
Micro Virtual Machines:
A Solid Foundation for Managed

Language Implementation

Kunshan Wang

A thesis submitted for the degree of
Doctor of Philosophy

The Australian National University

September 2018

c© Kunshan Wang 2018

Except where otherwise indicated, this thesis is my own original work.

Kunshan Wang
13 September 2018

to my parents and my grandparents

Acknowledgments

I would like to express my gratitude to the individuals and organisations that gener-
ously supported me during the course of my PhD.

First and foremost, I would like to thank my supervisor Prof. Steve Blackburn,
and my advisors Prof. Antony Hosking and Dr. Michael Norrish, who supported me
with their foresight, expertise, experience, guidance and patience. This thesis would
not be possible without their continued support.

I would like to thank the Chinese government, the Australian National University
and Data61 (formerly NICTA), who supported me financially. I would also like to
thank my master supervisor Prof. Zhendong Niu, who guided me during my study
in China and supported my study overseas.

I would like to thank my colleagues. Thank you Vivek Kumar, Ting Cao, Rifat
Shahriyah, Xi Yang, Tiejun Gao, Yi Lin, Luke Angove, Javad Ebrahimian Amiri, and
all other members of the Computer Systems Research Group. Your talent and friend-
liness made my study in the ANU enjoyable. Special thanks to Yin Yan, a visiting
student, who accompanied me and restored my hope when I was overwhelmed by
despair.

I would like to thank John Zhang, Nathan Young, Andrew Hall, who made
contributions to the Mu project as Honours students or Summer scholars. It is my
honour to work with you.

I would like to thank Prof. Eliot Moss at the University of Massachusetts, and all
researchers who collaborated in the development of the Mu project. Your feedback
and suggestions helped us make greater progress.

Finally I would like to thank my parents who supported me selflessly in my life
and my study.

vii

Abstract

Today new programming languages proliferate, but many of them suffer from poor
performance and inscrutable semantics. We assert that the root of many of the perfor-
mance and semantic problems of today’s languages is that language implementation
is extremely difficult. This thesis addresses the fundamental challenges of efficiently
developing high-level managed languages.

Modern high-level languages provide abstractions over execution, memory man-
agement and concurrency. It requires enormous intellectual capability and engineer-
ing effort to properly manage these concerns. Lacking such resources, developers
usually choose naïve implementation approaches in the early stages of language de-
sign, a strategy which too often has long-term consequences, hindering the future
development of the language. Existing language development platforms have failed
to provide the right level of abstraction, and forced implementers to reinvent low-level
mechanisms in order to obtain performance.

My thesis is that the introduction of micro virtual machines will allow the devel-
opment of higher-quality, high-performance managed languages.

The first contribution of this thesis is the design of Mu, with the specification of
Mu as the main outcome. Mu is the first micro virtual machine, a robust, performant,
and light-weight abstraction over just three concerns: execution, concurrency and
garbage collection. Such a foundation attacks three of the most fundamental and
challenging issues that face existing language designs and implementations, leaving
the language implementers free to focus on the higher levels of their language design.

The second contribution is an in-depth analysis of on-stack replacement and its
efficient implementation. This low-level mechanism underpins run-time feedback-
directed optimisation, which is key to the efficient implementation of dynamic lan-
guages.

The third contribution is demonstrating the viability of Mu through RPython,
a real-world non-trivial language implementation. We also did some preliminary
research of GHC as a Mu client.

We have created the Mu specification and its reference implementation, both
of which are open-source. We show that that Mu’s on-stack replacement API can
gracefully support dynamic languages such as JavaScript, and it is implementable
on concrete hardware. Our RPython client has been able to translate and execute
non-trivial RPython programs, and can run the RPySOM interpreter and the core of
the PyPy interpreter.

With micro virtual machines providing a low-level substrate, language developers
now have the option to build their next language on a micro virtual machine. We
believe that the quality of programming languages will be improved as a result.

ix

x

Contents

Acknowledgments vii

Abstract ix

1 Introduction 1
1.1 Thesis Statement . 1
1.2 Problem Statement . 1
1.3 Scope and Contributions . 3
1.4 Thesis Outline . 5

2 Background 7
2.1 Difficulties in Managed Language Implementation 7
2.2 Three Major Concerns . 8

2.2.1 Just-in-time Compilation . 8
2.2.2 Concurrency . 10
2.2.3 Garbage Collection . 12

2.3 Consequences and Summary . 13

3 Related work 15
3.1 Monolithic Language Implementations 15
3.2 Multi-language Virtual Machines and Frameworks 16

3.2.1 The Java Virtual Machine . 16
3.2.2 LLVM . 17
3.2.3 VMKit . 18
3.2.4 Common Language Infrastructure 19
3.2.5 Truffle/Graal . 19
3.2.6 PyPy/RPython . 19

3.3 Summary . 20

I Mu: A Concrete Micro Virtual Machine 21

4 Mu’s High-level Design 23
4.1 Goals . 23
4.2 Design Principles . 24
4.3 Architecture . 26
4.4 Reference Implementation . 28

xi

xii Contents

4.5 Summary . 28

5 Mu Intermediate Representation 29
5.1 Overview . 29
5.2 Type System . 29

5.2.1 Untraced numerical types . 32
5.2.2 Composite types . 32
5.2.3 Traced reference types . 33
5.2.4 Miscellaneous types . 34

5.3 Instruction Set . 35
5.3.1 Basic Instructions . 35
5.3.2 Control Flow . 38
5.3.3 Function Calls and Exception Handling 39
5.3.4 Memory Operations . 41
5.3.5 Atomic Instructions and Concurrency 44
5.3.6 Stack Binding and the SWAPSTACK Operation 46
5.3.7 Unsafe Native Interface . 49
5.3.8 Intrinsics . 53

5.4 Summary . 53

6 Mu’s Client Interface 55
6.1 Overview . 55
6.2 Bundle Building and Loading . 56

6.2.1 Bundle as the Unit of Loading . 56
6.2.2 The IR-building API . 57

6.3 Trap Handling and Run-time Optimisation 58
6.3.1 Trap Handling . 58
6.3.2 Function Redefinition . 59
6.3.3 Stack Operations . 60

6.4 Summary . 61

II On-stack Replacement and Its Implementation 63

7 A Practical OSR API for the Client 65
7.1 Background of On-stack Replacement . 65
7.2 Case Study of Two Real-world JavaScript Runtimes 66

7.2.1 Overview of SpiderMonkey and V8 66
7.2.2 Excessive Use of Assembly for OSR 67
7.2.3 Conclusion: SpiderMonkey and V8 Depends on Assembly . . . 69

7.3 An API for Stack Operations . 70
7.3.1 Overview . 70
7.3.2 Abstract View of Stack Frames . 71
7.3.3 Frame Cursor Abstraction . 73

Contents xiii

7.3.4 The Swapstack Operation . 73
7.3.5 Stack Introspection . 74
7.3.6 Removing Frames . 75
7.3.7 Creating New Frames Using Return-oriented Programming . . . 75

7.4 Demonstration of the OSR API . 77
7.4.1 Supported Subset of JavaScript . 77
7.4.2 Baseline Compiling and Trap Placement 78
7.4.3 Optimisation and On-stack Replacement 78
7.4.4 Result . 79

7.5 Summary . 79

8 Implementation of the Mu Stack API 83
8.1 Resumption Points and Resumption Protocols 83

8.1.1 Frame Cursors and Introspection 83
8.1.2 Resumption Point . 84
8.1.3 Resumption Protocol . 84
8.1.4 Adapter Frames . 88
8.1.5 Conclusion . 90

8.2 Stack Operations in Native Programs . 90
8.2.1 Stack Unwinding Information . 91
8.2.2 Implementing OSR for Native Functions 92
8.2.3 LLVM and Stack Maps . 96
8.2.4 Difficulties in Implementing Stack Operations in Uncooperative

Native Programs . 97
8.3 Related Work . 98
8.4 Summary . 99

III Supporting Real-world Language Runtimes Using Mu 101

9 RPython and GHC as Mu Clients 103
9.1 Supporting RPython and PyPy on Mu . 103

9.1.1 The RPython Framework . 103
9.1.2 Adding Mu as a Backend of the RPython Framework 105
9.1.3 Translating RPython Programs into Mu IR 105
9.1.4 Building Boot Images . 110
9.1.5 Preliminary Results . 112
9.1.6 Supporting the Meta-tracing JIT Compiler 112
9.1.7 Summary and Future Work . 112

9.2 Supporting GHC on Mu . 113
9.2.1 Haskell and GHC . 113
9.2.2 Targeting Mu . 113

9.3 Conclusion . 114

xiv Contents

IV Conclusions 117

10 Conclusion 119
10.1 Future Work . 121

10.1.1 Refining the Design of Mu . 121
10.1.2 Client-side Development . 122
10.1.3 High-performance Mu Implementation 123
10.1.4 Formal Verification . 123

10.2 Final Words . 123

Bibliography 125

List of Figures

2.1 Optimisation of A Hot Loop . 9
2.2 Unordered Reads and Writes . 11

4.1 Mu Architecture . 27
4.2 Non-metacircular vs Metacircular Clients 27

5.1 Sample Mu IR bundle . 30
5.2 Multiple Return Values . 39
5.3 Mu Exception Handling . 40
5.4 Spin Lock Implementation in Mu Memory Model 45
5.5 Basic SWAPSTACK Example . 48
5.6 Python Generator Example . 49
5.7 SWAPSTACK Loop Example . 50
5.8 Cookies of Exposed Functions . 54

6.1 Bundle Loading from Different Perspectives 57

7.1 Excerpt of Deoptimizer::TableEntryGenerator::Generate 68
7.2 Summary of Mu API functions related to stack introspection and OSR. 71
7.3 Example of Nested Calls . 72
7.4 OSR Points . 74
7.5 ROP Example . 76
7.6 Result of JS-Mu Compiling a JS Program 80

8.1 Stack-top Structure of Unbound Stacks 86
8.2 Naïve ROP Frame Implementation on x64 87
8.3 Correct ROP Frame Implementation with Adapter Frames 89
8.4 Swapstack Implementation in libyugong 94
8.5 Structure of Newly-created Stacks . 95

xv

xvi LIST OF FIGURES

List of Tables

5.1 The Complete Mu Type System . 31

9.1 Mapping Between the LL Type System and the Mu Type System 106
9.2 Mapping Between LL Operations and the Mu Instruction Set 108

xvii

xviii LIST OF TABLES

Chapter 1

Introduction

1.1 Thesis Statement

Micro virtual machines will allow managed languages to be developed more easily
and with higher quality.

1.2 Problem Statement

Today’s programming language landscape is littered with inefficient, hard-to-use
but otherwise important languages. Despite their active user community and their
application in critical settings, their performance overheads in many cases are best
measured on a log scale, and their inscrutable semantics make software maintenance
a nightmare.

Many of the performance and semantic issues that befall such languages can
be traced to fundamental implementation challenges. PHP’s confounding copy-on-
write semantics [Tozawa et al., 2009] can be traced back to a bug report dating to
2002 [PHP, 2002], when the behaviour was first observed by a user. However, realising
the challenges in fixing the semantics, the PHP developers chose not to fix the bug,
but instead declared the semantics a language feature, and it has remained so to this
day. The engineering challenge of implementing a garbage collector has led many
languages to depend on naïve reference counting in their earliest implementations
despite its well-known performance limitations and inability to collect cycles, as
observed by Jibaja et al. [2011]. Similarly, the intellectual challenges in correctly
implementing concurrency have led many programming languages to have weak,
broken or absent models of concurrency; CPython’s1 use of the infamous global
interpreter lock (GIL) [Behrens, 2008] is one such example.

The few high-performance language implementations that successfully fought
through the challenges are invariably the result of non-trivial investments. It took
twenty years for the Java Virtual Machine (JVM) to reach the maturity it has to-
day, with heavy support from Sun, Oracle, and many researchers from academia.

1CPython is the official implementation of Python (https://www.python.org/). The source code is hosted
at https://github.com/python/cpython. The letter ‘C’ indicates that it is implemented in C, and distinguishes
it from other Python implementations, such as Jython, IronPython and PyPy.

1

https://www.python.org/
https://github.com/python/cpython

2 Introduction

Another example is the PyPy project [Rigo and Pedroni, 2006], which derives perfor-
mance from advanced specialising meta-tracing technology. A series of successful
publications are tribute to the substantial intellectual input underpinning PyPy’s per-
formance. Other VM projects, such as SpiderMonkey, V8, JavaScriptCore and HHVM,
are the results of substantial investment from large organisations, such as Mozilla,
Google, Apple and Facebook, each of which could justify the investment because of
its impact on their bottom line.

Despite these challenges, the demand for high-quality languages remains high,
while the complexity of systems increases, and new languages emerge to address the
needs that arise in specialised domains. Many languages, such as R, are developed
by domain experts rather than computer scientists. However, most development
teams do not have access to the same intellectual resources as large companies, thus
cannot afford building their next language implementation from scratch while still
guaranteeing high quality.

This leads to a question: Is there a platform for language developers where existing lan-
guages can be built with higher quality, and new languages can be designed and implemented
properly?

Existing Platforms Building a language on a well-established platform simplifies
development and saves engineering effort.

LLVM is exactly this kind of platform. Created by Lattner and Adve [2004], LLVM
is a popular compiler framework which has many built-in optimisers, supports many
targets and provides a JIT compiler. However, LLVM was designed for non-garbage-
collected languages, such as C, C++ and Objective-C. Consequently, LLVM does
not provide any readily-usable garbage collectors for its clients, and adding GC
support is difficult despite LLVM providing mechanisms intended to support GC.
In addition, some concurrency primitives, such as the creation of threads, are still
platform-dependent. An alternative to using LLVM as a language foundation is
generating C source code directly. However, this approach also suffers from the lack
of GC support.

The JVM is one of the most sophisticated VM platforms in the world, with high-
performance implementations such as HotSpot and IBM’s J9. Many high-level lan-
guages, such as Python, Ruby, Scala, Clojure etc., have been built on top of the JVM.
However, because the JVM is specifically tailored to Java, it carries substantial depen-
dencies, including object-oriented programming primitives and the comprehensive
Java standard library, which may not be useful for other languages. Because it is
designed for Java, there is generally a semantic gap between the JVM and other
high-level language it might be used to support. Its JIT compiler is designed for
Java, a static language, therefore dynamic languages will not run optimally unless
specialisation is also supported, as shown from the experience of Castanos et al.
[2012].

§1.3 Scope and Contributions 3

We identify concurrency, execution and garbage collection as the three major
concerns that contribute to the complexities of language development.2 Thus, we
propose the concept of a micro virtual machine which only provides abstractions over
these three concerns, but otherwise keeps the abstraction level as low as possible, so
as to minimise unnecessary dependencies and semantic gaps. Micro virtual machines
will serve as an ideal language-neutral platform for supporting managed languages.

1.3 Scope and Contributions

The aim of this thesis is to design a concrete micro virtual machine — Mu.
We provide a detailed description of the design of the Mu micro virtual machine,

comparing and contrasting Mu with existing work. We show the principles that
underpin our design decisions, and discuss the pros and cons of existing work and
alternative designs. We describe the on-stack replacement API of Mu, and its im-
plementation. We demonstrate the real-world applicability of Mu by using Mu as a
backend for RPython.

This work serves as a proof of existence and a proof of concept, but not a proof of
performance.3 Because the micro virtual machine is a new concept without estab-
lished prior work, designing a consistent system that involves all of the three major
concerns is very difficult, and developing a high-performance implementation will
be even more difficult.

Therefore, an explicit non-goal of this thesis is the efficient implementation of the
Mu micro virtual machine itself, including instruction selection, register allocation,
and the implementation of the garbage collector. The Mu micro virtual machine
project is a joint effort of the Computer Systems Research Group at the ANU, where
the focus of my work is the high-level VM design, while the efficient implementation
of the Mu micro virtual machine is the concern of others. However, for every feature
in the design, we will give reasons to show that it can be implemented efficiently.

Mu Design In Part I, we discuss the design of Mu. Mu is defined as a specification
that allows multiple compliant implementations. We will discuss the design process
which lead to the specification, including various issues we took into consideration,
and compromises we made. The specification defines the Mu intermediate represen-
tation (IR) and its API. We use LLVM as the frame of reference for the IR design. As
a micro virtual machine, it has a low-level type system and instruction set similar to
that of LLVM. However, as an abstraction over memory, Mu also features GC-traced

2Geoffray et al. [2010] already identified concurrency, JIT compilation and garbage collection as
the three major concerns when developing VMKit. We generalise JIT compilation into execution in
general, because the cross-cutting concerns involving execution is not specific to JIT compilation, and
our experience from the RPython client (see Section 9.1.4) shows that ahead-of-time compilation is
also important. It is also noteworthy that VMKit’s approach is to combine three existing software
components, but our goal is to design and implement a minimalist platform that supports these concerns
from first principles. See Section 3.2.3 for more details.

3Details of these terms are discussed in Page 17–20 of the book Academic Careers for Experimental
Computer Scientists and Engineers authored by the National Research Council [1994].

4 Introduction

object reference types and has heap object allocation as a primitive operation. To
address run-time feedback-based optimisation that is required to efficiently imple-
ment dynamic languages, Mu provides APIs for trap handling, stack introspection,
function redefinition and on-stack replacement, which conventional VMs seldom ex-
pose to the client. Mu provides threads as a primitive, a C++11-like memory model
for synchronisation, and the Swapstack operation [Dolan et al., 2013] to support
coroutines and massively concurrent languages such as Erlang.

Stack Operations and OSR In Part II, we take a deeper look into the topic of
on-stack replacement (OSR), a very important mechanism for JIT compiling. We
introduce a versatile stack model which powers the Swapstack operation, introspec-
tion and OSR. In a case study, we examine the well-known SpiderMonkey and V8
JavaScript engines, and learn that such crucial mechanisms are tricky to implement,
but real-world virtual machines have to reinvent the wheel because they are devel-
oped from scratch. We demonstrate our Mu OSR API by constructing an experimental
JavaScript client on the Mu reference implementation. We also show concretely how
the Mu stack model can be natively implemented. System libraries already pro-
vide similar stack-related mechanisms, such as the stack unwinding metadata which
supports C++ exception handling. However, we show that such mechanisms are
insufficient and not portable, and this provides evidence supporting our thesis that a
well-defined substrate such as Mu is much needed.

Supporting Real-world Languages Finally, in Part III, we show that Mu can sup-
port real-world non-trivial languages. We use RPython [Rigo and Pedroni, 2006] as
a Mu client. By supporting this client, Mu will support all languages built upon
RPython, including PyPy, RPySOM [Marr et al., 2014] and Pycket [Baumann et al.,
2015]. RPython performs type inference to transform Python functions into a static
language in the form of control flow graphs (CFG) similar to the level of the Mu IR.
In the original RPython backend, it then injects exception handling and GC into the
functions and generates C source code which the build system then compiles into
an executable. But we replace the default C backend with a similar Mu IR backend.
This work led to several refinements in the Mu design, including the concrete design
of boot images and external linkage, addressing the challenges encountered in sup-
porting RPython and, more generally, ahead-of-time compiling. We are able to run
RPySOM and the core of the PyPy interpreter on the reference implementation. We
also did some preliminary work on GHC. However, limited by time, we have not
developed runnable Haskell clients, yet.

§1.4 Thesis Outline 5

1.4 Thesis Outline

The body of this thesis is structured around the three contributions outlined above.
Chapter 2 describes the difficulties in language implementation; Chapter 3 discusses
related work that attempt to facilitate language development.

