
Prottle: A Probabilistic Temporal Planner

Iain Little, Douglas Aberdeen, and Sylvie Thiébaux
National ICT Australia & Computer Sciences Laboratory

The Australian National University
Canberra, ACT 0200, Australia

Abstract
Planning with concurrent durative actions and probabilistic
effects, or probabilistic temporal planning, is a relatively new
area of research. The challenge is to replicate the success
of modern temporal and probabilistic planners with domains
that exhibit an interaction between time and uncertainty. We
present a general framework for probabilistic temporal plan-
ning in which effects, the time at which they occur, and ac-
tion durations are all probabilistic. This framework includes a
search space that is designed for solving probabilistic tempo-
ral planning problems via heuristic search, an algorithm that
has been tailored to work with it, and an effective heuristic
based on an extension of the planning graph data structure.
Prottle is a planner that implements this framework, and
can solve problems expressed in an extension of PDDL.

Introduction
Many real-world planning problems involve a combination
of both time and uncertainty (Bresina et al. 2002). For in-
stance, Aberdeen et al. (2004) investigate military opera-
tions planning problems that feature concurrent durative ac-
tions, probabilistic timed effects, resource consumption, and
competing cost measures. It is the potential for such practi-
cal applications that motivates this research.

Probabilistic temporal planning is the combination of
concurrent durative actions and probabilistic effects. This
unification of the disparate fields of probabilistic and tempo-
ral planning is relatively immature, and presents new chal-
lenges in efficiently managing an increased level of expres-
siveness.

The most general probabilistic temporal planning frame-
work considered in the literature is that of Younes and Sim-
mons (2004). It is expressive enough to model generalised
semi-Markov decision processes (GSMDPs), which allow
for exogenous events, concurrency, continuous-time, and
general delay distributions. This expressiveness comes at a
cost: the solution methods proposed in (Younes & Simmons
2004) lack convergence guarantees and significantly depart
from the traditional algorithms for both probabilistic and
temporal planning. Concurrent Markov decision processes
(CoMDPs) are a much less general model that simply allows
instantaneous probabilistic actions to execute concurrently
(Guestrin, Koller, & Parr 2001; Mausam & Weld 2004). Ab-
erdeen et al. (2004) and Mausam and Weld (2005) have

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

extended this model by assigning actions a fixed numeric
duration. They solved the resulting probabilistic tempo-
ral planning problem by adapting existing MDP algorithms,
and have devised heuristics to help manage the exponential
blowup of the search space.

We present a general framework for probabilistic tem-
poral planning, in which not only do the (concurrent) du-
rative actions have probabilistic effects, but the action du-
rations and discrete effect times can vary probabilistically
as well. According to Mausam and Weld (2005), proba-
bilistic planning under these relaxed assumptions goes sig-
nificantly beyond their own work. Our approach achieves
this level of expressiveness while still maintaining a close
alignment with existing work in probabilistic and tempo-
ral planning (Smith & Weld 1999; Blum & Langford 1999;
Bacchus & Ady 2001; Bonet & Geffner 2003).

We start with a brief description of the framework’s prob-
abilistic durative actions, define the search space for our
probabilistic temporal planning problem, present a trial-
based search algorithm to explore it, and devise an effective
heuristic that is based on an extension of the planning graph
data structure for probabilistic temporal planning. Each
of our framework’s components is somewhat independent
of the others, and could be adapted for other uses. The
framework is implemented in a planner called Prottle.
We demonstrate Prottle’s performance on a number of
benchmarks, including a military operations planning prob-
lem. This paper is based on the thesis (Little 2004), which
we refer to for further details.

Probabilistic Durative Actions
Prottle’s input language is the temporal STRIPS frag-
ment of PDDL2.1 (Fox & Long 2003), but extended so
that effects can be probabilistic, as in PPDDL (Younes &
Littman 2004). We also allow effects to occur at any time
within an action’s duration. The probabilistic and temporal
language constructs interact to allow effect times and action
durations to vary probabilistically. For clarity, each proba-
bilistic alternative is given a descriptive label.

