of requests, each pair of which has at least one attendee in common:
C(M) = {C ⊆M | ∀m,m′ ∈ C,Pm ∩ Pm′ 6= ∅}.

To account for all activities that have been scheduled so far, we maintain a
master schedule S as a set of triples 〈m, l, k〉 storing the activity request id m, the
assigned location l, and the time step k at which m is scheduled to start. At each
online session i, the scheduler schedules the new activity requests N(i) which
have been received since the start of session i − 1, i.e, each m ∈ N(i) satisfies
τi−1 < am ≤ τi. It also needs to consider, without modifying them, the set Q(i)
of ongoing activities and future activities that were scheduled during previous
sessions: Q(i) = {m | ∃〈m, l, k〉 ∈ S such that k+dm−1 ≥ k(i)}. So overall, the
set of activities to consider at session i is M(i) = N(i) ∪ Q(i). To simplify the
scheduling model below, we assume that for each pre-scheduled request m ∈ Q(i)



Fig. 1: Online scenario

such that 〈m, l, k〉 ∈ S, the set of permissible locations is reduced to Lm = {l},
and the set of permissible start time steps is reduced to the scheduled start
time k or the first time step k(i) of the session, which ever occurs last, i.e.
Km = {max(k, k(i))}. For consistency, the meeting duration dm is decremented
by k(i)− k; this is only needed later in Section 4.4 for equation (23).

Fig. 1 shows a scenario example featuring three requests m1,m2 and m3 with
arrival times a1, a2 and a3, respectively. The set of locations is L = {l1, l2}. The
dash vertical lines show the start of the sessions, and the dotted vertical lines de-
limit the time steps. In this instance, the scheduler runs every 10 minutes and the
time steps are 30 minutes long. At the start of session i = 302, requests m1 and
m2 have already been scheduled and m3 is a new request, hence N(302) = {m3},
Q(302) = {m1,m2}. The master schedule is S = {〈m1, l1, 102〉, 〈m2, l1, 100〉},
and the first time step of the new session is k(302) = 101. The set of permis-
sible locations and start time steps for the new request are K3 = {101, 102}
and L3 = {l1, l2} (l1 will be ruled out by the scheduler). Those of the pre-
existing requests are reduced as follows: L1 = {l1},K1 = {102}, L2 = {l1} and
K2 = {101}.

We are now ready to describe our scheduling constraints and variables for
online session i. The main scheduling variable is the boolean decision variable
xm,l,k which is true iff request m ∈ M(i) is scheduled to take place at zone
l ∈ Lm starting at time slot k ∈ Km. We also introduce the variables ym,l,k
which is true iff activity m is scheduled to occupy location l at time step k, zl,k
which is true iff zone l is occupied at time step k, and ppl,k which indicates the
number of people in zone l at time step k. These variables will be used by the
HVAC control part of the model in 4.

The scheduling constraints are the following. Constraints (1) ensure that all
requests are scheduled exactly once within the allowable start times and loca-
tions. Constraints (2) define the ym,l,k variables. Constraints (3) state that no
more than one activity can occupy a location at any time and define the zl,k
variables. Observe that the right hand side of these constraints is either zero or
one, which limits the number of activities to at most one. Also, when the left
hand side equals one then the zone must be occupied. Constraints (4) determine
the number ppl,k of occupants at each location and time step, and finally con-



straints (5) ensure that activities with at least one attendee in common cannot
be scheduled in parallel. Once a new request m ∈ N(i) has been scheduled, the
master schedule S is updated by adding the 3-tuple 〈m, l, k〉 for which xm,l,k = 1.

∑
l∈Lm,k∈Km

xm,l,k = 1 ∀m ∈M(i) (1)

∑
k′∈Km:

l∈Lm, k−dm+1≤k′≤k

xm,l,k′ = ym,l,k ∀m ∈M(i), l ∈ L, k ∈ K(i) (2)

∑
m∈M(i)

ym,l,k ≤ zl,k ∀l ∈ L, k ∈ K(i) (3)

∑
m∈M(i)

ym,l,k × |Pm| = ppl,k ∀l ∈ L, k ∈ K(i) (4)

∑
m∈ν,l∈Lm

ym,l,k ≤ 1 ∀k ∈ K(i), ν ∈ C(M(i)) (5)

4 HVAC Control Model

This section covers the HVAC control model and the adaptive temperature con-
trol approach. We describe the HVAC control aspects starting with the objective
function we consider, the effect of the control on the building thermal dynamics,
and the fixed temperature bounds – we refer the reader to [21] for a more de-
tailed treatment. We subsequently extend the model with adaptive temperature
control to further maximize energy savings.

