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Abstract

Much of the complexity in programming language implementation is made up of
three fundamental concerns, namely concurrency, memory and hardware platform.
Many of the programming languages today, especially managed languages, have bro-
ken features due to the inappropriate treatment of these three challenges. Micro Vir-
tual Machines, a thin abstraction layer over these three concerns, was proposed to free
up the language implementers of making compromises in language implementation
to focus on the higher level features.

With the progress in the research of Mu, a concrete instance of Micro Virtual Ma-
chine, its hypothesis and design can now be tested. To test Mu’s design and its abil-
ity to support non-trivial languages, I have embarked on the mission to develop an
RPython compiler back-end targeting Mu. RPython, as a compilation framework,
has been used to implement interpreters for managed languages, and has displayed
promising results. Thus the development of an RPython language client is a strategi-
cally critical step in providing the power of Mu to many managed languages.

This thesis explores the unique challenges of bringing together Mu as a platform of
great potential and RPython as a language client of high interest. Being a pioneering
work in implementing language clients for Mu, this thesis also exposes some defi-
ciencies in the design of Mu through some of the encountered issues, enabling Mu to
extend its design with additional features to offer better support for client languages.
The research of this thesis has also had milestone achievements. Having translated
the essential features of RPython, the Mu back-end enables RPython to translate small
scale programs and GC benchmark to Mu IR, thus testifying to the ability of Mu to
support non-trivial languages.

In this thesis I will describe the various stages of the Mu back-end translation pro-
cess, exploring the problems and issues in developing a language client for Mu with
its distinct type system and design. I will also discuss the possible solutions to these
issues, and how these issues have impacted on the design of Mu. I believe this work
is strategically critical to the Micro Virtual Machine research team, the PyPy/RPython
development team, and many other language implementers who may be benefitted
from implementing their languages on top of the Mu Micro Virtual Machine.
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Chapter 1

Introduction

The core of my work is in developing a language client for the Mu Micro Virtual
Machine, in order to test its claims and hypothesis. This chapter provides an overview
to the problem and my contributions.

1.1 Problem statement

1.1.1 Mu and Micro Virtual Machine

Generally, programming language implementations can be done in two ways, either
being monolithic (building everything from the ground up), or building on an existing
Virtual Machine (VM). Either way comes with benefits and difficulties. Building on
top of a VM gives a higher level of abstraction over the machine architecture, which
provides good support for compiler backend, memory and concurrency. However
the existing VMs are usually heavy-weight, featuring high level optimisations and
extensive libraries. They also tend to be tailored to the abstraction of the language
they support, leaving them unsuitable for new programming languages [Castanos
et al. 2012; Wang et al. 2015].

Micro Virtual Machines (µVMs), a concept proposed by Wang, Lin, Blackburn,
Norrish and Hosking [Wang et al. 2015], is aimed to provide language implementers
a robust and light-weight platform to build their language. There are three main
concerns, as identified by Wang et al., in monolithic language implementation: hard-
ware (compiler backend), memory (garbage collection), and concurrency (scheduler
and memory model). µVM aims to abstract over these three concerns, providing a
platform for language implementers to freely focus on higher level language design.
Different from many existing VMs like the JVM, CLR and LLVM, µVM aims to be
minimal and light-weight, designed to support the development of new languages,
and also natively support Garbage Collection (GC) and concurrency. It also supports
cross-language reuse of demanding implementation details, enabling it to be a suit-
able platform for many different languages. Being light-weight also allows µVM to
have the potential to be formally verified, making it suitable for security-critical ap-
plications as well.

1



2 Introduction

1.1.2 The need for testing

The concept of Micro Virtual Machines has great potential in benefitting the booming
programming language ecosystem today. It frees the designers of future languages
from making compromises in design due to the challenges in language implementa-
tion.

However, these claims, along with the concept of µVM, must be tested and veri-
fied. Wang et al. has embarked on a mission to develop a concrete implementation of a
µVM, called Mu. Major progress has been made on the specification and reference im-
plementation of Mu [Micro VM ]. With this progress, the design of Mu in supporting
a non-trivial modern managed language can now be tested.

1.2 Contributions

The claim and design of Mu can only be tested through building a concrete imple-
mentation of a modern managed language on top of it. No language client has been
built on Mu yet. Consequently, no one has yet confirmed the benefits and difficulties
of developing a language client for Mu. This thesis thus serves as pioneering research
in this area.

Through building an RPython client for Mu, I have tested the design of Mu to
support managed languages. While Mu offers largely compatible program structure,
type system and features such as exception catching which all simplify the translation
process, Mu also has deficiencies in its design, which raise issues in supporting parts
of the RPython language. These findings have motivated Wang et al. to reconsider the
design of Mu and include additional features to the most recent specification. These
additional features provide solutions to the encountered issues, and strengthens the
ability of Mu to support modern managed languages.

1.2.1 RPython and MuPy language client

1.2.1.1 RPython as the language of choice

RPython is a restricted subset of Python that is compiled into C [?]. The restrictions are
primarily on the dynamic typing feature of Python. Being statically typed, RPython
programs can be analysed and optimised at compile time. More than simply being
a thin layer over C, RPython has built-in garbage collectors and several high-level
datatypes, making the development of language implementations much easier. In ad-
dition, the highlight of RPython as an interpreter framework is the ability to automat-
ically generate a high performance meta-tracing Just-In-Time (JIT) compiler for the
language interpreter. RPython thus provides an efficient way of implementing high
performance managed language implementations. More details about the translation
process of RPython will be discussed in Chapter 3.

Being a powerful compilation framework to generate a high performance inter-
preter, alternative implementations of many popular languages have been made us-
ing RPython. These include Python (PyPy), Prolog (Pyrolog), Erlang (Pyrlang), Racket
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(Pycket), JavaScript (PyJS), Haskell (PyHaskell) and so on. Thus having RPython as a
language client for Mu is a strategically critical step in porting many modern managed
languages on top of it.

1.2.1.2 The MuPy project

Seeing its strategic value, I have been motivated to develop a Mu back-end for RPython
in addition to its existing C back-end. I name this project MuPy, capturing both the
platform and language.

The RPython framework turns an RPython program into control flow graphs, in-
fers the types of variables and functions, performs various optimisations and transfor-
mations, and then translates them into C code. The goal of this project is to ‘redirect’
the translation process so that instead of generating C code, the Mu back-end will
instead generate Mu Intermediate Representation (IR) code.

I break down this translation process into three stages.

Graph transformation alters the structure of the RPython control flow graphs to
match the structure of function definitions in Mu. This involves adding branch-
ing and return instructions, inserting PHI instructions at join points, creating
transitional blocks for links that have the same source and destination blocks,
and transforming the exceptions in an alternate way that utilises the exception
handling support from Mu.

Type mapping (MuTyping) converts the types in the flow graph to the types
in the Mu type system, along with mapping instructions. It also identifies the
initialised global heap objects that are to be stored in Mu global cells.

Mu IR code generation turns the flow graphs into the Mu IR program bundle.
An initialisation routine for the objects to be stored in global cells is also gener-
ated.

This thesis focuses on graph transformation and type mapping, since Mu IR code
generation is relatively straightforward.

To load the translated program bundle, I developed a minimal language client.
The client contains a launcher that loads the bundle program, constructs an RPython
list of command-line argument strings, and executes the bundle code. I also imple-
mented the print output in this language client using the trap mechanism.

The Mu back-end for RPython and the language client has had reasonable success
in translating small scale programs. It was able to translate and execute successfully
the GC benchmark [Ellis et al. ].

1.2.2 Impact on the research of Mu

This project of building the RPython language client has also had many positive con-
tributions to the research and implementation of Mu, as I have been working closely
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with the Mu research group. Some of the additional features in the most recent version
of Mu’s specification are motivated by the issues encountered in the MuPy project.

One of the problems encountered is the initialisation of heap objects. RPython
represents these objects as constants in the flow graph and does not provide explicit
routines to initialise them. The intuitive approach of creating an initialisation routine
as the entry point for the program bundle, as I have currently taken, has drawbacks
such as significantly increasing the size of the bundle code. Another approach of
specifying the layout of these objects using a language has motivated the Mu research
team to include a Heap Allocation Initialisation Language (HAIL) in the most recent
specification [Mu Spec ].

RPython also contains some direct memory access operations and compiler intrin-
sics. The compromised treatment for these elements due to the lack of support has
caused significant performance cost. This has led to discussions on the design of Mu
and the proposal of the native interface extension. This feature is eventually included
in the most recent specification, enabling the client languages to perform lightweight
C library calls.

The MuPy project thus has motivated the inclusion of these additional features
capable of bringing about new possibilities in implementing client languages.

1.3 Thesis outline

Chapter 2 presents background on language implementation, Micro Virtual Machines
and RPython. Chapter 3 provides details about the RPython translation that are nec-
essary for the implementation detail of the RPython language back-end. Chapter 4
describes the transformation of structural elements in the control flow graphs, along
with the discussion on exception transformation strategies. Chapter 5 discusses, with
detail, the mapping of type system and operations, the global constants and the prob-
lem of initialisation, and the problem of raw memory access operations. Chapter 6
presents the MuPy language client, containing the loader and treatment of print out-
put. The finale Chapter 7 concludes my thesis, identifying the future work and di-
rection of research, and describing how my contributions testifies to the ability of Mu
supporting modern managed languages.



