
A Spectrum of Symbolic On-line Diagnosis Approaches∗

Anika Schumann
National ICT Australia &

The Australian National University
Canberra ACT 0200, Australia
Anika.Schumann@anu.edu.au

Yannick Pencolé
LAAS-CNRS, University of Toulouse

7 avenue du Colonel Roche
31000 Toulouse, France
Yannick.Pencole@laas.fr

Sylvie Thiébaux
National ICT Australia &

The Australian National University
Canberra ACT 0200, Australia
Sylvie.Thiebaux@anu.edu.au

Abstract

This paper deals with the monitoring and diagnosis of large
discrete-event systems. The problem is to determine, on-
line, all faults and states that explain the flow of observations.
Model-based diagnosis approaches that first compile the di-
agnosis information off-line suffer from space explosion, and
those that operate on-line without any prior compilation have
poor time performance. Our contribution is a broader spec-
trum of approaches that suits applications with diverse time
and space requirements. Approaches on this spectrum dif-
fer in the amount of reasoning and compilation performed
off-line and therefore in the way they resolve the tradeoff be-
tween the space occupied by the compiled information and
the time taken to produce a diagnosis. We tackle the space
and time complexity of diagnosis by encoding all approaches
in a symbolic framework based on binary decision diagrams.
This allows for the compact representation of the compiled
diagnosis information, and for its handling across many states
at once rather than for each state individually. Our experi-
ments demonstrate the diversity and scalability of our sym-
bolic methods spectrum, as well as its superiority over the
corresponding enumerative implementations.

Introduction
There is an increasing need for automated monitoring and
supervision tools for large discrete-event systems in areas as
diverse as telecommunication, power distribution, manufac-
turing, spatial exploration, and web services. Such tools aim
at assisting the operator in charge of the system supervision
with tasks that include diagnosis, reconfiguration, and con-
trol.

This paper is concerned with automated diagnosis, and
more specifically with the on-line identification of the faults
that explain the continual flow of observations received from
the system. Existing model-based approaches typically fall
into two categories. In the first, a significant amount of off-
line reasoning is performed to compile the system model
into a larger model that embeds diagnosis information. This
information, generated once and for all, is then exploited on-
line to more efficiently produce the diagnosis from the actual
observations. In the second category, no such compilation is
performed and all the reasoning is done on-line.

∗This work was supported by NICTA’s SuperCom project.
NICTA is funded through the Australian Government’s Backing
Australia’s Ability initiative, in part via the ARC.
Copyright c© 2007, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

The diagnoser approach (Sampath et al. 1996) is the
archetype of compilation-based techniques. Off-line, it
compiles all possible diagnoses into a finite-state machine
(the diagnoser). On-line, this machine is simply run to effi-
ciently retrieve the diagnoses explaining the current flow of
observations. Unfortunately, diagnosers can be so large that
they are not computable for all but the smallest applications.
On-line simulation based approaches (Baroni et al. 1999)
fall in the no-compilation camp. They directly compute the
diagnosis from the behavioral model of the system by sim-
ulating possible trajectories. Here the space requirements
are reasonable, but the simulation time can be excessive for
large applications.

Clearly we need a more flexible resolution of the tradeoff
between on-line and off-line computation, that is, between
time and space. Research in that direction includes the de-
centralised diagnoser approach (Pencolé & Cordier 2005)
which precomputes diagnosers for small subsystems only,
but needs to ensure consistency of the local diagnoses at run-
time. Another recent line of work deals with the incremental
on-line compilation of diagnosis information and its reuse
(Lamperti & Zanella 2006).

In this paper, we take an orthogonal approach to resolving
the space-time tradeoff. We present a spectrum1 of methods
which differ by the degree of reasoning performed off-line
and by the nature and the size of the underlying compiled
models. These methods range from no compilation to full
compilation of diagnosis information, but are not limited to
those extreme cases.