4.1 Variable-Air-Volume Systems

Following Goyal et al. [14,15], we focus on commercial buildings with variable-
air-volume (VAV) based HVAC systems, which serve over 30% of the commercial
building floor space in the United States [9]. A schematic of a VAV-based HVAC
system with two VAV boxes connected to two building zones is shown in Fig. 2.

The air handling unit (AHU) supplies conditioned air to the VAV boxes.
The AHU consumes energy when mixing outdoor air with return air and cooling
it to the pre-set conditioned air temperature TCA [12.8 ◦C]; it consumes less
energy when the outdoor air temperature TOA is closer to TCA. Each VAV
box consumes energy when regulating the supply air temperature TSA and the
supply air flow rate aSA to keep the zone temperature T within comfort bounds;
in particular, it may need to reheat the conditioned air. Finally, the supply fan
at the AHU consumes energy to maintain a constant air pressure through the
supply duct; it may speed up or slow down depending on air flow rates used by
the VAV boxes.

We focus on control strategies that can be applied to each VAV box. For such
strategies, the key HVAC decision variables are the supply air flow rate aSAl,k and



Fig. 2: VAV-based HVAC system.

temperature TSAl,k at each zone/location l ∈ L and time step k ∈ K. We determine
an optimal control for these variables, given the occupancy schedule and the
bounds on supply air temperature, supply air flow rate, and room temperature
during vacant and occupied periods.

4.2 Objective Function

Specifically, our goal is to generate energy-efficient schedules that minimize the
energy use of air-conditioning, re-heating and fan operations of the HVAC. Thus,
the objective function for online session i is the following.

minimize
∑

k∈K(i)

(
pcondk + pfank +

∑
l∈L

pheatl,k

)
×∆t (6)

where

pcondk = Cpa
(
TOAk (i)− TCA

)∑
l∈L

aSAl,k ∀k ∈ K(i) (7)

pfank = β
∑
l∈L

aSAl,k ∀k ∈ K(i) (8)

pheatl,k = Cpa(TSAl,k − TCA)aSAl,k ∀l ∈ L, k ∈ K(i) (9)

Constraints (7)-(9) determine the values of the variables pcondk , pfank , pheatl,k , which
respectively represent the energy consumed by the AHU for conditioning, by the
supply fan for maintaining air pressure, and by the VAV box for reheating the
conditioned air. In constraint (7), we assume that online session i uses the latest
update TOAk (i) available for the outdoor temperature forecast at each time step
k. The coefficients in these constraints are the fan power coefficient β (0.65),
and the heat capacity of air at constant pressure Cpa (1.005 kJ/kg·K).

TCA ≤ TSAl,k ≤ T
SA ∀l ∈ L, k ∈ K(i) (10)

aSA ≤ aSAl,k ≤ aSA ∀l ∈ L, k ∈ K(i) (11)



Moreover, constraints (10) and (11) ensure that the supply air temperature and
the air flow rate are bounded by the HVAC operational capacity. The supply air
temperature TSAl,k may range from that of the conditioned air TCA (12.8 ◦C), up

to T SA (40 ◦C) if the air is reheated at the VAV box. The air flow rate aSAl,k can

fluctuate between aSA (0.108 kg/s) and aSA (5.0 kg/s), where the lower bound
is determined by the ASHRAE ventilation standard and the upper bound is
reached when the VAV dampers are fully open.

4.3 Building Thermal Dynamics

Next, we want our control to appropriately constrain zone temperatures. The
first step to do this is to introduce a new variable Tl,k representing the temper-
ature at each zone and time step, and model the effects of the HVAC control on
this zone temperature. To capture the building thermal dynamics, we adopt a
computationally efficient lumped RC-network [12,13,14] which incorporates the
thermal resistance and capacitance of each zone and between adjacent zones, the
latest available forecast of the solar gain Qsl,k(i), and the internal heat gain Qpl,k
generated by the occupants at each zone. The latter is directly proportional to
the number of occupants ppl,k scheduled to be at the zone by the online sched-
uler – this is one of the variables via which the scheduling and control models
interact. We use a discrete-time linear model