Figure 1 shows an example action that represents a per-
son jumping out of a plane with a parachute. After 5
units of time, the person makes an attempt to open the
parachute. The case where this is successful has the label
parachute-opened, and will occur 90% of the time; the
person will gently glide to safety, eventually landing at time



(:durative-action jump
:parameters (?p - person ?c - parachute)
:condition (and (at start (and (alive ?p)

(on ?p plane)
(flying plane)
(wearing ?p ?c)))

(over all (wearing ?p ?c)))
:effect (and (at start (not (on ?p plane)))

(at end (on ?p ground))
(at 5
(probabilistic
(parachute-opened 0.9 (at 42 (standing ?p)))
(parachute-failed 0.1
(at 13 (probabilistic

(soft-landing 0.1
(at 14 (bruised ?p)))

(hard-landing 0.9
(at 14 (not (alive ?p)))))))))))

Figure 1: An example of an action to jump out of a plane.

42. However, if the parachute fails to open, then the per-
son’s survival becomes dependent on where they land. The
landing site is apparent at time 13, with a 10% chance of it
being soft enough for the person to survive. Alive or dead,
the person then lands at time 14, 28 units of time sooner
than if the parachute had opened. But regardless of the out-
come, or how long it takes to achieve, the action ends with
the person’s body on the ground.

We treat the structure of an action’s possible outcomes
as a decision tree, where each non-leaf node corresponds
to a probabilistic event, and each leaf node to a possible out-
come. As each event is associated with a delay, this structure
allows for partial knowledge of an action’s actual outcome
by gradually traversing the decision tree as time progresses.
The duration of an action is normally inferred from the ef-
fects that have a numeric time, and depends on the path taken
through the decision tree. However, it can be specified abso-
lutely using the :duration clause from PDDL2.1.

The decision tree representation assumes that probabilis-
tic alternatives occur to the exclusion of the others. Never-
theless, independent probabilistic events are allowed
by the input language; any independence is compiled away
by enumerating the possibilities.

Search Space
There is a well-established tradition of using the Markov de-
cision process framework to formalise the search space for
probabilistic planning algorithms. We take a slightly differ-
ent approach, by formalising the search space in terms of an
AND/OR graph that more closely aligns with the structure
of the problem.

An AND/OR graph contains two different types of nodes.
In the interpretation that we use, an AND node represents
a chance, and an OR node a choice. We associate choice
nodes with the selection of actions, and chance nodes with
the probabilistic event alternatives.

Each node is used in one of two different ways: for selec-
tion or advancement. This is similar to what some tempo-
ral planners do, where states are partitioned between those
that represent action selection, and those that represent time
advancement (Bacchus & Ady 2001). This sort of optimisa-
tion allows forward-chaining planners to be better guided by
heuristics, as action sets are structured into linear sequences.

choice
advancement

selection

choice
advancement

chance

selection

chance

Figure 2: A state machine for valid node orderings. Time
may only increase when traversing bold face arcs.

The rules for node succession are defined by Figure 2.
They can be summarised as: every successor of a node must
either be a selection node of the same type, or an advance-
ment node of the opposite type. Our choice of a search
space structure is intended to be used with a ‘phased’ search,
where action selection and outcome determination are kept
separate. It might seem that it would be more efficient to
have only a single selection phase, where an action’s prob-
abilistic branching is dealt with immediately after it is se-
lected, but consider what this does to the problem: we would
be assuming that an action’s outcome is known as soon as
the action starts execution. In contrast, the phased approach
allows the time at which this knowledge is available to be
accurately represented, by deferring the branching until the
appropriate time. This issue of knowledge becomes rele-
vant when concurrency is combined with probabilistic ef-
fects. The conservative assumption — that we wait until
actions terminate — breaks down when an action’s duration
can depend on its outcome.