To increase efficiency, all models are represented by sym-
bolic finite-state machines using binary decision diagrams
(BDDs), and all methods are implemented via symbolic op-
erations. BDDs enable the compact encoding and the im-
plicit manipulation of sets of states and transitions. On the
one hand, they allow us to reduce the space requirements
of models with a high degree of compilation. On the other
hand, they help reducing the diagnosis time of approaches
with a low degree of compilation by avoiding the individual
consideration of all possible diagnosis explanations.

Our experiments illustrate the diversity of space-time re-
quirements of methods across the spectrum, and clearly
demonstrate the superiority of our symbolic methods over
the equivalent enumerative ones.

1This is not to be confused with the spectrum of diagnosis def-
initions presented in (Brusoni et al. 1998) nor the spectrum of
symbolic compilations in (Darwiche & Marquis 2002).

The paper is organised as follows. After a brief reminder
of BDDs and symbolic finite state machines, we present the
successive models underlying the respective methods, give
an on-line diagnosis algorithm for each of them, experimen-
tally illustrate the strength of our approach, and conclude
with related and future work.

Symbolic Finite State Machines
Ordered binary decision diagrams (OBDDs, or BDDs for
short) (Bryant 1986) are a form of reduced decision graph
that provide a compact canonical representation of boolean
functions Bn 7→ B. While the BDD representation still re-
quires exponential space in the number of boolean variables
in the worst case, the reductions often make the BDD of
a function much smaller than its disjunctive normal form
(DNF). Any boolean operation f ? g on two BDDs f and
g, can be carried out in O(|f ||g|) at most, where |f | denotes
the number of nodes in the BDD f .

In our approach, the finite-state machines (FSMs) de-
scribing our diagnosis models are encoded symbolically, by
means of BDDs, and all diagnosis algorithms are imple-
mented in terms of BDD operations. This confers us the
ability to compactly represent and efficiently manipulate sets
of states and transitions.

To encode the set of states X and the set of events Σ of
a FSM, it is necessary to introduce Nr(Q) = dlog2 |Q|e
boolean variables for each set Q. Thus the events labelling
the transitions can be encoded with the boolean variables
bΣ = {bΣ

1 , . . . , bΣ
Nr(Σ)} and the states with the variables

bX = {bX
1 , . . . , bX

Nr(X)}. The initial state of the FSM is
then simply given by a boolean function (represented by
a BDD) over these state variables. For instance, in a 6
state FSM, the state x2 would be given by the conjunction
¬bX

3 ∧ bX
2 ∧¬bX

1 , and the set of states {x2, x5} by the DNF
(¬bX

3 ∧ bX
2 ∧ ¬bX

1) ∨ (bX
3 ∧ ¬bX

2 ∧ bX
1).

Transitions require the introduction of another set of state
variables bX′

= {bX′

1 , . . . , bX′

Nr(X)}, called the primed vari-
ables, which are used to represent the target states of the
transitions. Each transition can then be given as a con-
junction involving the state variables, event variables, and
primed variables. For instance, in a FSM consisting of 6
states and 3 events, the transition t = x2

σ1−→ x5 would be
given by t = (¬bX

3 ∧bX
2 ∧¬bX

1)∧(¬bΣ
2 ∧bΣ

1)∧(bX′

3 ∧¬bX′

2 ∧
bX′

1). The transition relation, i.e, a set T of transitions, can
then be given as a DNF which the BDD data structure will
hopefully greatly reduce.

Spectrum of Symbolic Diagnosis Models
This section formally defines four symbolic models on
which we base our diagnosis algorithms. These models
are inspired from (Schumann, Pencolé, & Thiébaux 2004).
Rather than merely using them as successive steps in the
computation of a symbolic diagnoser, as Schumann et al.
do, we adapt them and build efficient on-line diagnosis al-
gorithms upon each of them. These algorithms and their
evaluation are the main technical contributions of the paper.

The models differ in the extent to which information is
compiled, starting with the component models, the simple

representation of the system without any precomputation, to
the diagnoser model which compiles the diagnosis informa-
tion for every possible sequence of observations. We choose
the encodings that make use of BDDs as few as possible
while still allowing an efficient on-line retrieval of diagnosis
information. Efficiency requires for instance that we parti-
tion the transition sets of our FSMs.