Tl,k+1 = fl(Tl,k, ul,k, vl,k) ∀l ∈ L, k ∈ K(i) (12)

where ul,k = [aSAl,k , T
SA
l,k , ppl,k] is the vector of controllable variables, and vl,k =

[Qsl,k(i), TOAk (i)] is the vector of exogenous inputs. With this model, the HVAC
control is optimized over the entire horizon K(i). E.g., the optimal control could
activate the HVAC at night to benefit from the low outside night temperature
to pre-cool a room for an early morning meeting. See [21] for details.1

4.4 Adaptive Temperature Control

Having modeled the effect of the HVAC control on the zone temperatures Tl,k,
we are now ready to ensure that the HVAC fulfills its main role of keeping
these zone temperatures within appropriate comfort bounds. In the fixed comfort
bound model found in much of the literature, when a zone is occupied, the
zone temperature must lie within a specified comfort interval [T ,T ] ([21 ◦C,
23 ◦C]). When the zone is empty, its temperature can fluctuate more freely within

[T ∅,T ∅] (16 ◦C, 28 ◦C]). These bounds can be set to reflect individual building
guidelines. As shown in [21], maintaining temperature within these fixed bounds
can be achieved by adding constraints (13) to our model. In these constraints,

1 Both Lim et al. [21,22] and our experiments use a more complex state vector which
not only includes the zone temperatures Tl,k but also the temperature of the interior
walls. For readability reasons, we abstract from these extra state variables in our
exposition above.



Fig. 3: Adaptive Temperature Control

the HVAC model interacts with the scheduling model via the variables zl,k that
indicate whether or not location l is occupied at time step k. The constants T g

and T g denote the gap between the occupied and unoccupied temperature lower
and upper bounds.

T ∅ + T gzl,k ≤ Tl,k ≤ T ∅ − T gzl,k ∀l ∈ L, k ∈ K(i) (13)

In the present paper, we generate additional energy savings by departing
from these fixed comfort bounds. We adopt a flexible temperature bound model,
in which the comfort interval is dynamically configured through input parame-
ters reflecting the flexibility of occupants. Specifically, the input parameters we
consider for an activity request m are Fm = 〈T um,αm,pm〉 and are such that the
HVAC control will guarantee: a) that the zone temperature will never exceed
[T − T um,T + T um] at any point during the activity and b) that with probability
at least pm, the cumulative temperature violation during the activity will be
bounded by αm. The parameter αm is equivalent to the duration for which the
occupant would be willing to let the temperature deviation be T um. Fig. 3 illus-
trates these concepts. In this example, activity m occupies location l for 3 times
steps. The occupant is prepared to accept a maximal deviation (of up to 3◦) from
the default comfort bounds (i.e. [18 ◦C, 26 ◦C]), but also wants the cumulative
violation to remain within acceptable bounds (the equivalent of 20 min at 3◦)
with high probability (0.9). This is achieved by setting T um = 3, αm = 20, and
pm = 0.9.

Let m be a meeting scheduled to start at time step j ∈ Km in location l. To
formalize these concepts, we introduce the following slack variables in the model
T sm,k ∈ [0,T um] and T sm,k ∈ [0,T um], for k ∈ K(i). These variables represent our

unknown temperature violations above and below the default bounds [T ,T ].
Based on these variables, the first guarantee we want to provide can be written
as the adaptive counterpart of the fixed temperature bound constraints (13).

T ∅ + T gzl,k − T sm,k ≤ Tl,k ≤ T
∅ − T gzl,k + T sm,k (14)

The second guarantee is about bounding the cumulative temperature violation,
this can be formulated as follows,

j+dm−1∑
k=j

(
T sm,k + T sm,k

)
∆t ≤ αmT um (15)



To implement a probabilistic version of this constraint, we introduce inde-
pendent uniformly distributed random variables ρm,k ∈ [−1, 1], which represent
the noise in our temperature violation, transforming constraints (15) into,

j+dm−1∑
k=j

(
T sm,k + T sm,k − ρm,k

)
∆t ≤ αmT um (16)

We then resort to results from the Robust Optimization literature [10,3,4,2,16]
to be able to offer the following probabilistic guarantee,

Pr

j+dm−1∑
k=j

(
T sm,k + T sm,k − ρm,k

)
∆t ≤ αmT um

 ≥ pm (17)

where Pr (fρ(x) ≤ 0) denotes the probability of satisfying constraint fρ(x) ≤ 0
given the uncertainty created by the random variables ρ. In particular, based on
[2, Theorem 3.], we can offer the above probabilistic guarantee by enforcing the
following constraint

j+dm−1∑
k=j

ρ2m,k ≤ δ2m, (18)

where the the ellipsoid radius δm is linked to the constraint satisfaction proba-
bility pm as follows:

pm ≥ 1− exp(−δ2m/1.5).