As an example, we now describe a path through such an
AND/OR graph, starting from an advancement choice node.
First, we choose to start an instance of the jump action from
Figure 1, which progresses us to a selection choice node.
We can now choose either to start another action, or to ‘ad-
vance’ to the next phase; we choose to advance, and progress
to an advancement chance node. There is a current proba-
bilistic event with alternatives parachute-opened and
parachute-failed. Let us say that the parachute fails
to open for our chosen path, which leaves us at a selec-
tion chance node. There are no more events for the cur-
rent time, so we progress to another advancement choice
node. Rather than start another action, we then choose to
advance again. The next probabilistic event has alternatives
soft-landing and hard-landing. Let us be nice and
say that the person lands on something soft.

Using the graph structure that we have established, we
define a state of the search space as a node in an AND/OR
graph that is identified by a time, model and event queue.
The time of a state is generally the same as its predecessors,
but may increase when advancing from choice to chance
(see Figure 2). The model is the set of truth values for
each of the propositions, and the event queue is a time-
ordered list of pending events. An event can be an effect
e.g. (on ?p ground), a probabilistic event, or an ac-
tion execution condition that needs to be checked. When the
time is increased, it is to the next time for which an event has
been queued. We define the initial state as an advancement
choice state with time 0, the initial model, and an empty
event queue. This reflects the presumption that action selec-



tion is the first step in any plan, and that there are no pre-
planned events. We define a goal state as any state in which
the model satisfies the problem’s goal.

Heuristic search algorithms associate each state with a
value, which is generally either a lower or upper bound on
the long-term cost of selecting that state. We associate states
with both lower and upper cost bounds. As the search space
is explored, the lower bounds will monotonically increase,
the upper bounds monotonically decrease, and the actual
cost is sandwiched within an ever-narrowing interval. The
most important reason for using both bounds is to facilitate
a convergence test, although it also introduces the possibility
for other optimisations. We say that a state’s cost has con-
verged when, for a given ε ≥ 0: U(s) − L(s) ≤ ε where
U is the upper bound and L the lower bound of state s. For
convenience, we restrict costs to the interval [0, 1]. The cost
of a state is just the probability of the goal being unreach-
able from it if only optimal choices are made. New states
are either given a lower bound of 0 and an upper bound of
1, or values that are computed using appropriate heuristic
functions (see Heuristics section). Although we only con-
sider probability costs in this paper, the cost scheme that we
describe can easily be generalised to include other metrics,
such as makespan. The main restriction is that the cost func-
tion needs to be bounded.

A state’s cost bounds are updated by comparing its current
values with those of its successors. We use the following
formulae for updating probability costs, where (1)–(2) are
for choice states, and (3)–(4) are for chance states:

Lchoice(s) := max(L(s), min
s′∈S(s)

L(s′)), (1)

Uchoice(s) := min(U(s), min
s′∈S(s)

U(s′)), (2)

Lchance(s) := max(L(s),
X

s′∈S(s)

P (s′) L(s′)), (3)

Uchance(s) := min(U(s),
X

s′∈S(s)

P (s′) U(s′)), (4)

where S is the set of successors of state s, and P is the prob-
ability of s. We define the probability of a selection chance
state as the probability of its probabilistic event alternative.
The probability of all other states is 1.

In addition to a cost, we also associate each state with
a label of either solved or unsolved. A state is labelled as
solved once the benefit of further exploration is considered
negligible; for instance, once its cost has converged for a suf-
ficiently small ε. The search algorithm is expected to ignore
a state once it has been labelled as solved, and to confine its
exploration to the remaining unsolved states.

Now that we have established what a state is, we refine
the node ordering constraints to restrict the allowable plan
structures. The additional rules are:

1. On any path through the search space, an action instance
can be started at most once for any particular state time.
This rule is a constraint on selection choice states.