Since the focus of the paper is the use of the models for
on-line diagnosis, we will only briefly allude to their off-line
computation. We refer the reader to (Schumann, Pencolé, &
Thiébaux 2004) for details of how this might be done.

Component Models
As in (Sampath et al. 1996), the diagnosed system is com-
posed of a set of n individual components Gi, with respec-
tive sets of states Xi, and a global event set Σ. The events are
partitioned into observable Σo and unobservable Σu events,
the latter of which is further partitioned into faults Σf and
shared Σs events. The shared events are used to describe the
communication between components.

Following the usual symbolic FSM representation de-
scribed above, the symbolic components are

Gi = 〈bXi , bX′
i , bΣ, x0i

, Toi
, Tsi

, Tfi
〉,

where bXi , bX′
i , and bΣ are the Boolean variables that define

the following BDDs: x0i
to represent the initial state and

Toi
, Tsi

, Tfi
to represent the observable, shared and fault

transitions. Note that every transition in every component
Gi is defined over the same global event variables but over
local state variables, that is, over bXi ∪ bΣ ∪ bX′

i .

Global Model
Diagnosing directly from the component models, without
any compilation at all, is space efficient but very slow. Our
second model incorporates a limited form of compilation
arising from performing synchronisation off-line.

The global model is the synchronous product of the n
component models: its state space is the Cartesian product
of the state spaces of the components and its transitions are
synchronised in that any shared event always occurs simul-
taneously in all components that define it. Similarly to the
component models it is symbolically represented as

G = 〈bX , bX′
, bΣ, x0, To, Ts, Tf 〉,

where bX = ∪n
i=1b

Xi (resp. bX′
= ∪n

i=1b
X′

i) is the union
of the components local state (resp. primed) variables. State
x0 = ∧x0i is the initial state. Also the BDDs To, Ts, Tf rep-
resenting the global observable, shared and fault transitions
are computed from the local transitions mainly by applying
the ∧ operator.

Abstracted Model
Diagnosing based on the global model is also not very ef-
ficient, since only limited information about unobservable
events has been compiled away. We therefore add another
model to our spectrum, the abstracted model, which is de-
rived from the global one by abstracting all unobservable
non-fault transitions and the order in which faults can occur.

Hence its states X̃ are obtained from the global ones, by re-
moving all states (except the initial one) that are not the start
or target state of an observable transition To. All sequences
of unobservable events are replaced by a single transition la-
belled with the union of the corresponding faults (which can
be empty if the sequence consists only of shared events).
The set T̃f of these new transitions is defined as{

x
l−→ x′ | ∃ path x

σ1−→ x1 · · ·
σk−1−−−→ xk−1

σk−→ x′ in G with

x, x′ ∈ X̃, σ1, . . . , σk ∈ Σu and l = {σ1, . . . , σk} ∩ Σf

}
.

Figure 1 shows an example of an abstracted model. In the
symbolic setting, the abstracted model

G̃ = 〈bX , bX′
, bΣo , bF , x0, To, T̃F 〉

is encoded using the same boolean state variables as the
global model, the subset bΣo of boolean variables represent-
ing the observable events, and an additional |Σf | variables
bF = {bf

1 , . . . , bf
|Σf |} needed for the fault transition labels

F ⊆ 2Σf . There is a one to one correspondence between
fault events and these variables, and a fault transition label
is encoded as a conjunction of literals over bF whose signs
depend on whether the corresponding fault belongs to the la-
bel. Note that the abstracted states X̃ ⊆ X are encoded over
the same boolean variables as the global ones, since their
number is not significantly smaller than |X|.