For instance, a radius of δm = 2.63 leads to a constraint satisfaction probability
pm ≥ 0.99. Furthermore, based on [16, Corollary 1.], we can write the following
deterministic equivalent of (17) without having to explicitly enforce (18),

j+dm−1∑
k=j

(
T sm,k + T sm,k

)
− |S| −

√
(δ2m − |S|) |S| ≤ αmT um/∆t, (19)

where the set S is described in [16, prop 1.]. For computational efficiency reasons,
this is the approach we adopt in our current implementation.

Since activity locations and start times are not known in advance, we intro-

duce variables T ξl,k (resp. T ξl,k) such that T ξl,k = T sm,k and T ξl,k = T sm,k when

activity m ∈ M(i) occupies location l ∈ L at time slot k ∈ K(i), i.e., when
ym,l,k = 1. In order to accommodate activities that span multiple scheduling

horizons, we also introduce the inputs T prevm =
∑

k∈K:k<k(i)

(T sm,k + T sm,k), which ac-

counts for the amount of cumulative violation consumed before the start of the
current session. Recall also from Section 3 that meetings that have been sched-
uled in previous sessions have their start time set Km, location set Lm and
duration dm reduced accordingly when the current session starts. With these
notations, the overall adaptive temperature control constraints replacing the



fixed temperature constraints (13) in the HVAC control model are the following.

T ∅ + T gzl,k − T ξl,k ≤ Tl,k ≤ T ∅ − T gzl,k + T ξl,k ∀l∈L, k∈K(i) (20)

T sm,k − T̂ (1− ym,l,k) ≤ T ξl,k ≤ T sm,k + T̂ (1− ym,l,k) ∀m∈M(i), l∈L, k∈K(i) (21)

T sm,k − T̂ (1− ym,l,k) ≤ T ξl,k ≤ T sm,k + T̂ (1− ym,l,k) ∀m∈M(i), l∈L, k∈K(i) (22)

j+dm−1∑
k=j

(
T sm,k+T sm,k

)
−|S|−

√
(δ2m−|S|) |S|≤αmT um/∆t−T prevm , ∀m∈M(i), j∈Km

(23)

T ξl,k ≤
∑

m∈M(i)

T umym,l,k l∈L, k∈K(i) (24)

T ξl,k ≤
∑

m∈M(i)

T umym,l,k l∈L, k∈K(i) (25)

Constraints (20) are the adaptive bound constraints. Constraints (21-22) are the

on-off constraints defining the variables T ξl,k and T ξl,k with T̂ = max
m∈M(i)

{T um}.

Constraint (23) is the probabilistic constraint on the cumulative temperature
violation, taking into account T prevm . The last two constraints force the corre-
sponding slack to zero when a location is unoccupied.

5 Experimental Results

5.1 Problem Sets

We analyze our contributions using 9 problem sets with increasing numbers
of activities (meetings) and locations (meeting rooms). The problem sets are
labeled 10M-4R, 20M-20R, 50M-20R, 100M-20R, 200M-20R, 50M-50R, 100M-
50R, 200M-50R, and 500M-50R, where xM-yR consists of problem instances
with x meetings and y rooms. Each set contains 800 problem instances, giving
a total of 7200 instances, obtained as follows.

We start from a set of real data from 32,065 unique meetings in a USC li-
brary collected by Kwak [20]. Each meeting request in this original data set
includes the request arrival time, start time, duration, specified room and num-
ber of attendees. We first derive a probability distribution on meeting start
times from this data set. To obtain a set of requests, we sample x meetings
for this distribution. We then create different instances with that set of re-
quests by varying the time flexibility, request-to-start time gap, and temper-
ature flexibility of the requests. The time flexibility of a request m is its number
|Km| ∈ {1, 2, 4, 8, 32} of permissible start time steps. The request-to-start time
gap denotes the duration {10 minutes, 1 hours, 4 hours, 24 hours} between the
request’s arrival time am and its first possible start time step. The temperature
flexibility indicates the level of tolerance for the room temperature deviation
from the standard heating (21◦C) and cooling (23◦C) setpoints, and is one of
three settings: low, medium, or high flexibility, with pm = 0.99 for all settings,
T um =2 (low), 3 (medium), 5 (high), andαm= 10 (low), 20 (medium), 30 (high).