2. Every path through a sequence of chance states must rep-
resent exactly one alternative from each of the current
probabilistic events. This rule is a constraint on selection
chance states.

These rules can be easily and efficiently implemented, as
shown in (Little 2004).

For an action to be selected, we require that its precondi-
tions are satisfied by the model, and that its start effects are
consistent with the other actions that are to be started at the
same time. We consider an inconsistency to arise if: (1) a
start effect of one action deletes a precondition of another,
or (2) both positive and negative truth values are asserted for
the same proposition by different start effects. As it is possi-
ble for a probabilistic event to occur at the start of an action,
we restrict these rules to apply only to start effects that occur
irrespective of the outcome.

The selection rules ensure that preconditions are honoured
and that a degree of resource exclusion is maintained, but
they do not consider other types of conditions or non-start
effects. This is deliberate, as with probabilistic outcomes
we may not even know whether or not an inconsistency will
actually arise. We contend that allowing plans that might
not execute successfully in all cases can be preferable to not
finding a solution at all. It is then up to the planner to deter-
mine whether or not the risk of creating an inconsistency is
worth it. For this purpose, there is an inconsistency when:
(1) an asserted condition is not satisfied, or (2) both positive
and negative truth values are asserted for the same proposi-
tion in the same time step. When such an inconsistency is
detected, we consider the current state to be a failure state;
a solved state with a cost of 1.

Search Algorithm
Even though we have not formalised the search space as an
MDP, search algorithms that have been designed to solve
MDPs can still be applied. Recent probabilistic temporal
planners (Aberdeen, Thiébaux, & Zhang 2004; Mausam &
Weld 2005) have favoured variants of RTDP, such as LRTDP
(Bonet & Geffner 2003). The trial-based derivatives of
RTDP are well-suited to probabilistic temporal planning, as
they are able to decide between contingency plans without
necessarily needing to fully explore all of the contingencies.

The search algorithm that we present is set in a trial-based
framework; it explores the search space by performing re-
peated depth-first probes starting from the initial state, as
shown in Figure 3. Search trials are repeatedly performed
until the initial state is solved. When a state is first selected,
then its successors are created and initialised. A search trial
will start backing up cost bounds when it encounters a state
that was solved during its initialisation. This can happen
if the state is inconsistent, the heuristic cost estimates have
been good enough for the state’s cost to converge, the state
is a goal state, or if the state does not have any successors.

This algorithm was designed to work with a determinis-
tic successor selection function, although it could easily be
made probabilistic. We use a function that selects a succes-
sor that minimises P (s)U(s), and uses P (s) L(s) to break
ties. The probability ewights only affect the selection of
chance states, and focus the search on the most likely alter-
natives first. Observe that P (s)U(s) = 1 for choice states
until at least one way of reaching the goal has been proved
to exist. Prior to this, the lower bound guides the selection



SEARCH(initial -state):
repeat1

SEARCH-TRIAL(initial -state)2

until LABEL(initial -state) = SOLVED3

SEARCH-TRIAL(state):
if LABEL(state) 6= SOLVED then4

if ¬EXPANDED?(state) then5
EXPAND(state)6

SEARCH-TRIAL(SELECT-SUCCESSOR (state ))7
UPDATE-COST-BOUNDS(state)8
UPDATE-LABEL(state)9

Figure 3: The search algorithm.

of choice states; after, the precedence of cost upper bounds
will cause the search to robustify the known solutions.

In part because the selection function is deterministic, it
is necessary to limit the search depth to ensure termination.
We impose a finite horizon on the search: any state with a
time greater than a specified limit is a failure state.1

Once the search has terminated, then a solution can be
extracted from the search space. We do this by performing
a search of all probabilistic alternatives while selecting only
optimal choice states with respect to the successor selection
function. Because of the labelling scheme, it is possible for
this expansion to encounter unsolved states. Another search
is started for each such unsolved state. It is possible to use
the additional cost information that is produced to improve
the solution, which can lessen the effect of choosing ε > 0
for convergence. This is described in more detail in (Little
2004). If all heuristics are admissible and ε = 0, then only
optimal solutions are produced.