Diagnoser Model
The abstracted model still requires the on-line computation
of fault information, which slows down on-line diagnosis.
We therefore also consider a diagnoser model in which this
entire information is compiled. A diagnoser is a determin-
istic finite state machine whose transitions are only labelled
with observable events and whose states are directly labelled
by the diagnosis information that is consistent with the past
observations. This information consists of a sets of pairs
(x, l) denoting a state and a fault label of the abstracted
model. Let X̂ be the set of diagnoser states, and let x̂0 be
the initial diagnoser state. Let R̂ denote the diagnoser state
labelling function which associates a diagnoser state to the
pairs in its label and verifies R̂(x̂0) = {(x0, ∅)}. The set T̂

of diagnoser transitions then satisfies: x̂
σ→ x̂′ ∈ T̂ iff

R̂(x̂′) =
{

(x′, l′) | ∃(x, l) ∈ R̂(x̂) such that

∃(x l′′−→ x′′) ∈ T̃F and ∃(x′′ σ−→ x′) ∈ To

and l′ = l ∪ l′′
}

.

Figure 1 gives an example. Symbolically the diagnoser

Ĝ = 〈bX̂ , bX̂′
, bX , bΣo , bF , x̂0,Φ, T̂ 〉

is encoded using the additional variables bX̂ and bX̂′ for
representing diagnoser states in their role as start and tar-
get states of transitions. The BDD Φ encodes the diagnoser
state labelling function R̂ and is defined over the variables
bX̂ ∪ bX ∪ bF .

x1

x2
s1

x3f1

x4
f2

f2

x5

f1
s1

f2
f1

x6o1

x1 x5
{f1}

{f1, f2} x6o1

x1 {} x6 {f1}
x6 {f1,f2}

o1

Figure 1: Global (left), abstracted (top right) and diagnoser
models (bottom right). Σo ={o1},Σs ={s1},Σf ={f1, f2}

Symbolic On-line Diagnosis
On-line diagnosis aims to detect faults while the system is
working. Given a sequence of observations, it identifies all
the faults and system states that are consistent with the oc-
currence of these events. For each of the above models, we
give a procedure that uses symbolic reasoning to compute
this diagnosis information as efficiently as possible.

Initially the system is in state x0 and no fault has oc-
curred, so the diagnosis information is x0 ∧ F∅, where
F∅ =

∧|Σf |
j=1 ¬bf

j denotes the empty fault label. Now, each
time an event σ is observed, the diagnosis information x̂′info

is derived based on σ, one of the models, and the previous
diagnosis information x̂info. In this section we show how
we can symbolically retrieve x̂′info using the basic boolean
operations and the following ones:
• IsDef(bdd) returns true iff bdd does not represent false,
• Extract(bdd, B)

deletes from bdd all occurrences of variables not in B,
• Abstract(bdd, B)

deletes from bdd all occurrences of variables in B,
• Swap(bdd, {a1, . . . , ak}, {b1, . . . , bk}) renames, in bdd,

variable ai with bi, i = 1 . . . k, and vice versa.
For the sake of readability, the algorithms are presented in
the following order from the diagnoser to the component
based one.

On-line diagnosis based on the diagnoser
The precomputed diagnoser contains all the information to
perform efficient on-line diagnosis. Given the previous di-
agnoser state x̂ and a new observation σ it is sufficient to

1. trigger the corresponding transition and
2. retrieve the fault information from its target state.

Algorithm 1 describes the symbolic procedure. To trig-
ger the transition (step 1), we apply three BDD operations,
namely ∧, Extract, and Swap. Applying the ∧ operation
to the encodings of a start state x̂, an event σ and the tran-
sition set T̂ , retrieves the transition that starts in x̂ and is
labelled with σ. Next, the operation Extract is used to ob-
tain only the target state x̂′ of the transition. We then Swap
the encoding of x̂′ over the primed variables for an encod-
ing over the non-primed ones in order to determine its label
and to trigger future transitions. To determine the label of x̂′

(step 2), we first conjoin x̂′ with the state labelling function
Φ, and then abstract from the boolean variables representing
diagnoser states.