Note that in the high setting, the deviation could be up to 5◦C, which is equiv-
alent to 28◦C for 30 minutes. This is an extreme case used to study the effects
of temperature flexibility, but not a recommended setting. In the more realistic
medium setting, the deviation is only up to 3◦C, which is equivalent to 26◦C for
20 minutes.

We keep the meeting duration and number of attendees identical to that of
the original meeting request from the USC data, and assume that the occupant
is fully flexible in terms of location, that is, that the meeting can be allocated to
any room. In all problem sets, the duration dm of meetings ranges from 1 to 4
time steps (30 minutes to 2 hours). The meetings must be scheduled over a period
of 5 summer days. The available rooms are located in 5 buildings and differ by
their thermal resistance and capacitance [22]. We use a 1× 4 zone layout where
each zone has the same thermal resistance and capacitance as its neighboring
zones. Moreover, all rooms have the same geometric area of 6× 10× 3 m3 with
a window surface area of 4 × 2 m2 and a capacity of 30 people. The solar gain
ranges from 50 to 350 W/m2 during the day. All activities have between 2 and
30 attendees. All our experiments were run on a cluster consisting of a 2 × AMD
6-Core Opteron 4334, 3.1GHz with 64GB memory.

5.2 Solution Method

To solve these problem instances, we combine our MIP model with Large Neigh-
borhood Search as explained in [22]. LNS is a local search metaheuristic which
iteratively improves an initial solution by alternating between a destroy and a
repair step [30]. In brief, our LNS approach works as follows.

In every online session i, we start by generating an initial feasible solution, in
two steps. First, we find a feasible occupancy schedule that minimizes the number
of rooms used. Second, we determine the HVAC control settings (supply air flow
rate and temperature) that minimize energy consumption for this schedule.

Our destroy step destroys part of the schedule by unscheduling the subset of
new requests N(i) that are allocated to two to four randomly selected locations.
This forms an energy-aware meeting scheduling subproblem that is much smaller
than the original problem and can be solved effectively using MIP. The repair
step consists in repairing the schedule and re-optimizing the entire HVAC control
by solving this subproblem using our MIP model. If this leads to an improved
solution, then the new schedule and control settings are accepted. Otherwise,
we keep the solution that was just destroyed. Given that the LNS starts with a
feasible solution and does not accept infeasible solutions, the solution remains
feasible throughout the execution of the algorithm.

5.3 Online vs. Offline Scheduling

We start by comparing the solution quality of our online approach with that
of the offline approach [22]. In the online approach, the scheduler runs LNS
for 5 minutes in each session, with a MIP runtime limit of 8 seconds in each
iteration. In the offline approach, the entire set of requests to schedule is given,



Fig. 4: Online vs. Offline Scheduling: With Fixed Temperature Setpoints (left)
and Adaptive Temperature Setpoints (right)

and we compute the final schedule; The scheduler runs LNS for 2 hours, with a
MIP runtime limit of 15 minutes in each iteration. To identify how much more
improvement can be obtained, we warm start the offline schedule with the best
online solution found (over all the possible request-to-start time gaps).

The difference of solution quality, that is the excess consumption of the on-
line scheduling as a percentage of the off-line scheduling consumption, is shown
in Fig. 4. The results for the fixed temperature setpoints are shown on the
left, whilst those for the adaptive temperature setpoints are on the right. Both
graphs show that the offline solutions are merely 1% to 1.5% better than the
online solutions for tightly constrained problems (such as 200M-20R, 500M-50R),
and that, as expected, the online approach improves when the problem is less
constrained in terms of meetings to rooms ratio and temperature flexibility. Note
that in the online approach, at most 20 requests arrive in each online session
and a maximum of 4 rooms are destroyed, thus the sub-problems formed are
small enough for MIP to solve them to (near) optimality. The off-line approach
has many more meetings to deal with, but on the other hand, as problems
become more constrained, it has more room to optimize than the greedy on-line
approach. Altogether, even with a simple greedy approach, our online algorithm
is able to perform effectively without prior knowledge of future requests.