Chapter 2

Background and Related Work

Virtual machines are widely used for language implementations. They provide ab-
stractions and support over many desirable features such as GC, JIT, threading, porta-
bility etc. that simplify the development for new languages. This chapter provides a
brief introduction to the background of the use of virtual machines in programming
language implementation, the motivation and design of the Mu Micro Virtual Ma-
chine, and the PyPy project with the underlying RPython compilation framework.

Section 2.1 briefly presents the monolithic and virtual machine based program-
ming language implementation strategies and some of the issues involved. Section 2.2
introduces the Mu Micro Virtual Machine, with its motivation, design features and po-
tential. Section 2.3 gives a general overview of the RPython compilation framework,
the languages implemented using RPython, and existing back-ends. Finally, 2.4 gives
a summary to the chapter, emphasising value of having a Mu back-end for RPython.

2.1 Programming Language Implementation Strategies

Programming languages play an essential role in the computing industry. Nowadays,
programming languages have become highly abstract and rich in features. While
offering the programmers higher grounds to express program logic and algorithms,
modern languages have also increased the complexity of implementation. The com-
pilation process of Haskell, for example, involves a complex pipeline of procedures to
lower the abstractions [Marlow and Peyton-Jones ].

There are generally two approaches to language implementation: monolithic (Fig-
ure 2.1a) and building on existing platforms (Figure 2.1b) [Wang et al. 2015]. In the
monolithic approach, the language designer needs to implement every detail of the
language (e.g. CPython, Haskell, Javascript etc.). All of the abstractions and mecha-
nisms (e.g. GC, concurrency, back-end architecture etc.) need to be brought down to a
lower level language. Naive solutions to these details can be easy, yet prune to limita-
tions, having low performance, and broken features due to inappropriate treatments.
Naive reference counting garbage collection strategy, for example, though easy to im-
plement, has well-known performance limitations and the inability to collect cycles;
and the inappropriate treatment of concurrency in the early stages of CPython has led
to the infamous Global Interpreter Lock (GIL) to be baked into the language [Behrens

5
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● Monolithic
○ everything from ground up;
○ many difficult challenges.

● Virtual Machine Based
○ difficult elements already 

taken care of;
○ heavy weight (JVM, .Net);
○ highly catered towards its 

support language.
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(a) Monolithic implementa-
tion.

Language Implementation Strategies

● Monolithic
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support language.
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(b) VM based implementa-
tion.

● A lightweight abstraction over 
main concerns:
○ concurrency (threads),
○ memory (GC),
○ hardware (JIT, back-ends).

● Key design features:
○ native GC and JIT,
○ cross-language reuse,
○ minimal (lightweight, verifiable).

● Mu --  a concrete µVM instance
○ online spec available (https://github.

com/microvm/microvm-spec/wiki).

Micro Virtual Machine (µVM)

libL

OS

LVM

MIcro VM

L

(c) VM on µVM.

Figure 2.1: Language implementation approaches.

2008].

Another approach is building the language implementation on existing platforms,
usually virtual machines (VMs). Examples include Jython, Scala and C#. VMs (e.g.
JVM, CLR etc.) raise the abstraction of the target machine, providing support for
many low level details. Many VMs provide a highly optimised garbage collector,
support for concurrency, machine independent intermediate code, and extensive li-
braries. Jython for example, by mapping Python threads to Java threads, has got rid
of GIL [Juneau et al. 2010]. Thus these VMs can provide great assistance in simplifying
the compilation process, and prevent compromised implementation decisions being
baked into the design. This approach also has draw-backs, such as the fact that many
of these platforms are usually large, containing far more than the need of a client lan-
guage. They are also tailored towards the language they support, and can be a poor
match to new languages [Castanos et al. 2012; Wang et al. 2015].

There are also compiler infrastructures such LLVM that provide reusable compo-
nents for building compilers [Lattner and Adve 2004]. LLVM provides support for
generating an intermediate representation, a great deal of optimisations, and compi-
lation down to the machine level. However it is weak on the support for GC and JIT
compilation due to its focus on C, making it not a highly desirable tool for modern
dynamic languages that relies heavily on run-time JIT compilation [Wang et al. 2015].

In recent years RPython has emerged as an attractive compilation framework for
developing language interpreters [RPython Doc ]. Containing implementations of GC
and a high performance meta-tracing JIT, RPython covers many lower level details,
and allows high performance language interpreters to be developed using a subset
of Python language with high level abstractions. However RPython’s support for
threading is weak and almost non-existant. Language implementations written in
RPython need to implement their own concurrency strategies.
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2.2 Mu and Micro Virtual Machine

2.2.1 Motivation & Proposal

Motivated by the complexity of language implementation, and the lack of good sup-
porting substrates, Wang et al. proposed the concept of Micro Virtual Machines (µVMs).

µVMs attack the three fundamental concerns in language implementation, mem-
ory (GC), concurrency, and back-end architecture (portability and JIT), by providing a
thin abstraction layer over them (Figure 2.1c). A µVM offers language implementers a
unifying substrate, on which other virtual machines and language clients can be built;
and gives them both the access to state of the art foundations and maximum liberty to
implement language-specific semantics.

2.2.2 Mu

Mu is a concrete instance of a µVM. It provides well defined a intermediate represen-
tation and a client interface that aim to support a diverse range of language clients.
Being explicitly minimal and light-weight, the design of Mu also aims to be formally
verifiable and a trusted substrate for other VMs..

Mu adopts a client-server model, allowing the flexibility of multiple language
clients running on multiple and possibly remote Mu servers. A language client can
communicate to a Mu server through the client interface to manipulate the state of Mu
and handle asynchronous events from Mu. Mu accepts the Mu intermediate represen-
tation (Mu IR) code. Thus a language client is responsible for compiling the program
in source language to Mu IR in the unit of code bundles, and deliver them to a Mu
server to be executed.

The type system of Mu is simple, providing only universal and fundamental ma-
chine abstractions. Apart from varying bit-widths integer types, two floating point
types and various memory reference types, it also contains fixed width struct and ar-
ray types, variable sized hybrid types, and vector types fro SIMD instructions. The
operations in Mu take into account the interaction between GC and concurrency, and
provides support for many desirable features such as exception catching, light weight
context switching, swap-stack operation and traps. In the recent specification, Mu also
includes a Mu Native Interface (MuNI), that allows the client language to perform ar-
bitrary yet unsafe C calls (the clients are trusted). Thus Mu allows a wide range of
possibilities for client language implementation.

Mu is still undergoing active research. More detail about the design and the most
recent specification of Mu can be found online [Mu Spec ].

2.3 PyPy and RPython

RPython is a compilation and support framework for developing interpreters of dy-
namic languages. It allows language interpreters to be written in a subset of Python
(RPython), with high-level abstractions and few dependencies to lower level details.
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The RPython compilation framework produces a concrete virtual machine by insert-
ing lower level details during the translation process. The framework is also highly
customisable, enabling new translator back-ends to be written for different platforms.

The most attractive feature of RPython is the ability to generate JIT compilers in a
language independent way. This allows any interpreters written in RPython to auto-
matically have a powerful meta-tracing JIT, adding high performance to implementa-
tions with zero cost [Bolz and Tratt 2015].

2.3.1 Language implementations using RPython

The automatic generation of a powerful meta-tracing JIT and the ease of language
implementation through high level abstractions have made RPython very attractive
in the community of language developers. Implementations of many languages have
been developed using RPython. These include Python (PyPy [Rigo and Pedroni 2006]),
Racket (Pycket [Bauman et al. 2015]), Erlang (Pyrlang [Huang et al. ]), Javascript
(PyJS [Zalewski ]), R (Rapydo [Hager ]), PHP (HappyJIT [Homescu and Şuhan 2011]),
and Haskell (PyHaskell [Thomassen and Hetland ]). A simple teaching language Sim-
ple Object Machine (SOM) has also been implemented at the time of writing [Marr and
Ducasse 2015].

Thus it is highly desirable and strategically critical to develop a language client for
RPython. When fully implemented, it makes available for Mu all of other languages
that are written in RPython. A core part of the goal is developing a back-end targeting
Mu for RPython.

2.3.2 Existing RPython back-ends

RPython currently only has C as the default back-end. LLVM back-end has also been
attempted yet failed many times. It is also argued, in the RPython documentation,
that having LLVM as a back-end is pointless, since the C code can be compiled using
LLVM [RPython Doc ].

Javascript back-end has also been attempted by compiling the generated C code
using Emscripten [Emscripten ; PyPy.js ]. This allows PyPy interpreter to run inside
the web browser.

The goal of a Mu back-end thus opens up another possibility for RPython.

2.4 Summary

Programming language implementations have become more complex as the level of
abstraction gets higher. Compared to the monolithic approach, the use of VMs in lan-
guage implementation frees the language implementers from the challenges of lower
level details, allowing them to focus on higher level language features. However
many existing VMs are heavy-weight and large, offering far more than the need of
a language client. And the focus on their supporting language make them a poor
match for new languages.
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µVMs provide a thin layer of abstraction over just three core concerns in language
implementation, namely concurrency, garbage collection and compiler backend. Be-
ing minimal and light-weight, yet maintaining maximum flexibility, µVMs aim to be
a desirable, unifying substrate on which language implementations and other virtual
machines can be built.