This algorithm works with an acyclic search space, where
only one state is created for any combination of time, model
and event queue. It could also work with a cyclic search
space, which might arise when states are disassociated from
the absolute timeline, as in (Mausam & Weld 2005).

There is a simple and effective optimisation that we apply
to the search algorithm. Observe that the path chosen by the
successor selection function is entirely determined by the
cost bounds of those states. Furthermore, observe that once
a backup fails to alter the current values of a state, no further
changes can be made by that backup. As a result, the next
search trial will necessarily retrace the unaffected portion of
the previous trial. The optimisation is simply to start a new
search trial from a state whenever a backup fails to modify
its values, and to defer the remainder of the backup until
something does change.

Heuristics
Due to the added complexity from combining probabilis-
tic effects and durative actions, effective heuristics are even

1We note that if an already solved problem were to be attempted
again with a greater search horizon, that much of the work done
with the previous horizon can be reused. The cost lower bounds
must be discarded, and most solved states need to be reconsidered,
but the state structure and cost upper bounds are still valid.

more critical for probabilistic temporal planning than for
simpler planning problems. A popular technique for gen-
erating cost heuristics is to use a derivative of the plan-
ning graph data structure (Blum & Furst 1997). This has
been previously used for both probabilistic (Blum & Lang-
ford 1999) and temporal planning (Smith & Weld 1999;
Do & Kambhampati 2002), but not for the combination of
the two. We extend the planning graph for probabilistic tem-
poral planning and use it to compute an initial lower bound
estimate for the cost of each newly created state.

The traditional planning graph consists of alternate levels
of proposition and action nodes, with egdes linking nodes in
adjacent levels. We also include levels of outcome nodes,
where each such node directly corresponds to a node in an
action’s decision tree. With this addition, edges link the
nodes: proposition to action, action to outcome, outcome
to outcome, and outcome to proposition. To cope with the
temporal properties, we associate each level with the time
step that it represents on the absolute timeline. Excepting
persistence actions, we also break the assumption that edges
can only link nodes in adjacent levels; all edges involving
outcome nodes link levels of the appropriate times. This
method of extending the planning graph for temporal plan-
ning is equivalent to the Temporal Planning Graph (Smith
& Weld 1999), in the sense that expanding a level-less graph
will traverse the same structure that is represented by an
equivalent levelled graph. We find it more convenient to
present the planning graph for probabilistic temporal plan-
ning in a level-based context.

Generating a planning graph requires a state in order to
determine which proposition nodes to include in the ini-
tial level. We only generate a graph for the initial state of
the problem, although generating additional graphs for other
states can improve the cost estimates.2 The graph expansion
continues until the search horizon is reached. This is essen-
tial for this heuristic to be admissible, as we need to account
for all possible contingencies.

Once the graph is generated, we then assign a vector of
costs to each of the graph’s nodes. Each component of these
vectors is associated with a goal proposition; the value of a
particular component reflects the node’s ability to contribute
to the achievement of the respective goal proposition within
the search horizon.3 In line with our use of costs rather than
utilities, a value of 0 means that the node (possibly in combi-
nation with others), is able to make the goal inevitable, and
a value of 1 means that the node is irrelevant. Cost vectors
are first assigned to the nodes in the graph’s final level; goal
propositions have a value of 0 for their own cost component,
and 1 for the others. All other propositions have a value of 1
for all cost components.

Component values are then propagated backwards
through the graph in such a way that each value is a lower
bound on the actual cost. The specific formulae for cost

2When graphs are generated for non-initial states, the event
queue also needs to be accounted for when inferring levels, see
(Little 2004) for details on how this is done.

