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ABSTRACT

There has been increasing acceptance that agents must act in a

way that is sensitive to ethical considerations. These considera-

tions have been cashed out as constraints, such that some actions

are permissible, while others are impermissible. In this paper, we

claim that, in addition to only performing those actions that are

permissible, agents should only perform those courses of action

that are unambiguously permissible. By doing so they signal nor-

mative compliance: they communicate their understanding of, and

commitment to abiding by, the normative constraints in play. Those

courses of action (or plans) that succeed in signalling compliance in

this sense, we term ‘acceptable’. The problem this paper addresses

is how to compute plans that signal compliance, that is, how to

find plans that are acceptable as well as permissible. We do this by

identifying those plans such that, were an observer to see only part

of its execution, that observer would infer the plan enacted was

permissible. This paper provides a formal definition of compliance

signalling within the domain of AI planning, describes an algorithm

for computing compliance signalling plans, provides preliminary

experimental results and discusses possible improvements. The

signalling of compliance is vital for communication, coordination

and cooperation in situations where the agent is partially observed.

It is equally vital, therefore, to solve the computational problem of

finding those plans that signal compliance. This is what this paper

does.

CCS CONCEPTS

•Computingmethodologies→Planning and scheduling; Search

with partial observations; Philosophical/theoretical founda-

tions of artificial intelligence.

KEYWORDS

ethics; planning; communication; uncertainty; constraint; permissi-

bility; complexity

ACM Reference Format:

Alban Grastien, Claire Benn, and Sylvie Thiébaux. 2021. Computing Plans

that Signal Normative Compliance. In Proceedings of the 2021 AAAI/ACM

Conference on AI, Ethics, and Society (AIES ’21), May 19–21, 2021, Virtual

Event, USA. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/

3461702.3462607

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

AIES ’21, May 19–21, 2021, Virtual Event, USA

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8473-5/21/05. . . $15.00

https://doi.org/10.1145/3461702.3462607

1 INTRODUCTION

Robots ought to be designed such that they are subject to ethical

constraints [1, 11, 24, 34]. These constraints are likely to be case

and context specific. What is permissible for one robot in one cir-

cumstance might be impermissible for another or in a different

circumstance. Nevertheless, even if a robot is programmed to be

sensitive to these ethical considerations, they are likely to interact

with and be observed by humans who are unsure about whether or

not the robot knows about the relevant normative constraints and

is planning to abide by them. Against this background of general

uncertainty, the robot’s behaviour may well be morally ambiguous.

Let’s spell this out more slowly. The human observer is likely to

only be able to observe part of the robot’s behaviour (for example,

when the robot engages in behaviour that is not easily directly ob-

servable; when the observer only observes the robot at certain time

points; or when part of the plan is in the future and thus cannot be

observed yet). This partially observed behaviour may be compatible

with both permissible and impermissible courses of action. As such,

the observer may have continued uncertainty about whether, in

this instance, the robot in question has enacted or is planning on

enacting a plan that contains impermissible acts. Thus, the robot’s

observed behaviour is morally ambiguous from the point of view

of the observer.

Take the example of an empty self-driving car. Suppose that a

pedestrian steps out on a pedestrian crossing and sees the car com-

ing. The car’s intended plan—to stop before hitting the pedestrian or

to carry on thereby hitting the pedestrian—is not observable by the

pedestrian. If the car plans to stop mere inches from the pedestrian,

its course of action will (until the very last second) appear similar

to the pedestrian to the plan to carry on across the crossing, hitting

them. This course of action is therefore ambiguous: compatible

with multiple plans. Moreover, it is morally ambiguous, because

it is compatible with plans with different normative statuses: one

is permissible (stopping mere inches from the pedestrian) and the

other is impermissible (hitting them).

This moral ambiguity is a source of concern. When the observer

has the power to intervene (for example, if the driver of a self-

driving car was able to enact a manual override), it is likely to lead

to inefficient or counterproductive interference with the working

of the robot. Moreover, in situations where trust is important, the

moral ambiguity of even permissible courses of actions are likely to

fail to demonstrate trustworthiness or might in fact be detrimental

to the relationship.

We argue, here and elsewhere [4, 5], that robot agents, just like

human ones, ought to be cognizant of the communicative aspect of

their behaviour and take seriously the imperative to reassure human

observers by reducingmoral ambiguity. They can do so, again just as

humans do, by (what we call) signalling normative compliance: by

choosing courses of action that are not only permissible but also are
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unambiguously permissible. Recall the example of the self-driving

car: the plan to stop in ample time before the crossing signals the

car’s awareness of both the pedestrian and its commitment to the

moral requirement not to hit the pedestrian. This plan is just as

permissible as the plan to stop mere inches from the pedestrian;

however, it is significantly less ambiguous.

The terminology we use throughout this paper is as follows.

‘Permissible’ refers to those courses of action that abide by the

first-order normative constraints in play (for example, not to harm

unnecessarily, not to cause catastrophic environmental damage,

not to enter certain areas and so on). ‘Acceptable’ refers to those

courses of action that are unambiguously permissible. How this is

to be operationalised will be discussed in more detail below. Thus to

‘signal normative compliance’ is the selection of courses of action

that are acceptable as well as permissible, such that the agent acts

in a way that is normatively communicative. The problem this

paper addresses is finding those plans that signal compliance, and

finding them in a way that is sufficiently practical despite the high

computational complexity of the problem.

The paper is organised as follows. We begin with a description of

the running example used in the paper and in our experiments. We

define the compliance signalling planning problem and reformulate

it to reduce its complexity by adopting certain assumptions. In

particular, we modify the formal definition of acceptability to be

dependent on the cost-difference between the most cost-efficient

impermissible plan and the most cost-efficient permissible plan,

and establish the computational complexity of this reformulated

problem.

We then propose an algorithm to solve this reformulated problem

using an optimal classical planner as a subroutine. This algorithm

computes increasingly expensive permissible plans and verifies

whether these plans are acceptable. We then provide experimen-

tal results before discussing future and related work, and finally

concluding.

2 EXAMPLE

Consider the simple logistic problem represented on Figure 1.
1
The

goal is to drop a package currently in the truck at the target location

(T), and drive the truck back to its current location (D). The truck

can travel along the edges of the graph (the action 𝑑𝑟 (𝑥,𝑦) moves

the truck from 𝑥 to 𝑦), and the cost of each leg is given in the figure.

The package is not permitted to enter the city (C) because it is

hazardous.
2
However, the observer cannot see the path followed

by the truck directly. Instead, the truck can send notifications from

the B𝑥 locations by performing action 𝑛𝑜 (𝐵𝑥) (cost 0.1). Note that
notifications can only be sent from these locations and not from the

truck’s starting point (D) or from the target location (T). Note also

that these notifications record only the location, not the time at

which the truck was there nor the direction from which it arrived

1
This example is inspired by some work on an industrial food chain that involves

international partners over multiple jurisdictions with different legislations.