To test the design and claims of µVMs, RPython is taken as the language of choice.
RPython is a powerful compilation framework offering both useful high level lan-
guage abstractions for developing interpreters, and the ability to automatically gener-
ate a high performance meta-tracing JIT. This has attracted developers to implement
many other programming languages using RPython and have achieved promising
performance. Thus developing an RPython language client is a strategically critical
step in bringing many language implementations onto Mu.
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Chapter 3

RPython Translation Process

Being a back-end to the RPython compilation framework, MuPy intercepts the default
translation and redirects it to the Mu back-end translation tasks. It is thus important
to understand the RPython translation process, and the kind of data structures MuPy
will be accepting as input. This chapter aims to provide an overview to the RPython
translation process necessary for understanding the MuPy project. More detailed in-
formation can be found on RPython online documentation [?].

Section 3.1 gives a general overview of the RPython translation process. Section
3.2 gives more detail on the flow graph representation of the program. The translation
of the flow graph representation is the main theme of Chapter 4. Section 3.3 provides
an overview of the type inference process that is at the core of RPython. The mapping
of the inferred type representation is discussed in Chapter 5. Section 3.4 gives an
overview of the back-end optimisations and code generation process. Finally, Section
3.5 provides a summary to this chapter.

3.1 Overview

RPython is a restricted subset of Python that is statically typed. As a language, it
has many features that are very helpful in implementing language interpreters. It
offers many high level abstract data types such as classes, lists and dictionaries; as
well as useful language features such as hierarchical exception handling, garbage col-
lected memory and JIT. Thus the task of the translation process, and in general of the
RPython compilation framework, is to break down these high level abstractions and
language features to the level of the target language (e.g.. C).

As shown in Figure 3.1[RPython Doc ], the translation process consists of several
stages.

The input program source code is first converted into control flow graphs by ab-
stract interpretation and flow analysis. Then, the annotator does the type inference,
deducing the general type information of variables. During this process, RPython
discovers extra functions that are called by the input source code. These functions are
also annotated and included in the set of graphs. At the RTyper stage, the general type
information is specialised using the Low Level Type System (LLTS) that closely resem-
bles C. The general operations on these variables and objects are also specialised. The

11
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(a) Components of the translation process.

(b) Overview of translation process.

Figure 3.1: Illustrations for RPython translation process.
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Figure 3.2: Example CFG.

low level helpers contain implementations of various data types and their methods.
These helper functions go through the same process of being transformed into flow
graphs and having their type specialised.

The next step is the optional back-end optimisations. These optimisations include
inlining, no-op removal etc. Exception and GC transformations are also applied to in-
clude the C compatible implementations for these high level language features. Then
the flow graphs are translated into C code, and it can be compiled using other C com-
pilers into a binary that is able to be executed on the specific platform. Other C source
code in the C back-end that implements various features using external functions are
also included during the compilation.

Thus the translation process gradually breaks down the high-level data types, op-
erations and program structures to bridge the semantic gap between RPython and
C.

Note that the RPython compilation framework is written in a meta-circular man-
ner using Python. This allows the translation process to use high level language fea-
tures offered by Python. Thus a normal Python interpreter is required to run the
RPython translation engine.

3.2 Control Flow Graph Representation

The translation engine first imports the RPython source code, performs necessary ini-
tialisations for the module, and creates a bytecode representation for the program.

In flow analysis, an abstract interpreter takes the bytecode and performs abstract
interpretation to produce the Control Flow Graph (CFG) intermediate representation.
The abstract interpreter follows the bytecode instructions, and records the operations
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performed on Python objects into basic block structures. These basic blocks contains
sequences of consecutive operations. Each operation in a block has a name, a list of
arguments, and a result variable. Each block has a list of input arguments forming a
closed scope. All of the variables referenced in the sequence of operations within a
block, apart from the ones created by the operation results, are defined in the input
arguments. Each block also has a list of outgoing links to other blocks. Variables and
constants can be carried on links to assign values to the input arguments of the desti-
nation block. These links are the key to representing branching, loops, and exception
handling control structures. The container class for these blocks and links is called
FunctionGraph. Each instance of the class corresponds to the CFG representation
of an RPython function. Figure 3.2 shows an example of these elements.

Each graph contains an entry block whose input arguments are the parameters of
the function. From the entry block, all of the other blocks can be traced through the
outgoing links. Each function also contains two unique blocks: a return block and
an exception raising block. These two blocks have no operations and no outgoing
links. The return block accepts one argument that holds the value to be returned by
the function, indicating a single value return policy. The exception block accepts both
the type and value object of the exception as arguments. The semantics indicate that
both are thrown and stored in global memory, and special variables in reference to
them are used in link arguments. More discussion on exception handling is presented
in Chapter 4.

Each block has an exit switch variable (or some special constants such as last exception,
see Chapter 4) that expresses the conditional branching semantics. Its value is checked
and compared against the exitcases value of each outgoing link, and the link that
has the matching exitcase is taken.

3.2.1 SSA & SSI

RPython’s CFG has Single Static Information (SSI) form, which is an extension to the
Single Static Assignment (SSA) form. Figure 3.3 shows a comparison between SSA
and SSI form [Ananian and Rinard 1999].

In SSA form, each variable has exactly one definition point (i.e. an operation). At
branched blocks the operations can refer to already defined variables, and they create
alternate names that refer to the same entity in the code (Y1 and Y2 in Figure 3.3).
At join points however, these alternate names must be unified using the � functions
to preserve the single-assignment property. Each � function performs an assignment
based on the control flow path taken to reach the joint point (e.g. Y3  �(Y1, Y2)
operation in Figure 3.3).

SSI form, in addition to SSA, recognises that information is generated at branch
points as well. Therefore SSI defines a � function that generates new names for split-
ting a variable at a branch point. This enables the construction of a one-to-one map-
ping between variable names and information about the variable at each point in the
program. Such information can then be propagated to aid the analysis of the program.

In RPython, links can carry arguments of defined variables and constants, and the
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Figure 3.3: Illustration of SSA (left) and SSI (right) representation. � function joins
different names into one, and � function splits one name into different names.

input arguments for each block define new names for the variables. Together they
effectively implement both � and � functions. In branched blocks, the variables in
input arguments are given new names (� function). In joint blocks, the incoming
variables are given new names (� function).

3.3 Type annotation and transformation

RPython is a statically typed language. Though not explicitly specified, the types
of the variables must be inferred at compile time. The task of type inference and
specialisation is performed by the annotator and the RTyper.

3.3.1 Annotator

The annotator performs whole-program analysis, and gives a general type annotation
to each variable in the flow graph. This annotation describes all of the possible Python
objects that a particular variable can contain at run-time. As shown in Figure 3.4, the
annotation types form a Python-like, hierarchical structure. With the root class being
SomeObject, general type inference can identify integers, floats, strings, lists, tuples,
dictionaries, class instances etc. When new evidence is discovered suggesting a new
type for an already annotated variable, the annotator attempts to generalise the know
annotation with the new information by effectively moving up the type hierarchy.
Deducing general type information in this way is a key step in the translation process.

3.3.2 RTyper

As the general type information obtained from the annotator is still highly abstract,
further specialisation to lower level representations is needed to aid the translation
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Figure 3.4: Simplified annotation type object hierarchy graph. The actual name of the
type class is prefixed with Some, ie. SomeString.

into the default C back-end. This is the task performed by the RPython Typer (RTyper).
RTyper, similar to the annotator, considers each block of the flow graphs in turn,

and performs analysis on each operation with its input arguments. It replaces each
high level operation with one or more low level operations, and assigns the specialised
low level type to the concretetype attribute of all the variables and constants in the
flow graphs.

RTyper converts the Python-like high level type annotation to the C-like Low
Level Type System (LLTS). In LLTS, there are primitive types such as Signed and
Unsigned integers, Float, Char, Bool and Void; container types such as Struct,
Array; and also other types such as Pointer, Function etc.

For operations, RTyper specialises high-level operations to LLTS operations based
on the argument types. For example, add is translated into int add if both operands
are integers, or a direct call to ll strconcat for concatenating two strings.
During this process, low level helper functions that implement method functions for
RPython types in LLTS are pulled in to the collection of flow graphs. They are also
annotated and specialised using LLTS.

LLTS also contains raw memory access types (e.g.. Address) and operations, and
some compiler intrinsics (e.g.. memcopy). These elements are mainly used in the im-
plementation of JIT and GC, but some are also used in the implementation of low
level helpers (e.g. the use of memcopy in ll strconcat). This has implications for
the MuPy back-end, and is discussed in Chapter 5.