Part I, II and III comprise the main body of the thesis, covering the three key
contributions. Part I provides a detailed description of the design of the Mu abstract
machine, and its underpinning principles. Part II takes a deeper look into on-stack
replacement and its implementation. Part III introduces our RPython client and our
preliminary work on GHC, and shows Mu’s real-world applicability.

Finally, Part IV concludes the thesis, summarising our contributions, and predict-
ing the future when micro virtual machines are used as a standard tool for language
implementation.

6 Introduction

Chapter 2

Background

This chapter provides background information about the difficulties in managed
language development. Section 2.1 provides an overview of the issue; Section 2.2
discusses the three major concerns that our micro virtual machine addresses, namely
just-in-time (JIT) compilation, concurrency and garbage collection, and their cross-
cutting concerns; Section 2.3 discusses the consequences of not properly handling
these concerns, and summarises this chapter.

2.1 Difficulties in Managed Language Implementation

A large fraction of today’s software is written in managed languages. The term
‘managed languages’ originates from the .NET Framework [Microsoft]. There is no
precise definition, but such languages can be characterised as high-level languages
that run on managed runtimes (i.e. virtual machines) which provide various ab-
stractions, notably automatic memory management (i.e. garbage collection). Many
modern languages, including Java, C#, Python, Ruby, JavaScript, PHP, etc., belong to
this category. Some languages or implementations, such as RPython, GHC, and Go,
are implemented by ahead-of-time (AoT) compilation and do not have any explicit
virtual machines, but we still take these languages into consideration because of their
use of garbage collection. Managed languages are economically important. For ex-
ample, Facebook depends on servers running PHP for its core business of efficiently
delivering hundreds of billions of page views a month, while Google depends on
Java for its Android apps, and uses JavaScript to power its most widely used web
applications including search and Gmail.

However, implementing such languages properly is difficult. As Geoffray et al.
[2010] already identified in the VMKit project, JIT compilation, concurrency and
garbage collection are the three major concerns that contribute to complexity. Each
are technical minefields in their own right but when brought together in a language
runtime, their respective complexities combine in very challenging ways. Each of
these concerns is rich enough to support a well-developed research sub-community
and rich literature of its own.

7

8 Background

2.2 Three Major Concerns

In this section, we will take a deeper look at each of these concerns, as we must
understand the challenges concretely in order to address them appropriately.

2.2.1 Just-in-time Compilation

In theory, all programming languages can be implemented by either compiling or
interpreting. By traditional ahead-of-time (AoT) compiling, programs written in a
high-level language are translated into executable machine code before execution, and
the machine code is executed directly on the processor. Alternatively, by interpreting,
an interpreter reads and decodes the program source code or byte code at run time,
and executes on behalf of the program. Interpreting makes the program portable to
any supported platforms without recompilation, but the ‘interpretation loop’ is a ma-
jor performance bottleneck because the interpreter must decode every abstract syntax
tree node or bytecode instruction before carrying out the corresponding operation.

Just-in-time (JIT) compilation is another approach to language implementation.
The compiler is placed on the user’s machine instead of the developer’s, and the
program is compiled into machine code on demand at run time. This gives the per-
formance advantage of compilation while still allowing the program to be distributed
in a machine-independent form. Some virtual machines, such as the HotSpot JVM,
use a hybrid approach that supports both interpretation and JIT compilation.

However, JIT compilers are difficult to develop. Like ahead-of-time compilers,
constructing JIT compilers requires deep knowledge of the machine architecture of
each platform to be supported, while interpreters themselves can be simply developed
in other high-level languages that are already portable. A JIT compiler must also take
the overhead of compilation into consideration, as the overhead will be applied to the
execution of the program, while ahead-of-time compilers are relatively unconstrained.

A unique challenge to JIT compilation is run-time feedback-directed optimisation. For
responsiveness, language runtimes initially execute the program using interpreters or
baseline JIT compilers, which have fast compilation speed, but generate suboptimal
code. During initial execution, the language runtime detects frequently executed (hot)
code, usually hot functions or hot loops, using timer-based (as in JikesRVM [Alpern
et al., 2009]) or counter-based (as in SpiderMonkey [Mozilla] and V8 [Google]) pro-
filing mechanisms. Various optimisations in the JIT compiler are then applied to the
hot code only. Thus the language runtime needs to properly handle profiling and the
transition between the user programs and the JIT compiler, which is not necessary
for AoT compilers.

One important run-time optimisation is specialisation. This optimisation is crucial
for dynamic languages because the main performance overhead of naïvely imple-
mented dynamic languages is type checking values before each operation (such as
adding, string concatenation, etc.), as revealed by the work of Castanos et al. [2012].
The specialiser performs type inference, and speculatively specialises the variable
types into the actual value types observed at run time. For example, if a variable

§2.2 Three Major Concerns 9

1 THRESHOLD = 1000
2

3 def sum_between(low, high):
4 s = 0
5 i = low
6

7 hotness = 0
8 while i <= high:
9 s += i

10

11 hotness += 1
12 if hotness >= THRESHOLD:
13 optimise()
14

15 return s

Figure 2.1: Optimisation of a hot loop. Lines 11–13 emulate the counter-based profiling
mechanism generated by the compiler to detect hot loops. Assume low = 1 and high =
1000000. Since low and high are sufficiently far apart, optimisation will be triggered after the
1000th iteration. The optimiser may generate a newer version of the function sum_between
which will be executed the next time it is called. However, after optimisation, there are
still 999000 additional iterations of loops in the unoptimised version, which could be orders of
magnitude slower than the optimised version. The runtime cannot simply restart the function,
because the function may have other side effects that have already taken place. The correct
solution is to replace the execution context (the stack frame) of the current sum_between
activation with a new context (stack frame) for the optimised version, and let the program
continue at the equivalent point of execution in the optimised version. In this way, the
transition from the unoptimised version to the optimised version will take place immediately
after optimisation. This mechanism is called ‘on-stack replacement’ (OSR).

is observed to always hold integers, then all operations on it will be specialised for
integers without checking in the specialised version of the compiled code. This elides
most of the type checking that slows down the execution, and greatly speeds up the
execution of dynamic languages.

On-stack replacement (OSR) is an important low-level mechanism that supports
feedback-directed optimisation. Consider the example in Figure 2.1. When optimisa-
tion happens at a loop inside a function, we want the optimised code to take effect
immediately rather than having to wait for the unoptimised loop to end, which will
be extremely slow. Initially developed for the Self VM [Hölzle et al., 1992; Hölzle
and Ungar, 1994], the OSR mechanism replaces stack frames on the stack in order
to transition the execution context to the optimised version. OSR can also be used
during de-optimisation (invalidating speculatively specialised code) or during online
code modification (usually used for debugging). However, OSR is very difficult to
implement because it requires clear knowledge about the stack layout to decode stack
frames at run time. This thesis dedicates Chapter 7 to discuss this topic in greater
detail.

In summary, JIT compilation is not merely the emission of machine code at run
time. It involves many advanced language implementation technique that work

10 Background

together to support run time optimisation.

2.2.2 Concurrency

As processor clock frequency stopped increasing exponentially, hardware vendors
instead resorted to parallel hardware, such as multi-core processors, to improve per-
formance. Such hardware potential cannot be fully utilised unless software is also
designed with parallelism in mind. Meanwhile, concurrent programming models,
such as multi-threading and the actor model, provide intuitive tools for the program-
mers to solve certain problems.

However, with the advent of parallel hardware, certain properties, such as se-
quential consistency, can no longer be taken for granted. Sequential consistency is the
property that the result of the execution of concurrent threads is equivalent to an
execution where all operations from all threads are executed in a specific sequential
order. Unconditionally enforcing sequential consistency will significantly degrade
performance. Counter-intuitive bugs manifest on parallel hardware. Memory opera-
tions may appear to be out of order, and may observe values that seem to come out
of thin air.

For example, on architectures where the memory is read and written at 32-bit
granularity, writing a 64-bit value may take two separate 32-bit store operations.
Another thread may see an out-of-thin-air value with 32 bits being old and the other
32 bits being new. This phenomenon is known as word tearing.

Figure 2.2 shows another example where the execution of a multi-threaded pro-
gram may not be equivalent to any sequentially consistent execution. This can be
caused by either the reordering of memory accesses inside the processor, or optimisa-
tions performed by the compiler, or both.

Compiler transformations which were valid on single-threaded programs become
erroneous in the face of concurrency. These phenomena force us to think carefully
about support for concurrency at the programming language level, since pure library
approaches cannot guarantee correctness of the resulting code, as pointed out by
Boehm [2005].

The Java 1.5 memory model [Manson et al., 2005; Gosling et al., 2014] pioneered
the attempt to specify the legal behaviours of multi-threaded programs, and the
C++11 memory model [Boehm and Adve, 2008; ISO, 2012] continued such efforts
for the C++ programming language. Designing a memory model is basically an
attempt to achieve a compromise between the programmers, who desire certain
guarantees in the programming model, and the hardware designers, who need to
implement the parallel processors efficiently. The C++11 memory model took the
approach of ‘weak ordering’ where certain atomic memory operations are explicitly
labelled as synchronisation operations, which help guarantee the visibility between
read and write operations across different threads, and where data-race-free programs
are guaranteed to be sequentially consistent. This approach allows compilers to
translate synchronisation operations into adequate machine instruction sequences,
such as inserting memory fences before or after operations, while not having to

§2.2 Three Major Concerns 11

1 int x = 0;
2 int y = 0;
3

4 void thread1() {
5 x = 1;
6 y = 2;
7 }
8

9 void thread2() {
10 int yy = y;
11 int xx = x;
12 if (yy == 2) {
13 assert(xx = 1); // may fail
14 }
15 }

(a) Java Code

Execution

x=1 x=1 yy=y x=1 yy=y yy=y

y=2 yy=y x=1 yy=y x=1 xx=x

yy=y y=2 y=2 xx=x xx=x x=1

xx=x xx=x xx=x y=2 y=2 y=2

Value of xx 1 1 1 1 1 0

Value of yy 2 0 0 0 0 0

(b) All Sequentially Consistent Executions and Their Results

Figure 2.2: Example of concurrent reads and writes without ordering. In the Java program
in Figure 2.2(a), x and y are shared variables with initial values of 0. Thread 1 writes to
x and then y, and thread 2 reads from the two variables in the opposite order. There is
a chance that thread 2 may observe yy == 2 and xx == 0. Figure 2.2(b) enumerated all
possible sequentially consistent executions, and none of them may have xx==0 && yy==2
as their results. This phenomenon can be caused in two places. Firstly, the CPU hardware
may consider x and y as two independent memory locations, and reorder the two reads or
the two writes to maximise memory throughput. Secondly, the compiler may also optimise
the code, and emit machine code which accesses the memory in a different order from the
program. In Java 1.5 or later, we can prevent this reordering by annotating the variable y with
the keyword volatile, i.e. volatile int y = 0;. Reads and writes of volatile variables
behave like implicit memory fences which forbid certain reordering of memory operations.

12 Background

treat every memory operation as a synchronisation operation. This makes C++11
efficiently implementable on both strongly ordered architectures such as x86, as
well as weakly ordered architectures such as ARM, POWER and Alpha. Newer
programming languages, such as Go, also have their own memory models that define
the semantics of multi-threaded programs.

Higher-level synchronisation mechanisms, such as mutex locks, condition vari-
ables, semaphores and message queues, can be implemented on top of atomic mem-
ory operations, such as compare-and-swap (CAS)1, provided by the memory model.
On modern systems such as GNU/Linux, these mechanisms are mostly implemented
in user space for efficiency, with minimal assistance from the operating system kernel,
such as the Futex system call.

The proper implementation of a memory model needs support from the JIT com-
piler, because the JIT compiler understands the instruction set of the platform, and
the guarantees the machine instructions provide. For example, on x86, the plain MOV
instruction has the ACQUIRE semantics when loading from memory, and has the
RELEASE semantics when storing to memory; on AArch64, ordinary load and store
instructions do not have such guarantees, but there are special instructions such as
LDAR and STLR that provide the ACQUIRE and the RELEASE semantics, respectively.
The JIT compiler is responsible for generating the correct instruction sequences to
support the intended memory order on the concrete platform.

2.2.3 Garbage Collection

Garbage collection (GC) was introduced in LISP [McCarthy, 1960], and has become an
integral part of modern programming languages. It is a manifestation of the principle
of ‘separation of concerns’ in the way that it frees the programmers from having to
manually deal with memory deallocation of every object they create.

Garbage collection consists of three key facets: a) object allocation, b) garbage
identification, and c) garbage reclamation, as described by Blackburn and McKinley
[2008]. Different garbage collection algorithms employ different approaches to handle
each facet.

High-performance garbage collection algorithms are difficult to implement. Effi-
cient garbage collectors must be co-designed with the compiler. For example, a stack
map is a data structure to identify object references in stacks, and must be generated
by the compiler, which knows the layout of stack frames. Stack maps are an integral
part of exact GC, which can identify all object references in the entire virtual machine.
Copying collectors, which bestow good locality and offer cheap en masse reclamation,
depend on exact GC [Jibaja et al., 2011]. Another example, write barriers are code
generated by the compiler around every write operation of reference fields. Gen-
erational collectors, which effectively manage high-mortality young objects, require
write barriers to record references from the old generation to the nursery [Jibaja et al.,
2011]. All of these advanced techniques are hard to implement, but state-of-the-art

1Also known as compare-exchange.

§2.3 Consequences and Summary 13

GC algorithms, such as Immix [Blackburn and McKinley, 2008], require many such
techniques.

Efficient garbage collectors must also be co-designed with concurrency. If the
garbage collector desires to make use of the parallel hardware resources, itself needs
to implement parallel and concurrent scanning and collection algorithm, which will
interact with the memory model. And the JIT compiler must also help the GC insert
GC-safe points (yieldpoints) in the JIT-compiled machine code to perform handshakes
between application threads and GC threads. Lin et al. [2015] provide an in-depth
analysis of the challenges in the efficient implementation of yieldpoints.

Due to the difficulties in garbage collection implementation, language imple-
menters often choose naïve garbage collection strategies in their initial VM design.
Some implementations, such as Lua [Ierusalimschy et al., 1996], use naïve non-
generational mark-sweep GC which does not perform as well as its generational
counterpart; some implementations, such as CPython, use naïve reference counting2

which performs worse than mark-sweep by 30% or more, as measured by Shahriyar
et al. [2012]; others simply use conservative collectors, such as the off-the-shelf Boehm-
Demers-Weiser garbage collector [Boehm and Weiser, 1988], which cannot support
copying collectors. Using naïve GC algorithms degrades overall performance. What
is worse, as Jibaja et al. [2011] pointed out in their paper, ‘retrofitting support for
high-performance collectors is typically very hard, if not impossible’. This is because
fixing the collector alone is not enough. It is more important and more difficult to
fix the compiler which is supposed to generate stack maps and write barriers. Al-
though some language implementations, such as Mono [Mono], successfully migrated
from conservative garbage collection to exact garbage collection, others, such as PHP,
are stuck with naïve reference counting because its semantics depend on reference
counting. Pyston [Pyston], a JIT-compiling Python implementation, attempted to use
mark-sweep GC for better performance in its early versions, switched back to naïve
RC in version 0.5, because Pyston intended to maintain compatibility with existing C
extension modules written for the official CPython which depends on naïve RC, and
there were cases where they ‘wouldn’t be able to support the applications in their
current form’ [Kevin Modzelewski, 2016].

2.3 Consequences and Summary

As shown in the previous section, many challenging issues, such as memory model,
stack maps, write barriers and yieldpoints, arise when handling more than one of
the three major concerns in the same system. Language implementers who are not
prepared for such complexity often choose naïve implementation strategies to get
their language up and running without initially worrying about performance. As
we mentioned in Chapter 1, CPython uses a slow but easy-to-implement interpreter

2Not all reference-counting-based GC algorithms are naïve. Shahriyar et al. [2014] developed a high-
performance Reference Counting Immix (RC Immix) algorithm which outperforms the tracing-based
production collector in JikesRVM, namely Generational Immix. But the complexity of RC Immix cannot
be overlooked.

14 Background

as its sole execution engine, which avoided the complexity of JIT compiling; it uses
a global interpreter lock (GIL) [Behrens, 2008] to prevent parallel execution because
the interpreter is not designed for concurrent execution; and it uses a naïve reference
counting GC algorithm which further slows down performance. At the time of
writing, PyPy [Bolz et al., 2009] still has GIL in its mainline code [PyPyGIL], although
there is ongoing work of eliminating the GIL using software transactional memory.
The official Ruby [Ruby] implementation also has a ‘global VM lock’ which is similar
to CPython’s GIL.3 PHP’s confounding copy-on-write semantics also originates from
the fact that it uses naïve reference counting. These early decisions get baked into the
languages themselves, and hinder their long-term development. Now, many CPython
native modules assume the presence of the GIL which makes its removal even more
difficult. And so GIL-free Python implementation remains a research topic. The copy-
on-write semantics [Tozawa et al., 2009] of PHP persists until today as a documented
‘feature’.

These cross-cutting concerns exist because of the tightly coupled nature of JIT
compilation, concurrency and GC. This is why we propose ‘micro virtual machines’
to address these concerns in one carefully designed system. The details of Mu design
will be discussed in Part I. In the next chapter, we will look at existing systems that
address the issue of language implementation.

3See vmcore.h in the Ruby source code.
URL: https://github.com/ruby/ruby/blob/e4600b87b5a13412fc8f46da22d4f224732e6769/vm_core.h#L561

https://github.com/ruby/ruby/blob/e4600b87b5a13412fc8f46da22d4f224732e6769/vm_core.h#L561

Chapter 3

Related work

In the preceding chapter, we introduced some of the difficulties in language develop-
ment. This chapter discusses related work that attempt to address these difficulties,
and explains why those solutions are insufficient to achieve the goal of manged
language development.

This chapter is structured around two fundamental ways to implement a language.
Section 3.1 discusses monolithic language implementations; Section 3.2 discusses
existing multi-language platforms for language development; Section 3.3 summarises
this chapter.

3.1 Monolithic Language Implementations

One way to efficiently implement a managed language may be to implement the
virtual machine from scratch. Many real-world language implementations, including
HHVM [Adams et al., 2014], SpiderMonkey [Mozilla], V8 [Google] and LuaJIT [Pall],
were developed this way. Compared to naïve implementations, these carefully de-
veloped implementations indeed significantly improved the performance of the lan-
guage.

However, this approach has several problems. One problem is the lack of code
reuse. Since such virtual machines are written for one language, their core compo-
nents, such as the JIT compiler, cannot be reused for other language implementations.
As a notable example, both SpiderMonkey and V8 are written in C++, and both
implement the JavaScript programming language using similar techniques including
JIT compilation, feedback-directed optimisation, specialisation, OSR and generational
GC. Yet no code is shared between these two projects. Given that programming
language implementation is difficult, such an approach can only be afforded by
those with sufficient expertise and engineering power, usually large companies or
organisations such as Mozilla, Google and Facebook. Another problem is that such
implementations still tend to be naïve compared to mature systems. For example,
despite the powerful tracing JIT compiler, LuaJIT [Pall] still uses a non-generational
mark-sweep collector, and does not have any language-level threading support.1

1LuaJIT does have plans to implement more sophisticated garbage collectors in the future version
LuaJIT 3.0 [LuaJITGC].

15

16 Related work

3.2 Multi-language Virtual Machines and Frameworks

An alternative to the monolithic approach is to build the language on a well-established
virtual machine or compilation framework. In addition to micro virtual machines
which we will discuss in the next chapter, there have been several existing language-
neutral platforms that aimed to support the implementation of languages.