3The cost vectors can be extended to include other components,
such as for resource usage or makespan.



propagation are:4

Co(n, i) :=
Y

n′∈S(n)

Cp,o(n
′, i), (5)

Ca(n, i) :=
X

n′∈S(n)

P (n′) Co(n
′, i), (6)

Cp(n, i) :=
Y

n′∈S(n)

Ca(n′, i), (7)

where C is the i’th cost component of node n, S are the
successors of n, and P is the probability of n. Subscripts
are given to C according to node type: o for outcome, a for
action and p for proposition. Both Co and Cp are admissible,
and Ca is an exact computation of cost. The products in (5)
and (7) are required because it might be possible to concur-
rently achieve the same result through different means. For
example, there is a greater chance of winning a lottery with
multiple tickets, rather than just the one. When a planning
domain does not allow this form of concurrency, then we can
strengthen the propagation formulae without sacrificing ad-
missibility by replacing each product with a min. This effec-
tively leaves us with what has been called max-propagation
(Do & Kambhampati 2002), which is admissible for tem-
poral planning. Its admissibility in the general case is lost
when probabilistic effects are combined with concurrency.

We now explain how the cost vectors are used when com-
puting the lower bound cost estimate for a state generated by
the search. This computation involves determining the nodes
in the graph that are relevant to the state, and then combining
their cost vectors to produce the actual cost estimate. When
identifying relevant nodes, we need to account for both the
state’s model and event queue. Accounting for the model is
not as simple as taking the corresponding proposition nodes
for the current time step. Although this would be admissi-
ble, the resulting cost estimates would not help to guide the
search; the same estimate would be generated for successive
selection states, with nothing to distinguish between them.
The way that we actually account for the state’s model is
to treat as relevant: (1) the nodes from the next time step
that correspond to current propositions,5 (2) the nodes for
the startable actions that the search algorithm has not al-
ready considered for the current time step, if the state is a
choice state, and (3) the outcome nodes for the current un-
processed probabilistic events if the state is a chance state.
Those proposition or outcome nodes that are associated with
an event from the event queue are also considered relevant.
This accounts for known future events.

The first step in combining the cost vectors of the relevant
nodes is to aggregate each component individually. That is,
to multiply — or minimise, if ‘max’-propagation is being
used — the values for each of the goal propositions to pro-
duce a single vector of component values. Then, the actual
cost estimate is the maximum value in this vector; the value
associated with the ‘hardest’ goal proposition to achieve.

4These formulae assume that every action has at least one pre-
condition; a fake proposition should be used as a dummy precon-
dition if this is not the case.

5Or from the current time step if it is also the last; the lack of
distinction really does not matter at this point.

Planning graphs usually include mutexes, to represent bi-
nary mutual exclusion relationships between the different
nodes. Mutexes can be used so that the structure of a plan-
ning graph is a more accurate relaxation of the state space.
For instance, we know that it is definitely not possible to start
an action in a particular time step if there are still mutex rela-
tionships between any of its preconditions. For our modified
planning graph, we compute mutexes for all of proposition,
action and outcome nodes. Of note, all of the usual mutex
conditions are accounted for in some way, and there is a spe-
cial rule for mutexes between action nodes in different levels
to account for the temporal dimension. The complete set of
mutex rules is described in (Little 2004).

Experimental Results
Prottle is implemented in Common Lisp, and is com-
piled using CMUCL version 19a. These experiments were
run on a machine with a 3.2 GHz Intel processor and 2 GB
of RAM. Prottle implements the framework we have de-
scribed, but two points of distinction should be noted: (1) the
search space is acyclic, but only advancement chance states
are tested for equivalence, and (2) the planning graph heuris-
tic is implemented using the ‘max’-propagation formulae.