2
Note that while this particular example is about safety in particular, our argument

applies to any example with normative constraints. Issues such as safety are more

easily agreed upon and thus we chose this example as it doesn’t have any first-order

normative disagreement to muddy the water, as the problem of signally compliance

arises even when there is agreement by all parties on which actions are permissible

and which are not. The ambiguity is about compliance with the constraints not about

the content of the constraints.
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Figure 1: Logistic problem: the truck needs to drive from its

starting location to T and back. It is impermissible for it to

cross C before reaching T. In green cells, the truck can notify

its locations. Cost of crossing an edge is indicated.

or departed. The observer receives these notifications, in the order

in which they were sent, but only after the truck has returned to

its original location.

The cost-optimal plan would be to drive through the city and

back (𝜋1 = 𝑑𝑟 (𝐷,𝐶), 𝑑𝑟 (𝐶,𝑇 ), 𝑑𝑟 (𝑇,𝐶), 𝑑𝑟 (𝐶, 𝐷), cost = 4), but

this plan is not permissible. This plan passes through none of the B

locations and therefore affords no opportunity for notifications to be

sent. The cost-optimal permissible plan is 𝜋2 = 𝑑𝑟 (𝐷, 𝐵1), 𝑑𝑟 (𝐵1,𝑇 ),
𝑑𝑟 (𝑇,𝐶), 𝑑𝑟 (𝐶, 𝐷), cost = 6 . If the driver sends no notifications, this

plan generates the same observation as 𝜋1, namely no notification.

Therefore, the observer will not be able to tell if the plan enacted is

permissible or impermissible.

In order to prove that they did not enact plan 𝜋1, the driver could

send a notification when they cross B1: (𝜋3 = 𝑑𝑟 (𝐷, 𝐵1), 𝑛𝑜 (𝐵1),
𝑑𝑟 (𝐵1,𝑇 ), 𝑑𝑟 (𝑇,𝐶), 𝑑𝑟 (𝐶, 𝐷), cost = 6.1).

The observer now knows that the truck travelled through B1,

but on this basis alone does not know whether this was on the

way to the target location or on the way back. This is because

their observations are compatible with the following plan: 𝜋4 =

𝑑𝑟 (𝐷,𝐶), 𝑑𝑟 (𝐶,𝑇 ), 𝑑𝑟 (𝑇, 𝐵1), 𝑛𝑜 (𝐵1), 𝑑𝑟 (𝐵1, 𝐷), cost = 6.1. This is

problematic because this latter plan is impermissible (as it involves

carrying the package through the city).

A less ambiguous plan would be to cross and notify the loca-

tions B2 and B3 instead: 𝜋5 = 𝑑𝑟 (𝐷, 𝐵2),𝑛𝑜 (𝐵2),𝑑𝑟 (𝐵2, 𝐵3),𝑛𝑜 (𝐵3),
𝑑𝑟 (𝐵3,𝑇 ), 𝑑𝑟 (𝑇,𝐶), 𝑑𝑟 (𝐶, 𝐷), cost = 6.7. Because the observer sees

𝜎 = [𝑛𝑜 (𝐵2), 𝑛𝑜 (𝐵3)] (i.e., a notification from 𝐵2 followed by one

from 𝐵3), they do not need to worry that the truck may have trav-

elled through C with the package.

Indeed the cost-optimal impermissible plan consistent with 𝜎

is 𝜋6 = 𝑑𝑟 (𝐷,𝐶), 𝑑𝑟 (𝐶, 𝐷), 𝑑𝑟 (𝐷, 𝐵2), 𝑛𝑜 (𝐵2), 𝑑𝑟 (𝐵2, 𝐵3), 𝑛𝑜 (𝐵3),
𝑑𝑟 (𝐵3,𝑇 ), 𝑑𝑟 (𝑇,𝐶), 𝑑𝑟 (𝐶, 𝐷), cost = 8.7. While 𝜋6 is consistent with

the observations, it would be an irrational plan: why would the

truck go to C and then come back? In this paper, our notion of

rationality is conditioned on probabilities, which depend on the

cost of the plan: 𝜋5 is more rational than 𝜋6 because it is significantly

less expensive than 𝜋6; the impermissible plans that explain 𝜎 have



a cost significantly higher than the cost of 𝜋5, so 𝜋5 is most likely

the plan that was implemented. It is therefore acceptable.

3 COMPLIANCE SIGNALLING AS A

PLANNING PROBLEM

In this section, we formulate the problem of finding an acceptable

plan, in the sense of compliance signalling, within the framework

of AI planning.

We start from classical planning, which is the problem of finding

a course of action (a plan), enabling an agent to reach a given goal,

starting from an initial state of the world. Actions have costs. These

costs do not reflect the moral aspects of the action in question,

and everything else being equal, a purely rational agent would

(rationally) prefer the plan that has the smallest total cost, where

‘rationality’ is meant narrowly to capture a responsiveness to non-

moral attributes and considerations.
3
An optimal classical planner,

such as Fast Downward [15] is capable of returning such a least-cost

plan.

Compliance signalling departs from classical planning by addi-

tionally imposing the constraint that the plan chosen by the agent

must be acceptable. We start with the notion of a permissible plan:

a plan that does not contain any action from a given impermissible

set. Then, we turn to the notion of acceptability, which we capture

probabilistically as follows: a plan is acceptable when the condi-

tional probability mass, given the observation, of all impermissible

plans that share this observation is below a given threshold.
4

The prior probability distribution on plans reflects the fact the

observer knows the agent is rational: everything else being equal,

more costly plans are exponentially less likely.

This section formalises these ideas and is organised as follows.

We start with some background on classical planning. Then we

formalise the acceptability constraint, starting with its central as-

pects, namely the permissibility, observability and probability of

plans. We then motivate making an assumption under which the

constraint can be simplified to make acceptable plans easier to com-

pute. Finally, we show, that, even with the simplified constraint,

the generation of acceptable plans remains a much harder problem

than classical planning.

3.1 Classical Planning

Classical planning is the problem of finding a sequence of actions

enabling an agent to reach a given goal starting from an initial

state of the world. The following assumptions are made: the initial

state, the available actions, and the effects of these actions, are

known to both the agent and the observer; moreover actions have

deterministic effects. At this stage, we do not delve into how a

planning instance is represented; more details are presented in

Appendix A.

3
Of course, this is not to say that they would prefer the plan with the smallest total

cost all things considered, as they may well take into account the moral assessment of

the plan, which is not factored into the costs. In fact, in this paper, we assume that the

agent is committed to respecting these normative aspects and to communicating that

commitment to an uncertain observer.

4
There are other possible forms that this constraint could take. Elsewhere we explore in

detail some of the alternative ways of cashing out acceptability, including, for example,

incorporating the observer’s beliefs about the agent’s preferences [5].