Algorithm 1 DiagDiagnose(Ĝ, x̂, σ)

1: x̂← x̂ ∧ σ ∧ T̂
x̂′ ← Extract(x̂, bX̂′

)
x̂′ ← Swap(x̂′, bX̂ , bX̂′

)
2: x̂′info ← x̂′ ∧ Φ

return Abstract (x̂′info, b
X̂)

On-line diagnosis based on the abstracted model
Using the abstracted model, the retrieval of the diagnosis
information given its predecessor x̂info requires:

1. computing states X̃unObs that can be reached from those
contained in x̂info before observing the new event σ,

2. computing the fault labels representing the faults that have
occurred on a path from the initial state to a state in
X̃unObs, and

3. triggering all transitions starting from states in X̃unObs

and labelled σ.

The corresponding three symbolic computation steps are
shown in Algorithm 2. Once the unobservable transitions
T̃unObs starting in a state of x̂info are determined (line 1),
they contain all the new faults that could have occurred since
the last observation. These are added to the faults in x̂info

that have previously occurred using function AddFault.
Symbolically, adding a fault fi implies changing the value
of the corresponding boolean variable bf

i from false to true.
It is done by abstracting bf

i from the fault label l (i.e.
Abstract(l, {bf

i })) and conjoining it with l (i.e. l∧bf
i). This

abstraction can be done simultaneously for all fault labels
Lfi

to which fi has to be added.
Finally the observable transitions are triggered and the

new diagnosis information returned (step 3).

Algorithm 2 AbstDiagnose(G̃, x̂info, σ)

1: T̃unObs ← T̃f ∧ Extract(x̂info, b
X)

2: X̃unObs ← x̂info ∨AddFault(T̃unObs, x̂info)
X̃unObs ← Swap(X̃unObs, b

X , bX′
)

3: x̂′info ← Extract(X̃unObs ∧ σ ∧ To, b
X′ ∪ bF)

return Swap(x̂′info, b
X , bX′

)

On-line diagnosis based on the global model
Using the global model, the symbolic computation of the
diagnosis information is similar to that above, except that
states X̃unObs now need to be computed based on transition
sequences in G. For this purpose, we first combine shared
and fault transitions into a single transition set Tu, in which
all events are defined over variables bF . Here shared transi-
tions are labelled with the empty fault label F∅.

Algorithm 3 describes the symbolic procedure. All for-
mulas X̃unObs, Xnew, and Xtarg represent sets of labelled

states, that is, sets of tuples (x, l). X̃unObs is computed us-
ing breadth-first search (lines 1-8). Initially X̃unObs and
Xnew are composed of the previous diagnosis information
x̂info (lines 1-2). As long as there are still new diagnosis tu-
ples Xnew that have not been processed (line 3), applicable
unobservable transitions are triggered (line 4) and any fault
labelling them is added (line 5). The tuples already closed
are removed from the resulting tuples Xtarg to ensure the
termination of the algorithm (operator ∧¬ in line 6). The
new tuples are added to the set of closed ones (operator ∨ in
line 7). Once X̃unObs is obtained, the new diagnosis infor-
mation is retrieved as in step 3 of Algorithm 2 (line 9).

Algorithm 3 GlobDiagnose(Tu, To, x̂info, σ)
1: Xnew ← x̂info

2: X̃unObs ← Xnew

3: while IsDef(Xnew) do
4: Tnew ← Tu ∧ Extract(Xnew, bX)
5: Xtarg ← AddFault(Tnew, Xnew)

Xtarg ← Swap(Xtarg, b
X , bX′

)
6: Xnew ← Xtarg ∧ ¬X̃unObs

7: X̃unObs ← X̃unObs ∨Xnew

8: end while
9: x̂′info ← Extract(X̃unObs ∧ σ ∧ To, b

X′ ∪ bF)
return Swap(x̂′info, b

X , bX′
)

On-line diagnosis based on the component models
In addition to the previous algorithm, on-line diagnosis
based on the component models requires the computation of
those of the global transitions that are needed to determine
the new diagnosis information. For every component Gi we
only need to consider
• all sequences of unobservable transitions Tui starting in

a state xi ∈ X ′
i consistent with the previous diagnosis

information (X ′
i = Extract(x̂info, b

X
i)) and

• all observable transitions Tσi labelled with the new obser-
vation σ (Tσi

= σ ∧ Toi
).