3.3.2.1 Representation of classes and instances

RPython is object oriented, thus implementing the high level concept of classes and
instances using low level structs and pointers is an essential part of the translation
process. It also has implications for the hierarchical exception handling mechanism
in RPython, since it depends heavily on the class inheritance feature. It is thus worth
presenting the representation of classes and instances in RPython and LLTS.
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class A(object):
def __init__(self, a):
self.a = a

class B(A):
def __init__(self, a, b):
A.__init__(self, a)
self.b = b

(a)

struct object_vtable {
RuntimeTypeInfo * rtti;
Signed subclassrange_min;
Signed subclassrange_max;
RPyString * name; // A: "A", B: "B"
struct object * instantiate();

}

struct A_vtable {
struct object_vtable super;

}

struct B_vtable {
struct A_vtable super;

}

struct object {
struct object_vtable* typeptr;

}

struct A {
struct object super;
Signed inst_a;

}

struct B {
struct A super;
Signed inst_b;

}

(b)

Code 3.5: RPython LLTS class representation example. The classes defined in the
RPython source code (3.5a), are translated through LLTS to the shown struct defini-
tions in generated C code (3.5b).
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Classes in LLTS are represented using virtual tables. RPython only allows single
class inheritance. The root class object defines a virtual table that describes the
information about a subclass. Every subclass embeds the virtual table of its super class
in the field super. Thus it allows the virtual table be the header of any class structs.
Through pointer casting to the root object class, the class information header can be
accessed in every subclass.

The two fields worth noting are the subclassrange min and subclassrange max.
They are two integers computed to reflect the class hierarchy. The two fields are used
by the ll issubclass function to check whether a class is a subclass of another
class.

The instance struct of the root object class contains only a typeptr field. This
field points to the class struct of a subclass, allowing an instance of the subclass to
access its type information. Similar to the strategy used to describe the classes, the
instance struct of a subclass embeds the instance struct of its super class as a header.
Thus pointer casting is essential in accessing instance attributes across the class hier-
archy.

Code 3.5 shows an example of this representation strategy.
Only custom defined classes are represented in this way. All the classes (e.g..

StdOutBuffer) and built-in types (strings, lists etc.) of RPython do not have a vir-
tual table describing their class information.

An important assumption that RTyper makes is that all the variables in the flow
graphs should only contain ‘simple’ values, ie. primitives and Pointers. Thus all
instances of container types are heap objects referenced by pointers. The implication
of this is also discussed in Chapter 5.

3.4 Back-end optimisations and code generation

After type inference and specialisation, the level of abstraction in the flow graphs
has been brought much closer to the default C back-end. Before generating C code,
optional back-end optimisations and necessary exception and GC transformations are
to be performed.

The optional back-end optimisations perform static analysis and simplification on
the flow graphs. Inlining, for example, removes some small function calls and merges
the blocks in the callee into the graph of the caller. It also attempts to merge a sequence
of blocks that perform conditional branching on the same variable into one block that
has multiple exits based on the value of the exit switch. This transformation is useful,
since Mu offers a SWITCH instruction that branches to different code blocks depending
on the value of the switch variable.

After the optional back-end optimisations, the C back-end performs exception and
GC transformation, to include the implementation of exception handling and GC into
the flow graphs. More details about the RPython’s default exception transformation
strategy is discussed in Chapter 4. The details of GC transform is not, however, in-
cluded in the discussion of this thesis. This is because it is necessary to strip away any
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GC operations from RPython, leaving it to Mu’s built-in GC support.
After these transformations, the flow graphs are ready for C code generation. The

generated C code is combined with other hand-coded C back-end support code, and
compiled using a normal C compiler into machine executable code, thus reaching the
end goal of the compilation process.

3.5 Summary

RPython, as a statically typed, restricted subset of Python, provides high level abstrac-
tions over data and data structures that are helpful in writing language interpreters.
To bridge the semantic gap between RPython and the default back-end C, the transla-
tion process creates flow graph intermediate representation of the program and breaks
down the abstractions through various stages. It starts by constructing control flow
graphs from the RPython bytecode, then infers and annotates the types of the vari-
ables. To break down the abstraction of types and operations, RTyper specialises these
elements using LLTS that closely resembles C. Optional back-end optimisations can
then be performed on the typed graph to assist in code generation. The flow graphs
are put through exception and GC transformations and code generator to produce
a collection of C source files. These C files are compiled by normal C compilers, to
produce an executable file.

Having had an overview of the whole translation process, the next few chapters
introduce the stages in Mu back-end translation process that begins after the back-end
optimisation stage.
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Chapter 4

Control Flow Graph Transform

As presented in Chapter 3, RPython source code is turned into Control Flow Graphs
(CFGs). Mu IR and RPython CFG bear similar structures, that in both representations
the body of function definitions are made up of blocks containing operations/instruc-
tions. These similarities make the translation intuitive and straightforward, yet the
differences between the two representations need to be addressed. This chapter fo-
cuses on the process in bridging the difference between the two program structures,
and also discusses the translation of the exception handling mechanism as an impor-
tant task of this stage.

Section 4.1 gives a quick view of the Mu IR structure, highlighting the differences.
Section 4.2 briefly describes some necessary transformation procedures. Section 4.3
explores the RPython exception handling mechanism and the difference in implemen-
tation strategies by C and Mu back-end.

4.1 Mu IR program structure

Mu IR code bundles are made up of top level definitions such as types, constants,
global cells, and functions. Constants are values and global cells are spaces in the
global memory. Each entity in Mu has a globally unique identifier. The global name
(starts with ‘@’) of a local variable (starts with ‘%’) has the function name as the prefix.
Code 4.1 shows an example Mu IR code bundle.

Similar to RPython CFGs, Mu functions are made up of named blocks contain-
ing instructions. However, instead of explicit links that represent argument carrying
jumps, Mu terminates a block with explicit terminal instructions (e.g. branches, re-
turns, instruction with exception clauses etc.). Thus one of the tasks in transforming
the RPython CFG is to append terminal instructions to blocks.

Mu IR adopts SSA form instead of SSI. PHI instructions at the beginning of a block
corresponds to the � function of the SSA form at joint points. This also differs from
RPython’s implicit implementation of � and � functions.

21
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.typedef @i64 = int<64> // 64-bit int

.typedef @double = double

.typedef @void = void

.typedef @refvoid = ref<@void> // void reference

.const @i64_0 <@i64> = 0

.const @answer <@i64> = 42

.typedef @some_global_data_t = struct <@i64 @double @refvoid>

.global @some_global_data <@some_global_data_t> // a global cell contains a
struct

.funcsig @BinaryFunc = @i64 (@i64 @i64) // @i64 -> @i64 -> i64

.funcdecl @square_sum <@BinaryFunc> // declaration of an undefined
function

.funcdef @gcd VERSION @gcd_v1 <@BinaryFunc> (%a0 %b0) {
%entry:

BRANCH %head
%head:

%a = PHI <@i64> { %entry: %a0; %body: %b; }
%b = PHI <@i64> { %entry: %b0; %body: %b1; }
%z = EQ <@i64> %b @i64_0
BRANCH2 %z %exit %body

%body:
%b1 = SREM <@i64> %a %b
BRANCH %head

%exit:
RET <@i64> %a

}

Code 4.1: Example Mu IR code bundle.
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4.2 Transformation procedures

4.2.1 Necessary RPython back-end optimisations

RPython back-end optimisations are optional. However there are a few that are quite
useful and necessary for the graph transformation stage of MuPy.

4.2.1.1 No-op removal

RPython CFGs contain no-ops such as same as (a simple assignment of an SSA vari-
able to another). Such operations are redundant and cannot be translated since there
is no corresponding Mu instruction. Removing such operations also involves renam-
ing the subsequent uses of the result variable. It is thus convenient to take advantage
of the default RPython no-op removal routine to perform the task.

4.2.1.2 Exception raising operations to function call

LLTS explicitly distinguishes between operations that are guaranteed to succeed and
operations that may fail with an exception.

Mu does provide exception support for instructions, but it doesn’t quite match
the expectation of RPython. For example LLTS has an operation int add ovf that
raises an OverflowError when the addition result exceeds the length of int (32-
bit). But according to the specification of Mu, addition overflow is silently dealt with
by modulation according to the size of the operant type. Thus to correctly implement
such a mechanism, the MuPy back-end compiler needs to generate code for overflow
checking, this can be unnecessarily burdensome.

To simplify the translation process, this back-end optimisation can be used to take
advantage of the existing implementation of such operations in RPython. This opti-
misation turns all of the exception raising operations to a function call to the imple-
mentation function. This implies that all of the exceptions will be raised from a CALL
instruction, which may simplify some code analysis as well.

4.2.1.3 SSI to SSA conversion

RPython also conveniently provides the conversion between SSA and SSI form. Ac-
cording to the documentation, the function SSI to SSA renames the variables in the
flow graph in conformity to the SSA form. An alternative approach without using this
optimisation involves inserting PHI instructions at the beginning of every block, thus
emulating the renaming functionality of block input arguments. However, using the
provided SSI to SSA conversion optimisation significantly reduces the amount of PHI
instructions needed, resulting in a cleaner graph. Thus it is beneficial to utilise this
optimisation.
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4.2.2 MuPy graph transformation tasks

MuPy needs to implement graph transformation tasks that are not provided by RPython
back-end optimisations.

4.2.2.1 Forest pruning

Apart from the function graphs needed by the source program, RPython also includes
many other function graphs. These functions aim to serve as the entry point for the
executable target. These functions are not necessary, as the source program is loaded
and initialised by the launcher (see Chapter 6). Together with the program entry point
function, they form multiple roots when constructing a set of call tree from the func-
tion graphs. But in fact only the call trees formed by the program entry point is nec-
essary. The other trees can be pruned by removing their roots.