3.2.1 The Java Virtual Machine

The Java Virtual Machine (JVM) [Lindholm et al., 2014] was originally designed for
the Java programming language, but its portable Java Bytecode, clearly specified
behaviors and performance attracted a wide range of language implementations to
be hosted on the JVM, including Jython [Jython], JRuby [JRuby], Scala [Scala] and
X10 [Ebcioǧlu et al., 2004].

This approach—reusing the existing JVM for new languages—raises several funda-
mental problems. The obvious one is the semantic gap between the new language and
Java. The JVM implements many Java-specific semantics, including the Java object
layout, thread model and object-oriented programming, which are irrelevant to other
dissimilar languages. The JVM JIT compiler is tailored for Java, a static language. Re-
purposing such a JIT compiler for dynamic languages does not automatically deliver
the hoped-for performance boost, unless appropriate language-specific optimisations,
such as specialisation, are also added [Castanos et al., 2012]. Jython [Jython], for
example, ‘almost never exceeds CPython in performance, and is generally slower’,
according to the measurement from Bolz and Tratt [2015], because ‘features that make
use of Python’s run-time customisability have no efficient implementation on a JVM’.
On the other hand, useful low-level mechanisms, such as vector instructions, on-stack
replacement, Swapstack and tagged references, are non-existent in the JVM specifi-
cation. This omission makes it difficult to efficiently support other languages. For
example, values in Lua, JavaScript or other dynamic languages, could be represented
as tagged references which would elide heap allocations for numerical types. It would
also be expensive to map the light-weight Erlang processes to Java threads which are
usually mapped to native threads, and the Swapstack mechanism [Dolan et al., 2013]
could be a better match.

Because JVM is designed to support the Java platform, it comes with a compre-
hensive Java standard library. Such a well-implemented library can be useful in
practice, but it also introduces huge dependencies for other light-weight languages
(such as Python) which usually have their own standard library more suitable for the
language.

We learn from these unsuccessful attempts, and carefully design Mu to be a
language-agnostic platform at a much lower level to avoid the semantic gap. We
assume most optimisations will be done by a client above it, and expose many low-
level mechanisms to the client in order to enable many advanced implementation
techniques. Mu does not have a standard library, but lets the client decide what
libraries to be bundled with the runtime.

§3.2 Multi-language Virtual Machines and Frameworks 17

3.2.2 LLVM

The Low Level Virtual Machine (LLVM) [Lattner and Adve, 2004] is a compiler
framework including a collection of modular and reusable compilation and toolchain
technologies. The LLVM compiler framework and its code representation (LLVM IR)
together provide a combination of key capabilities that are important for language
implementations.

However, LLVM is designed for C-like languages. Like C, the LLVM IR type
system contains raw pointer types but not reference types, and LLVM does not
provide a garbage collector. Instead it provides the @gcread2 and @gcwrite intrinsic
functions which are place holders for read and write barriers which the language
front needs to implement and insert. LLVM also provides several mechanisms to
identify references held on the stack. This kind of approach to GC is problematic.
Remember that high-performance GC is extremely difficult to implement, therefore
not providing a working garbage collector already imposes a considerable burden to
language developers who are not GC experts. For stack roots, the @gcroot intrinsic
function can tag alloca locations as GC roots, but it will force reference values to
be held in the stack memory, which has performance problem. The @stackmap and
the @patchpoint intrinsics can identify references in registers, but cannot update
stack roots when the copying GC moves their referenced objects. The @statepoint
intrinsic function handles object movement by creating a new SSA variable for the
new address of each stack root after the statepoint. This exposes the change of
object addresses to the language developers, forcing them to handle field access and
reference equality tests3 using knowledge about the specific GC. None of those stack
root mechanisms are fully satisfactory. LLVM also does not help its client generate
object maps for finding references inside heap objects,4 forcing the client to consult
the platform ABI for object layout, consequently compromising LLVM’s abstraction
over architecture. The LLVM client also has to implement yieldpoints, but Lin et al.
[2015] showed that the efficient implementation involves carefully crafted machine
instruction sequences and code patching, which are also architecture details. Overall,
LLVM has made very little effort to address the cross-cutting concerns of GC and
compilation, making it difficult to support high-performance GC on LLVM.

LLVM is also designed to be maximal instead of minimal. LLVM tries to minimise

2We abbreviated the names for simplicity. The full names of the intrinsic functions discussed in this
paragraph are @llvm.gcread, @llvm.gcwrite, @llvm.gcroot, @llvm.experimental.stackmap,
@llvm.experimental.patchpoint and @llvm.experimental.gc.statepoint.

3In concurrent copying GC, a process may simultaneously contain two references, one of which
refers to an object in the ‘from-space’, while the other refers to the same object copied to the ‘to-space’.
Those two references must be considered equal even though they have different addresses, because they
logically refer to the same object.

4According to the LLVM documentation, object maps (called ‘type maps’ in the LLVM documenta-
tion), alongside several other GC mechanisms such as object allocation and registering global roots and
stack maps with the runtime, have been declared as non-goals of LLVM. One of the reasons is that object
maps depend on a particular ABI, and not supporting object maps should allow ‘integrating LLVM into
an existing runtime’ which already has its own ABI. They acknowledged that this may ‘leave a lot of
work for the developer of a novel language’. For more information, read the LLVM documentation on
the goals and non-goals of GC with LLVM [LLVMGoals].

18 Related work

the work for language frontends and provides many ready-to-use optimisation passes
inside LLVM. The provision of such optimisations also shows that LLVM is now a
mature production project. However, just like the case of JVM, optimisations designed
for one kind of language (such as C) are usually unhelpful for other languages which
are very different (such as Python). Although LLVM provides many language-neutral
optimisations, the most important optimisation, specialisation, is language-specific,
and is not provided by LLVM. This can be observed from the LLVM-based Unladen
Swallow project [UnladenSwallow, 2011] which failed to meet its goal of 5x speed
improvement over the official CPython [CPython]. Unladen Swallow uses template
compilation. It translates a Python byte code operation (for example, BINARY_ADD)
into an LLVM-level call instruction which calls CPython’s C API functions (for
example, PyNumber_Add) that realises the same functionality. The implementation of
each bytecode in CPython usually has a very long code path [Castanos et al., 2012]
which usually tests the types and unboxes the operands. Stock optimisations in LLVM
are unable to eliminate such long code paths, which are the real bottleneck, using
specialisation as PyPy [Bolz et al., 2009] does. Therefore, although Unladen Swallow
managed to eliminate the interpretation loop, it never achieved its desired speedup.

LLVM is the main reference according to which we design Mu. But we design Mu
to explicitly support managed languages and handle garbage collection internally
inside Mu. We also assume most optimisations are the obligation of the client rather
than Mu.

3.2.3 VMKit

VMKit [Geoffray et al., 2010] is a common substrate for the development of high-level
managed runtime environments, providing abstractions for concurrency, JIT-compiling
and garbage collection. VMKit glues together three existing libraries: LLVM [Lattner
and Adve, 2004] as the JIT compiler, MMTk [Blackburn et al., 2004] as the memory
manager, and POSIX threads for threading. The VMKit developers built two clients,
for the CLI and JVM respectively as a proof of concept.

As the name suggests, VMKit is not a self-contained virtual machine, but a toolkit
that provides incomplete abstractions over certain features. For example, VMKit
leaves the object layout to be implemented by the client. As a consequence, the client
runtime, which is developed by the high-level language developer, must participate
in object scanning and the identification of GC roots. However, object scanning is not
a trivial job [Garner et al., 2011].

As a toolkit composed from three existing libraries, VMKit does not have well-
defined semantics across the three major concerns, let alone formal verification.
VMKit’s solution to concurrency is the POSIX Threads library, but threads cannot
be implemented as a library [Boehm, 2005], and require a carefully defined mem-
ory model involving both garbage collection and the JIT compiler. Built before the
C++11 memory model was available, VMKit also implemented GC yieldpoints [Lin
et al., 2015] without any atomic memory operations or synchronisation, which has
undefined behaviour in C++11 or later.

§3.2 Multi-language Virtual Machines and Frameworks 19

Nonetheless, VMKit demonstrates that a toolkit that abstracts over the common
key features can ease the burden of the development of language implementations,
which is also part of the motivation for a micro virtual machine. Bearing out our
design decisions, they have identified execution, concurrency and garbage collection
as the three fundamental concerns.

3.2.4 Common Language Infrastructure

The Common Language Infrastructure (CLI) is Microsoft’s counterpart to the JVM.
Its Common Intermediate Language (CIL) is designed for several languages with
similar level to VB.NET, C#, etc., but also hosts many different languages including
Managed C++, F# and JavaScript. The CLI shares similar problems to the JVM in that
it is monolithic and was designed for particular kinds of languages. For example, it
has object-oriented primitives, such as inheritance and polymorphism, built into its
Common Type System (CTS).

3.2.5 Truffle/Graal

Truffle and Graal [Würthinger et al., 2013] are reusable VM components for code
execution developed by Oracle. Truffle is a language implementation framework,
while Graal is a compilation infrastructure. Language developers implement a lan-
guage by writing an abstract syntax tree (AST) interpreter using the Truffle API. The
AST interpreter handles node rewriting which is essentially rules for specialising a
language. Truffle optimiser implements dynamic partial evaluation, i.e. compilation
with aggressive method inlining, on top of the API that the Graal compiler provides.
When an AST is stabilised, i.e. the tree is invoked for a number of times without being
rewritten, Truffle uses partial evaluation to compile the AST into the Graal compiler’s
high-level intermediate representation, and further optimisation is performed. The
optimised code is executed on the Graal VM, a modification of the Java HotSpot VM
that uses Graal as its dynamic compiler.

Truffle and Graal aim to provide a reusable code execution engine for implemen-
tations of object-oriented languages. This goal sits on a much higher level than Mu,
and we consider it as a complement to the lower-level virtual machine such as Mu.
A micro virtual machine will also benefit language frameworks like Truffle by pro-
viding abstraction over machine architectures. A Mu client can implement a partial
evaluation framework like Truffle, and compile multiple languages to Mu IR.

3.2.6 PyPy/RPython

PyPy [Rigo and Pedroni, 2006] is a high-performance Python implementation. It is
built on the RPython framework which supports more languages than just Python,
including SOM, Racket, and Erlang. RPython is a meta-tracing framework. Language
developers implement a language (such as Python) by writing an interpreter (such
as PyPy) in RPython, a subset of the Python language. At run time, the JIT compiler
performs meta-tracing, i.e. it records traces of operations performed by the interpreter

20 Related work

(PyPy) which interprets the high-level language (Python), and compiles the traces
into machine code.

Meta-tracing (as used by Truffle/Graal) and partial evaluation (as used by PyPy/
RPython) are two alternative higher-level meta-compilation techniques for inter-
preters to make JIT compilation language-independent [Marr and Ducasse, 2015].
They complement lower-level VMs such as Mu.

Our research group has ported the RPython framework to Mu as a client, hoping
that it will enable the many languages that are already implemented on RPython to
run on Mu instead. Details of this effort are described in Chapter 9.

This work will not only benefit Mu, but may also benefit the PyPy project as
well. Currently, the official RPython backend has to implement JIT compilers by
writing machine code generators for many platforms. Because the backend translates
RPython code to C code, it also has to implement exception handling and garbage
collectors for the generated C code. To do this, every function call is followed by
a check for pending exception, which introduces a cost. The GC finds roots from
the C stack using shadow stacks or a deprecated compiler-specific ‘assembler hack-
ery’ [PyPyGC], neither of which is satisfactory. Mu can provide RPython with a
cross-platform compiler supporting ‘zero-cost’ exception handling [Itanium] and an
exact garbage collector, and therefore ease the engineering of the RPython toolchain.
Moreover, once ported, the abstraction provided by Mu means that RPython benefits
from any improvement to Mu, such as the addition of new garbage collectors or new
compiler targets.

3.3 Summary

Programming language implementation is difficult, and execution (especially JIT
compilation), concurrency and garbage collection are the three major concerns that
contribute to the complexity of language implementation. Their cross-cutting con-
cerns, including memory model, stack maps, GC barriers and yieldpoints, often
overwhelm people without expertise in computer systems. We also described vari-
ous existing platforms, such as the JVM, LLVM, VMKit, etc., that have attempted to
provide general platforms for language development.

Because of the tightly coupled nature of these concerns, we propose micro virtual
machines — low-level substrates that are carefully designed to specifically address
them. In the next part, we will introduce the design of Mu, our concrete micro virtual
machine.

Part I

Mu: A Concrete Micro Virtual
Machine

21

Chapter 4

Mu’s High-level Design

In the preceding chapters, we discussed the challenges and the status quo of language
implementation. In this chapter, we flesh out the high-level design of Mu, our concrete
micro virtual machine. In the following two chapters, we will continue to discuss the
Mu intermediate representation (IR) and the Mu client interface (API).

This chapter presents the high-level perspective of the Mu design. Section 4.1
introduces the design goals of Mu; Section 4.2 presents the principles that underpin
the design of Mu; Section 4.3 presents the overall architecture of Mu; Section 4.4
introduces the Mu reference implementation; Section 4.5 summarises this chapter.

The work described in this part is presented in ‘Draining the Swamp: Micro
Virtual Machines as Solid Foundation for Language Development’ [Wang et al., 2015].

4.1 Goals

We design Mu based on our goals as follows:

1. Mu provides abstraction over execution, concurrency and garbage collection.

2. We design Mu to facilitate high performance language implementations.

3. We aim to support diverse languages.

4. There shall be a formally verified Mu instance in the long term.

We design Mu with performance in mind. We make careful design decisions
based on state-of-the-art implementation strategies, and avoid making flawed short-
term decisions that may hinder the development in the long run. It is not our goal to
release Mu early for production use.

We design Mu as a general platform for managed languages. Our focus is on
languages most exposed to these concerns, namely dynamic managed languages.
However, we are exploring clients for languages as diverse as Python, Haskell, Go,
Lua and Erlang. It is not our goal to provide an implementation layer that will
compete with mature, highly tuned runtimes such as the HotSpot JVM, which have
benefited from enormous investment over a decade or more.

23

24 Mu’s High-level Design

We also have the formal verification of Mu as one of our ultimate goals. Following
the formal verification of the seL4 microkernel [Klein et al., 2009], a formally verified
micro virtual machine will make a further step towards a fully verified system. It is
important that although the formal verification of Mu is not part of this thesis, this
goal shapes the design of Mu, and we sometimes have to make compromises for the
ease of verification. Other members of our research group are actively working the
formal verification of Mu.

4.2 Design Principles

To achieve our design goals, we have a number of principles which underpin the
design of Mu.

1. Mu aims to be as minimal as practical; any feature or optimisation that can be
deflected to the higher layers will be, provided that the three major concerns
can be efficiently addressed.

2. Mu’s client (the higher-level program that uses Mu. See Section 4.3) is trusted;
improper use of Mu may result in undefined behaviours which may have arbi-
trary consequence, including crashing the entire system.

3. We use the LLVM intermediate representation (LLVM IR) [Lattner and Adve,
2004] as a common frame of reference for our own IR, deviating only where we
find compelling cause to do so.

4. We separate specification and implementation; Mu is an open specification against
which clients can program and which different instantiations may implement.

Minimalism is the number one principle. Because we aim to support a wide range
of dissimilar languages, the level of the micro virtual machine must be kept as low as
possible in order to avoid introducing intruding design decisions which are harmful
to the high-level language implementation. The minimalist design also means the
VM is easier to implement correctly, which will facilitate the creation of a formally
verified implementation.

However, for the convenience of language developers, minimalism will be com-
pensated for by client libraries that sit above Mu, implementing higher level features,
conveniences, transformations, and optimisations common to more than one lan-
guage. There can be different client libraries developed for different kinds of lan-
guages, such as object-oriented languages, functional languages, and so on. Mature
projects, such as LLVM, already provide many optimisations ready for its clients to
use. As of the time of writing, Mu does not have such libraries, yet. However, when
such libraries are developed, they will be strictly client libraries, and excluded from
the micro virtual machine itself.

§4.2 Design Principles 25

The client is trusted. We fully trust the client, because the client has more knowl-
edge than Mu about the concrete language. It understands all the requirements and
constraints of the language semantics, such as array bounds checking, to enforce
them correctly. Therefore, we trust the client to make the right decisions, and do not
impose extraneous protection layers which may lead to unnecessary overhead.

Moreover, according to Castanos et al. [2012], the optimisations that have the great-
est impact on the performance of programs are usually language-specific. It is true
that there exist many language-neutral optimisations that work for many languages,
such as common sub-expression elimination, loop-invariant code motion, dead code
elimination, and many others provided by LLVM. Those optimisations may have the
effect of doubling or tripling the throughput of programs. However, for higher-level
languages, especially dynamic languages, the most important optimisations, such
as specialisation, can achieve 10x or, in certain cases, over 100x performance gain
over naive implementations [Castanos et al., 2012]. Such optimisations depend on
intimate knowledge about the semantics of the concrete language. Therefore, we give
the client the power and the responsibility for high-level optimisations. Mu trusts the
client to make the right decisions, and assumes, for example, that the transformations
made by the client’s optimiser are valid. When Mu API functions are invoked, Mu
loyally carries out operations according to the specification with no obligatory vali-
dations, especially during function redefinition and on-stack replacement which we
will introduce in Chapter 6.

We use LLVM IR as a frame of reference for our IR. After LLVM’s inception, it has
developed into a production compilation framework known for high performance. It
is not good practice to develop everything from scratch and abandon such a mature
system. Therefore, we follow LLVM IR as closely as possible to design a performant
virtual machine, deviating only when we have a compelling reason to do so. For
example, Mu is designed for garbage-collected languages while LLVM is not, so
the Mu type system has traced reference types which are absent in the LLVM type
system.

It is worth noting that Mu is neither an extension to LLVM nor built upon LLVM.
Mu is an independent project, and its design principles are very different from that
of LLVM. LLVM IR was only used as a frame of reference for the design of Mu IR.

Mu is defined as a specification. This is the most important contribution of Mu.
We define Mu as a specification for an abstract machine, which clearly defines the
behaviour of Mu. Mu is not merely a collage of features. Although Mu incorporates
many different ideas from related projects, including the static single information
(SSI) form, garbage collection, the Swapstack primitive, and the C++11 memory
model which will be introduced later, the semantics of the Mu IR and the Mu API
are carefully defined in one place. Therefore, unlike VMKit, the behaviour of Mu
IR programs related to concurrency, execution, garbage collection, and their cross
sections, can be reasoned about. This gives the client a dependable platform, and
facilitates formal verification.

26 Mu’s High-level Design

The specification allows many different compliant Mu implementations to co-
exist, such as a reference implementation, a high-performance implementation, and
a formally verified implementation. The JVM is defined similarly [Lindholm et al.,
2014], and that specification has allowed many implementations.

Mu is designed by a committee, but a rather small one. Our team at the Computer
Systems research group at ANU holds weekly meetings to discuss the design, in order
to ensure that the Mu design adheres to our design principles. We take input from the
people working on different aspects of the project, including client development, high-
performance Mu implementation, and formal verification. Sometimes, a decision may
undergo hot debates, and compromises must be made, because a subtle change in
one part of the system may have a chain of implications in other parts. Therefore, in
this thesis, we will not only describe the details of the Mu design, but also the reasons
behind the seemingly arbitrary design decisions.

4.3 Architecture

A Mu-based language system consists of Mu and a client, as illustrated in Figure 4.1.
The client is a program which sits above Mu and implements concrete programming
languages.