5.4 Energy Savings of Adaptive Temperature Control

Next, we examine the benefits of our adaptive temperature control, which allows
the occupant to specify their level of tolerance for the room temperature devi-
ation from the fixed 21◦-23◦C comfort bounds. Because HVAC consumption is
highly dependent on the temperature gap between the outdoor temperature and
the occupied temperature setpoint, we show that even a small variation from
the original setpoints can lead to large energy savings.

Fig. 5 shows the additional energy savings obtained with adaptive tempera-
ture control as a percentage of the fixed temperature control consumption (left),
and the maximum temperature deviation incurred by the adaptive approach
(right). The left figure shows that the additional savings can reach up to [8%,
12.7%, 16.5%] depending on the [low, medium, high] temperature flexibility al-
lowed by the occupants. The right figure shows that the maximum degree of



Fig. 5: Energy Savings from Adaptive Temperature Control (left) and Maximum
Temperature Deviation from Standard Setpoints (21◦− 23◦C)

temperature deviation is only about [0.7, 1.5, 2.3]◦C for low-to-high tempera-
ture flexibility, respectively. Overall, increasing temperature flexibility reduces
HVAC consumption and cost. Taking an energy rate of $0.24/kWh and the
500M-50R problem set as example, this corresponds to annual savings of about
[$11500, $19542, $24690] for [low, medium, high] temperature flexibility.

5.5 Model Feasibility

Finally, we study the solution feasibility of on-line scheduling with fixed and
adaptive temperature control, respectively. Fig. 6 shows the percentage of fea-
sible solutions generated by the two approaches, as a function of the request-
to-start time gap. Altogether, adaptive temperature control solves 73% of the
instances that are deemed unsolvable under the fixed temperature control regime.

We observed that with fixed temperature setpoints, we fail to generate feasi-
ble solutions in most cases when the requests arrive less than 1 hour prior to the
earliest possible activity start time. This infeasibility issue mainly happens at
the initialization stage, where the initial schedule generation is decoupled from
the initial HVAC control generation. In order to quickly generate an initial feasi-
ble schedule, activities are packed into the minimum number of rooms possible.
However, the room temperatures may be too far from the temperature setpoints
to obtain an initial feasible HVAC control reaching the designated occupied
temperature at short notice. In contrast, the model with adaptive temperature
control is able to solve many of these problem instances, and even generates
some feasible solutions when the requests arrive just 10 minutes prior to the
earliest activity start time. This is mainly due to the relaxation of the tem-
perature setpoints. We observed that the number of feasible solutions increases
proportionally to the temperature flexibility.

Apart from the constrainedness imposed on temperature setpoints, the model
also stumbles into infeasibility when the scheduler fails to schedule all requests
due to the lack of feasible location or time slot. Overall, the performance improves
as the request-to-start time gap increases for both models.



Fig. 6: Solution Feasibility: With Fixed Temperature Setpoints (left) and Adap-
tive Temperature Setpoints (right)

6 Conclusions & Future Work

In this paper we develop an online scheduling model and adaptive temperature
control method for joint HVAC control and occupancy scheduling. Leveraging
an explicit model of building occupancy-based HVAC control, our model adopts
a greedy approach to schedule dynamically arriving requests to take place at
locations and times that are favorable from energy standpoint. Our experiments
show that, even without prior knowledge of future requests, our model is able
to produce energy-efficient schedules which are less than 1% away from the
clairvoyant solution.

We extend the model to enable adaptive temperature control, moving away
from the conventional fixed comfort temperature setting. The occupant is allowed
to indicate their level of tolerance for the room temperature to deviate from
the standard heating and cooling setpoints. We shows that thermal comfort
flexibility significantly impacts energy consumption. Compared to the existing
fixed temperature control, the energy savings in our experiments can reach up
to 8% with low temperature flexibility, with a maximum deviation of 0.7◦C from
the original setpoints, and up to 15% with high temperature flexibility with a
maximum of 2.3◦C deviation from the standard setpoints. We have also shown
that given some thermal comfort flexibility, our model is able to schedule requests
arriving 10 minutes prior to the start time, and produce substantially more
feasible solutions than the conventional fixed temperature setpoints approach.

We are interested in exploring new algorithmic approaches that allows us
to improve our solution and scale even further. We are particularly interested
in investigating stochastic scheduling and control, which allows us to predict
future request arrival and cancellations. We are also interested in exploring the
CP formulation of joint HVAC control and meeting scheduling. As the joint
model consists of hybrid discrete-continuous variables, we plan to reformulate
it by discretizing the HVAC control variables, and compare the solution quality
generated by both MIP and CP models.
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