A classical planning (problem) instance is defined as a tuple P =
⟨𝑆,𝐴, 𝑠0,𝐺, 𝑐⟩ where 𝑆 is the set of states of the world,𝐴 is the set of

available actions with𝐴(𝑠) denoting the subset of actions applicable
in state 𝑠 , 𝑠0 ∈ 𝑆 is the initial state, 𝐺 ⊆ 𝑆 is the set of goal states,

and 𝑐 : 𝐴 → N is the function specifying the cost of the actions. We

write 𝑠 [𝑎] for the state resulting from executing action 𝑎 ∈ 𝐴(𝑠) in
state 𝑠 .

Let 𝜋 = 𝜋1 . . . 𝜋𝑛 ∈ 𝐴∗
be a sequence of actions whose 𝑖th

element is 𝜋𝑖 . 𝜋 is a plan for the classical planning instance P iff all

actions in 𝜋 are applicable in turn from 𝑠0, leading to successive

states 𝑠0, 𝑠1, . . . , 𝑠𝑛 where 𝑠𝑛 is a goal state. That is, iff 𝑠𝑛 ∈ 𝐺 , and

𝜋𝑖 ∈ 𝐴(𝑠𝑖−1) and 𝑠𝑖 = 𝑠𝑖−1 [𝜋𝑖 ] for all 𝑖 ∈ {1, . . . , 𝑛}. The cost of the
actions is additive, which means that the cost of a plan is the sum

of each individual action cost: 𝑐 (𝜋) = ∑𝑛
𝑖=1 𝑐 (𝜋𝑖 ). A plan is optimal

under some constraints if it satisfies the constraints and no other

plan that also satisfy these constraints has a smaller cost.

3.2 The Compliance Signalling Constraint

As we explained before, the problem of compliance signalling is

to find plans that are not only normatively permissible, but also

visibly so, where visibility is defined with respect to a probability

threshold. Formalising this constraint requires considering three

main aspects: what makes a plan permissible/impermissible, what

is the observation of a plan, what is the probability distribution of

the plans from the point of view of an observer.

Permissibility. We assume that the set of actions is partitioned

into permissible actions (denoted with 𝑃 ⊆ 𝐴) and impermissible

ones. A plan is then impermissible if it includes at least one imper-

missible action. We write Πp (P) for the set of permissible plans of

planning instance P and Πi (P) for the impermissible ones.

This definitionmay sound restrictive. For instance, an actionmay

be morally reprehensible only in some contexts so that one cannot

classify the action as permissible or not in isolation. This is a difficult

issue to solve. However, it can be overcome to a certain extent

within the planning framework, by considering such actions to be

differentiated on a more fine-grained description. Thus, instead

of considering one action, on a coarse-grained description, to be

permissible in some contexts but impermissible in another, we

could consider there to exist two different actions that take into

account the relevant contextual information, such that one of these

actions is permissible and the other is impermissible. For instance,

it may be permissible to pick up a fruit from a tree, but only if this

tree is yours; in this case, we can distinguish between the action

‘picking up a fruit from a tree that is yours’ (which is permissible),

and ‘picking up a fruit from a tree that is not yours’ (which is

impermissible).

In fact, this framework can represent a large array of permissi-

bility constraints. This includes constraints on the temporal occur-

rence of actions in the plan, such as those traditionally captured

by temporal logic over finite traces [2, 9], e.g. ‘it is permissible to

pick up a fruit only after helping its owner’. It is well known that

such constraints can be compiled away by redefining the states to

capture the necessary information [29].
5
For the example above, it

suffices to modify the states to record which owners you helped

5
For LTL, this however increases the size of the state space exponentially in the size

of the formula in the worst case.



so far; then, the set of actions will include ‘pick up a fruit from a

tree whose owner you helped’ (permissible, but applicable only if

you indeed helped its owner) and ‘pick up a fruit from a tree whose

owner you haven’t helped’ (impermissible).

Some constraints do not refer only to the current plan, but also

to other possible plans. It is a core part of some ethical views that

certain normative features can only be determined in relation to the

alternatives available. See, for example, [3, 13, 26, 33]. For instance,

it may be permissible to pick up a fruit from a tree that is not yours

as long as you are unable to pick up fruits from your own trees.

Future work will investigate whether existing work on compiling

away preferences in planning [18, 35] enables this type of constraint

to be encoded in our framework.
6

Observability. The observer only has partial observation of the

plan executed by the agent. We assume that the set of actions is

partitioned into the observable actions, whose set is denoted by 𝑂 ,

and the unobservable ones. As with permissible actions, this may

require us to redefine the actions and the states. The observation

of a plan 𝜋 is then the projection of the plan over the observable

actions which is formally defined as follows.

Given an action 𝑎, and a plan 𝜋 , we define 𝑜𝑏𝑠 (𝜋) as follows,
where 𝑎.𝐿 is the list obtained by prepending 𝑎 to the list 𝐿.

𝑜𝑏𝑠 (𝜋) =


[] if 𝜋 = [] (empty plan)

𝑎.𝑜𝑏𝑠 (𝜋 ′) if 𝜋 = 𝑎𝜋 ′
and 𝑎 ∈ 𝑂

𝑜𝑏𝑠 (𝜋 ′) if 𝜋 = 𝑎𝜋 ′
and 𝑎 ∉ 𝑂.

Thus, 𝑜𝑏𝑠 (𝜋) is the list that contains all those actions that compose

𝜋 that are observable, in order (and thus, is empty if no action is

observable). Take the plan 𝜋 consisting of the sequence of actions

𝜋 =go(D,B2), no(B2), go(B2,B3), no(B3), go(B3,T). Since only the no(·)
actions are observable, 𝑜𝑏𝑠 (𝜋) = [no(𝐵2), no(𝐵3)].

Two plans are indistinguishable, denoted by 𝜋1#𝜋2, if they gener-

ate the same observation: 𝑜𝑏𝑠 (𝜋1) = 𝑜𝑏𝑠 (𝜋2). Plans with a different

length may generate the same observation. Note we make the as-

sumption that the indistinguishability of observations is a transitive

property, i.e., 𝜋1#𝜋2 and 𝜋2#𝜋3 implies 𝜋1#𝜋3.

This is not an innocuous assumption as, in some other contexts,

indistinguishability is not transitive. For example, something small

and something very small might be indistinguishable, as could be

something very small and something extremely small; however,

this does not entail that something small and something extremely

small are similarly indistinguishable. Nevertheless, we assume that

transitivity holds for the indistinguishability of observations in this

context.

An observation is denoted by the symbol 𝜎 . The set of plans that

produce the observation 𝜎 (i.e., such that 𝑜𝑏𝑠 (𝜋) = 𝜎) is denoted

Π𝜎
.