The Mu specification defines the Mu intermediate representation (IR) and the Mu
client interface (API). The Mu IR is the low-level language accepted by and executed
on Mu, while the Mu client interface defines the programming interface for client
language runtimes. The client language runtime is responsible for (JIT-)compiling
source code, bytecode, or recorded traces into Mu IR, which is delivered to Mu via
the API. The Mu client interface specifies how the client may directly manipulate the
state of Mu, including loading Mu IR code by sending messages to Mu, and how
Mu-generated asynchronous events are handled by the client (i.e. trap handling).

Note that the separation between the micro virtual machine and the client is con-
ceptual. Mu allows clients to be metacircular. Metacircular Mu clients are implemented
in Mu IR, just like other metacircular virtual machines, such as JikesRVM [Alpern
et al., 2009], which are implemented in their own languages. Such clients run on Mu,
and control Mu using the Mu API from inside. Metacircular clients are usually built
into a boot image (see Section 9.1.4) which contains both Mu and the client, as depicted
in Figure 4.2.

The abstract state of an executing Mu instance comprises some number of ex-
ecution engines (threads), execution contexts (stacks), and memory accessed via
references or pointers. Mu’s abstract threads are similar to (and may directly map to)
native OS/hardware threads. Stacks contain frames, each containing the context of
a function activation, including its current instruction and values of local variables.
Memory consists of a garbage-collected heap, a static memory, and memory allocated
on the stacks. The abstract state can be changed by executing Mu IR code directly or
by invocation of operations by the client through the Mu client interface.

§4.3 Architecture 27

client

micro virtual machine (Mu)

operating system

source code/
bytecode

parse/load

Mu IR
Mu API

trap

Figure 4.1: Mu architecture. A Mu-based language system consists of Mu and a client sitting
above it. The client implements the concrete language. At run time, the client loads the source
code or bytecode of the language, and translates into the Mu intermediate representation (IR).
The client controls Mu via its API. Mu is responsible for the execution of Mu IR programs,
usually via JIT compilation. During execution, Mu calls back to the client via traps (see
Section 6.3.1) so that the client can handle events which cannot be handled by Mu, such as
lazy code loading and run-time optimisation. As illustrated in the figure, the client is much
bigger than the micro virtual machine, because Mu aims to be a thin abstraction layer, while
the client handles all language-specific work and most optimisation.

client

Mu
(as a library)

is linked with

(a) Non-metacircular

client
(in Mu IR)

runs inside

Mu (boot image)

(b) Metacircular

Figure 4.2: Non-metacircular vs metacircular clients. A non-metacircular client, as in Fig-
ure 4.2(a), uses Mu as a library which can be statically or dynamically linked with the client.
A metacircular client, as in Figure 4.2(b), is written in Mu IR, and runs inside a Mu instance.
Mu defines an API to build both Mu and Mu IR programs into a boot image (see Section 9.1.4),
allowing Mu and a metacircular client to be implemented as one executable image.

28 Mu’s High-level Design

4.4 Reference Implementation

Despite being a ‘micro’ virtual machine, the engineering effort required to build a
high-performance Mu implementation is non-trivial, precisely because it implements
three of the most vexing abstractions managed languages depend on. However, from
the perspective of Mu design, we need a working Mu instance to show whether
the design really works, and to expose design flaws as early in the design process
as possible. We also need to let client developers evaluate the Mu design on a
runnable Mu instance, and provide feedback. It was therefore essential to develop a
reference implementation that was functionally correct and easy to maintain, even if
performance was poor.

We developed the reference implementation, codenamed ‘Holstein’1 , in Scala.
This implementation executes as an interpreter, uses green threads to execute multiple
Mu threads, and has a simplified but realistic copying region-based garbage collector
based on Immix [Blackburn and McKinley, 2008]. Although Scala is a JVM-based
language, we avoided using the JVM garbage collector to manage Mu heap objects,
but allocated the Mu heap natively as raw memory. Mu memory access operations
are always performed using raw addresses, which allows interaction with native
programs.

The execution of Mu IR code on Holstein is hundreds of thousands of times slower
than the equivalent C program compiled with GCC. Nonetheless, Holstein can run
the RPySOM interpreter and the minimum core of the PyPy interpreter, as will be
described in Chapter 9.

In addition to Holstein, our research group also has high-performance Mu imple-
mentation, codenamed ‘Zebu’, under active development. That implementation is
beyond the scope of this thesis, except inasmuch our design principle of permitting
efficient implementation allows Zebu to exist.

4.5 Summary

This chapter introduced the design of Mu. Mu is minimalist. It only deals with the
three major concerns, and offloads language-specific concerns to the client. Mu is
defined as a specification, which allows multiple implementations, and also facilitates
formal verification.

Mu is open source. Both the specification and the source code of reference imple-
mentations are available on our website [MicroVM].

In the next chapter, we will present the Mu Intermediate Representation.

1Holstein is the name of a cow breeds. We use this name because ‘Mu’, when read as ‘moo’, is the
sound of cows. Similarly, we named our high-performance Mu implementation ‘Zebu’, another cow
breeds.

Chapter 5

Mu Intermediate Representation

In the preceding chapter, we presented Mu’s high-level design. This chapter discusses
the details of the Mu Intermediate Representation (IR). The Mu IR consists of the Mu
type system and the Mu instruction set, both of which are designed to address the
major concerns of Mu. We will introduce the Mu IR design, as well as the reasons
behind the design decisions.

This chapter is structured as follows. Section 5.1 presents the overall structure of
the Mu IR; Section 5.2 describes the Mu type system; Section 5.3 introduces selected
parts of the Mu instruction set; Section 5.4 summarises this chapter.

5.1 Overview

The Mu intermediate representation (IR) uses LLVM IR as a frame of reference,
because LLVM is a well-established framework known for good performance.

Figure 5.1 shows an example of a Mu IR bundle. A bundle contains many top-
level definitions. Lines 1–4,9,12–13 define types. Line 15 defines a function signature.
Lines 6–7 define constants. Line 10 allocates memory in the static space1 . Both line 17
and line 19 define functions, but only the function on line 19 has a body. The function
on line 17 has no body, but can be lazily added by the client (see Section 6.3.2).

The Mu IR uses a form equivalent to the static single information (SSI) form [Ana-
nian, 1999]. SSI is a variant of the static single assignment (SSA) form [Cytron et al.,
1991] which LLVM uses. We will cover the details of the IR in the rest of this section.

5.2 Type System

As a low-level VM, the Mu type system is simple and low-level. Like LLVM, Mu has
primitive numeric and aggregate types, but also has reference types built into the
type system to support garbage collection.

As shown in Table 5.1, the types can be divided into four categories: untraced
numerical types, composite types, traced reference types, and miscellaneous types.

1The Mu specification currently calls it ‘global’ memory instead of ‘static’ memory. This name is
confusing because both the garbage-collected heap and the permanent static space are globally accessible.
We plan to change the name.

29

30 Mu Intermediate Representation

1 .typedef @i64 = int<64>
2 .typedef @double = double
3 .typedef @void = void
4 .typedef @refvoid = ref<@void>
5

6 .const @i64_0 <@i64> = 0
7 .const @answer <@i64> = 42
8

9 .typedef @some_global_data_t = struct <@i64 @double @refvoid>
10 .global @some_global_data <@some_global_data_t>
11

12 .typedef @Node = struct<@i64 @NodeRef>
13 .typedef @NodeRef = ref<@Node>
14

15 .funcsig @BinaryFunc = (@i64 @i64) -> (@i64)
16

17 .funcdecl @square_sum <@BinaryFunc>
18

19 .funcdef @gcd VERSION %v1 <@BinaryFunc> {
20 %entry(<@i64> %a <@i64> %b):
21 BRANCH %head(%a %b)
22

23 %head(<@i64> %a <@i64> %b):
24 %z = EQ <@i64> %b @i64_0
25 BRANCH2 %z %exit(%a) %body(%a %b)
26

27 %body(<@i64> %a <@i64> %b):
28 %b1 = SREM <@i64> %a %b
29 BRANCH %head(%b %b1)
30

31 %exit(<@i64> %a):
32 RET %a
33 }
34

35 .expose @gcd_native = @gcd #DEFAULT @i64_0

Figure 5.1: Sample Mu IR bundle. Mu IR is similar to LLVM IR. In this example, there are
top-level definitions for types (.typedef), constants (.const), static variables (.global),
function signatures (.funcsig) and functions (.funcdef and .funcdecl). The function
@gcd calculates the greatest common divisor using the Euclidean algorithm. Like LLVM, a
function contains multiple basic blocks (%entry, %head, %body and %exit), each of which
contains multiple instructions. The last instruction of a basic block must be a terminator
instruction which may jump to another basic block or leave the function. In this example,
the BRANCH instructions are unconditional jumps, and the RET instruction returns from the
function. The instruction ‘BRANCH2 %z %exit(%a) %body(%a %b)’ is a conditional jump,
which jumps to %exit when the condition %z is true, or jumps to %body otherwise. Like
LLVM, a variable can only be assigned at one place, observing a single assignment. Unlike
LLVM, local variables have basic block scope instead of function scope, and must be explicitly
passed to the next block at every branch.

§5.2 Type System 31

Type Description

int〈n〉 Fixed-size integer type of n bits
float IEEE754 single-precision (32-bit) floating-point type

double IEEE754 double-precision (32-bit) floating-point type

uptr〈T〉 Untraced pointer to a memory location of type T
ufuncptr〈sig〉 Untraced pointer to a native function with signature sig
struct〈T1 T2 . . .〉 Structure with fields T1 T2 . . .
hybrid〈F1 F2 . . . V〉 A hybrid with fixed-part fields F1 F2 . . . and variable part type V
array〈T n〉 Fixed-size array of element type T and length n
vector〈T n〉 Vector type of element type T and length n
ref〈T〉 Object reference to a heap object of type T
iref〈T〉 Internal reference to a memory location of type T
weakref〈T〉 Weak object reference to a heap object of type T
funcref〈sig〉 Function reference to a Mu function with signature sig
stackref Opaque reference to a Mu stack

threadref Opaque reference to a Mu thread

framecursorref Opaque reference to a Mu frame cursor (see Section 6.3.3)

irbuilderref Opaque reference to a Mu IR builder

tagref64 64-bit tagged reference

void Void type

Table 5.1: The Complete Mu Type System

32 Mu Intermediate Representation

5.2.1 Untraced numerical types

This category includes the int, float, double, uptr and ufuncptr types. These
types represent non-reference data types, and are not traced by the garbage collector.

Integers are fixed-size, like C and LLVM, because Mu is only a thin layer of
abstraction over the machine. There are separate floating point types, following
the IEEE-754 format. The specification requires Mu to implement integers up to
64 bit in size, while not preventing the implementation of larger sizes if a given
implementation considers it beneficial. These fixed-size integers and floating point
types can usually be represented efficiently in machine registers.

Like LLVM, integers do not have signedness, but concrete operations, including
UDIV and SDIV, may treat integer operands as signed or unsigned. In fact, most
operations (such as ADD and XOR) are sign-agnostic, and the only operations involving
signedness are sign extensions and the conversion between integers and floating point
numbers. As a minimal design, Mu does not automatically extend or truncate integers
when calling functions, as C and Java do. Thus, not having signedness on integers
simplifies the overall design.

We declined the alternative design that only provides ‘word’ types of different
sizes, for both integers and floating point numbers. Processors usually have sepa-
rate general-purpose and floating point registers, and calling conventions of many
platforms (such as x64 and ARM) also require integer arguments and floating point
arguments to be passed in different registers. The Mu-level static type information
helps the backend code generator to make the right decision.

Mu also has the untraced pointer types. The pointer types are part of the unsafe
native interface, and allow Mu IR programs to directly access raw memory and
call native functions. We define pointers as word-sized integers, and these can be
converted back and forth from integer types. We will discuss pointers further in
Section 5.3.7.

5.2.2 Composite types

This category includes the struct, hybrid, array and vector types. They describe
structured data types made up from smaller components.

As a low-level VM, the composite types are similar to C and LLVM. Structures
and (fixed-size) arrays are direct counterparts of those in C.

The hybrid type is inspired by the Maxine JVM [Wimmer et al., 2013]. Like
a struct, a hybrid has fields in its fixed prefix, but it is followed by an array of
unspecified size, i.e. the ‘variable part’. The size of the variable-length array part
in a hybrid is specified at allocation time. The closest counterpart in C99 is the
struct types with a flexible array element, such as struct Foo { int f1; char
f2; int v[]; }. In fact, hybrid is the only type whose size is determined at
allocation time rather than compile time. Because the length of a Java array is also
determined at allocation time, a Java client should represent Java arrays as the hybrid
type of Mu. It should put an int in the fixed part holding the size of the array, and
use the variable-length part for the elements. We also expect that most language

§5.2 Type System 33

clients would implement their string types with a hybrid type. Object-oriented
languages can use hybrid to implement ‘type information blocks (TIBs)’ as Maxine
does, using the fixed part for class metadata and the variable part for the virtual
function table.

The array type represents fixed-size arrays. A value of array<T n> contains
exactly n elements, each of which holds a value of type T. Unlike Java, the length n
of a Mu array is a constant, and is part of the type, therefore it is not recommended
to represent Java arrays using the array type of Mu. Like C, fixed-size arrays can be
embedded into structs, hybrids or other arrays.

The vector type is designed for single-instruction multiple-data (SIMD) opera-
tions. Nowadays, SIMD instruction sets (such as ARM’s NEON and Intel’s SSE) have
become increasingly available on commodity hardware, and commodity compilers
(such as GCC) already assume such availability on modern platforms (such as x64).
Even high-level languages such as JavaScript have gained experimental support for
SIMD instructions, and Jibaja et al. [2015] have reported significant performance im-
provement from the SIMD language extension. Given this trend in the development
of hardware, Mu also provides an abstraction over SIMD operations to support such
need from the higher level.

It is noteworthy that in Mu, the type of data is orthogonal to where the data
is allocated. For example, a struct can be allocated in the heap using the NEW
instruction, in the stack using the ALLOCA instruction, in the static memory using
the .global top-level definition, or as a local variable. As we will introduce later,
the type of a reference to a heap-allocated object of type T is ref<T>. For example,
‘array<int<32> 10>’ is the type of an array of ten 32-bit integer elements, regardless
of allocation, but ‘ref<array<int<32> 10>>’ is a reference to a heap object that
contains that array. This is different from Java where values of class types, interface
types and array types are implicitly references to heap-allocated objects. However, it
is similar to C++ where a class type C is still a value type, and the type of pointer to
C is ‘*C’.

Unlike Java classes, Mu does not add implicit headers (such as the fields of
java.lang.Object) to Mu types, since every programming language may have its
own object model. For example, a Java object usually has a reference to its type
information block (TIB), a hash code and a lock; a Python object usually has an
ID, a type and a dictionary that holds its attributes using keys and values. But
as a language-neutral substrate, Mu does not automatically generate any of those
headers. We expect the clients to design the object layout by themselves. If the client
implements, for example, a Java-like type hierarchy, the preferred place to put the
Java-specific headers (such as the reference to the type information block) for classes
and arrays is at the beginning of a struct or in the fixed part of a hybrid.

5.2.3 Traced reference types

This category includes ref, iref, weakref, funcref, stackref, threadref, frame-
cursorref and irbuilderref. These types are traced by the garbage collector.

34 Mu Intermediate Representation

Object references (ref) are references to objects that have been allocated in the
heap managed by the garbage collector. In Mu, an object is defined as the unit
of memory allocation in the heap. We are deliberately agnostic about the sorts of
languages and type systems implemented by clients; our use of the term object does
not presuppose any sort of object-orientation. From the client’s perspective, objects
are headerless. The garbage collector may add headers to heap objects, but they are
details of a particular Mu implementation, thus not visible to the client.

Internal references (iref) provide references to memory locations that may be
internal to objects (e.g. , array elements or struct fields). Both object references
and internal references are traced, and will keep their referents alive on the heap if
the reference is itself reachable from GC roots. We introduced iref in addition to
ref to create a RISC-style instruction set, where address computation is decoupled
from memory accesses. The details will be discussed in Section 5.3.4.

Weak references (weakref) are object references that Mu may set to NULL when
their referent is not otherwise (strongly) reachable.

Function references (funcref) refer to Mu functions. We define function refer-
ences as traced, too, in the sense that the runtime can always find all instances of
function reference values in the entire micro virtual machine. This property is useful
to implement function redefinition, which will be described in Section 6.3.2.

The type system also includes a number of opaque reference types. They refer to
Mu entities such as threads, stacks, frame cursors (see Section 6.3.3) and IR builders
(see Section 6.2.2). Although not all of them have to be managed by the garbage
collector, the Mu specification defines them as opaque types so that concrete Mu
implementations can choose their preferred strategy for managing these internal
objects.

Values of all reference types can only be created in controlled ways, such as via
the NEW instruction which allocates heap objects, and the new_thread API function
which creates threads. Specifically, the client cannot cast integers or pointers into
object references. Such a separation is a building block for exact garbage collection,
which will be discussed in Section 5.3.4.

5.2.4 Miscellaneous types

This category includes tagref64 and void.
The tagged reference type tagref64 represents a tagged union of three types:

(1) double, (2) int<52> and (3) a ref<void> and an attached int<6> tag. This
type carefully squeezes the bits from the NaN space of the IEEE754 double-precision
number to encode integers and object references. This type is especially useful
for dynamic languages. This type can represent small integers and floating point
numbers directly, instead of having to allocate heap objects for numerical values
which tend to be very common. A 6-bit integer can be stored together with the object
reference. This tag can be use to identify the object’s type without having to read
from the object header.

Tagged references are described by Gudeman [1993], and also used by Spider-

§5.3 Instruction Set 35

Monkey [Mozilla] and V8 [Google], two well-known JavaScript implementations. The
double+int+ref union is only one of the many possible designs of tagged references
(such as V8’s int+ref union). It is an open topic to support different tagged reference
designs.

The void type is special, as it can only be used as the referent type of references
(i.e. ref<void>, iref<void> and weakref<void>) and pointers (i.e. uptr<void>)
to denote that the reference or pointer can refer to any type. Although the Mu
type system does not support subtyping directly, Mu defines the prefix rules (see
Section 5.3.4) to facilitate the implementation of language-level subtyping and poly-
morphism. The void type is a prefix of all types.

Unlike LLVM and C, Mu functions do not return void, but instead may return a
zero-tuple of values.

5.3 Instruction Set

The Mu specification defines a comprehensive instruction set. This section introduces
some important parts of it.

5.3.1 Basic Instructions

The most basic instructions are arithmetic operations, bit-wise operations, comparison
operations, conversion operations and conditional move. These instructions are very
simple, and closely follow LLVM analogues. For example:

• An ADD instruction ‘%r = ADD <@i64> %x %y’ adds two numbers.

• An SDIV instruction ‘%r = SDIV <@i32> %x %y EXC(%bb1(%r) %bb2())’ di-
vides %x by %y, treating both operands as signed numbers, and branches to basic
block %bb1. Particularly, −0x80000000/−1 = −0x80000000. But if %y is zero,
it branches to the basic block %bb2.

• An XOR instruction ‘%r = XOR <@i64> %x %y’ computes the bitwise exclusive
or of two numbers.

• An ULE instruction ‘%c = ULE <@i64> %x %y’ compares two variables for
‘less than’, treating both operands as unsigned numbers.

• A SITOFP instruction ‘%r = SITOFP <@i64 @double> %x’ converts an inte-
ger to a floating point number, treating the integer operand as signed.

• A SELECT instruction ‘%r = SELECT <@i1 @i64> %c %x %y’ returns %x when
the condition %c is 1, or %y otherwise.

These instructions are applicable to vector values as well as scalars.
For the convenience of the micro virtual machine rather than the client, the types

of the operands are explicitly written as type arguments so that the Mu backend

36 Mu Intermediate Representation

compiler does not need to infer the type of any instruction from the types of its
operands.