The graph chopping algorithm takes the graph of the actual program entry point
as the root, traverses the call tree and marks all of the function graphs that can be
reached. All of the other function graphs that cannot be reached are thrown away.
This thus produces a clean set of necessary graphs.

4.2.2.2 Terminal instructions

The flow between blocks in Mu functions is directed by the explicit branching instruc-
tions. Though this differs from RPython’s approach of using block exit links, it is
generally straightforward to translate the exit links into branching and return instruc-
tions. There are cases where the exit switch is not a binary boolean variable, resulting
in more than two exits (if...elif chain for a primitive type variable). Such cases
can be translated using SWITCH instructions.

There are also cases where the exit switch is last exception, denoting seman-
tics of exception handling. The translation of exception handling is discussed in Sec-
tion 4.3.

4.2.2.3 Transitional blocks

Since links in RPython can carry arguments, thus it is possible for two links to have
the same source and destination blocks yet carry different arguments, as shown in
Figure 4.2a. The PHI instruction in Mu assigns the value to the result variable based
on the incoming block. Thus in this case it cannot distinguish the different values that
come from the same block.

To resolve the issue, MuPy adds empty transitional blocks between the source
and destination blocks, thus distinguishing the different values by different incoming
blocks, as shown in Figure 4.2b.
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(a) (b)

Figure 4.2: Adding transitional blocks to break down the argument carrying link se-
mantics.

try:
raise_error_1()

except MyError as e:
print e.message

except IndexError:
print "Caught"

class MyError(Exception):
def __init__(self, msg):

self.message = msg

def raise_error_1():
raise MyError("1st msg")

Code 4.3: Example RPython code that uses exception handling.

4.3 Exception transform

RPython has a built-in hierarchical exception handling mechanism, using Python’s
try except construct and exception class hierarchy. This high level feature can give
great assistance to language implementation. Code 4.3 shows an example RPython
code that uses this feature.

4.3.1 Representing exception handling in a CFG

In RPython CFG, the exception handling semantics are expressed using a special exit
switch constant and different exit cases for out going links.

The special exit switch constant last exception denotes the exception occur-
rence at run-time by the last operation of the block. In each exit links of this block
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Figure 4.4: The corresponding CFG of Code 4.3 (some unrelated operations are ne-
glected for simplicity). Note that in the non-exceptional case it attempts to raise an
AssertionError. This is because Code 4.3 definitely raises an exception. Thus this
non-exceptional case is indeed ‘exceptional’ if it indeed gets taken.

the exitcase attribute is set to an exception type class, except the first link, whose
exitcase attribute is set to None to denote the non-exceptional path. The semantics
of the representation is that if an exception has happend, the implementation should
check through the links to find the matching exception path. To re-raise a thrown
exception that is not explicitly caught by this block, a link with the exitcase set to
the root exception type class Exception is appended at the end of the links, catching
such an exception, and directs the flow to the raise block to be re-raised.

There are two special variables, last exception and last exc value that ap-
pear as link arguments. They are assigned with the type class and value of the oc-
curred exception at run-time.

Each graph has a unique raise block that accepts as input arguments the exception
type class and value object. Though the block does not contain any operations, the
exception raising semantics is supposed to be specialised depending on the back-end.
Figure 4.4 illustrates these elements.

4.3.2 RPython exception transform

C does not support exception handling. Thus to specialise exception handling with
the semantics of C, the default RPython exception transformation procedure needs to
implement every detail. This includes the global exception data, function abnormal
returns, exception occurrence checking, catching, type matching, exception re-raising
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Figure 4.5: Illustration of RPython exception transformed CFG in Figure 4.4 (some
of the operations have been reformatted to save space). blk0 checks the occurrence
of exception after calling an exception raising function. blk3 retrieves the excep-
tion information and zeros the global struct. blk3 also, along with blk4, checks the
caught exception type, and performs the corresponding operation in blk6 and blk9
if a matching is found. blk6 and 9 checks the occurrence of exception after the call
to rpython print item, which may throw exceptions due to the call to the string
concatenation function. If an exception has occurred, it records the debug trace and
returns abnormally.
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and stack unwinding.
When raising an exception in a callee, the default strategy packs the exception type

and value into a global ExcData struct through the rpyexc raise function. Then
the callee function returns with an abnormal value to direct the flow back to the caller.

The caller function then checks the occurrence of the exception by checking ex-
ception type pointer stored in the global ExcData struct. If the pointer is non-zero
(non-NULL), which means an exception has been raised, the caller branches to a series
of blocks that retrieve the exception information and check the matching exception
type using the ll issubclass function.

This is a straightforward and intuitive approach to implement exception handling
in C. Such an approach can be easily translated to Mu, but it will not take advantage
of the exception catching feature that Mu provides, which is intended to support the
exception handling feature of client languages.

4.3.3 MuPy exception transformation

4.3.3.1 Exception handing in Mu

Mu provides its exception catching feature using two instructions, THROW and LANDINGPAD,
and exception control clause in the some other instructions (such as CALL).

The THROW instruction takes a reference to any type, and throws it as the excep-
tion object. The LANDINGPAD instruction catches the thrown exception object as a
void reference (since it does not know the exception object type) at the start of a ex-
ception handling block. The program can then cast the reference using the REFCAST
instruction to uncover the exception information. Instructions such CALL, NEW etc.
can have an optional exception clause that specify the normal and exception flow.

Therefore what Mu offers essentially is the throwing and catching of exception ob-
jects, the mechanism to interrupt program execution, normal and exceptional flows,
and stack unwinding. Grounded on such support, the language client can then focus
on the representation of exception objects and exception type hierarchy. This echoes
the goal of Mu to hide the implementation details of low level mechanisms, thus free-
ing the language designers to focus on the higher level language features.

4.3.3.2 Transformation strategy

Building on the support of exception catching from Mu, the tasks left for MuPy to do
are to create instructions to initialise the exception object, and the blocks of catching
and checking the matching exception types.

Since Mu can only throw one object reference as the exception object, a similar
strategy of packing the exception type and value into a single struct (MuPyExcData)
can be adopted. A pack block is created to allocate a struct of this type on the heap
and pack the exception type and value, before passing the packed object reference
to the exception raising site (i.e. the unique raise block in a flow graph). A THROW
instruction is placed in the raise block to interrupt the program execution and throw
the initialised MuPyExcData object.
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Figure 4.6: CFG after MuPy exception transform. The EXC clause in blk0 specifies
that the normal and exceptional paths are directed to blk1 and blk2 respectively.
blk1 packs the exception type and value and pass the package to raise block (blk10).
blk2 catches the thrown exception with a LANDINGPAD instruction, and casts the
exception object pointer into MuPyExcData struct reference. blk3 and blk4 checks
the type of the caught exception. If the thrown exception fails to match, it is passed to
blk10 to be re-raised.



30 Control Flow Graph Transform

At the call site of the caller, MuPy defines an EXC clause to the CALL instruction to
direct the exceptional flow to a series of exception catching and process blocks. MuPy
catches the thrown exception using the LANDINGPAD instruction, and REFCASTs it to
uncover the exception information. Then, like RPython, a series of blocks are created
to check the exception type using the ll issubclass function call. To re-raise the
exception, the flow is directed to the raise block with the caught exception data, by
passing the pack block. Figure 4.6 illustrates this strategy. 1

In RPython, exception transformation is performed after the optional back-end
optimisations as part of the C code generation stage. However MuPy puts the excep-
tion transformation before back-end optimisations. The reason for the decision is that
the MuPy exception transformation generates helper functions; these functions, along
with the other functions, need to pass through the same back-end optimisations, due
to the reliance of the many convenient and necessary optimisations to simplify and
clean the CFG. This decision also has draw backs, since the MuPy exception transfor-
mation breaks some rules about the flow graph model that are enforced by RPython.
It could be left as a future work to explore this decision further.

4.4 Summary

The similarity in structure between RPython CFG and Mu program structure gives a
good starting point for translation. The difference in the graph structures can also be
easily bridged.

Many simplification, transformation and cleaning tasks can be done by utilising
the RPython back-end optimisations. These include no-op removal, converting ex-
ception raising operations to function calls to relieve the compiler of implementation
detail, and SSI to SSA transformation.

There are still other cleanning tasks to be done by MuPy. These include pruning
out the graphs unreachable from the program entry point, leaving a clean set of only
necessary function graphs.

One of the transformation tasks is inserting the transitional blocks. The links in
RPython CFG contains additional semantics that allow two links to have the same
source and target yet carrying different arguments. This cannot be directly translated
to Mu according to the current IR specification. Inserting transitional blocks bridges
the differences.

RPython exception transformation is implemented based on the assumption that
the target language does not have exception handling and program interruption sup-
port. This causes the transformation process to implement every detail of hierarchical
exception handling. However, by adopting Mu’s exception catching mechanism, this
can be done more easily and efficiently. Mu’s support of exception catching removes

1Note that the call to rpython print item function in blk9 does not generate checking on the
exception occurrence. This is based on the assumption that when an exception clause is not specified to
a CALL instruction and an exception is thrown down the call stack, Mu will automatically unwind the
stack to search for an exception catch at a higher level. Such assumption does not hold generally for all
exception raising instructions, but it holds for CALL instruction[Mu Spec ].
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the need to implement the low level details, allowing the translation framework to
implement higher level features such as exception objects and type hierarchies.