Probability. The last ingredient necessary to formalise the idea

of signalling compliance is the way to estimate the probability

of each plan given an observation. The assumption often made

in plan recognition [27] is that, all other things being equal, the

probability of a plan depends only on the cost of the plan. More

specifically, given that the observer sees the observation 𝜎 when

6
One issue might be that these compilations affect the cost of actions. This could

interact with other aspects of the framework presented here.

a plan is executed by the agent, the probability that this plan is 𝜋 ,

noted Pr(𝜋 | 𝜎) is

Pr(𝜋 | 𝜎) =
{
𝛼 × 𝑒−𝛽×𝑐 (𝜋 ) if 𝑜𝑏𝑠 (𝜋) = 𝜎

0 otherwise,

where 𝛽 is a constant that indicates how quickly the probability

of a plan drops with its cost, and 𝛼 is a normalisation factor that

guarantees that the probabilities add up to 1. More specifically,

𝛼 =
1

Σ𝜋 ′∈Π𝜎 𝑒−𝛽×𝑐 (𝜋 ′) .

The probability of a plan being the one performed by the agent

drops exponentially fast with its cost. In particular, if 𝑐 (𝜋1)−𝑐 (𝜋2) =
𝑐 (𝜋 ′

1
) − 𝑐 (𝜋 ′

2
), then

Pr(𝜋1 | 𝜎)
Pr(𝜋2 | 𝜎) =

Pr(𝜋 ′
1
| 𝜎)

Pr(𝜋 ′
2
| 𝜎) .

In words, this means that in order to compare the probabilities of

two plans, one just needs to look at the difference in cost between

these two plans.

Acceptability. We now have all the elements necessary to for-

malise the compliance signalling constraint. We define a compliance

signalling planning (problem) instance as a tuple P = ⟨P, 𝑃,𝑂, 𝜀⟩,
where P = ⟨𝑆,𝐴, 𝑠0,𝐺, 𝑐⟩ is a classical planning instance, 𝑃 ⊆ 𝐴 is

the set of permissible actions,𝑂 ⊆ 𝐴 is the set of observable actions,

and 𝜀 is a probability threshold whose role will become clear below.

We now define the notion of an acceptable plan for P. Let 𝜎 be

the observation made by the observer. The probability that 𝜎 is the

observation of an impermissible plan is the sum of the conditional

probabilities of the impermissible plans that match the observation

𝜎 :

Pr(impermissible | 𝜎) = Σ𝜋 ′∈Πi (P) Pr(𝜋 ′ | 𝜎) .
A plan that produced observation 𝜎 is acceptable iff this probability

is below the threshold 𝜀.

Definition 1. Let P = ⟨P, 𝑃,𝑂, 𝜖⟩ be a compliance signalling

planning instance. A plan 𝜋 for the classical planning instance P is
acceptable for P iff

Pr(impermissible | 𝑜𝑏𝑠 (𝜋)) ≤ 𝜀. (1)

Our goal is to compute the optimal compliance signalling plan,

i.e., the permissible plan with minimal cost that is nevertheless

acceptable.

3.3 Reformulating and Simplifying

Acceptability

Deciding whether a plan 𝜋 is acceptable is significantly more dif-

ficult than finding a classical plan which, itself, is already pspace-

complete [6]. Indeed, it requires, in the worst case, to compute all

paths that generate the same observation as 𝜋 , and there could be

infinitely many of those. Finding an acceptable plan is even harder.

Because of this complexity, we propose and justify a reformula-

tion of the problem into a more amenable one which only requires

considering two plans that generate the same observation, rather

than infinitely many. Our reasoning is based on the following as-

sumption about the probability mass fraction of the cost-optimal

plans which we first define.



Given an observation 𝜎 and a plan 𝜋 ∈ Π𝜎
, the probability mass

fraction 𝑘 (𝜋) ∈ [0, 1] is the ratio of the conditional probability of

this plan, given the observation in question, over the conditional

probability of all plans of the same normative class (permissible or

impermissible), given that same observation:

𝑘 (𝜋) = Pr(𝜋 | 𝜎)
Pr(class(𝜋) | 𝜎) .

In other words, 𝑘 (𝜋) indicates how much of the probability of its

class can be “attributed” to the plan 𝜋 . We are particularly interested

in the optimal plans of each class. Given an observation 𝜎 , we write

𝜋𝜎
i
and 𝜋𝜎

p
for the plans that are optimal amongst Π𝜎

i
and Π𝜎

p
.

Because of the definition of Pr(𝜋 | 𝜎), the optimal plan will have

the maximal contribution of its class.
7

To simplify and reformulate the problem, we make the assump-

tion that the probability mass fractions of the cost-optimal permis-

sible plan and the cost-optimal impermissible plan are comparable.

Assumption 1. The probability mass fraction of 𝜋𝜎
p
and 𝜋𝜎

i
are

similar:

𝑘 (𝜋𝜎
p
)/𝑘 (𝜋𝜎

i
) ≃ 1.

It is now possible to rewrite Equation 1 as follows:

𝜀 ≥
Σ𝜋 ∈Π𝜎

i
(𝑃 ) 𝑒

−𝛽×𝑐 (𝜋 )

Σ𝜋 ∈Π𝜎
i
(𝑃 ) 𝑒−𝛽×𝑐 (𝜋 ) + Σ𝜋 ∈Π𝜎

p
(𝑃 ) 𝑒−𝛽×𝑐 (𝜋 )

We can use the definition of the probabilitymass fraction tomention

only the cost optimal plans.

𝜀 ≥
𝑒−𝛽×𝑐 (𝜋

𝜎
i
)/𝑘 (𝜋𝜎

i
)

𝑒−𝛽×𝑐 (𝜋
𝜎
i
)/𝑘 (𝜋𝜎

i
) + 𝑒−𝛽×𝑐 (𝜋

𝜎
p
)/𝑘 (𝜋𝜎

p
)

We can remove the 𝑘s as they are similar:

𝜀 ≥ 𝑒−𝛽×𝑐 (𝜋
𝜎
i
)

𝑒−𝛽×𝑐 (𝜋
𝜎
i
) + 𝑒−𝛽×𝑐 (𝜋

𝜎
p
)

𝑒
−𝛽×𝑐 (𝜋𝜎

p
) ≥ 𝑒−𝛽×𝑐 (𝜋

𝜎
i
) 1 − 𝜀

𝜀

−𝛽𝑐 (𝜋𝜎
p
) ≥ −𝛽𝑐 (𝜋𝜎

i
) + ln

(
1 − 𝜀

𝜀

)
𝑐 (𝜋𝜎

p
) ≤ 𝑐 (𝜋𝜎

i
) − ln

(
1 − 𝜀

𝜀

)
/𝛽

We use the notation 𝛿 = ln( (1−𝜀)𝜀 )/𝛽 . Then the plan 𝜋𝜎
p
is ac-

ceptable iff the following inequality holds:

𝑐 (𝜋𝜎
p
) ≤ 𝑐 (𝜋𝜎

i
) − 𝛿. (2)

This equation states that an observer will be convinced that the

plan is permissible if the most rational permissible explanation

(i.e., the optimal permissible plan consistent with the observation)

is less expensive than the most rational impermissible one. As

was stated before, the ratio of the probabilities of the two plans,

Pr(𝜋𝜎
p
)/Pr(𝜋𝜎

i
), is a function of the difference of their cost.