These instructions and their semantics can be tracked back to their LLVM origin,
but differences exist because of the differences stemming from our design principles.
We now outline some key differences.

Less undefined behaviour Mu IR has less undefined or implementation-defined be-
haviour than C and LLVM.

The C programming language was designed to be applicable to many differ-
ent hardware platforms. But in 1970s and 1980s, the designs of systems had not
converged. The 8-bit byte length, the two’s complement representation of negative
numbers, and the IEEE-754 floating-pointer number representation were not com-
mon. Different processors at that time also handled integer overflow and division-
by-zero error differently. Therefore C left much of these behaviours implementation-
dependent or undefined. The C programming language also put its trust in the
programmer to handle erroneous conditions such as division-by-zero error. Designed
for C-like languages, LLVM inherited much of C’s undefined behaviour in the LLVM
IR instructions.

However, Mu needs to provide a portable platform across different hardware, and
support languages with objectives like those of Java. ‘Undefined behaviour’ means
anything is allowed to happen, from nothing to the computer catching on fire, and
must be prevented if at all possible. If Mu had undefined behaviour in trivial cases
such as integer overflow, the client would have no choice but to check the operands
before every operation, which would lead to significant performance penalties. On
the x64, ARMv6, ARMv7, AArch64 and POWER platforms, the behaviour in such
corner cases (including overflow, division by zero and shifting an integer by more
than its bit width) are defined, and there are signs of convergence.2 Therefore we give
defined behaviours for all arithmetic and logical instructions in Mu, with division
by zero as a special case,3 using the behaviour of the Java language as a frame of
reference. It is still an open topic to determine a larger set of instructions that are
available or easily implementable on all platforms, such as rotation and saturating
addition, but it is certain that Mu must provide abstraction over such machine-level
instructions for the client to use them without resorting to the ‘unsafe native interface’

2For example, most platforms (with RISC-V as a notable exception) have instructions that add two
numbers, discard overflowed bits, and set or clear the ‘carry’ and ‘overflow’ status flags. In the ARMv6
and ARMv7 instruction LSL (logical shift left) with the right-hand-side operand in a register, the last 8
bits of the right-hand-side contribute to the shift amount. But in AArch64, only the last n bits of the
right-hand-side is significant, where 2n is the left-hand-side register length in bits. The behaviour of
AArch64 is the same as x64, POWER and RISC-V.

3For the UDIV, SDIV, UREM, SREM instructions, they have defined behaviours for all inputs if the
client provides an exception clause to specify where the execution shall continue if the divider is zero.
For example, with the exception clause EXC(%bb1(%r) %bb2()), the instruction %r = SDIV <@i32>
%x %y EXC(%bb1(%r) %bb2()) will continue from the %bb2 basic block if %y is zero. The client can
always supply exception clauses to ensure all arithmetic operations have defined behaviours for all
inputs. However, if the client is absolutely sure the divider can never be zero, it can omit the exception
clause, and the instruction will have undefined behaviour if the divider is zero.

§5.3 Instruction Set 37

(see Section 5.3.7).
Note that Mu does not attempt to eliminate all undefined behaviour. Mu is de-

signed with performance in mind. If forcing defined behaviour makes the efficient
implementation of high-level languages impossible, we will leave the behaviour un-
defined. More often than not, the client can efficiently check or avoid abnormal
conditions that lead to undefined behaviour. Take an array bounds check as an ex-
ample. The client can insert array bounds checks to detect out-of-bound errors, using
primitive arithmetic and relational instructions of the Mu IR. However, if the client
can prove at compile time that an array element access never goes beyond the array
bounds, it can safely elide the checks. It is similar for null reference access — the
client can eliminate the check if it can prove that a reference is never null. Such opti-
misations require language-specific knowledge. For example, in Java, references are
always nullable; but in Kotlin, a reference is not nullable unless annotated with the
‘?’ symbol, such as ‘String?’. Different languages also have different array object
layouts, so there is no general way to find the capacity of array objects. A language-
neutral micro virtual machine cannot efficiently handle such abnormal conditions
without knowing the language specifics. Therefore, we leave the responsibility of
handling such abnormal conditions to the client. In order to reduce the burden of
the client implementers, there can be client-side libraries that implement such optimi-
sations which are common for a particular kind of language, but not all languages.
Such client-side libraries will not be part of the Mu specification, because by design,
Mu must remain minimalist and language-neutral.

Fewer annotations for optimisation Mu instructions generally have fewer annota-
tions than their LLVM counterparts. For example, in the LLVM instruction ‘%c =
add nsw i32 %a, %b’, the nsw (no signed wrap) keyword lets LLVM assume signed
overflow never occurs. The comprehensive set of optimisers is a selling point of LLVM.
The nsw annotation allows LLVM to make use of the fact that ‘signed integer overflow
is an undefined behaviour in C’, so that C expressions like ‘x + 1 > x’, where x is
a signed integer, can be always considered true regardless of the actual value of x.
However, according to Mu’s design principles, since the client has full knowledge
about the semantics of the language, such optimisations can and should be offloaded
to the client, thus we do not adopt this LLVM annotation in Mu. The behaviour of
the Mu ADD instruction is defined to discard overflowed high bits (i.e. mod n addition
where n is the bit length of the integer) which is the same as on most commodity
processors.

In fact, the optimisation mentioned above, i.e. replacing ‘x + 1 > x’ with ‘true’,
can only be done by the client, because such replacement is only valid for languages
where signed integer overflow has undefined behaviour, such as C and C++. In
Java, integer overflow has wrap-around semantics. For example, ‘0x7fffffff +
1’ is, according to the Java language specification [Gosling et al., 2014], equal to
-0x80000000. Therefore, ‘x + 1 > x’ still has a chance to be false when x ==
0x7fffffff, and loops that use this expression as a condition still have a chance to
break out. The integer type of Python 3, int, has arbitrary precision. If a Python

38 Mu Intermediate Representation

client specialises Python int into a fixed-size integer, such as int<64>, the code
must always detect overflow, revert back to the arbitrary-precision int type, and still
produce the correct mathematical result. As we can see, even such a trivial case of
optimisation involves language-specific semantic details. This again shows why a
language-neutral substrate like Mu should off-load many optimisations to the client
which understands the language semantics. As we mentioned before, client-side
libraries can help client implementers by providing optimisations for languages that
share similar semantics.

In order to support languages that support arbitrary precision integers, notably
Python, Mu’s arithmetic operations may return status bits to indicate overflow. For
example, in the Mu instruction ‘(%result %sovf) = ADD [#V] <@i64> %a %b’,
the #V flag causes an additional one-bit value %sovf to be returned, which is 1 if
signed overflow occurs. High-performance implementations of languages like Python
usually speculatively compile the code to use fixed-size integers, and trigger recom-
pilation when overflow actually occurs. In Mu, this flag can be used in conjunction
with the TRAP instruction to support such de-optimisation, which will be discussed
in Section 6.3.1

5.3.2 Control Flow

In Mu IR, as shown in Figure 5.1, every Mu function version4 is comprised of one
or more basic blocks, each of which has one or more instructions. Basic blocks take
parameters. The first basic block (i.e. the entry block) takes the parameters of the
function, and every branch must explicitly pass arguments to the destination. Similar
to Mu IR, the Swift Intermediate Language [SIL, 2017] also has basic blocks which
take parameters.

Similar to SSI [Ananian, 1999], all local variables in Mu IR have basic block scope.
Basic blocks with parameters are equivalent to lambda-lifted functions that tail-call
each other on branching. By contrast, the SSA form is equivalent to nested functions
structured by the dominator tree of basic blocks, according to Appel [1998].

Originally, Mu used the same SSA form as LLVM uses. However, liveness analysis
is slow, and has to be performed by the micro virtual machine in the backend. The
current Mu IR limits the scope of local variables to their respective basic blocks, which
effectively forces the client to guarantee the liveness of local variables by passing them
explicitly. This change increases the burden of the client, but is in line with our design
principles. Having a clearer semantics of variable scopes should also help the formal
verification of Mu. For example, to show that a use of a variable is legal in the SSA
form, we must prove that its definition dominates its use, which is difficult. In the
Mu IR, all local variables have basic block scope, so a local variable can only be used
after its definition in the same basic block.

4Because Mu supports function redefinition, we distinguish between ‘functions’ and ‘function ver-
sions’. A function has zero or more versions (zero when a function is subject to lazy code loading), and
every version has a control flow graph. See Section 6.3.2 for more details.

§5.3 Instruction Set 39

1 .funcsig @addsub.sig = (@i64 @i64) -> (@i64 @i64)
2

3 .funcdef @addsub VERSION %v1 <@addsub.sig> {
4 %entry(<@i64> %x <@i64> %y):
5 %a = ADD <@i64> %x %y
6 %s = SUB <@i64> %x %y
7 RET (%a %s)
8 }
9

10 .funcdef @caller VERSION %v1 <@caller.sig> {
11 %entry(<@i64> %a <@i64> %b):
12 (%sum %dif) = CALL <@addsub.sig> @addsub (%a %b)
13

14 // More instructions here
15 }

Figure 5.2: Multiple Return Values. A Mu function takes zero or more parameters, and returns
zero or more return values. The signature ‘.funcsig @addsub.sig = (@i64 @i64) ->
(@i64 @i64)’ indicates that the function takes two @i64 as parameters, and returns a pair
of @i64 values. The @addsub function takes two integers as parameters, and returns both
their sum and their difference.

5.3.3 Function Calls and Exception Handling

A CALL instruction ‘%rv = CALL <@sig> @func (%arg1 %arg2)’ calls a Mu func-
tion. Mu IR programs must explicitly truncate, extend, convert or cast the arguments
to match the signature. Mu also provides a TAILCALL instruction which directly
replaces the stack frame of the caller with a frame of the callee rather than pushing a
new frame. The client must explicitly generate TAILCALL instructions to utilise this
feature. Mu implementations need not automatically convert conventional CALLs into
TAILCALLs, though an implementation might.

Mu allows a function to return multiple values rather than just one. This is similar
to many functional languages such as ML and Haskell which support tuples, but
different from C, C++, Java and LLVM. Figure 5.2 shows a function that returns
two values instead of one. In fact, all Mu instructions may produce multiple values,
including CALL and, notably, the CMPXCHG instruction which returns both the old
value and an indication of success or failure. This symmetry was introduced during
our design of the on-stack replacement (OSR) interface, which will be discussed in
detain in Section 7.3.7.

Unlike LLVM, Mu has built-in exception handling primitives that do not depend
on system libraries, which are usually platform-specific, compiler-specific, and mainly
designed for C++. Since Mu is also designed to support exact stack scanning for
GC (see Section 5.3.4) and has built-in support for on-stack replacement (OSR) (see
Section 6.3.3), Mu implementations will inevitably have a powerful stack unwinder
that can also be used for exception handling.

As shown in Figure 5.3, the THROW instruction generates an exceptional transfer of

40 Mu Intermediate Representation

1 .funcdef @bar VERSION %v1 <@bar.sig> {
2 %entry():
3 %the_exc = NEW <@MyExceptionType>
4 THROW %the_exc
5 }
6

7 .funcdef @foo VERSION %v1 <@foo.sig> {
8 %entry(<@i64> %x):
9 %result = CALL <@bar.sig> @bar (%x) EXC(%nor(%result) %exc())

10

11 %nor(<@i64> %result):
12 // handle result here
13

14 %exc() [%the_exc]:
15 // handle exception here
16 }

Figure 5.3: Mu Exception Handling. When an exception is thrown in the callee, the call site
with an exception clause EXC branches to the exceptional destination (in this case %exc), where
the exceptional parameter %the_exc receives the exception, which is just an arbitrary object
reference. Annotating the call site allows the JIT compiler to generate sufficient metadata to
implement ‘zero-cost’ exception handling as used by the Itanium ABI for C++ [Itanium].

control to the caller of the current function.5 The exception is caught by the nearest
caller’s CALL instruction with an exception clause, which branches to the designated
basic block where an exceptional parameter receives the exception value. Unlike
LLVM, an exception in Mu is an arbitrary object reference6. This kind of CALL
unconditionally catches all exceptions and the type of the exceptional parameters
is always ref<void>. The client is responsible for implementing its own exception
hierarchy which can be complex (like Java’s and Python’s) or simple (like Lua’s and
Haskell’s, where an error is simply a string message). The client should generate Mu
IR code to check the run-time type of the exception object, and decide whether to
handle, re-throw or clean up the current context.7

This design allows the implementation of ‘zero-cost’ exception handling which is
also used by the Itanium ABI for C++ [Itanium]. Unlike the errno variable in C which
has to be checked after each call, regardless whether any error actually occurred or
not, the Mu runtime can instead only set the program counter to the exceptional
destination during stack unwinding when an exception is actually thrown. Therefore,
there is no checking when a function returns normally, and does not penalise function
calls when exceptions are not thrown, which is usually the hot path. This ‘zero-cost’
exception handling scheme requires the compiler to generate metadata and code

5Language-level exception handling within a function, for example, a throw statement in a try-
catch block in Java, should be translated to branching instructions (BRANCH and BRANCH2) in the Mu
IR. In this case, Mu is not aware of any exceptions being thrown.

6We can loosen this rule and allow an exception to be a value of any type, provided that it can be
implemented as efficiently as object references.

7There is no finally in Mu, but it can be implemented as an unconditional catch followed by the
actions in the finally block and another THROW instruction.

§5.3 Instruction Set 41

to help the stack unwinder identify the call sites, and branch to the exceptional
destination with normal parameters and the exception passed. This again assumes
that the Mu implementation has a powerful stack unwinder, which also supports GC
root scanning and OSR.

5.3.4 Memory Operations

Memory Allocation Support for precise (exact) garbage collection is integral to the
design of the instruction set. Heap memory allocation is a primitive operation in
Mu. The NEW and the NEWHYBRID instructions allocate fixed and variable-length
objects in the heap, respectively, automatically managed by the garbage collector.
Memory can also be dynamically allocated on stacks using the ALLOCA and the
ALLOCAHYBRID instructions which are similar to the alloca function in C. Memory
cells can be permanently allocated into the static memory using a top-level definition.
Newly allocated memory cells are initialised with zeros (numerical zeros or NULL
references), which matches the behaviour of common high-level languages (such
as Java), has less non-determinism, and is efficient to implement with proper bulk-
zeroing, as demonstrated by Yang et al. [2011].

Internal References In Mu, internal references iref<T> refer to memory locations
inside Mu memory, including the heap, the stack and the static memory. The seman-
tics are similar to pointers except that they are traced by the GC. Mu does not expose
the byte-level object layout to the client, since the size and alignment of types are differ-
ent among platforms.8 Therefore, the client cannot use address calculation on iref
types. Instead, Mu provides several instructions that navigate internal references into
nested composite types. For example, the GETFIELDIREF instruction takes an iref
to a struct as parameter, and returns an iref to one of its fields; and GETELEMIREF
takes an iref to an array as parameter, and returns an iref to one of its elements.
These instructions are the counterpart of the LLVM instruction getelementptr. We
consider our semantics much clearer than getelementptr, because we use different
instructions for different types, while getelementptr is a single instruction that
works for all composite types, and is a major source of confusion.9 Similar to LLVM
and most RISC architectures, Mu IR has dedicated LOAD and STORE operations to
access memory. Compared to the JVM which has getfield, setfield, *aload and
*astore instructions, Mu separates memory addressing and memory accessing, and
allows arbitrarily nested object structures to be designed at the client’s will. This
presence of the iref type is vital to this separation. Without iref, all memory ac-
cessing operations, including LOAD, STORE, CMPXCHG and ATOMICRMW, would have to
contain something like getelementptr as part of the instruction. In the Mu backend

8The unsafe native interface (Section 5.3.7) defines the sizes and alignments of pinned objects in order
to interface with native programs at the ABI (application binary interface) level. However, the unsafe
native interface is not supposed to be used in managed programs.

9The getelementptr instruction in LLVM is so complicated that there is a webpage dedicated to
getelementptr — ‘The Often Misunderstood GEP Instruction’ [LLVMGEP].

42 Mu Intermediate Representation

compiler, the instruction selector can match across multiple memory addressing and
accessing instructions, and combine them into a single machine instruction if the
architecture supports the appropriate addressing mode.

Abstract Memory Locations According to the Mu specification, the Mu memory
consists of abstract memory locations which are simply defined as ‘regions of data
storage’, but not directly mapped to addresses (unless pinned, see Section 5.3.7). This
allows Mu implementations to represent objects and references in the most efficient
way, and, in principle, allows object references to be represented as handles instead of
addresses. A copying garbage collector can move objects around in the heap, but this
is an implementation detail, which the client cannot observe from object references.
In other words, a reference to an object always refers to the same object even if the
copying garbage collector moved the object to a different place in the address space
of a process.

Prefix Rules and Hierarchical Type System Every (abstract) memory location has
a type which is determined at allocation time and never changes. Casting references
to the wrong type and accessing the memory has undefined behaviour. But Mu has
a series of memory aliasing rules, called ‘prefix rules’, to help the client implement
hierarchical type systems. Remember that Mu does not bake in the object model
of any particular language. All types can be allocated in the heap, the stack or the
static memory alike, and Mu does not implicitly insert headers10 to data types nor
provide any run-time type information. However, Mu defines the ‘is a prefix of’
relation between types. For example, the first field of a struct is a prefix of the
struct, and the relation is transitive. In this way, subtypes can be implemented by
having parent types as first fields, and object references ref<T> can be cast to or
from references to prefix types. The Mu implementation should lay out objects in
such a way that references to the prefix can efficiently access fields of objects that
are much bigger in size. Having this requirement, the micro virtual machine may
have to lay out objects in a predictable way. However, there is a compromise we have
to make. Without knowing platform details, it may be impossible for the client to
generate the Mu struct type with the best layout. For example, the best layout for
32-bit machines may be different from the best layout for 64-bit machines because
of size and alignment issues. The best layout with respect to concurrency and false
sharing may also vary among platforms. We are designing an abstraction layer over
the architecture, and we must be able to support object-oriented languages reasonably
efficiently. Therefore, when facing multiple concerns, we chose the most predictable
behaviour. This design choice is similar to our decision of giving defined behaviours
to all binary arithmetic/logical operations on all platforms with the sole exception of
division by zero.

10Mu implementations may insert headers for their own purposes, including GC, but such headers
must be invisible to the client.

§5.3 Instruction Set 43

Exact Garbage Collection To implement exact garbage collection, Mu must be able
to identify all references into the Mu heap. The GC root set is precisely defined as all
references in live local variables, stack memory, static memory, those explicitly held
by the client (see Section 6.1), and other thread-local states including a thread-local
object reference and its pinning set.11 Because all values in Mu come from the Mu
type system, which never confuses references and untraced values, Mu can perform
garbage collection internally without client intervention.

GC Algorithm as An Implementation Detail The Mu specification does not man-
date any particular GC algorithm, either. This forces the client not to depend on any
particular GC algorithm Mu is using, and prevents a class of language design bugs
that exposes the GC implementation details to the user, such as PHP’s copy-on-write
semantics [Tozawa et al., 2009]. This is a critical design decision. People tend to rely
on the GC algorithm of a concrete language implementation, which is not a good
phenomenon, and should be avoided in the first place. For example, before Python
2.6, programmers habitually open a file, read from it, and expect the reference count-
ing GC to close the file immediately because the last reference to the file object goes
away after evaluating the statement.

1 text = open("example.txt").read()
2 # The file is expected to be closed here.