Having the graph transformed into the structure that fits well with the Mu func-
tion definition, the next chapter explores the translation for the rest of the elements in
the graph, ie. types, operations and constants.
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Chapter 5

Mu Typer

One of the core tasks in the translation process is the translation of the type system.
RPython uses the RTyper to translate the high level Python-like type annotations to
the low level C-like Low Level Type System. Taking the idea from RTyper, MuPy uses
the MuTyper to translate the Low Level Type System (LLTS) to the Mu Type System
(MuTS). This is done in three subtasks: mapping the type system, translating the con-
stant values and initialised heap objects, and the operations. This chapter describes
these three subtasks, presents the issues encountered, and discusses the potential ap-
proaches, along with the impact that the discovery of these issues has brought on the
research of Mu.

Section 5.1 describes the mapping of type system and discusses the differences.
Section 5.2 describes the translation of values, discusses the problem of heap object
initialisation, and how it has served as a motivation for Mu to include HAIL in the
recent specification. Section 5.3 describes the specialisation of operations, and specif-
ically discusses the problem of direct memory access operations and some compiler
intrinsics, and how this problem has led to the MuNI feature being developed.

5.1 Mapping the type system

Just as RTyper specialises the Python-like type annotation to LLTS, MuTyper iterates
through the variables and constants in the flow graphs, and ‘specialises’ their type
recursively from LLTS to MuTS. Though LLTS is C-like, many elements in LLTS have
a direct MuTS counterpart. A possible mapping between LLTS to MuTS is shown in
Table 5.1.

5.1.1 Discussion and issues

5.1.1.1 Variable sized Structs

In MuTS, the only variable sized type is hybrid, the size of all the other types are
fixed into the type definition at compile time. Consequently also, structs are not al-
lowed to contain any hybrid fields. However, in LLTS, Structs are allowed to con-
tain one trailing Array field, thus can be made variable size. Such cases (e.g. strings
in RPython) need to be translated into hybrids. To map a variable sized Struct to
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LLTS MuTS
Signed int<32>
Unsigned int<32>
SignedLongLong int<64>
UnsignedLongLong int<64>
Char int<8>
Bool int<1>
Float float
SingleFloat float
LongFloat double
Void void
Struct struct
FixedSizeArray array
Array<T> hybrid <int<64> T>
Ptr<T> ref<T>
Ptr<FuncType> funcref
Address ptr

Table 5.1: Low Level Type System types and their corresponding Mu Type System
types.

hybrid, MuPy takes out the non-array fields to form a header struct, and set it to
be the fixed part of hybrid. An additional 64-bit integer (int<64>) field is added to
the header to store the length information. Figure 5.1a and 5.1c illustrate an example
of mapping the string type.

5.1.1.2 Ptr and Address

Since LLTS is C-like, and GC is implemented separately, the only reference type is
pointer (Ptr). This type is an object reference, it has, to some degree, liveness seman-
tics. That is, it should always point to an alive object. Thus it should be translated
into ref type in Mu, with the implied GC and liveness semantics. In the RPython’s
description of memory layout, there is a definition of the type Address as one of the
Primitives. This type can be cased from Ptr using the cast ptr to adr function.
It does not have liveness semantics, it represents simply a memory address.

This type is useful for implementing GC, JIT and other features that require raw
memory access. However, with the use of some compiler intrinsics (e.g. raw memcopy,
see Section 5.3.2), this type also appears in the flow graphs of essential language fea-
ture functions.

One of such use is in the implementation of the copy string contents func-
tion, used by the string concatenation function ll strconcat. According to the
documentation in the code, after casting the Ptr to Address, no GC operations are
allowed to happen until the raw memcopy operation finishes. This prevents the GC
from moving the string in memory, invalidating the address value.

Mu used to not have a type that provides the same semantics. Essentially there
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was no type in Mu that prevents GC from moving the object. This problem led to the
discussion of expanding MuTS to support such need by some language clients. In the
most recent version of Mu specification, Mu Native Interface (MuNI) is introduced. It
includes the type ptr that is isomorphic to the Address type, and the object pinning
semantics that fixes the location of an object in the heap to prevent GC from moving
it. This opens up new strategies in translating the raw memory access features in
RPython. This issue and the impact of MuNI is further discussed in Section 5.3.2.

There also other types not used by the core of RPython, but used in different
RPython library modules, such as r uint for arithmetic. It would be part of the
future work to research the translation of these types and their modules.

5.2 Global cells and initialsed heap objects

5.2.1 Constant to Global Cells

In RPython CFG, many initialised object instances (e.g. StdOutBuffer, strings), are
represented as Ptr referenced Constant objects. This means that they are heap ob-
jects. Their content values are represented using a set of value types that reflect the
structure of LLTS. These LLTS values are recursively mapped to a MuTS value model.
Figure 5.1b and 5.1d illustrate the representation of a string reference in LLTS and
MuTS value model respectively.

The concept of a constant in Mu differs from the concept of a ‘constant’ in RPython
CFG. These heap objects are represented using Constant in the flow graph because
their reference pointer value is assumed to be an initialised global value that can not
be changed, though the objects they point to can be modified. However, in Mu, con-
stants are values. They are not stored in the heap or the stack, but rather temporarily
in registers. Though Mu allows structs and arrays (fixed sizes) to be constants,
it does not allow references (ref) to be constants. The alternative would essentially
render the heap object immortal, and defeats the purpose of garbage collection (espe-
cially in the case of strings.)

These global heap objects in RPython CFG best correspond to the global cells in
Mu. These global cells are memory allocation units in the global memory. They are
designed to be the counterparts of static or global variables in C/C++ [Mu Spec ], and
thus fit well with heap objects.

To access the content stored in a global cell, it is necessary to use the LOAD instruc-
tion to load it into an SSA variable. Thus MuPy inserts several LOAD instructions at
the entry of the function that refers to these global heap objects. The heap object con-
stants in the graph are also replaced with the SSA variable that contains the loaded
content.

5.2.2 Heap object initialisation

To store objects in global cells, they first need to be initialised. However the RPython
CFG does not provide any routines that lay out the operations to initialise them. This
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Figure 5.1: An example of the representation of the type and instance object of the
string "MuPy" in LLTS and MuTS.



§5.3 Mapping the instructions 37

thus raises the issue of heap object initialisation. Mu used to not have any support for
this task, all the initialisations need to be done using instructions.

There are two approaches to initialising heap objects and storing them in global
cells. One is to generate a bundle entry point function that contains a list of instruc-
tions to initialise all the global memory cells. The bundle entry point function can then
call the program entry function to start the program, and terminate the program with
the uvm.thread exit instruction after the call returns. This is the approach cur-
rently adopted by MuPy, taking advantage of the fact that all the information about
the heap object is held in memory during the translation process. It also enables the
bundle entry point to have top level control over the program. For example, top level
exception handling blocks can be added to catch exceptions thrown in the program
that is not explicitly caught, and process them accordingly. However, the drawback
of this approach is that it significantly increases the size of the code bundle. Depend-
ing on the complexity and amount of the objects, the initialisation routine can occupy
20% ⇠ 50% (line count) of the generated code. 1.

Another approach is to let the language client to handle this task. In addition
to the IR code bundle, the compiler also generates another file that contains a list of
global cell specifications. With such information, the MuPy language client launcher
can construct the heap objects and store them into these global cells. However defin-
ing a language that describes the heap object layout and developing a parser for the
language can be complex. Thus this approach is not taken by the current version of
MuPy.

This need for heap object initialisation support motivated Mu to put forward a
Heap Allocation and Initialisation Language (HAIL) in the most recent specification [Mu
Spec ]. With HAIL, the difficulty of the second approach is been handled. Based on
the known type definition, HAIL provides a standard, Mu-like way of allocating the
memory for global cells and initialise their contents. It thus opens up a new and
space-efficient way to be explored and integrated into MuPy in the future.

5.3 Mapping the instructions

Similar to RTyper, MuTyper also translates and specialises the LLTS operations. Each
LLTS operation corresponds to one or more Mu instructions.

LLTS operations are categorised into:

• numeric operations: arithmetic on different numeric types, and their conver-
sions;

• pointer operations: memory allocation and management, memory access via
pointer references, and pointer casting;

• address operations: operations on the Address type, including some intrinsics;

• JIT operations: RPython JIT related operations;
1Measurements and estimation taken from the sample and testing programs during development.
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• GC operations: used by different GCs;

• JIT & GC interactions: only used by some GCs;

• weak reference operations: operate on weak references in the LLTS memory
model;

• debugging operations: debug information recording; and

• miscellaneous operations.

5.3.1 Translating essential operations

RPython, as a compilation framework, includes implementations of GC and a meta-
tracing JIT. However since Mu already provides GC and JIT, MuPy seeks to strip
away these elements from RPython, and focuses only on the language features. Thus
the only operations that need to be translated are some of the numeric operations
(the over flow checking operations have been converted into function calls using the
RPython back-end optimisations), some of the pointer operations and some address
operations.