We now summarise with our simplified definition of acceptabil-

ity:

7
If these plans do not exist, i.e., if there is no impermissible (resp. permissible) plan

that match the observation 𝜎 , we consider that 𝜋𝜎
i
(resp. 𝜋𝜎

p
) is a dummy plan with

infinite cost (and, therefore, 0 probability).

Definition 2. Let P = ⟨P, 𝑃,𝑂, 𝜖⟩ be a compliance signalling

planning instance. A plan 𝜋 for the classical planning instance P is
acceptable in the simplified sense for P iff

𝑐 (𝜋𝑜𝑏𝑠 (𝜋 )
p

) ≤ 𝑐 (𝜋𝑜𝑏𝑠 (𝜋 )
i

) − 𝛿

where 𝜋
𝑜𝑏𝑠 (𝜋 )
p

(resp. 𝜋
𝑜𝑏𝑠 (𝜋 )
i

) is the cost-optimal permissible (resp.

impermissible) plan satisfying the same observations as 𝜋 , and 𝛿 =

ln( 1−𝜖𝜖 )/𝛽 .

3.4 Complexity

Determining whether a classical planning instance has a solution

is PSpace-complete [6]. We now show that even with our simpli-

fied notion of acceptability, determining whether a compliance

signalling planning instance has an acceptable solution is substan-

tially harder than classical planning.

Definition 3. LetP be a compliance signalling planning instance.

The acceptability decision problem consists in deciding whether there

exists a plan 𝜋 which is acceptable in the simplified sense for P.

Theorem 1. The acceptability decision problem (Def 3) is ExpSpace-

hard.

The proof of complexity relies on a reduction from conformant

planning to the acceptability decision problem. Since it is known

[14] that conformant planning is ExpSpace-complete, we know that

deciding whether there exists an acceptable plan is ExpSpace-hard.

The full reduction is given in Appendix B, but we give the in-

tuition here. Conformant planning is similar to classical planning

except that some actions have non-deterministic effects and that

their outcome is unobservable. Therefore, a sequence of actions is

a solution for a conformant planning problem iff 1) it is applicable

regardless of the actions’ outcomes and 2) its execution always

reaches the goal. For instance, in the Bomb in the Toilet domain

[32], a robot is supposed to dunk bombs into a toilet; executing this

action may or may not clog the toilets (non-deterministic effect)

and whether it does or not is unobservable; therefore, a valid solu-

tion requires the robot to flush the toilets after each dunk, just in

case the toilet was clogged. The goal of the problem is generally

represented by a condition on the final state, but for simplicity, and

without loss of generality, we assume that the goal is to perform a

specific action.

The conformant planning problem and the acceptability decision

problem have a similar structure. Indeed, conformant planning

requires finding a sequence of actions such that all outcomes of

these actions successfully lead to the goal. In comparison, acceptable

planning requires finding a sequence of observable actions such

that all plans that match this sequence are permissible.

4 ALGORITHM & IMPLEMENTATION

Following the previous section, we propose a simple algorithm for

signalling compliance, which builds on classical planning to return

a cost-optimal permissible and acceptable plan. Our procedure is

described in Algorithm 1. Importantly before getting into further

details, we want to note that the procedure repeatedly calls for a

classical planner to solve variants of the original classical planning

instance P augmented with extra constraints (such as ‘the plan

should (not) be permissible’, or ’the plan should (not) generate these



Algorithm 1 Signalling Compliance in Classical Planning

1: input: P = ⟨𝐴, 𝐼,𝐺, 𝑐⟩ planning problem

2: input: 𝑂 ⊆ 𝐴 observable actions

3: input: 𝑃 ⊆ 𝐴 permissible actions

4: input: 𝛿 cost differential threshold

5: L
forb

:= ∅
6: loop

7: Compute a cost-minimal permissible plan 𝜋p solution to P
such that 𝑜𝑏𝑠 (𝜋p) ∉ L

forb
.

8: Compute a cost-minimal impermissible plan 𝜋i solution to P
such that 𝑜𝑏𝑠 (𝜋i) = 𝑜𝑏𝑠 (𝜋p).

9: if 𝑐 (𝜋p) ≤ 𝑐 (𝜋i) − 𝛿 then

10: return 𝜋p
11: end if

12: Add 𝑜𝑏𝑠 (𝜋p) to L
forb

13: end loop

observations’). We explain how these constraints are incorporated

into P in Appendix A.

Algorithm 1 searches for a cost-optimal permissible plan 𝜋p, and

then for a cost-optimal impermissible plan 𝜋i that produces the

same observation. If the cost of these plans satisfy the condition

𝑐 (𝜋p) ≤ 𝑐 (𝜋i) − 𝛿 , then 𝜋p is an acceptable plan and is returned by

the procedure. If, on the other hand, this condition is not satisfied,

then 𝜋p is not acceptable; furthermore, no plan 𝜋 ′
that generates

the same observation 𝑜𝑏𝑠 (𝜋p) is acceptable, since that plan would

have a cost even higher:

𝑐 (𝜋 ′) ≥ 𝑐 (𝜋p) > 𝑐 (𝜋i) − 𝛿.

We store all the observations 𝑜𝑏𝑠 (𝜋) of failed candidate plans 𝜋

into the forbidden observable language L
forb

, and enforce that later

candidate plans produce an observation that is not in L
forb

.

We illustrate this with the example of Section 2. Initially, the

language L
forb

is empty. The first permissible plan 𝜋2 = 𝑑𝑟 (𝐷, 𝐵1),
𝑑𝑟 (𝐵1,𝑇 ), 𝑑𝑟 (𝑇,𝐶), 𝑑𝑟 (𝐶, 𝐷) is proved to be unacceptable. As this

plan’s observation is the empty one, 𝑜𝑏𝑠 (𝜋1) = [], and this obser-

vation is added to L
forb

which now contains a single word {[]}. A
second plan 𝜋3 = 𝑑𝑟 (𝐷, 𝐵1), 𝑑𝑟 (𝐵1,𝑇 ), 𝑛𝑜 (𝐵1), 𝑑𝑟 (𝑇,𝐶), 𝑑𝑟 (𝐶, 𝐷)
is proved to be unacceptable. This plan’s observation is 𝑜𝑏𝑠 (𝜋3) =
[𝑛𝑜 (𝐵1)]. It is added to L

forb
which is now: {[], [𝑛𝑜 (𝐵1)]}. We can

see that L
forb

grows incrementally until the optimal permissible

plan whose observation is not in L
forb

is acceptable.

Algorithm 1 requires the classical planner used in lines 7 and 8

to return an optimal plan. It also requires the classical planner

to be able to determine when there is no plan (in particular if

there is no impermissible plan that matches the observation); to

simplify notations and without loss of generality, we assume that

the classical planner returns a plan with infinite cost when it proves

that there is none.