This does not work in other Python implementations which do not use reference
counting, such as PyPy [Rigo and Pedroni, 2006] and Jython [Jython], because trac-
ing collectors do not immediately reclaim objects immediately when they become
garbage. The copy-on-write semantics [Tozawa et al., 2009] of PHP is also an attempt
to optimise the performance by depending on the naive reference counting GC al-
gorithm, resulting in inconsistent and unfixable semantics when such ‘optimisation’
is entangled with references (the & operator) [PHP, 2002]. Both Python and PHP
are examples of bad design decisions based on naive GC algorithms that hurt long-
term profit. Fortunately, we observe that people have started trying to get rid of
such dependency on GC. For example, Python 2.6 introduced the ‘with’ statement to
properly release resources without relying on immediate reference counting.

1 with open("example.txt") as f:
2 text = f.read()
3 # f is closed here.

Hack [Hack], a programming language designed by Facebook based on PHP, is
another example, which removed the widely used references (&) in PHP to steer away
from its broken semantics. Java also deprecated the finalize() method since Java
9,12 in favor for the AutoCloseable interface and the ‘try-with-resources’ syntax for
properly closing files without depending on the garbage collector. Mu will follow this
trend, and provide language designers a high-performance GC implementation so

11Details about thread-local states are discussed in the Mu specification. See: https://gitlab.anu.edu.au/
mu/mu-spec/blob/master/threads-stacks.rst

12See the Java 9 API: https://docs.oracle.com/javase/9/docs/api/java/lang/Object.html#finalize--

https://gitlab.anu.edu.au/mu/mu-spec/blob/master/threads-stacks.rst
https://gitlab.anu.edu.au/mu/mu-spec/blob/master/threads-stacks.rst
https://docs.oracle.com/javase/9/docs/api/java/lang/Object.html#finalize--

44 Mu Intermediate Representation

that they will not design their next language based on a poorly-performing garbage
collector.

5.3.5 Atomic Instructions and Concurrency

Mu is designed with multi-threading in mind. Mu has threads and a C11/C++11-like
memory model, allowing annotation of memory operations, such as LOAD, STORE,
CMPXCHG, ATOMICRMW and FENCE, with the desired memory ordering semantics. Mu
threads may execute simultaneously. Like LLVM, Mu has no ‘atomic data types’,
but defines a set of primitive data types (such as integers and references) eligible for
atomic accesses. The supported memory orders are NOT_ATOMIC, RELAXED, CONSUME,
ACQUIRE, RELEASE, ACQ_REL (acquire and release) and SEQ_CST (sequentially con-
sistent). This gives the client the freedom and responsibility to implement whatever
memory model is imposed (or not) by the client language.

Supporting relaxed memory models is not trivial. As a design principle, the client
is trusted, and may shoot itself in the foot. Abusing the memory model may result in
program errors or even undefined behaviors. However, Mu does not force all users to
understand the most subtle memory orders. A novice language-client implementer
can exclusively use the strong SEQ_CST order even though the Mu implementation
supports weaker orderings. Conversely, a conservative implementer of Mu itself can
always correctly implement a stronger memory model than required, for example,
implementing CONSUME as ACQUIRE or implementing all memory models as SEQ_CST,
which will trade performance for simplicity.

In addition to the standard C11-like atomic operations (such as compare-and-
swap) Mu provides a futex-like [Franke and Russell, 2002] wait mechanism. The client
is responsible for implementing other shared-memory machinery such as blocking
locks and semaphores.

Figure 5.4 gives an example of implementing spin locks using the atomic read-
modify-write operations provided by the Mu instruction set. To acquire a lock, the
@lock function repeatedly performs atomic exchange operation to store the value 1 to
the shared variable @spinlock until it gets 0 as the old value. When multiple threads
are attempting this atomic exchange, only the first one can change its value from 0
to 1, while others observe 1 as the old value. To release a lock, the @unlock simply
writes 0 to the variable, which will be observed by the next thread that successfully
acquired the lock. The ACQUIRE and the RELEASE memory order ensures that as
long as the XCHG operation observes the old value 0, it synchronises with the STORE
operation from the thread that released the lock by writing 0, and all memory writes
performed before releasing the lock happen before all memory reads performed after
acquiring the lock. Therefore, threads in the critical section can observe memory
operations performed by other threads which previously held the same lock.

Drepper [2011] used C++ code to demonstrate how to implement blocking locks,
condition variables and other synchronisation mechanisms using atomic read-modify-
write operations and the futex system call provided by the Linux kernel. Those
techniques can be adapted to Mu, too, given that the futex primitive of Mu is modelled

§5.3 Instruction Set 45

1 .typedef @i64 = int<64>
2

3 .const @I64_0 <@i64> = 0
4 .const @I64_1 <@i64> = 1
5

6 .global @spinlock <@i64>
7

8 .funcsig @LockSig = () -> ()
9 .funcsig @UnlockSig = () -> ()

10

11 .funcdef @lock VERSION %v1 <@LockSig> {
12 %entry():
13 BRANCH %head()
14

15 %head():
16 %old = ATOMICRMW ACQUIRE XCHG <@i64> %spinlock @I64_1
17 %succ = EQ <@i64> %old @I64_0
18 BRANCH2 %succ %exit() %head()
19

20 %exit():
21 RET ()
22 }
23

24 .funcdef @unlock VERSION %v1 <@UnlockSig> {
25 %entry():
26 STORE RELEASE <@i64> %spinlock @I64_0
27 RET ()
28 }

Figure 5.4: Implementing spin lock using atomic operations in the Mu memory model. The
@lock and the @unlock function uses atomic operations to acquire and release the spin lock
represented as a shared variable @spinlock.

46 Mu Intermediate Representation

after Linux futex. Because those futex-based synchronisation mechanisms can be
difficult and tedious to implement, they may be provided by client-level libraries,
enabling complex implementations to be shared among multiple language clients.

The Mu memory model includes the happens-before relationship between memory
operations, which is also the basis of the Java memory model [Manson et al., 2005;
Gosling et al., 2014] and the C++11 memory model [Boehm and Adve, 2008; ISO, 2012].
The happens-before relationship is a very important concept, because it determines
what value a read operation may observe with respect to other write operations in the
current thread or other threads. A load operation can never observe values written
by store operations which happen after it. If there are two store operations, and
one happens before the other, then the second store ‘hides’ the first store, therefore
any load operations which happen after the second store cannot observe the value
written by the first store. There are multiple ways to establish the happens-before
relationship. The happens-before relationship is consistent with the program order
— operations which are performed earlier in one thread happens before operations
performed later in the same thread. Memory operations in different threads may
have happens-before relationship, too. In the spin-lock example above, when a load
operation of the ACQUIRE order observes the value written by a store operation of
the RELEASE order, they form the synchronises-with relationship (a subset of the
happens-before relationship) across different threads. Because the precise definition
of the happens-before relationship is complicated, we refer the readers to the Mu
specification [Wang, b] for more details.

5.3.6 Stack Binding and the SWAPSTACK Operation

Unlike many language runtimes, Mu clearly distinguishes between threads (execu-
tors) and stacks (execution contexts).

A thread is a flow of control that can progress concurrently with other threads.
Modern operating systems provide threads (native threads) as kernel-level scheduling
units that share resources with others in the same process,13 and can be executed
concurrently on parallel hardware. Programming languages, on the other hand,
may implement language-level threads as native threads, strictly user-level ‘green’
threads mapped to a single kernel thread, or via an M× N mapping that multiplexes
user-level threads over kernel-level threads.

The execution context of a thread includes the call stack as well as other thread-
local state, such as a thread-local allocation buffer for GC. The call stack, or simply
the stack, records the activations of dynamically nested function calls. Each activation
record or frame on a stack records the values of local variables and the saved program
counter of a function activation.

In conventional languages such as Java, each thread is only ever associated with
one stack. More generally, however, a thread can switch among different stacks, such

13Some operating system kernels, such as Linux or seL4, only provide the abstraction of ‘tasks’ rather
than actual ‘threads’ and ‘processes’. Tasks can implement threads, processes or other kinds of isolated
containers, depending on what resources are shared among the tasks.

§5.3 Instruction Set 47

as when switching between coroutines, or handling UNIX signals.14

Swapstack is a context-switching operation that saves the execution state of the
current thread’s top-most activation on its active stack, switches the thread to use
a different destination stack, and restores the thread’s execution state to that of the
destination stack. Swapstack effectively provides the abstraction of symmetric co-
routines, and can be used by language implementations to build higher-level language
structures such as continuations and lightweight threads, as in Dolan et al. [2013].

Dolan et al. [2013] showed that with the support from the compiler, this lightweight
context switching mechanism can be implemented fully in user space with only a
few instructions, so it is more efficient than native threads, which inevitably involve
transitioning through the kernel. With the compiler knowing the liveness of variables
at each Swapstack site, only a subset of all registers need to be saved. This is im-
possible for library-based approaches, including setjmp/longjmp, swapcontext or
customised assembly code, which have no information from the compiler and must
conservatively save all registers.

The term ‘Swapstack’ was first used by Dolan et al. [2013] to specifically re-
fer to their efficient language-neutral compiler-assisted mechanism in LLVM for
context-switching and message passing between lightweight threads of control (‘green
threads’). In this work, we use the term Swapstack

15 in a broader sense—it is an
abstract operation that rebinds the current thread to a different stack, regardless of
its implementation.16

Swapstack is an integral part of Mu. The SWAPSTACK instruction unbinds a
thread from one context and rebinds it to another context [Dolan et al., 2013]. When
rebound, the thread continues from the corresponding instruction (usually another
SWAPSTACK), where the destination context paused when last active (bound to a
thread).

Figure 5.5 demonstrates the SWAPSTACK instruction. This example has two func-
tions written in straight-line code, demonstrating two coroutines swapping to and
from each other. Stacks can be created using the @uvm.new_stack intrinsic (see
section 5.3.8) or the equivalent API function. The SWAPSTACK instruction may pass
values to the destination stack. If a stack is stopped at a SWAPSTACK instruction, it
receives the passed values as the return value of the instruction; if the stack is a newly
created stack which is stopped at the entry point of a function, the passed values will
be received as the parameters of the function.

Figure 5.7 is a slightly more complex example that uses SWAPSTACK to imple-

14The sigaltstack POSIX function can specify an alternative stack where the signal handler runs,
instead of the regular user stack.

15Following the convention of Dolan et al. [2013], we use Swapstack (Small Caps) to denote the
abstract operation, and use SWAPSTACK (ALL CAPS) for the concrete instruction in the Mu instruction
set.

16Therefore, in our terminology, the Boost.Context library [Kowalke, 2016], the (deprecated) swap-
context POSIX function, as well as the LLVM primitive created by Dolan et al. [2013], are all imple-
mentations of Swapstack, although the work of Dolan et al. [2013] usually out-performs others because
it only saves as many registers as necessary. A Mu implementation also provides an implementation of
Swapstack.

48 Mu Intermediate Representation

1 .typedef @i64 = int<64>
2 .typedef @d = double
3 .typedef @st = stackref
4

5 .const @C1 <@i64> = 101
6 .const @C2 <@d> = 102.0d
7 .const @C3 <@i64> = 103
8 .const @C4 <@d> = 104.0d
9

10 .funcsig @main.sig = () -> ()
11 .funcdef @main VERSION %v1 <@main.sig> {
12 %entry():
13 %cur_st = INTRINSIC @uvm.current_stack ()
14 %coro_st = INTRINSIC @uvm.new_stack <[@coro.sig]> (@coro)
15 // (A)
16 %v1 = [%s1] SWAPSTACK %coro_st RET_WITH <@i64> PASS_VALUES <@st> (%cur_st)
17 // (C) %v1 == 101
18 (%v3 %v4) = [%s3] SWAPSTACK %coro_st RET_WITH <@i64 @d> PASS_VALUES <@d> (@C2)
19 // (E) %v3 == 103, %v4 == 104.0
20 [%s5] SWAPSTACK %coro.st RET_WITH <> PASS_VALUES <> ()
21 // (G)
22 RET ()
23 }
24

25 .funcsig @coro.sig = (@st) -> ()
26 .funcdef @coro VERSION %v1 <@coro.sig> {
27 %entry(<@st> %main_st):
28 // (B) %main_st is the main stack
29 %v2 = [%s2] SWAPSTACK %main_st RET_WITH <@d> PASS_VALUES <@i64> (@C1)
30 // (D) %v2 == 102.0
31 [%s4] SWAPSTACK %main_st RET_WITH <> PASS_VALUES <@i64> (@C3 @C4)
32 // (F) %s4 did not receive any values
33 [%s6] SWAPSTACK %main_st KILL_OLD PASS_VALUES <> ()
34 // unreachable
35 }

Figure 5.5: Example of the basic usage of the SWAPSTACK instruction. The identifiers in square
brackets before the instruction mnemonics, such as [%s1], give names to instructions. The
@main function creates a stack with a single frame stopped at the beginning of the @coro
function. This stack represents a coroutine. As the program executes, the control flow reaches
point (A), point (B), . . . , point (G) in this order, during which the SWAPSTACK instructions
are executed in the order of %s1, %s2, . . . , %s6. From point (A), the thread executes the
first SWAPSTACK instruction %s1 which rebinds the current thread to the stack referred to by
the stack reference %coro_st. As specified by the PASS_VALUES(%cur_st) clause, it passes
%cur_st — the reference to the current stack — to the coroutine stack. As specified by the
RET_WITH <i64> clause, the main stack will be stopped at the instruction %s1, waiting for a
value of type @i64. After executing %s1, the control flow continues from where the coroutine
stack was stopping at, which is the beginning of the @coro function because it is a newly
created stack. The parameter %main_st receives the value of %cur_st, and the control flow
reaches point (B). The thread then executes the next SWAPSTACK instruction %s2, passing
constant @C1 to the main stack, and reaches point (C). Because the main stack was stopped
at %s1, the constant @C1 was received by the return value %v1. Instruction %s3 then passes
constant @C2 to return value %v2 of instruction %s2, and reaches point (D). Instruction %s4
passes two values @C3 and @C4 to %v3 and %v4 of %s3, and reaches point (E). Instruction
%s5 swaps to the coroutine stack without passing values, and reaches point (F). The last
SWAPSTACK instruction %s6 swaps back to the main stack, and destroys the current stack (the
coroutine stack) as specified by the KILL_OLD clause. The thread then returns at point (G).

§5.3 Instruction Set 49

1 def main():
2 c = coro(i)
3

4 v1 = c.send(None)
5 v2 = c.send(None)
6 v3 = c.send(None)
7

8 c.throw(StopIteration)
9

10 def coro(i):
11 try:
12 while True:
13 yield i
14 i += 1
15 except StopIteration:
16 # When a generator returns, it yields None.
17 return

Figure 5.6: A simple Python generator example. The coro function is a generator function
that yields number i, i+1, . . . , until it receives a StopIteration exception. The main
function creates the generator, resumes it three times to get three values, and then throws an
exception to stop it.

ment a Python-style generator roughly equivalent to the code in Figure 5.6. Like
the CALL instruction, the SWAPSTACK instruction may have an exception clause (see
Section 5.3.3), too. The coroutine runs in a loop, sending values back to the main
routines via SWAPSTACK until it receives an exception. There are several notable differ-
ences between the Swapstack primitive of Mu and the generators of Python. Python
generators are asymmetric coroutines, where the parent uses the send method to
resume the child, while the child uses the yield expression to resume its implicit
parent. Mu stacks are symmetric, therefore every SWAPSTACK instruction must have
the destination stack as its operand. In Python, the arguments of a generator are
supplied when creating the generator, while the arguments to the function of a newly
created Mu stack are supplied the first time a thread is bound to it via Swapstack.

In Mu, the Swapstack primitive is not only used by the SWAPSTACK instruction
for coroutines and green threads, but is also a foundation for many aspects of the
micro virtual machine design, including thread creation, trap handling, and on-
stack replacement. Stacks are inactive upon creation; a newly created thread starts
execution by binding to an inactive stack and using it as its execution context. We
will discussed more about the use of Swapstack in trap handling in Section 6.3.1, and
we dedicate Chapter 7 to the discussion of our Swapstack-based OSR API.

5.3.7 Unsafe Native Interface

Although Mu is designed for managed languages, Mu does not preclude direct inter-
action between Mu IR programs and native programs (often written in C), including

50 Mu Intermediate Representation

1 .typedef @i64 = int<64>
2 .typedef @st = stackref
3 .typedef @StopIteration = struct<...>
4 .typedef @ref_StopIteration = ref<@StopIteration>
5

6 .const @C0 <@i64> = 0
7 .const @C1 <@i64> = 1
8

9 .funcsig @main.sig = () -> ()
10 .funcdef @main VERSION %v1 <@main.sig> {
11 %entry():
12 %cur_st = INTRINSIC @uvm.current_stack ()
13 %coro_st = INTRINSIC @uvm.new_stack <[@coro.sig]> (@coro)
14

15 [%s1] SWAPSTACK %coro_st RET_WITH <> PASS_VALUES <@st @i64> (%cur_st @C1)
16

17 %v1 = [%s2] SWAPSTACK %coro_st RET_WITH <@i64> PASS_VALUES <> ()
18 %v2 = [%s3] SWAPSTACK %coro_st RET_WITH <@i64> PASS_VALUES <> ()
19 %v3 = [%s4] SWAPSTACK %coro_st RET_WITH <@i64> PASS_VALUES <> ()
20

21 %exc = NEW <@StopIteration>
22 [%s5] SWAPSTACK %coro_st RET_WITH <> PASS_VALUES <@ref_StopIteration> (%exc)
23 RET ()
24 }
25

26 .funcsig @coro.sig = (@st @i64) -> ()
27 .funcdef @coro VERSION %v1 <@coro.sig> {
28 %entry(<@st> %main_st <@i64> %i0):
29 [%t1] SWAPSTACK %main_st RET_WITH <> PASS_VALUES <> ()
30 BRANCH %head(%main_st %i0)
31

32 %head(<@st> %main_st <@i64> %i):
33 [%t2] SWAPSTACK %main_st
34 RET_WITH <> PASS_VALUES <@i64> (%i)
35 EXC (%cont(%main_st %i) %exit(%main_st))
36

37 %cont(<@st> %main_st <@i64> %i):
38 %i2 = ADD <@i64> %i @C1
39 BRANCH %head(%main_st %i2)
40

41 %exit(<@st> %main_st) [%exc]:
42 // On exception, destroy the current stack and swap back to the main stack
43 [%t3] SWAPSTACK %main_st KILL_OLD PASS_VALUES <> ()
44 }

Figure 5.7: Example of using SWAPSTACK in a loop. This example is roughly equivalent to
the Python code in Figure 5.6. The first SWAPSTACK instruction %s1 in the @main function
‘initialises’ the coroutine with necessary contexts — the reference to the main stack and the
initial number. The first SWAPSTACK instruction %t1 in the @coro function swaps back to
the main stack. This leaves the coroutine stack in a state that whenever the thread swaps to
the coroutine stack, passing no values, the coroutine will swap back, carrying the next value.
Concretely, the thread then executes the SWAPSTACK instruction %s2 in @main to swaps to the
coroutine which continues from %t1 and swaps back at %t2, carrying the first value. Then
%s3 makes %t2 continue with the normal destination %cont, where it computes the next
value, jump back to the head, and swap stack again at %t2. It is similar for %s4. The last
SWAPSTACK in @main, namely %s5, throws an exception at the coroutine stack, which receives
the exception, and continue from %t2 to the exceptional destination %exit, where it destroys
the current stack and swaps back.