The translation of numeric operations is generally straightforward. Some of the
operations involves introducing extra constants (eg. int neg(x) ⌘ 0 - x). Since
constants in Mu are referred to via globally unique identifiers, MuPy employs a global
symbol table to keep track of the known mapping between LLTS constant values and
Mu constants. MuPy can thus look up a known Mu constant by the desired constant
type and value;

The LLTS pointer type, Ptr, is mapped to the general heap reference type ref
in Mu. In Mu, access to the referenced object needs to be done using internal refer-
ences. These internal references can be obtained from its general reference using the
GETIREF instruction. Thus a context-free translation of the pointer operations causes
all the resulting instruction sequences prefixed with GETIREF instructions. Compiler
optimisations can be applied in the future to perform static analysis on the code to
remove redundant GETIREF and other internal reference manipulation instructions,
leaving only the essential ones, since these internal references only need to be obtained
once.

Since the variable sized RPython Struct types are mapped to hybrid type, the
operations that act on these Structs also need to be translated differently. The opera-
tions that access the non-array fields of these Structs (getfield, setfield), need
to be translated into a sequence of instructions that access the fixed header part of the
hybrid type; and the operations that access the array field (getinteriorfield,
setinteriorfield) need to be translated into sequences of instructions that access
the variable array part.
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5.3.2 Raw memory access operations and Mu Native Interface

The address operations act on the Address types. They are used by the RPython
JIT, GC implementations, and some RPython standard libraries. Some of the address
operations are compiler intrinsics. Take raw memcopy as an example, it is translated
into the C OP RAW MEMCOPY macro. Combined with the source code in the C back-
end, this operation is directly mapped to the memcpy C standard library call.

Initially, these operations could not be translated, since the Address type used
to not have an equivalent type in Mu. Though they mostly appear in JIT and GC
modules, which are out of scope of MuPy, some of them do appear in implementation
of essential elements such as strings to achieve highly efficient memory copying.

The strategy that MuPy currently implement is to rewrite functions such as ll strconcat,
and replace the use of these compiler intrinsics with functionally equivalent imitations
(e.g. looping through the elements and copy them one by one). Compared to using the
standard C library, this approach has significant performance cost from interpreting
these high level instructions. Though it is likely that the Mu JIT will compile these hot
loops into machine code to raise the performance at run time, it is still not ideal, and
the cost of warming up the JIT still needs to be paid.

It is argued that Mu IR compiler can possibly observe such pattern and translate
them in a more efficient way, even optimising them using memcpy, but it increases the
complexity of the compiler. Another approach is to implement a ‘Mu standard library’
that provides the C Standard Library functions such as memcpy in Mu IR form. But
this proposal has yet been put to implementation.

It was possible to use the CCALL instruction to call the C Standard Library func-
tions. However it wasn’t mature enough and did not support raw memory access
types. To translate the compiler intrinsics into CCALL instruction, it was necessary
to navigate through the other raw memory access operations that prepare the intrin-
sic call, and translate them without loosing functionality. This was an unnecessarily
complex task, and is thus not desirable.

The issue of raw memory access raised the need for a native interface, and prompted
the Mu research team to reconsider the design of Mu. The discussion touched on the
possibility of adding a raw memory reference type ptr, and the semantics of object
pinning. This eventually led to expansion of the design of Mu to include the Mu Na-
tive Interface (MuNI) in the most recent specification. MuNI is a light-weight unsafe
interface through which Mu IR programs are able communicate with native programs
[?]. This enables the language client to call the system libraries and libraries written
in other languages, thus extends the power of Mu and opens up new possibilities.

Via MuNI, these compiler intrinsics can be directly translated into standard C li-
brary function calls, thus resulting in more efficient code. This will be an exciting
research to be done in the future.
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5.4 Summary

Many essential types in LLTS have a direct counterpart, thus the translation of these
types is straightforward. Structs in LLTS may contain a variable sized array field, in
which case they are to be translated into hybrid type. Apart from the essential types,
there are also types such as Address that involves direct memory address. At the
time when the research was performed, there was no suitable corresponding types in
Mu. But the newly introduced Mu Native Interface in the most recent specification
opens up a new possibility. This can be further explored in the future.

Initialised heap objects are represented using Constants in RPython CFG. They
can not be translated as constants in Mu, but as global cells. These heap objects need
to be initialised in the heap and stored in the global cells before the start of the pro-
gram. Since RPython does not generate code to initialise these objects, this pokes the
question of how these heap objects are to be initialised. The current approach is to
create an initialisation routine as the bundle entry point and use the the Mu IR code
to initialise these objects. However, being motivated by this issue, the HAIL language
has been included in the most recent specification of Mu. It is left to the work in the
future to utilise this feature.

Since Mu provides built-in GC and JIT, MuPy attempts to remove these compo-
nents from RPython. Thus the instructions apart from the numeric, pointer and ad-
dress operations can be ignored. Some RPython compiler intrinsics in the address
operations are used in the implementation of some RPython language elements such
as strings and standard libraries. These used to not being able to be directly translated.
The current approach is to rewrite the helper functions to imitate the functionality of
these intrinsics. But this suffers from significant performance cost from interpreting
Mu IR code. This prompted the research of expanding the design of Mu to include
MuNI, allowing the these intrinsics to be translated into C standard library calls. The
utilisation of this feature is also left to future work.

After the MuTyper stage, the core translation tasks are completed. Code genera-
tion follows straightforwardly from the structure, and is thus omitted in this thesis.
The next chapter introduces the language client and launcher for executing the trans-
lated program bundles.



Chapter 6

MuPy Client

With the Mu back-end now being integrated into the RPython translation process,
program targets written in RPython can now be translated into Mu IR bundles. For
the Mu IR bundle to run on Mu, a language client is required as a thin layer on top of
Mu to manage the execution environment and respond to the interaction events such
as traps. This chapter explores some of the aspects in developing such a language
client.

Section 6.1 introduces the launcher, the part of the language client that loads the
program bundle and sets up the execution environment. Section 6.2 discusses the
strategies of implementing I/O, focusing especially on the print output.

6.1 Launcher

The task of the launcher is to load the program bundle, initialise the execution envi-
ronment (Mu instance, threads, stacks, trap handlers etc.) and launch the program
execution. The launcher, as part of the language client, uses the client API to interact
with Mu. The artefact is currently written in Scala, since the available implementation
of Mu and the client interface is also written in Scala.

The task for the launcher is straightforward, and is generally the same for other
language clients. However there are some language specific aspects that need to be
addressed.

6.1.1 Command-line arguments

One aspect that is worth addressing is the initialisation of command-line arguments.
RPython, like Python and many other languages, treats the command arguments

as a list of strings. However, due to the different object layout and representations,
each language may represent this list object differently. RPython expects this list of
string arguments to be a pointer to a variable sized struct containing the length and
an array of strings in the heap. Figure 6.1 illustrates this type in LLTS. It is straightfor-
ward to deduce the corresponding MuTS type, or by simply inspecting the program
bundle.

41
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Figure 6.1: LLTS representation of the type of list of strings.

Scala takes the command-line arguments as an array of strings (Array[String]).
It is relatively straightforward to construct the list of strings object using the client API.

6.1.2 Trap handler

Traps (TRAP and WATCHPOINT) pause the program execution and initiates a context
switch back to the language client. A registered trap handler is used to handle these
program traps. This mechanism can be used for debugging, introspection, and client-
Mu interaction. The use of traps can be explored in future work, however at the
moment this mechanism is mainly used to implement I/O.

6.2 I/O & print magic

6.2.1 Approaches to I/O

Implementing I/O can be a bit tricky, because the program needs to interact with the
outside world.

RPython contains its own implementation of the os module that uses the RPython
Foreign Function Interface (RFFI) allowing RPython code to call arbitrary C func-
tions. In the os module, RPython redirects the os.write function to its own im-
plementation, os write llimpl. This function is renamed to ll os.ll os write
in the direct call operations as the callee argument. In the implementation of
rpython print newline function, where the print output is to be made, RPython
performs a call to os.write in the source code. This in turn uses the RFFI mod-
ule to call the write system call, thus writing the buffer content to the desired file
descriptor.
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There are two general approaches to translate this implementation of print output.
One is to do a system call from Mu IR, via MuNI and the CCALL instruction. Another
is to use a trap to switch the context back to the language client, and let the language
client handle the I/O with the operating system.

The benefit of the first approach is that it is closer to the RPython implementation,
as both use some sort of native interface to perform a write system call. But there are
also two main obstacles to this approach. One is that the adoption of this approach
involves rewriting the RPython implementation of the os module (or providing an
alternate version) that can be translated using MuNI. This could involve a lot of work.
Another is that when the issue was first encountered, MuNI has not yet been put
forward, and the CCALL instruction has not yet matured. But now as MuNI had been
included in the recent specification, this path is open to be explored, as part of the
future work.

The latter approach is slightly easier, and is the current adopted approach.

6.2.2 TRAP & print Magic

To implement the print output using the second approach, MuPy uses a ‘print magic’.
Essentially, the goal is to insert a TRAP instruction when the print function is called.

Simply removing the os.write call from rpython print newline and inserting
an instruction to the function graph during the Mu back-end processing stages is a
possible approach. However it suffers greatly when the inlining RPython back-end
optimisation is turned on. Due to the short function body, the rpython print newline
function graph is always inlined. Thus when the Mu back-end receives the control
flow graphs as input, it is impossible to tell where to insert the trap instruction.