To obtain the corresponding global transitions efficiently, via
the ∧ operator, a synchronous product is required. In a syn-
chronous system, when a transition is triggered in a compo-
nent Gi, a transition is also triggered in every other compo-
nent. Hence we add for every event σ′ that can occur in G
but not in Gi and every state x of a component model Gi, a

transition x
σ′−→ x. Now the relevant global transitions are

computed as follows:
• Tu ← ∧n

i=1Tui
and similarly

• Tσ ← ∧n
i=1Tσi

.
Using these two transition sets, the new diagnosis informa-
tion is computed as in Algorithm 3. The only change needed
is the replacement of σ ∧ To with Tσ in line 9 of the algo-
rithm.

Experimental Evaluation
We implemented our approach on top of the CUDD BDD
package (http://vlsi.colorado.edu/˜fabio/

Gi G eG Ĝ

Figure 2: Average diagnosis times over 100 scenarios of
10000 observations each.

CUDD). In order to evaluate the benefits of our symbolic
framework, we also implemented a traditional “enumera-
tive” version of the models and algorithms, using optimised
automata data structures which facilitate the manipulation
of individual states and transitions. These two implemen-
tations enable us to present experimental evidence that the
symbolic approach yields important gains in time or space.

Our experiments below were run on a 1.2 GHz Pentium
IV with 512 Mb of memory. We first use the largest ex-
ample in (Schumann, Pencolé, & Thiébaux 2004), which is
derived from a telecommunication application. It consists of
3 components (a switch with 12 states and 18 transitions, a
primary control station of 13 states and 15 transitions, and
a backup control station of 19 states and 28 transitions), 9
observable events, 11 fault types, and 8 other unobservable
events. We generated by simulation 100 arbitrary scenarios
(possible sequences of observations) of 10000 observations
each, and used them as input to all models.

Figure 2 compares the time performance of the various
on-line diagnosis methods. All symbolic models except the
diagnoser are more efficient to use than their enumerative
counterparts. This should not come as a surprise: BDDs
are well suited to triggering transition sets and enable the
consideration of all diagnosis tuples at once, but do not gen-
erally pay off when only a single transition is involved as is
the case with the diagnoser.

The differences in symbolic diagnosis times across the
spectrum correlate with the extent to which the accumula-
tion of faults (function AddFault described on page 4) is
performed on-line. Even though a fault fi can be simul-
taneously added to all fault labels Lfi

, AddFault still re-
quires the individual consideration of fault labels (in gen-
eral, Lfi

6= Lfj
for fi 6= fj), which is the main bottleneck

of the symbolic computation. The component and global
models yield similar diagnosis times because AddFault is
applied the same number of times in both cases and sym-
bolic synchronization is very fast. In contrast, the abstracted
model yields significantly faster diagnosis times because
AddFault only needs to be applied once per observation.
With the diagnoser, AddFault is never called.

Taken in conjunction with the diagnosis times, the corre-
sponding model sizes (see Table 1) illustrate the time/space
tradeoff of the methods across the spectrum and the supe-
riority of the symbolic approach. Comparing the symbolic
models (resp. the enumerative ones), we can state, that the
faster the on-line diagnosis based on a model, the larger the

Gi G G̃ Ĝ
states Nr. ∅ 17.7 1063 965 18474

transition Nr. ∅ 34 2912 48958 120698
space symb. (Mb) 0.01 0.2 0.6 7.5
space enum. (Mb) 0.01 0.2 2.7 123.9

Table 1: Model sizes

model size. For all models, the symbolic representation is as
small as or smaller than the enumerative one; yet except for
the diagnoser, the symbolic run-times are significantly bet-
ter. Importantly, the symbolic diagnoser is as small as 1

20 the
size of the enumerative one. Its size is rather comparable to
that of the enumerative abstracted model, yet it is an order
of magnitude faster than the latter.