§5.3 Instruction Set 51

system calls17 and third-party libraries.
Some existing VMs, such as the JVM, intentionally forbid direct interaction with

native programs in order to keep the managed language safe. However, since interact-
ing with native programs is usually necessary, bridge code between Java and C has to
be written. The JNI [Oracle] interface forces this portion of bridge code to be written
in C, and also introduces non-trivial overhead at the C-Java boundary. We take the
approach of C# [Hejlsberg et al., 2003], which has built-in support for pointers and
allows calling C functions directly. In this way, we encourage programmers to write
more code in managed languages like C#. The entire system will be safe because of
less C and more managed code, and the compiler has the opportunity to generate
low-overhead calling sequences with the knowledge of the native calling convention.

Mu interfaces with native programs at the level of application binary interfaces
(ABI) instead of the C programming language. The C language specification does
not define the memory layout (including sizes and alignments of objects) or the
calling convention, and it is the ABI of each platform that defines them. The main
Mu specification is extended with an API for each platform.18 In principle, the ABI
includes a Mu IR-level calling convention equivalent to the C calling convention, and
the memory layout is defined to be compatible with the C programming language
ABI. This is because C is currently the most widely used language for writing native
programs, and other languages, such as C++, Rust as well as managed languages such
as Python, usually have their foreign function interfaces (FFI) target the C convention.

Mu assumes that the process runs in a flat (not segmented) address space, which
is true for most modern platforms, such as x64, AArch64, and even the 32-bit IA-
32 architecture on GNU/Linux which forces some segment registers to be zero.19

Untraced pointers ‘uptr<T>’ and function pointers ‘ufuncptr<sig>’ are simply
the addresses of data storage regions or entry points of native functions. Memory
operations, such as LOAD and STORE, can access native memory via pointers, the same
way as accessing the managed memory via internal references. In addition to the
CALL instruction, the CCALL instruction allows the client to call native functions via
untraced function pointers with a specified calling convention, usually the C calling
convention.

Object Pinning

Many high-performance garbage collectors move objects within the heap to compact
memory. However, heap objects may need to be accessed by native functions, such

17The ‘system calls’ accessible in the C language are usually C functions that wrap the actual system
call instructions.

18At the time of writing, we have only defined the ABI for x64 platforms that uses the SysV ABI for
AMD64 [Matz et al., 2012]. A new Mu ABI needs to be defined when porting Mu to any platform.

19Not all platforms use one flat address spaces. Some devices may have multiple address spaces
which are accessed using different instructions, such as special instructions for device IO. To support
such platforms, the Mu IR needs to be adjusted to distinguish between different address spaces. The
addrspace(x) annotation for pointer types in the LLVM IR provides a reasonable frame of reference
for this.

52 Mu Intermediate Representation

as the read and the write system call, when objects contain a buffer to be read or
written by the native function. In Mu, heap objects must be pinned before becoming
accessible via pointers. The pinning operation ensures that while an object is pinned,
it has a constant address. This prevents the garbage collector from moving the object.

The Mu specification also allows native programs to make atomic memory ac-
cesses that synchronise with Mu programs. But we leave the exact way how the native
program can do this as implementation-defined, because different implementations
of the C language (i.e. different C compilers) may implement atomic operations dif-
ferently while still complying with the C standard.20 When accessing unmanaged
memory, the behaviour has to be implementation-dependent because the underly-
ing system has so much freedom in managing the address space. Addresses may
be mapped to devices, and different address regions may be mapped to the same
physical memory region and create aliases that are not known statically.

Calling Back from Native Code

Mu functions may need to be called from native functions, too. Some native libraries
let their users provide call-back functions which are called by the library on specific
events. Mu functions must be exposed before becoming callable from native programs.
The calling convention of a particular Mu instance may not be the same as the
C calling convention, thus adapters may need to be generated to convert between
different calling conventions, although it is recommended that Mu let functions follow
the C calling conventions, too, to avoid this level of conversion.

While Mu IR has functions, the callable unit of the high-level language may not
be functions, but methods or closures. The difference is that they not only contain
the executable code, but also contextual data, such as the object of the method, or
the captured variables of the closure. Therefore, when exposing a Mu function to a
C-callable function pointer, Mu also allows the client to attach a ‘cookie’ — a 64-bit
integer constant — behind the function pointer which can be looked up in the body
of the Mu function, as depicted in 5.8(a). The cookie can be used to identify the
context object in a client-specific way, such as looking up a table. This mechanism can
be efficiently implemented as a simple machine instruction sequence that loads the
cookie and jumps to the Mu function, as shown in 5.8(b). As the stub is simple and
small, the Mu implementation can bulk-allocate arrays of such stubs. Therefore Mu
functions can be frequently exposed and unexposed at run time with little overhead.

The choice of the 64-bit integer type for cookies is somewhat arbitrary, but it has
enough bits to hold a pointer and has the same behaviour across platforms. Alterna-
tively, the cookie could be defined as an object reference since managed languages
are more likely to represent the context object as a heap object. However, it creates a
challenge for the GC which has to update the reference atomically when the object

20For example, to implement the seq_cst memory order on x64, a compiler can implement load
as MFENCE, MOV (from memory) and store as MOV (to memory), or implement load as MOV (from
memory) and store as MOV (to memory), MFENCE. Both implementations comply to the C11 seman-
tics, but all components must agree in order to work together properly.

§5.4 Summary 53

is moved, because the native program is non-cooperative, and may call the exposed
function without regard to the GC. Some architectures, such as ARMv7, do not sup-
port pointer-sized literals, and a register needs to be initialised in two consecutive
instructions. Atomically patching two instructions is hard if possible at all. If the
register is loaded from memory, it will have no advantage over letting the client load
from a global array using an integer-typed cookie. Alternatively, the cookie can be
defined as a pointer-sized integer, which requires the client to emit different code for
different platforms.

5.3.8 Intrinsics

With the design of Mu continuing to evolve, more and more primitive operations, such
as object pinning, are added to the Mu instruction set. These primitive operations
cannot be expressed with existing instructions, but inventing a new instruction for
every new operation will cause the instruction set to explode.

Mu has a mechanism — intrinsics21 — which allows the instruction set to be
extended without inventing new instruction formats. All intrinsics are encoded
in a common format: ‘%rv = INTRINSIC @name <@T1 @T2 ...> (%arg1 %arg2
...)’. New intrinsics can be added by simply inventing new names.

This mechanism is similar to intrinsic functions in C and LLVM. However, unlike
intrinsic functions provided by C implementations, Mu intrinsics are fully standard-
ised by the Mu specification, and understood by all Mu implementations. Unlike
LLVM, Mu intrinsics have a richer syntax than function calls. For example, Mu
intrinsics may accept type arguments in addition to value arguments, making type-
polymorphic intrinsics easy to encode, while LLVM intrinsic functions have to encode
the type arguments as part of the function name , such as the llvm.sqrt.f32 and
llvm.sqrt.f64 intrinsic functions for different floating point types, which may be
ugly when the types are complex.

All functions in the Mu client API are also available as intrinsics. This allows
meta-circular clients, i.e. Mu clients which are themselves Mu IR programs, to invoke
the API via intrinsics without resorting to the native interface.

5.4 Summary

This chapter presented the Mu intermediate representation (IR). The Mu IR is de-
signed using LLVM as a frame of reference. The Mu type system is low-level, but
has built-in support for garbage-collected reference types. The Mu instruction set
addresses the major concerns of Mu, namely execution, concurrency and garbage
collection, and also allows direct interaction with native programs.

In the next chapter, we will introduce the Mu client interface, the API via which
the client communicates with Mu.

21The current Mu specification calls them ‘common instructions’ because all such instructions have
a common encoding. This name is misleading because these instructions are much less common than
other instructions, such as ADD and SUB. We plan to change this name to ‘intrinsics’.

54 Mu Intermediate Representation

1 .global @CookieToObjectMap <@refToHashMap>
2

3 .funcdef @foo VERSION %1 <@foo.sig> {
4 %entry():
5 %v = INTRINSIC @uvm.native.get_cookie
6 %ctx_obj = ??? // TODO: get the object from %v
7 // ...
8 }
9

10 .const @MY_COOKIE1 <@i64> = 100
11 .const @MY_COOKIE2 <@i64> = 200
12

13 .expose @nativefoo1 = @foo #DEFAULT @MY_COOKIE1
14 .expose @nativefoo2 = @foo #DEFAULT @MY_COOKIE2

(a) Mu IR

1 foo:
2 // prologue
3 push rbp
4 mov rbp, rsp
5

6 // cookie is in rax
7 // foo body continues here
8

9 nativefoo1:
10 mov rax, 100 // load the cookie value
11 jmp foo // jump to the actual foo
12

13 nativefoo2:
14 mov rax, 200
15 jmp foo

(b) x64 Assembly

Figure 5.8: Cookies of exposed functions. Figure 5.8(a) shows a Mu function @foo which is
exposed to two function pointers @nativefoo1 and @nativefoo2, with the same default
C calling convention, but different cookies. When the native program calls either exposed
function, @foo will be executed, but the value of %v will be 100 if called via @nativefoo1,
and 200 if called via @nativefoo2. This value can be used to to lookup the context object
(such as the object of the method) using certain client-designed global map data structure.
Figure 5.8(b) shows one possible implementation on x64. The register rax is reserved for the
cookie as it is not used by the C calling convention. The exposed functions load the literal
value 100 or 200 into rax before jumping to the actual @foo, where the cookie is available
in the rax register. Mu can bulk-allocate arrays of such mov-jmp sequences and reuse them
when Mu functions are exposed and unexposed at run time.

Chapter 6

Mu’s Client Interface

The preceding chapter presented the Mu intermediate representation for programs
executed on Mu. This chapter presents the Mu client interface (API), which allows
the language client to control Mu and handle trap events at run time.

This chapter is structured around the use of the Mu API. Section 6.1 presents a
high-level overview of the API design; Section 6.2 discusses the API for the run-time
loading of Mu bundles; Section 6.3 discusses the API for trap handling and run-time
optimisation; Section 6.4 summarises this chapter.

6.1 Overview

Mu provides a bi-directional API to communicate with its client. The client can
send messages to Mu for the purposes of: (1) building and loading Mu IR code
bundles, (2) accessing Mu memory, and (3) introspecting and manipulating the state
of Mu threads and stacks. Mu sends messages to the client if a TRAP or WATCHPOINT
instruction is executed.

The client API is expressed in the specification in the form of a header in the C
language. This makes C the canonical language for the interface between Mu and the
client, but language bindings for other languages can be created.

The client API is different from the ‘unsafe native interface’ introduced in Sec-
tion 5.3.7. The purpose of the native interface is interacting with native libraries, while
the purpose of this API is the communication between the micro virtual machine and
the client.

How tightly the client is coupled with Mu is not specified. The client may be a
meta-circular client which itself is a Mu IR program. The client may be a C program
running in the same process as Mu. It can also be running in a different process, or a
different machine, that controls the micro virtual machine remotely.

Like JNI, the API lets the client hold Mu values, including traced references, via
opaque handles tracked by Mu. This hides the representation of Mu values, especially
opaque reference types, from the client.

The API can create many client contexts. Each context is an entity in Mu that holds
handles on behalf of the client, and the garbage collector may trace all references
held by all contexts in order to perform exact GC. The context also lets the client

55

56 Mu’s Client Interface

allocate objects in the Mu memory, access the Mu memory (including the heap), and
create other objects such as Mu threads and stacks. For efficient implementation,
the context is intentionally not thread-safe. Each context should be used by at most
one client thread at a time, allowing operations on the context to be implemented
without excessive synchronisation. For example, each context might have its own
heap allocation buffer, allowing the memory allocation fast-path to avoid taking a
lock on the entire heap.

The states held by client contexts are similar to those held by Mu threads. A Mu
thread holds many Mu values as local variables on the stack, whereas a client context
holds many Mu values as handles. Both Mu threads and client contexts may have
local GC allocation buffers. In some sense, a client context enables a client thread to
perform operations that otherwise could only be performed by Mu threads.

6.2 Bundle Building and Loading

The Mu IR program which the micro virtual machine compiles and executes comes
from the client.

6.2.1 Bundle as the Unit of Loading

The unit of Mu IR code loading is bundle. A bundle is the counterpart of a JVM
.class file or an LLVM module. As shown in Figure 5.1, a Mu IR bundle contains
many top-level definitions, which are types, function signatures, constants, static cells,
functions, function versions and exposed functions. The client constructs and submits
the Mu IR code bundles to Mu via the API.

Conceptually, a Mu instance has one global bundle which is initially empty. Every
time the client loads a bundle, all top-level definitions are merged into the global
bundle. Therefore, at any time, the global bundle contains all of the top-level defini-
tions, such as types and functions, that the client has ever submitted to Mu. Although
Mu may implement parallel bundle loading, the Mu specification requires that the
loading of all bundles to be serialised, so that all bundles appear to be loaded in one
particular order. Therefore, the code in each bundle may only use the top-level defi-
nitions, such as types and functions, defined in the current bundle or any previously
loaded bundle, but not from bundles loaded in the future.

This model is very different from the C programming language, where all source
files are ‘parallel’ — they are compiled independently and linked together, and each
file can still refer to symbols defined elsewhere and the linker resolves the inter-
dependency. C and Java programmers may find the Mu bundle loading model
counter-intuitive, thinking that Mu bundles should mirror the high-level C source
codes or JVM .class files. However, if we think from the perspective of Mu, the
design is logical. As shown in Figure 6.1, when we observe from Mu’s perspective, the
exact organisation of language-level modules is its implementation detail which Mu is
oblivious of. The only relation between bundles is the order in which they are loaded
from the unknown outside world called the client. In this way, we see the process of

§6.2 Bundle Building and Loading 57

Mu

client

mod

mod

mod

logical
structure

loading

(a) The client’s perspective

client

Mu

bundle

bundle

bundle

tem
poral

order

loading

(b) Mu’s perspective

Figure 6.1: Bundle loading from different perspectives. If we focus on the client as in
Figure 6.1(a), the modules should represent the structure of the high-level program, and Mu
is just a destination of those modules. But if we focus on Mu as in Figure 6.1(b), then all
details inside the client are beyond the concern of Mu. Mu only sees many bundles loaded
from the client one after another, and the only relation between bundles is the temporal order
of loading.

loading one bundle after another as the process in which Mu gradually gains more
knowledge about the program that the client intends to execute. Naturally, to simplify
the implementation of Mu, we require each bundle to only refer to knowledge, i.e.
top-level definitions, which Mu has already gained (in previously loaded bundles)
or is about to gain (in the current bundle), and does not require Mu to keep note of
unresolved top-level definitions.

A bundle is the unit of loading. It does not need to match the logical module of the
language the client is implementing. A bundle may be as small as a single function
the client has just optimised. A bundle may also be as big as the amalgamation of
several inter-dependent modules. There is not restriction in size, so we expect the
client to build and load a bundle whenever it has the need to submit any code.

6.2.2 The IR-building API

The client builds Mu IR bundles using the API.
The IR-building API contains many functions, each creating an AST node of Mu

58 Mu’s Client Interface

IR inside Mu. The client can order Mu to load the bundle when it is completely built,
or abort the IR-building process at any time. The irbuilderref opaque reference
type refers to an IR builder object which holds temporary AST nodes while building
a bundle.

AST nodes refer to each other by symbolic IDs rather than direct pointers. The
Mu IR inevitably contains cyclic references between nodes. For example, a basic
block refers to a list of instructions, and the BRANCH instruction refers to a basic
block. Functional languages may have difficulties handling cyclic references, and this
general design makes the API itself (and Mu itself) implementable in both imperative
and functional languages.

The purpose of the IR-building API is to communicate Mu IR code between the
client and Mu as efficiently as possible. It is not intended to be used as a data structure
for the client to perform code transformation, which happens to be the purpose of
the LLVM IR. Adapting our API for transformation will greatly complicate the API
by adding more functions for modification and query, which will increase the burden
on Mu which should be kept minimalist. To compensate this, client side libraries can
be developed for the client to perform Mu-IR-to-Mu-IR optimisations.

6.3 Trap Handling and Run-time Optimisation

During execution, a program may encounter events which Mu cannot handle alone.
One example is lazy code loading. The client may only translate parts of the user-level
program into Mu IR, and lazily load other components, such as classes or functions,
only when they are first used. Another example is profiling-based optimisation. The
client may detect hot (frequently executed) functions at run time and apply aggressive
optimisations on these ‘hot spots’.

Mu provides a trap handling mechanism to handle such events.

6.3.1 Trap Handling

Traps give clients the opportunity to introspect execution state to adapt and optimise
the running program. A Mu IR thread can temporarily pause execution and transfer
control to the client by executing a TRAP instruction: ‘%ret_val = [%trap_name]
TRAP <@RetTy>’.

The WATCHPOINT instruction is a conditional variant of TRAP which is disabled in
the common case but can be enabled asynchronously by the client. A WATCHPOINT is
particularly useful for invalidating speculatively optimised code. For example, a Java
implementation can compile virtual functions as non-virtual and replace all virtual
call sites with a direct call if they are not overridden by any known subclasses. How-
ever, when a new class is loaded and it overrides the virtual function, all previously
compiled call sites become invalid, and need to be invalidated. According to Lin et al.
[2015], WATCHPOINT can be implemented with code patching to have near-zero cost
when disabled.

§6.3 Trap Handling and Run-time Optimisation 59

TRAP and WATCHPOINT pauses the execution by unbinding the current thread from
the stack using the same mechanism as SWAPSTACK. Conceptually, trap handling uses
Swapstack to switching the context (stack) of the current thread to the context of
the client where a trap handler — a call-back function registered by the client — is
executed. When the trap handler returns, it may rebinds the thread to a Mu stack
and continue execution. In Section 7.3.4, we will explain how Swapstack can help
creating a consistent API for stack-related operations.

6.3.2 Function Redefinition

The client may perform run time optimisation within a trap handlers. For perfor-
mance reasons, the client may use a quick and dirty baseline compiler to compile
most functions, and only activate the expensive optimising compiler for ‘hot’ func-
tions. When the optimisation is done, the client wishes to replace the existing Mu IR
function with a new version.

In Mu, a function is merely a callable entity, while every function version is a block
of concrete code. For C programmers, a Mu function is like a C function declaration,
while a Mu function version is like a C function definition. As shown in Figure 5.1,
a function version definition ‘.funcdef’ has both a function name and a VERSION
name. When loading a new Mu IR bundle, if there is a new version for a pre-existing
function, it will add a new version to that function. We also say that the new version
redefines the function. Since the loading of bundles are linearised as we described in
Section 6.2.1, the order of bundle loading determines which version is newer.

When calling a Mu function with a CALL instruction, it executes the newest version
of that function observed by the current thread. Conceptually, all Mu functions are
indirected. A function can be thought of as a memory location that holds a pointer
to the code of its current version. Defining or redefining a function is like storing a
code pointer to that location, while calling a function is like loading the code pointer
from that location and then calling it. Function redefinition is always atomic with
respect to invocation, which means an invocation observes either the old version or
the new version, but never any partially updated function. This also means that
Mu thread may not always see the globally newest version of a function, because it
may be concurrently redefined by another thread. To create a consistent semantics
for function redefinition in multi-threaded scenarios, we use the happens-before
relation (see Section 5.3.5) from the Mu concurrency memory model for the visibility
of function versions. For example, if a redefinition of a function happens before an
invocation of the function, and there are no other redefinitions of that function, then
that invocation is guaranteed to see the newer version.

Although Mu functions are conceptually indirected, it is possible for Mu instances
to implement function redefinition without indirection. When a function is redefined,
Mu can compile the new version and patch the entry point of all old versions with a
JMP instruction to the new version. Remember that the funcref type is considered
a traced reference. With the garbage collector’s help, it can update (forward) the
existing function reference values to the address of the newest version in the same

60 Mu’s Client Interface

way the copying garbage collector forwards object references when objects are moved.
Once forwarded, all function calls are direct.