Lemma 1. If all observable actions have a strictly positive cost and

if there is at least one acceptable plan, then Algorithm 1 returns the

cost-optimal acceptable plan.

Proof sketch: by contradiction. Assume that Algorithm 1 is not

able to return the cost optimal plan 𝜋∗
p
. Then, either it returned

another plan or it never terminates. In the first case, then either it

returns an unacceptable plan (which is not possible since it only

returns plans that pass the acceptability condition) or it returns

a suboptimal plan 𝜋 ′
(which is also impossible since the call to

the classical planner on Line 7 would not return 𝜋 ′
over 𝜋∗

p
). If

the procedure never terminates, then it implies that the classical

planner generates an infinite sequence of plans 𝜋1, 𝜋2, . . . that all

produce different observations. As a consequence, the length of

these observations is unbounded (for any integer 𝑦, there exists an

index 𝑗 such that |𝑜𝑏𝑠 (𝜋 𝑗 ) | > 𝑦). Furthermore, these plans all have

a cost less than or equals to that of 𝜋∗
p
since we assume that 𝜋∗

p

is never produced. However, notice that the cost of all observable

events of a plan is a lower bound for the cost of the plan: 𝑐 (𝜋) ≥
𝑐 (𝑜𝑏𝑠 (𝜋)). Let 𝑥 > 0 be the minimal cost of any observable action.

Then any sequence of observable actions with at least ⌈𝑐 (𝜋∗
p
)/𝑥⌉

elements will have a cost higher than that of 𝜋∗
p
. This implies that

the procedure will eventually produce a plan 𝜋 𝑗 with a cost higher

than the solution, which contradicts the assumption of optimality

of classical planner.

The procedure of Algorithm 1 may not terminate if there is no

acceptable plan. It seems that there is no upper bound on the length

of the plan 𝜋∗
p
.

5 EXPERIMENTS

In this section, we present an experimental evaluation of Algo-

rithm 1, in which we study how well the algorithm scales.

We implemented Algorithm 1 in Java. This implementation is

responsible for calling the classical planner, but also for generating

the modified planning instances as explained in Appendix A, e.g.,

to specify that the plan should generate a specific observation. The

classical planner used is Fast Downward [15] running 𝐴∗
with the

ℎmax
heuristic.

We used instances of the logistics problem introduced in Sec-

tion 2. Our instances are defined according to 4 parameters: the

number𝑤 of alternate paths (for instance, 𝐵2–𝐵3 represent a sin-

gle path); the length 𝑑 of these alternate paths (the path 𝐵2–𝐵3

has length 2); the number 𝑝 of packages to deliver (half of which

are dangerous); the number 𝑡 of trucks. A truck can only pick-

up one dangerous package at a time (but there is no limit on the

non-dangerous ones). We choose a 𝛿 value of 2.

We make the following observations on these parameters. If

𝑤 = 𝑑 = 1, there is no acceptable plan as we illustrated in the

example.

Increasing the number of trucks can make the problem harder

because it increases the number of symmetries. If, for instance,

our algorithm generates an unacceptable plan that involves one or

several trucks, then it will generate all the possible permutations of

trucks (as long as they lead to different observations) before moving

on to other types of plans. On the other hand however, adding

trucks can reduce the cost of the optimal plan (which makes it

easier to find). Additional packages however only make the problem

harder, i.e., they increase the length of the plans and the number of

symmetries in the plans.

The results are presented in Table 1. We gave a time limit of

15 minutes per problem instance. The table shows the instance

parameters (𝑤,𝑑, 𝑝, 𝑡), and the run-time and number of iterations

of the algorithm.



Instance time (s) iter

(1,2,1,1) 1.044 6

(1,2,2,1) 1.047 6

(2,1,1,1) 1.070 6

(1,2,1,1) 1.148 6

(3,1,1,1) 1.187 7

(3,1,2,1) 1.216 7

(2,1,2,1) 1.395 6

(4,1,2,1) 1.437 8

(4,1,1,1) 1.442 8

(2,1,1,2) 1.531 8

(2,2,1,1) 1.655 9

(2,1,2,2) 1.724 8

(1,2,1,2) 1.740 9

(3,1,1,2) 1.924 10

(2,2,2,1) 1.998 9

(3,1,2,2) 2.250 10

(1,2,2,2) 2.314 9

(2,1,1,3) 2.415 10

Instance time (s) iter

(4,1,1,2) 2.445 12

(3,1,1,3) 2.984 13

(4,1,2,2) 3.115 12

(4,2,2,1) 3.133 15

(1,2,1,3) 3.150 12

(2,2,1,2) 3.245 15

(4,2,1,1) 3.467 15

(2,1,1,4) 3.470 12

(4,3,1,1) 3.531 16

(4,3,2,1) 3.858 16

(2,1,2,3) 4.103 10

(4,1,1,3) 4.338 16

(1,2,1,4) 4.660 15

(2,2,2,2) 4.792 15

(4,4,1,1) 5.090 20

(1,2,2,3) 5.277 12

(3,1,1,4) 5.358 16

(1,2,3,1) 5.494 22

Instance time (s) iter

(4,4,2,1) 5.686 20

(2,1,3,1) 6.247 24

(2,2,1,3) 7.009 21

(3,1,2,3) 7.458 13

(2,1,2,4) 12.52 12

(4,1,2,3) 14.12 16

(2,1,4,1) 14.45 24

(2,2,1,4) 14.90 27

(1,2,4,1) 15.47 22

(1,2,2,4) 17.46 15

(3,1,3,1) 19.06 51

(2,2,2,3) 21.73 21

(3,1,2,4) 37.56 16

(3,1,4,1) 80.59 51

(4,1,3,1) 88.86 100

(2,2,2,4) 134.0 27

(2,2,3,1) 148.4 117

(1,2,3,2) 666.7 124

Table 1: Experimental results showing the time to compute

the optimal acceptable plan and the number of iterations of

the algorithm.

We see clearly that the problem is much more difficult than

classical planning. The largest instance that was solved, specifically

(𝑤 = 2, 𝑑 = 2, 𝑝 = 2, 𝑡 = 4), only includes 290, 521 states (note

however that this number of states increases significantly once the

extra constraints are incorporated into the instance).

The difficulty lies mostly in the fact that the planner must be

called repeatedly, as demonstrated by the correlation between the

number of iterations and the total runtime. Remember that the

number of calls to the classical planner is twice the number of

iterations, since the first call is used to produce a permissible plan,

and the second call used to decide whether the plan is acceptable.

Looking at the behaviour of Algorithm 1, there are multiple

situations where it is too naïve. We mentioned above that the in-

stances contain numerous symmetries, and we could use symmetry-

breaking techniques. Even without that, one issue with our proce-

dure is that it is not able to generalise from its results, as we show

now.