Alternatively MuPy can employ a ‘magic trick’. Instead of removing the os.write
call in the source code, during the graph transformation stage, Mu searches the graphs
to find this call operation (i.e. direct call operation with ll os.ll os write be-
ing its callee), and replaces the name of the operation with mu magic trap and the
callee with the magic string "mu printline" 1. This special magic operation can
then be caught in the MuTyper stage, and directly translated to a call to the con-
structed function mu printline that contains only a TRAP and a RETVOID in-
struction.

In the launcher, MuPy defines a trap handler that checks this trap instruction.
When found, it will grab the string that is kept alive on the stack, retrieves the in-
formation and reconstruct string, and print it out using the JVM print method call.

The reason to convert the print magic operation into the call to mu printline
function instead of directly translating into a TRAP instruction is to unify the trap site.
The trap handler in the launcher essentially matches the globally unique ID of the
trap instruction. This global unique ID is made up of the function ID and the ID of
the result variable. If inlining is turned on and the print trap is scattered in multiple

1The reason for changing not only the callee, but also the name of the operation to mu magic trap is
primarily to accommodate for the graph chopping algorithm. In this way, when the chopping algorithm
searches for direct call operations, this operation is skipped.
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places, it is difficult to correctly identify the these print traps from traps for other
purposes.

6.3 Milestones achieved

The RPython client is now able to successfully translate many essential features of
RPython, such as integer and floating point arithmetic, strings, classes and instances,
exception handling and print output. The RPython adapted version of GC Bench-
mark [Ellis et al. ] (see Appendix A) that combines some of these elements has been
successfully translated as a milestone. Thus Mu now has a complete working system
that can run basic RPython programs.

6.4 Summary

The language client, in this case the MuPy client, is a thin layer between Mu and the
RPython language. It contains a launcher that loads the MuPy bundle, constructs a
RPython compatible representation of the list of strings for the command line argu-
ments, and launches the bundle program based on the predefined bundle entry point
function. It also contains trap handlers to respond to the I/O events.

Currently MuPy implements print output using the TRAP instruction, and lets the
language client perform the printing. However, with the help of MuNI introduced
in the recent specification, it is possible to translate the print output using a write
system call. This is to be explored in the future.

Thus it has reached the end of the translation process. The next chapter outlines
future work that can be done and concludes the thesis.
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Conclusion

7.1 Future Work

7.1.1 Adopting the recent Mu specification

As presented in the previous chapters, the issues encountered during the develop-
ment of MuPy have motivated Mu to extend its design with additional features such
as HAIL and MuNI. These additional features open up new ways of translating the
elements in RPython. Thus part of future development is to incorporate these into the
MuPy translation process.

A part of the work would be to incorporate MuNI into existing RPython frame-
work. This potentially involves rewriting the RFFI module, or developing an alter-
native MuNI module for RPython. All other modules that use RFFI will also need
to be rewritten. This could cost much time and energy. More research needs to be
conducted to investigate the RFFI module and then develop an appropriate strategy.

7.1.2 Language interpreters

The implementation of many languages have been made using RPython. These im-
plementations are important goals for the MuPy project. The first goal would be to
translate the RPython interpreter for SOM onto Mu. Then the other language imple-
mentations such as Pycket, RPython Haskell etc. are the next targets.

The RPython standard library contains modules that are useful for developing
language interpreters. Thus an important goal before the successful translation of
language interpreters, would be to successfully translate the standard library. This
subgoal however, is still built on important language features, thus making the re-
search into utilising the MuNI is of top priority.

7.1.3 Type specialisation from annotation

The current approach of type translation in MuPy depends heavily on the LLTS type
specialisation by RTyper. Though most essential types and their operations can be
translated, there are still imperfections such as the address types and operations, re-
dundant GC and JIT operations, etc. Since LLTS is C-like, it is unaware of the different
types in MuTS, and thus can not fully utilise them.
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The possibility of specialising the types directly from the type annotations was
considered. But the potential work that is involved could be huge, since the task
would essentially involve building another type system (MuTS) apart from LLTS.

Thus more research needs to be done to evaluate the cost and benefit of such ap-
proach.

7.1.4 Extending the RPython language

RPython is a compilation framework. The current C backend limits some of the fea-
tures and scopes of RPython. Mu offers many useful features such as threading,
stacks, OSR, and possibly multiple return values in the future. Thus it is possible
to extend the RPython language to utilise these features better.

One direction in which all this research is heading is to make MuPy a thin layer
above Mu IR, combining both the high level abstraction offered by RPython and the
powerful features offered by Mu. MuPy and Mu can thus become a favoured lan-
guage and platform to develop language implementations.

7.2 Conclusion

To test the claims and concept of Micro Virtual Machines, a back-end for the RPython
compilation framework targeting the Mu Micro Virtual Machine and a language client
have been developed. This back-end is able to translate many essential features of
RPython, such as integer and floating point arithmetic, strings, classes, exception han-
dling etc., and has successfully translated the GC benchmark.

The translation process of Mu back-end transforms the RPython CFG represen-
tation of the program in conformity of the Mu program structure, and also utilises
the exception catching mechanism offered by Mu to specialise the RPython exception
handling feature. MuTyper translates the type of variables in LLTS to MuTS, along
with the operations. Through these processes, the Mu back-end bridges the differ-
ences between the RPython intermediate representation and Mu IR.

There were many issues encountered throughout the development of the MuPy
project, including the heap object initialisation, raw memory access types and instruc-
tions, among others. Some of these expose the imperfections of the design of Mu and
have served as great contributions to the purpose of testing the platform. Thus these
issues have motivated Mu to extend its capabilities and include multiple features that
provide useful support for its language clients.

There are still many milestones ahead for MuPy motivated by the growing support
from Mu. As the research of MuPy and Mu goes forward together, they will open up
many new exciting possibilities for the implementation of programming languages.

In conclusion, through the development of the RPython language client for Mu,
I have tested the design and claim of Mu and found it as a promising and desirable
platform to support modern managed languages.
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GC Benchmark code in RPython

"""
RPython version of GC Benchmark.

The original benchmark was written by John Ellis and Pete Kovac of Post
Communications.

It was then heavily modified by Hans Boehm, then at SGI.
"""

class Node:
def __init__(self, l=None, r=None):

self.left = l
self.right = r

TREE_DEPTH_STRETCH = 18
TREE_DEPTH_LONGLIVED = 16
TREE_DEPTH_MIN = 4
TREE_DEPTH_MAX = 16
ARRAY_SIZE = 500000

def tree_size(i):
return (1 << (i + 1)) - 1

def num_iters(i):
return 2 * tree_size(TREE_DEPTH_STRETCH) / tree_size(i)

def populate(depth, node):
if depth > 0:

depth -= 1
node.left = Node()
node.right = Node()
populate(depth, node.left)
populate(depth, node.right)

def make_tree(depth):
if depth <= 0:

return Node()
else:

return Node(make_tree(depth - 1), make_tree(depth - 1))
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def gcbench(argv):
print "Garbage Collector Test"
print " Stretching memory with a binary tree of depth", TREE_DEPTH_STRETCH

# Strech the memory space quickly
temp_tree = make_tree(TREE_DEPTH_STRETCH)
temp_tree = None

# Create a long lived object
print " Creating a long-lived binary tree of depth", TREE_DEPTH_LONGLIVED
ll_tree = Node()
populate(TREE_DEPTH_LONGLIVED, ll_tree)

# Create long-lived array, filling half of it
print " Creating a long-lived array of", ARRAY_SIZE, "floating point numbers"
array = [0.0] * ARRAY_SIZE
for i in range(1, ARRAY_SIZE / 2):

array[i] = 1.0 / i

return 0

def target(*args):
return gcbench, None



Bibliography

ANANIAN, C. S. AND RINARD, M. 1999. Static single information form. Technical
report, MASTER’S THESIS, MASSACHUSSETS INSTITUTE OF TECHNOLOGY.
(p. 14)

BAUMAN, S., BOLZ, C. F., HIRSCHFELD, R., KIRILICHEV, V., PAPE, T., SIEK, J. G.,
AND TOBIN-HOCHSTADT, S. 2015. Pycket: A tracing jit for a functional lan-
guage. In Proceedings of the 20th ACM SIGPLAN International Conference on Functional
Programming, ICFP 2015 (New York, NY, USA, 2015), pp. 22–34. ACM. (p. 8)

BEHRENS, S. 2008. Concurrency and python. (p. 5)

BOLZ, C. F. AND TRATT, L. 2015. The impact of meta-tracing on vm design and
implementation. SCICO, 408–421. (p. 8)

CASTANOS, J., EDELSOHN, D., ISHIZAKI, K., NAGPURKAR, P., NAKATANI, T., OGA-
SAWARA, T., AND WU, P. 2012. On the benefits and pitfalls of extending a
statically typed language jit compiler for dynamic scripting languages. SIGPLAN
Not. 47, 10 (Oct.), 195–212. (pp. 1, 6)

ELLIS, J., KOVAC, P., AND BOEHM, H. An artificial garbage collection benchmark.
http://hboehm.info/gc/gc_bench.html. (pp. 3, 44)

Emscripten. Emscripten documentation. http://kripken.github.io/
emscripten-site/. (p. 8)

HAGER, S. Implementing the r language using rpython. Master’s thesis, Heinrich
Heine University Düsseldorf. (p. 8)
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