We show experimental results for four different problems:
assault-island (AI), machine-shop (MS), maze
(MZ) and teleport (TP). The assault-island prob-
lem is extracted from a real-world application in military
operations planning. It is the same as that used by Ab-
erdeen (2004), but without any metric resource constraints.
The machine-shop problem is adapted from that used by
(Mausam & Weld 2005). Both the maze and teleport
domains were written specifically for Prottle and are
given in (Little 2004). All results are reported in Table 1. For
each problem we vary ε and the use of the planning graph
heuristic, while recording execution time, solution cost, and
the number of states expanded; time1, cost1 and states1 are
for the case where the heuristic is not used, and time2, cost2
and states2 are for when it is. All times are given in seconds.
Recall that the costs are probabilities of failure.

The assault-island scenario is a military operations
planning problem that has 20 different action instances, each
of which can be started once, has a duration ranging from 2
to 120, and will succeed or fail with some probability. There
is redundancy in the actions, in that individual objectives can
be achieved through different means. Results for this prob-
lem are presented for two different search horizons: 100 and
120. The values chosen for ε are the smallest multiples of
0.1 for which we are able to solve the problem without cre-
ating enough states to run out of memory. A recent update
to the planner presented in (Aberdeen, Thiébaux, & Zhang
2004) produces solutions of similar quality; with a horizon
of 1000 and a small ε, it produced a solution that has a failure
probability of 0.24. We were only able to solve this problem
when the planning graph heuristic was being used.

In machine-shop, machines can apply multiple tasks
to an object (paint, shape, polish, etc) by machines that run
in parallel. As with assault-island there are 20 action
instances. In our version, some actions have nested proba-
bilistic events and outcome-dependant durations. All tests



problem horizon ε time1 time2 cost1 cost2 states1 states2
AI 100 0.3 - 103 - 0.344 - 346,100
AI 120 0.6 - 404 - 0.222 - 1,319,229

MS 15 0.0 - 272 - 0.027 - 496,096
MS 15 0.1 - 171 - 0.114 - 309,826
MS 15 0.2 2,431 21 0.119 0.278 13,627,753 6,759
MS 15 0.3 367 235 0.278 0.278 1,950,134 434,772

MZ 10 0.0 195 10 0.178 0.178 1,374,541 13,037
MZ 10 0.1 185 2 0.193 0.178 1,246,159 2,419
MZ 10 0.2 64 1 0.197 0.193 436,876 669
MZ 10 0.3 62 2 0.202 0.193 414,414 1,812

TP 20 0.0 442 < 1 0.798 0.798 3,565,698 3,676
TP 20 0.1 456 < 1 0.798 0.798 3,628,300 2,055
TP 20 0.2 465 < 1 0.798 0.798 3,672,348 2,068
TP 20 0.3 464 < 1 1.000 0.798 3,626,404 1,256

Table 1: Experimental results.

use a horizon of 15. The results are not comparable with
those presented in (Mausam & Weld 2005), both because of
the changes we made to the problem and the different cost
metric (makespan) considered by Mausam and Weld.

The maze problem is based on the idea of moving be-
tween connected rooms, and finding the keys needed to un-
lock closed doors. Each of the problem’s actions has a du-
ration of 1 or 2, and many of their effects include nested
probabilistic events. We used a problem with 165 action
instances, although with a much higher degree of mutual ex-
clusion than assault-island or machine-shop. All
tests for this problem have a horizon of 10.

Finally, the teleport problem is based on the idea of
teleporting between different locations, but only after the
teleporters have been successfully ‘linked’ to their destina-
tion. The problem has actions with outcome-dependent du-
rations, and it is possible to opt for slower movement with
a higher probability of success. The chosen problem has 63
action instances. All tests have a horizon of 20.

These experiments show that the planning graph heuristic
is effective, and can dramatically reduce the number of states
that are explored, up to three orders of magnitude. We have
hopes that further refinement can make this gap even greater.