Focusing on the symbolic spectrum, the abstracted model
appears to provide a particularly interesting tradeoff. It is
13 times smaller than the diagnoser but only 4 times slower.
Compared to the global model, the percentage decrease of
diagnosis time of the abstracted model is slightly higher than
its percentage increase in size. The advantage of the ab-
stracted model results from the efficiency of (1) the symbolic
triggering of sets of transitions, and (2) the update of fault
labels by considering fault sets rather than by considering a
sequence of individual faults.

The component model also presents an interesting trade-
off due to its very small size of only 8 kilobytes. For large
applications, it appears to be the only option. We show how
the component-based approach scales as the size of the sys-
tem increases, using a grid of computer nodes inspired from
the example in (Rintanen & Grastien 2007). All nodes have
the same behaviour. In normal mode, each node performs its
task, sending an on message to a supervisor prior to starting
and an off message upon completion. When a node becomes
faulty, an automatic recovery system forces the node to re-
boot and to send his neighbours reboot requests which get
propagated through the grid.

The model of a node has 14 states, 67 transitions, 1 fault, 8
shared, and 2 observable events. The global model of a grid
of size n ×m closely approaches the 14m×n states bound.
E.g., the 2 × 2 grid has 143.85 ' 26, 000 states. The exam-
ple is poorly diagnosable. Every system state can be asso-
ciated with the 2m∗n fault hypotheses, and the observations
do not allow discrimination between faults due to a masking
phenomenon (nodes reboot silently and reboot requests from
other nodes are not observed). Consequently, there is a huge
set of diagnoses that explains a given observation sequence.

Figure 3 compares the performance of the symbolic and
enumerative approaches as the size of the grid increases
(note the logarithmic scale). The gap between the two ap-
proaches increases by an order of magnitude with each ad-
dition of a new component. For the three larger grids, the
enumerative approach failed to refine the diagnosis within an
average of 10 sec – the theoretical number of diagnoses for
the 2×2 grid is 2 458 624. All other enumerative approaches
are unsuitable, as the enumerative global model could not be
computed. In contrast, the symbolic approach was able to
refine the same diagnosis in 0.079 sec.

Figure 3: Average component-based diagnosis times over 10
scenarios of 1000 observations each

Conclusion, Related & Future Work
We have presented a spectrum of symbolic diagnosis ap-
proaches which differ in the amount of model compilation
performed off-line. The underlying models range from the
small component models that do not incorporate any compi-
lation, to the diagnoser model in which the diagnosis infor-
mation is compiled for the entire observable behaviour of the
system. The abstracted model constitutes an interesting al-
ternative to the diagnoser: it is considerably smaller but not
much slower and so applies to a wider range of applications.

Thanks to the symbolic implementation, we are able to
handle large sets of transitions and diagnosis hypotheses at
once. This leads to a simple and efficient way of obtaining
the correct and complete set of diagnoses. In comparison
to an enumerative implementation, only the on-line use of
the symbolic diagnoser incurs a small time overhead. In all
other cases the run-time of the symbolic approach is sig-
nificantly reduced, and so are the space requirements of
the larger models. Therefore, an enumerative approach is
mainly useful for very small applications for which the com-
putation and storage of the large diagnoser is feasible.

There are only few other works presenting results ob-
tained with generic on-line diagnosis software. The
UMDES Library (http://www.eecs.umich.edu/
umdes/) provides an enumerative implementation of Sam-
path’s diagnoser (Sampath et al. 1996). UMDES cannot
compete with either our symbolic or enumerative implemen-
tations. In fact, one of our motivations to implement our
own enumerative algorithms was that UMDES was unable
to compute the diagnoser for the smallest of the examples
given in (Schumann, Pencolé, & Thiébaux 2004).