Consider the example of Figure 1. We already mentioned that

the optimal permissible (unacceptable) plan was 𝜋2 = 𝑑𝑟 (𝐷, 𝐵1),
𝑑𝑟 (𝐵1,𝑇 ), 𝑑𝑟 (𝑇,𝐶), 𝑑𝑟 (𝐶, 𝐷), and that a first (unsuccessful) attempt

to make it acceptable would be to insert a notification during the

plan: 𝑛𝑜 (𝐵1). An obvious follow-up to this attempt is to insert a sec-

ond notification; this is also unacceptable since both notifications

could have been added on the way back, and of course no amount

of notifications 𝑛𝑜 (𝐵1) will change that. Since we indicated that

the cost of performing the notification is negligible, Algorithm 1

will consider all variants of 𝜋2 with an increasing number of no-

tifications before even considering other options. We would like

to be able to learn and include the information that adding more

notifications does not help improve the acceptability of the plan.

So the question we ask is: given a permissible plan and an indis-

tinguishable impermissible plan, is it possible to analyse this pair

in order to determine a minimal change required to make a plan

acceptable? This is an open question, and it might be possible to

answer it by looking at the causal relationship between the different

actions, or through an analysis similar to the conflict detection in

model based diagnosis [12, 28].

6 CONCLUSION, RELATED AND FUTURE

WORK

Agents in all domains need to be sensitive to ethical considerations

when selecting plans. Moreover, as we have claimed, they must also

be sensitive to the appearance of those plans. In particular, they

must be sensitive to the fact that those plans may appear morally

ambiguous—that is, might appear impermissible, even when they

are permissible—to observers able only to see part of them. Agents

should therefore signal their normative compliance by selecting

those plans that are not only permissible but also acceptable: that

are unambiguously permissible.

The issue of compliance signalling is central to the design of

ethically-aware AI systems, especially when these directly interact

with humans. Recognising this fact demands that designers of such

systems build them to act in ways that are not just permissible but

also acceptable. In order for such signalling to become the norm

in industry and in public expectation, we must determine how

to find those plans that are acceptable. We have formalised the

problem of synthesising compliance signaling plans, shown that it

is computationally difficult (more difficult than classical planning),

and proposed an iterative algorithm that finds increasingly costly

candidate permissible plans using a classical planner, and verifies

their acceptability, by comparing their cost with that of the cost-

minimal impermissible plan sharing the same observation.

The importance of anticipating an observer’s interpretation

has been recognised in areas such as plan recognition [27], goal

recognition design [17], model based diagnosis [16], legible motion

[7, 10, 25], implicit cues [20] and trust [21, 30]. Indeed the relation-

ship we use between the probability and cost of a plan is standard in

plan recognition. These debates however rarely address explicitly

the normative aspects of agent behaviour.

Recently Lindner, Mattmüller, and Nebel [22] started to investi-

gate the problem of implementing planning systems that comply

with ethical principles. They show that the complexity of verifying

whether a plan is ethical varies considerably depending on the

ethical principle chosen. For instance, deciding whether a plan is

morally permissible according to deontology or utilitarianism is

polynomial or PSpace-complete, respectively. They do not how-

ever consider signalling compliance and how these plans might

appear to an observer with partial knowledge of the plan. As we

have shown, even considering a deontic notion of permissibility,

deciding whether a plan is acceptable is ExpSpace-hard.

Computationally, compliance signalling planning is related to

the generation of legible or transparent plans, described by e.g.

[7, 19, 23]. These works formalise the problem of generating plans

that clearly convey (or conversely obfuscate) the goal of a planning

agent to an external observer. The motivation is to cater for coop-

erative and adversarial scenarios. For instance, Kulkarni et al. [19]

studies the generation of plans achieving the agent’s goal such that

there are at most 𝑗 plans with the same observations that reach

potentially confounding goals. The algorithms used in these works



differ substantially from ours and explicitly manipulate belief states.

For instance the powerful algorithm of [23], solves a goal POMDP

(partially observable Markov decision process) whose transition

probabilities reflect the evolution of the observer’s belief state, as

computed by a probabilistic goal recognition system. In contrast,

our algorithm only requires an optimal classical planner.

As discussed in Section 5, there are many opportunities to make

our implementation and algorithm more practical, including by

breaking symmetries [31] and learning conflicts [12]. On the other

hand, our algorithm makes a range of assumptions, which our

future work agenda will attempt to weaken. This includes establish-

ing the decidability and complexity of the original (non-simplified)

acceptability notion we introduced. At the same time, we would

like to consider richer scenarios in which multiple observers have

different moral viewpoints and observation capabilities, as well

as world models that potentially differ from that of the agent [8].

Determining an acceptable plan relative to all of those observers, or

alternatively, determining which observer’s perspective should be

prioritised, adds further complexity to the problem. Finally, an im-

portant limit is that we consider an a posteriori setting, in which the

entire observation of a plan is considered to determine its accept-

ability, whereas there is a need to generate plans that continually

reassure the observer.

Communication and compliance is central in the normative do-

main. This work, and future work, on the implementation of com-

municating compliance in AI systems is vital if this key aspect of

moral behaviour is to be realised and respected. It is not a simple

problem. However, this paper provides an important first step.

A CONSTRAINTS ENCODING

In order to explain how we enforce the constraints on the plans

that are required by Algorithm 1, we first need to briefly discuss the

propositional strips formalism used to model planning problems.

Then, in order to incorporate the constraints used in Algorithm 1,

we formulate each constraint as a test for membership of a language

recognised by a deterministic finite automata (DFAs), and we finally

compile those DFAs into the strips problem description.

A.1 Propositional strips

A propositional strips model relies on a set of facts F that are

used to describe the world. A fact is either true or false in a state,

and a state is described precisely as the set of facts that true in

it: 𝑠 ⊆ F . An action 𝑎 is then defined as a triple ⟨pre, eff+, eff−⟩
where pre is the precondition of the action, eff

+
its positive effects,

and eff
−
its negative effects. All three elements are subsets of F . An

action is applicable in a state 𝑠 if its precondition is satisfied, i.e.,

pre ⊆ 𝑠 . The negative effects represent the facts that are made false

by the action, the positive effects those that are made true. Hence

the state 𝑠 ′ reached by applying the action in state 𝑠 is described

by (𝑠 \ eff−) ∪ eff
+
.

A.2 Deterministic Finite Automata

Adeterministic finite automaton (DFA) is a tupleA = ⟨𝑄, Σ,𝑇 , 𝑞0, 𝐹 ⟩
where 𝑄 is a set of states, Σ is a set of labels, 𝑇 : 𝑄 × Σ → 𝑄 is a

transition function, 𝑞0 ∈ 𝑄 is an initial state, and 𝐹 ⊆ 𝑄 is a set of

accepting states. The DFA represents the set of sequences of labels

that label any path from the initial state and ends in an accepting

state.