The results also show that the choice of ε is a control that
can affect both search time and solution quality: while ide-
ally we would like to solve all problems with an ε of 0,
it may be possibly to solve otherwise intractable problems
by choosing a higher value. The effect of increasing ε is
sometimes counter-intuitive, and warrants further explana-
tion. Specifically, sometimes increasing ε solves the prob-
lem faster, and sometimes it slows the search down; some-
times the increase reduces the quality of the solution, and
other times it does not. Increasing ε can hinder the search be-
cause a trade-off between depth and breadth is being made:
by restricting the attention given to any particular state, a
greater number of alternatives may need to be considered for
the cost bounds of a state’s predecessors to converge. And
when ε + C(s) ≥ 1, it is possible for convergence to occur
before any way of reaching the goal is found, as demon-
strated when ε = 0.3 and C(s) = 0.798 for TP.

Future Work
Our work on probabilistic temporal planning is in some
ways orthogonal to that described in (Mausam & Weld

2004; 2005); we believe that some of the techniques
and heuristics that Mausam and Weld describe, such as
combo-elimination, eager effects, and hybridization could
be adapted for Prottle’s framework.

At the moment, the bottleneck that prevents Prottle
from being applied to larger problems is memory usage. One
way this could be improved is to compress the state space as
it gets expanded, by combining states of like type and time.
Further improvements to the heuristic could also help, such
as adapting it to also compute upper bound cost estimates.

There are many ways in which this framework could be
made more expressive. The most important practical exten-
sions would be to add support for metric resources, and to
generalise costs to support makespan and other metrics. We
understand how to do this, but have not yet implemented it.

Acknowledgements
This work was supported by National ICT Australia
(NICTA) and the Australian Defence Science and Tech-
nology Organisation (DSTO) in the framework of the
joint Dynamic Planning Optimisation and Learning Project
(DPOLP). NICTA is funded through the Australian Govern-
ment’s Backing Australia’s Ability initiative, in part through
the Australian Research Council.

References
Aberdeen, D., Thiébaux, S., and Zhang, L. 2004. Decision-
theoretic military operations planning. In Proc. ICAPS.
Bacchus, F., and Ady, M. 2001. Planning with resources and
concurrency: A forward chaining approach. In Proc. IJCAI.
Blum, A., and Furst, M. 1997. Fast planning through planning
graph analysis. Artificial Intelligence 90:281–300.
Blum, A., and Langford, J. 1999. Probabilistic planning in the
Graphplan framework. In Proc. ECP.
Bonet, B., and Geffner, H. 2003. Labeled RTDP: Improving the
convergence of real-time dynamic programming. In Proc. ICAPS.
Bresina, J.; Dearden, R.; Meuleau, N.; Ramakrishnan, S.; Smith,
D.; and Washington, R. 2002. Planning under continuous time
and resource uncertainty: A challenge for AI. In Proc. UAI.
Do, M., and Kambhampati, S. 2002. Planning graph-based
heuristics for cost-sensitive temporal planning. In Proc. AIPS.
Fox, M., and Long, D. 2003. PDDL2.1: An extension to PDDL
for expressing temporal planning domains. Journal of Artificial
Intelligence Research 20:61–124.
Guestrin, C., Koller, D., and Parr, R. 2001. Multiagent planning
with factored MDPs. In Proc. NIPS.
Little, I. 2004. Probabilistic temporal planning. Honours The-
sis, Department of Computer Science, The Australian National
University.
Mausam, and Weld, D. 2004. Solving concurrent Markov deci-
sion processes. In Proc. AAAI.
Mausam, and Weld, D. 2005. Concurrent probabilistic temporal
planning. In Proc. ICAPS.
Smith, D., and Weld, D. 1999. Temporal planning with mutual
exclusion reasoning. In Proc. IJCAI.
Younes, H. L. S., and Littman, M. 2004. PPDDL1.0: The lan-
guage for the probabilistic part of IPC-4. In Proc. International
Planning Competition.
Younes, H. L. S., and Simmons, R. G. 2004. Policy generation for
continuous-time stochastic domains with concurrency. In Proc.
ICAPS.