The idea of exploiting symbolic representations in the
context of discrete-event systems diagnosis is not new but
it has traditionally been applied to different problems, e.g.
checking diagnosability (Cimatti, Pecheur, & Cavada 2003;
Rintanen & Grastien 2007), off-line diagnosis using off-
the-shelf model-checkers (Cordier & Largouët 2001), or
computing a symbolic diagnoser (Marchand & Rozé 2002;
Schumann, Pencolé, & Thiébaux 2004). In contrast, we ex-
ploit the power of the symbolic representation to design a
range of efficient on-line diagnosis approaches.

Symbolic representations based on Decomposition Nega-
tion Normal Forms (DNNFs) have successfully been applied
to diagnosing static systems (see e.g., (Darwiche 1998)).
For diagnosing dynamic systems however, BDDs are better

suited because the main operation, namely the triggering of
transitions, can be performed in polynomial time in the size
of the BDD while it would require exponential time in the
size of the DNNF.

In (Pencolé & Cordier 2005) the authors resolve the
time/space complexity tradeoff using a single approach
which merges, on-line, the results of a set of diagnosers
compiled for small subsystems. We plan to extend our sym-
bolic spectrum to decentralised approaches, such as this one.

Another line of future work is to extend our framework
to stochastic systems and compute probability distributions
on diagnoses, using for instance algebraic decision diagrams
which are generalisation of BDDs to real-valued functions
over the booleans. Finally, integrating diagnosis and plan-
ning for repair or reconfiguration actions is one of the most
significant challenges faced by the field of model-based
diagnosis (Console & Dressler 1999). Given the recent
success of planning techniques based on symbolic model-
checking, we believe that our framework will prove a good
basis for addressing this challenge.

References
Baroni, P.; Lamperti, G.; Pogliano, P.; and Zanella, M.
1999. Diagnosis of large active systems. Artificial Intelligence
110(1):135–183.
Brusoni, V.; Console, L.; Terenziani, P.; and Dupre, D. T. 1998.
A spectrum of definitions for temporal model-based diagnosis.
Artificial Intelligence 102(1):39–79.
Bryant, R. E. 1986. Graph-based algorithms for boolean function
manipulation. IEEE Trans. on Computers C-35(8):677–691.
Cimatti, A.; Pecheur, C.; and Cavada, R. 2003. Formal verifi-
cation of diagnosability via symbolic model checking. In Proc.
IJCAI-03, 363–369.
Console, L., and Dressler, O. 1999. Model-based diagnosis in the
real world: lessons learned and challenges remaining. In Proc.
IJCAI-99.
Cordier, M.-O., and Largouët, C. 2001. Using model-checking
techniques for diagnosing discrete-event systems. In Proc. DX-
01, 39–46.
Darwiche, A., and Marquis, P. 2002. A knowledge compilation
map. JAIR 17:229–264.
Darwiche, A. 1998. Model-based diagnosis using structured sys-
tem descriptions. JAIR 8:165–222.
Lamperti, G., and Zanella, M. 2006. Flexible diagnosis of
discrete-event systems by similarity-based reasoning techniques.
Artificial Intelligence 170:232–297.
Marchand, H., and Rozé, L. 2002. Diagnostic de pannes sur des
systèmes à événements discrets: une approche à base de modèles
symboliques. In 13ème Congrès AFRIF-AFIA de Reconnais-
sances des Formes et Intelligence Artificielle, 191–200.
Pencolé, Y., and Cordier, M. O. 2005. A formal framework for
the decentralised diagnosis of large scale discrete event systems
and its application to telecommunication networks. Artificial In-
telligence 164:121–170.
Rintanen, J., and Grastien, A. 2007. Diagnosability testing with
satisfiability algorithms. In Proc. IJCAI-07, 532–537.
Sampath, M.; Sengupta, R.; Lafortune, S.; Sinnamohideen, K.;
and Teneketzis, D. 1996. Failure diagnosis using discrete event
models. IEEE Trans. on Control Systems Techn. 4(2):105–124.
Schumann, A.; Pencolé, Y.; and Thiébaux, S. 2004. Diagnosis of
discrete-event systems using binary decision diagrams. In Proc.
DX-04, 197–202.