We illustrate this definition with the example of Figure 2 by

showing how to represent the constraints of a forbidden observable

language. Consider L
forb

= {𝑎𝑏, 𝑎𝑏𝑎, 𝑐𝑏}, i.e., the constraint that
indicates that the plan should not generate the observation 𝑎𝑏, 𝑎𝑏𝑎,

or 𝑐𝑎. The DFA in Figure 2 is an automaton whose language is

precisely L
forb

= {𝑎𝑏, 𝑎𝑏𝑎, 𝑐𝑏}. For instance, from the initial state

0, following the sequence of observable actions 𝑎𝑏𝑎 leads to state 5

(0

𝑎−→ 3

𝑏−→ 4

𝑎−→ 5) which is accepting; conversely, the sequence 𝑎𝑏𝑑

leads to non-accepting state 6 (0

𝑎−→ 3

𝑏−→ 4

𝑑−→ 6). The other types

of constraints (𝑜𝑏𝑠 (𝜋) = 𝜎 , 𝜋 is permissible, 𝜋 is impermissible) can

easily be represented by a DFA too.

0

1 2

3 4 5

6

𝑐

𝑏

𝑎

𝑏 𝑎

Figure 2: DFA representing the forbidden observable lan-

guage L
forb

= {𝑎𝑏, 𝑎𝑏𝑎, 𝑐𝑏}. Dashed lines represent default

transitions: for instance, the figure does not show any tran-

sition labelled with 𝑏 from state 0; therefore the transition

from 0 labelled with 𝑏 leads to state 6. Shaded states are the

accepting states.

A.3 Compiling DFAs into strips

Given a propositional strips representation of the planning prob-

lem P and several DFAs A1, . . . ,A𝑚 , we first create, for each state

𝑞 of any of the DFAs, a new fact is_in(𝑞) and add it to the set of facts
F . We then replace each action 𝑎 = ⟨pre, eff+, eff−⟩ in the planning

problem with the actions that we define now. LetA1, . . . ,A𝑛 be all

the DFA that include 𝑎 in their label sets (for simplicity, we assume

that their indices range from 1 to 𝑛). Then, for each combination

of transitions 𝑞1
𝑎−→ 𝑞′

1
∈ 𝑇1, . . . , 𝑞𝑛

𝑎−→ 𝑞′𝑛 ∈ 𝑇𝑛 , we create a new

action 𝑎# = ⟨pre
#
, eff+

#
, eff−

#
⟩ such that:

• pre
#
= pre ∪ {is_in(𝑞1), . . . , is_in(𝑞𝑛)},

• eff
+
#
= eff

+ ∪ {is_in(𝑞′
1
), . . . , is_in(𝑞′𝑛)}, and

• eff
−
#
= eff

− ∪ {is_in(𝑞1), . . . , is_in(𝑞𝑛)}.

Essentially, this reformulation forces the planner to simulate all the

DFAs as it executes the plans, so that the constraints are guaranteed

to be satisfied.

Given a plan for the new planning domain, it is easy to translate

this plan back for the original domain.



B PROOF OF COMPLEXITY

We prove this result by showing that conformant planning, which

is ExpSpace-hard [14], can be reduced to the acceptability decision

problem.

In a conformant planning instance, an action has a precondition

and a set of non-deterministic effects: Eff = {eff1, . . . , eff𝑘 }, The
semantics of Eff is that when the action 𝑎 is applied, exactly one of

the effect sets eff 𝑗 occurs, for some 𝑗 ∈ {1, . . . , 𝑘}. An execution of a

sequence of actions 𝑎1, . . . , 𝑎𝑘 is a sequence of states 𝑠0, . . . , 𝑠𝑘 such

that 𝑠0 is the initial state, and each state 𝑠𝑖 is one of the possible states

reached by applying the effects of 𝑎𝑖 in state 𝑠𝑖−1. An execution

is valid if it ends with a specific goal action and all actions are

applicable (i.e., the state 𝑠𝑖−1 satisfies the precondition of 𝑎𝑖 ). The

sequence of actions is a conformant plan if all its executions are

valid.

The reduction is defined so that each execution in the conformant

planning instance corresponds to one possible sequence of actions

in the acceptability instance. The execution is then valid iff the

sequence of actions is permissible. The non-deterministic effects

are not observed in the conformant planning instance; therefore,

they are implemented by non-observable actions in the acceptability

instance.

Each action in the conformant planning instance is replaced

by several sequences of actions in the acceptability instance. As

a consequence, the state space of the acceptability instance is the

Cartesian product 𝑆×𝐶 where 𝑆 is the state space of the conformant

planning instance and 𝐶 is a set of control states that are used

to enforce those sequences of actions. Let 𝑎 be an action in the

conformant planning instance with effects Eff = {eff1, . . . , eff𝑘 },
The acceptability instance contains the following set of actions:

{𝑎′, 𝑎⊤, 𝑎⊥} ∪ {𝑎 𝑗 | 𝑗 ∈ {1, . . . , 𝑘}}.

The conditions and effects of these actions are defined in such a

way that 𝑎′ is always followed by one of the two actions 𝑎⊤ and

𝑎⊥, then by one of the 𝑘 actions 𝑎1, . . . , 𝑎𝑘 . The action 𝑎′ is the only
observable one; its precondition is a tautology in 𝑆 and it has no

effect in 𝑆 . 𝑎⊤ and 𝑎⊥ are used to verify that the execution is valid:

𝑎⊤ is permissible and its precondition in 𝑆 is the precondition of

𝑎; 𝑎⊤ is impermissible and its precondition in 𝑆 is the negation of

the precondition of 𝑎. This way, the path will be permissible iff the

execution is valid. Each action 𝑎 𝑗 applies the effects eff 𝑗 . Hence,

the state reached after applying one of the actions 𝑎1, 𝑎2, . . . will

be the result of one of the non-deterministic execution of 𝑎.

So, given a sequence of actions 𝑎1, . . . , 𝑎𝑛 in the conformant plan-

ning instance, all possible executions of this sequence (including

those that are not valid) appear in the reduced instance, and they

produce the same observation 𝑎′
1
, . . . , 𝑎′𝑛 . In addition, these execu-

tions are permissible iff they are valid in the original conformant

planning instance.

If 𝑎1, . . . , 𝑎𝑛 is a conformant plan, then all plans in the acceptabil-

ity instance that generate 𝑎′
1
, . . . , 𝑎′𝑛 are permissible, and they are

therefore acceptable (since unambiguously permissible). If, however,

𝑎1, . . . , 𝑎𝑛 is not a conformant plan, then there exists an impermis-

sible plan that generates 𝑎′
1
, . . . , 𝑎′𝑛 , and that plan has the same cost

as all permissible plans with the same observation; if 𝛿 is positive,

those plans are therefore unacceptable since they can be mistaken

for the impermissible plan. We conclude that the conformant in-

stance admits a solution iff its reduction admits an acceptable plan

with 𝛿 > 0.
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