Function redefinition only affects future invocations. When a function is redefined,
future invocations of the function will execute the new version, but there may be
existing activations on the stack of some threads. Mu cannot automatically transform
the execution context of the old version to the context of the new version, because Mu
does not understand the semantics of the high-level language. It is also unsound to
abruptly terminate the execution of the old version. Therefore, we require that when
a function is redefined, all existing activations continue executing from their current
position of code in their current versions. This means Mu may need to retain several
versions of a function at the same time. Only when all activations of the old version
have returned can Mu recycle the space occupied by the old version. To let the client
transform the execution context of a function to the newer version in the case when
the old version needs to be invalidated, Mu provides the WATCHPOINT instruction
and a powerful on-stack replacement (OSR) mechanism, which will be introduced
later. Mu also provides an API to introspect the stack frames, and see which version
of the function a stack frame is currently executing, in order to help profiling and
on-stack replacement (see Section 7.3.5).

Mu makes no attempt to verify whether the old version and the new version of
functions are algorithmically equivalent. The optimiser belongs to the client, and it is
its responsibility to preserve the semantics of the high-level language between opti-
misation. Mu merely guarantees the semantics of function redefinition as described
above. Thus, the client can redefine a factorial function to calculate Fibonacci number,
and Mu will loyally make subsequent calls execute the Fibonacci function.

Mu functions may have no version, i.e. the function is declared but not defined.
This is useful for the stubs of functions that have not been loaded due to lazy loading.
Such undefined functions are still callable. When called, they behave like a TRAP
instruction, and let the client trap handler handle this case. Naturally the client can
JIT-compile the lazily loaded function to Mu IR, and then re-run that function.

6.3.3 Stack Operations

Advanced language implementations perform aggressive optimisations using the
execution state of the program, such as the current program counter and the local
variable values. This requires introspecting the state of stack frames. After optimi-
sation, the runtime will replace the current execution state with the optimised state
by replacing the stack frames on the stack, i.e. on-stack replacement (OSR). These
mechanisms need to be supported by the low-level execution engine. In a Mu-based
language implementation, Mu is the abstraction layer for compilation and execution,
and therefore should provide abstraction over OSR.

As we will discuss in greater detail in Section 7.3, the API for stack operation
consists of three main parts.

1. The API provides frame cursors which iterate through the frames of unbound
stacks, allowing the client to access the frames.

§6.4 Summary 61

2. For supporting stack introspection, there are API functions that report the
current function, the current function version, and the current Mu IR instruction
of a frame given by a frame cursor. The Mu IR lets the client select a set of local
variables at call sites or Swapstack sites; the values of those variables can also
be obtained using the API.

3. For supporting on-stack replacement, the API also lets the client replace ex-
isting frames with new frames, using a technique inspired by return-oriented
programming (ROP) from cyber-security.

Similar to function redefinition, Mu makes no attempt to verify whether the old
frames and the new frames are functionally equivalent.

In addition to optimisation and deoptimisation, The client may use this API for
debugging purpose, letting the programmer hot-patch a running program with new
code, and fix bugs without restarting the program.

6.4 Summary

This chapter presented the Mu client interface, i.e. the API. The API allows the client
to control the state of Mu, load Mu IR bundles at run time, and perform run-time
feedback-directed optimisation.

In the next part, we will look into the topic of stack introspection and on-stack
replacement, two features that distinguish Mu from other existing platforms. Since
they are so important to high-performance language implementations, especially
dynamic languages, we will devote a whole part to this topic.

62 Mu’s Client Interface

Part II

On-stack Replacement and Its
Implementation

63

Chapter 7

A Practical OSR API for the Client

Part I introduced the design of Mu, a thin abstraction layer over execution, concur-
rency and garbage collection. One important design goal of Mu is to support run-time
feedback-based optimisation, which is crucial to the efficient implementation of dy-
namic languages. This part introduces on-stack replacement (OSR), an important
VM mechanisms for supporting run-time feedback-based optimisation. This chapter
discusses how a well-designed OSR API can facilitate the construction of a virtual
machine, and the next chapter will discuss how the Mu stack API can be efficiently
implemented on concrete hardware.

This chapter is structured as follows. Section 7.1 recapitulates the background
of on-stack replacement and related concepts; Section 7.2 presents a case study of
two high-performance JavaScript engines, namely SpiderMonkey and V8, which use
assembly code excessively and implement OSR from scratch; Section 7.3 describes
Mu’s platform-independent OSR API in details; Section 7.4 demonstrates the OSR
API using an experimental JavaScript Client. Section 7.5 summarises this chapter.

The work described in this part is presented in ‘Hop, Skip, & Jump: Practical
On-Stack Replacement for a Cross-Platform Language-Neutral VM’ [Wang et al.,
2018].

7.1 Background of On-stack Replacement

This section will introduce the concept of on-stack replacement and the related concept
stack introspection.

In Section 5.3.6, we emphasised that Mu clearly distinguishes between threads
and stacks because the difference is particularly important for on-stack replacement.
A thread is a flow of control, i.e. an executor, while a stack is the execution context.
A stack contains many frames, recording the contexts of nested function calls.

Normally, frames are pushed when calling a function, and popped when re-
turning. However, high-performance language implementations need to manipulate
the stack in unconventional ways as part of their optimisation and de-optimisation
processes.

As we mentioned in Section 2.2.1, run-time optimisation is usually feedback-
directed—it detects frequently executed functions and loops using run-time profiling,

65

66 A Practical OSR API for the Client

and uses profile information to guide the optimisation of those hot functions. For
example, when a counter at a loop back-edge triggers re-compilation, the optimiser
recompiles the function into a new, optimised, version of the function. The thread
must then resume execution of the new code at the logically equivalent point, with a
corresponding (possibly new) frame configured accordingly. Moreover, there may be
other activations of the function with active frames spread across multiple stacks and
active at different locations. Replacement of code for active functions in this way is
known as on-stack replacement (OSR).

Traditionally, ‘on-stack replacement’ has been used to refer to the entire process
of getting execution states from stack frames, mapping the old execution context to
the equivalent context of the newly compiled function, removing old frames, and
creating new frames. In this work, we use ‘on-stack replacement’ more narrowly
to refer to the removal and replacement of stack frames, distinguishing it from the
related but distinct task of getting execution states from frames which we refer to as
‘stack introspection’. We consider stack introspection as an orthogonal mechanism to
OSR, because it can be used for purposes other than run-time re-compilation, such
as recording a stack trace for exception handling, and performing a security check
by examining the call stack. Although this chapter focuses on OSR, we will also
introduce stack introspection mechanisms in Mu for completeness.

Stack introspection and on-stack replacement are important in order to imple-
ment languages efficiently, but they themselves are difficult to implement due to the
low-level details they involve. With the program JIT-compiled into machine code, the
layout of the stack is managed by the machine code, which are ultimately generated
by the JIT compiler of the language implementation. This means the stack manipu-
lator not only involves machine-specific details, but also must be helped by that JIT
compiler. Implementing these operations from scratch requires the developer to be
an expert at both high-level optimisation and low-level code generation and assembly
programming.

In the next section, we will use SpiderMonkey and V8 as examples to see a little
of the difficulties of their implementation.

7.2 Case Study of Two Real-world JavaScript Runtimes

In this section, we take a look at the OSR implementations of two real-world JavaScript
engines — SpiderMonkey and V8 — and identify the challenges of implementing
such a low-level mechanism from scratch.

We start with a brief overview of these two virtual machines before looking into
their implementations of on-stack replacement.

7.2.1 Overview of SpiderMonkey and V8

SpiderMonkey [Mozilla] and V8 [Google] are the JavaScript Engines of the open-
source Mozilla Firefox and the Google Chrome browsers, respectively. Although

§7.2 Case Study of Two Real-world JavaScript Runtimes 67

they are not as sophisticated as meta-circular research VMs such as JikesRVM, they
represent the state-of-the-art implementation strategies for dynamic languages. Both
implementations are heavily tuned and tested in real-world applications. Despite
being competitors in the browser market, SpiderMonkey and V8 exhibit many striking
similarities in their designs, although there is no code shared between the two projects.

Both SpiderMonkey and V8 can be classified as monolithic VMs. In either VM,
all components are written in one C++ project from scratch, from the high-level
JavaScript parser to the layout of standard JS object types, the run-time libraries, the
garbage collector, the interpreter and/or the JIT compiler, the optimiser, all the way
down to the machine code generator. Both engines feature generational copying
garbage collectors which are capable of exact garbage collection.

Because of the dynamic nature of JavaScript, both engines use two tiers of JIT com-
pilers. The baseline compiler is a template compiler focusing on compilation speed,
while the optimising compiler aggressively optimises hot code, performing specialisa-
tion to elide dynamic type checking, and also performing conventional optimisations
such as constant folding and inlining. SpiderMonkey also has a bytecode interpreter
in addition to the baseline JIT. The transition between execution modes is driven by
run-time feedback. The runtime switches to a higher tier when it detects frequently
executed code, and falls back to a lower tier when the speculatively optimised code
becomes invalid.

Stack introspection and on-stack replacement happen during execution mode
transitions. In both SpiderMonkey and V8, the baseline compiler inserts profiling
counters at function prologues/epilogues and loop headers/back-edges. When opti-
misation is triggered, the runtime introspects the existing baseline frame to recover
the JS-level execution states. The optimising compiler then transforms the JS program
through several levels of intermediate representations, performing aggressive optimi-
sations on each level. Then the runtime performs on-stack replacement to remove
the baseline frame and replace it with a frame for the optimised version. Similarly,
when the speculatively optimised code is no longer valid, such as when a variable
no longer holds values of the speculated type, the program must fall back to the
baseline-compiled code which can handle all possible data types. The runtime needs
to introspect optimised frames to generate the equivalent baseline frames, and uses
OSR to replace the actual frames on the stack.

However, the two engines share a common problem, namely the excessive use of
assembly. We now take a close look at this problem.

7.2.2 Excessive Use of Assembly for OSR

Since the VMs themselves are implemented in C++, most of the runtime libraries
are written in C++, too. However, quite a few fundamental library functions are
implemented manually in assembly language. One important use of assembly is to
precisely control the layout of stacks during on-stack replacement.

During de-optimisation, V8 first generates the contents of new stack frames in
temporary buffers in the heap. And then, an assembly routine, as shown in Fig-

68 A Practical OSR API for the Client

1 #define __ masm()->
2

3 void Deoptimizer::TableEntryGenerator::Generate() {
4 GeneratePrologue();
5 const int kNumberOfRegisters = Register::kNumRegisters;
6

7 // MORE CODE HERE ...
8

9 // Replace the current frame with the output frames.
10 Label outer_push_loop, inner_push_loop,
11 outer_loop_header, inner_loop_header;
12 // Outer loop state: rax = current FrameDescription**, rdx = one past the
13 // last FrameDescription**.
14 __ movl(rdx, Operand(rax, Deoptimizer::output_count_offset()));
15 __ movp(rax, Operand(rax, Deoptimizer::output_offset()));
16 __ leap(rdx, Operand(rax, rdx, times_pointer_size, 0));
17 __ jmp(&outer_loop_header);
18 __ bind(&outer_push_loop);
19 // Inner loop state: rbx = current FrameDescription*, rcx = loop index.
20 __ movp(rbx, Operand(rax, 0));
21 __ movp(rcx, Operand(rbx, FrameDescription::frame_size_offset()));
22 __ jmp(&inner_loop_header);
23 __ bind(&inner_push_loop);
24 __ subp(rcx, Immediate(sizeof(intptr_t)));
25 __ Push(Operand(rbx, rcx, times_1, FrameDescription::frame_content_offset()));
26 __ bind(&inner_loop_header);
27 __ testp(rcx, rcx);
28 __ j(not_zero, &inner_push_loop);
29 __ addp(rax, Immediate(kPointerSize));
30 __ bind(&outer_loop_header);
31 __ cmpp(rax, rdx);
32 __ j(below, &outer_push_loop);
33

34 // MORE CODE HERE ...
35

36 __ InitializeRootRegister();
37 __ ret(0);
38 }

Figure 7.1: Excerpt of the Deoptimizer::TableEntryGenerator::Generate function for
x64 in the V8 head revision (01590d660d6c8602b616a82816c4aea2a251be63) at the time
of writing. When this routine is invoked, V8 has already generated the baseline frames in
temporary buffers, and each FrameDescription object contains the size and the content of a
frame. This snippet is a two-level loop. The outer loop iterates through each FrameDescrip-
tion, and the inner loop reads the content of the frame word by word and pushes it onto
the current stack. Line 25 uses the PUSH instruction which modifies the stack pointer. Since
the stack pointer is constantly changing, all other operands, including the loop counters and
the pointer to FrameDescription, must be held in registers and cannot be spilled onto the
stack.

§7.2 Case Study of Two Real-world JavaScript Runtimes 69

ure 7.1, uses a rather complicated two-level loop to copy the frame contents from
the buffers to the actual stack. Since the stack pointer is constantly changing, the
programmer must avoid any SP-relative addressing and carefully manage the regis-
ter use in assembly. This two-level loop cannot be written in C++ because the C++
compiler does not expect the stack pointer to be modified outside the generated code.
Similarly, SpiderMonkey also copies stack contents from a side buffer using assembly
code.1 Assembly-based on-stack replacement is also performed for the transition
from baseline to optimised code during optimisation.

The use of assembly increases the engineering complexity. Writing assembly code
of such complexity while properly managing registers and the control flow manually
is tedious and error-prone. Moreover, the assembly routines have to be written for
each supported architecture.

This problem could have been avoided if the virtual machine used the Swapstack

mechanism introduced by Dolan et al. [2013]. When a thread is modifying a stack
which the thread is not executing on, the victim stack can be treated like binary
data, and modified without worrying about the stack pointer of the current thread.
Therefore, the OSR routines can be implemented in any high-level language as long
as it can access the memory. However, it appears that both SpiderMonkey and V8
have only one stack per thread. The reason why neither of them used the Swapstack

mechanism is unknown, but one possible explanation is that the JIT compiler and
the OSR mechanism of SpiderMonkey and V8 predate the work of Dolan et al. [2013].
Without Swapstack, the runtime has to handle stack operations with care. Since both
SpiderMonkey and V8 are monolithic virtual machines, the burden is imposed on the
language implementers who also develop the VM.

7.2.3 Conclusion: SpiderMonkey and V8 Depends on Assembly

As we can see, SpiderMonkey and V8 are quite similar in many aspects. Both of them
use JIT compilation and aggressive optimisation. Thus they need stack introspection
on-stack replacement as low-level tools. Unfortunately, both of them rely excessively on
assembly, i.e. , too much of the program has to be implemented in assembly language.
The main reason is the way these VMs are implemented.

Monolithic VM implementation Since both VMs are written from scratch, the de-
velopers have to implement both the high-level optimisation algorithm and the low-
level code generators by themselves. Naturally the stack frame decoder and OSR also
belong to the low level which they have to develop as part of the monolithic VM.

Operating on the same stack The necessity of assembly arises from the fact that
the de-optimiser runs on the same stack as the stack it is de-optimising. Modifying
an active thread’s own stack is dangerous — it may interfere with the execution of

1See the MacroAssembler::generateBailoutTail function in the file js/src/jit/-
MacroAssembler.cpp in the current Mercurial revision 65b0ac174753 at the time of writing. URL:
https://hg.mozilla.org/mozilla-central/file/65b0ac174753/js/src/jit/MacroAssembler.cpp#l1429.

https://hg.mozilla.org/mozilla-central/file/65b0ac174753/js/src/jit/MacroAssembler.cpp#l1429

70 A Practical OSR API for the Client

the current function if not done with great care. If the sizes of the stack frames grow,
the replacement would not be possible without overwriting the top frame which the
current function depends on.

The reliance on assembly complicates the VM development, and will multiply
the engineering difficulty when more platforms are to be supported. In the next
section, we will show how the Mu API can simplify the implementation of on-stack
replacement.

7.3 An API for Stack Operations

In this section, we describe our platform-independent API for stack operations, capa-
ble of supporting on-stack replacement. In Section 7.4 we will demonstrate usage of
the API through its application in a minimal JavaScript implementation.

7.3.1 Overview

As we learned in the previous section, two design choices complicate the implemen-
tation. (1) As monolithic VMs, the language developers have to write their own stack
decoders; (2) Because the optimiser and de-optimiser run on the same stack as the
JS application, the replacement of the stack frames must be handled in an assembly
routine. These difficulties are countered by the following two design choices of Mu:

1. Mu abstracts out the details of execution, and provides stack introspection and
OSR as part of its API;

2. Any program (including the client) which introspects or manipulates any stack
must run on a different stack.

The latter is supported by the Swapstack primitive introduced in Section 5.3.6.
To perform OSR, the stack must first be unbound from the thread by performing a
Swapstack operation, such as executing the TRAP Mu IR instruction.

We list relevant Mu API functions in Figure 7.2. The client uses the frame cursor
API to iterate through stack frames, and uses the stack introspection API to get the
execution context which guides the optimisation or de-optimisation. After the client
generates a new function, it uses the OSR API to replace stack frames. The client then
lets the program continue from the new frame with another Swapstack operation,
allowing it to return from the trap handler.

The usage can be summarised as ‘hop, skip and jump’—hopping away from the
stack, skipping several frames to create new frames, then jumping back to the stack.

Before introducing the instructions and the API, we present an abstract view of
the stack that forms the foundation of the API.

§7.3 An API for Stack Operations 71

Kind API Function and Description

Frame Cursor

FrameCursor* new_cursor(Stack* stack)
Create a new frame cursor pointing to the top frame of the given stack.
void next_frame(FrameCursor* cursor)
Move the frame cursor to the next frame, moving down the stack from called to caller.
void close_cursor(FrameCursor* cursor)
Destroy the cursor.

Introspection

int cur_func(FrameCursor* cursor)
Return the function ID of the current frame.
int cur_func_ver(FrameCursor* cursor)
Return the function version ID of the current frame.
int cur_inst(FrameCursor* cursor)
Return the instruction ID of the current frame.
void dump_keepalives(FrameCursor* cursor, MuValue values[])
Dump the values of all keep-alive variables of the current instruction of the current frame.

OSR

void pop_frames_to(FrameCursor* cursor)
Remove all frames above the current frame of the given frame cursor.
void push_frame(FrameCursor* cursor, void (*func)())
Create a new frame on the top of the stack pointed by the frame cursor.

Figure 7.2: Summary of Mu API functions related to stack introspection and OSR.

7.3.2 Abstract View of Stack Frames

In this thesis we adopt the convention of stacks growing up. The ‘top’ frame is the
most recently pushed frame, and is near the top of the page in diagrams.

A stack consists of one or more frames. A frame contains the state of a function
activation. A frame is active if it is the top frame of a stack bound to a thread.
Otherwise, the frame is inactive because the code using it is not being executed.
Specifically, if one function calls another function, the frame of the caller becomes
inactive, expecting a value from the callee as a return value.

An inactive frame can receive a value of an expected type, and become active
again. Specifically, when a function returns, its caller’s frame receives the return
value from the callee, and continues execution. Therefore, every inactive frame is
expecting a value, and will eventually return a value to its caller. Symbolically, we write

frm : (E)→ (R)

to denote that the frame frm is expecting a value of type E in order to resume, and
itself returns a value of type R. Because Mu functions may return multiple values
(see Section 5.3.3), we can generalise this to multiple return values, writing:

frm : (E1, E2, . . .)→ (R1, R2, . . .)

We call this the expect/return type notation.

72 A Practical OSR API for the Client

1 long moo();
2

3 long baz() {
4 long x = moo(); // stop here
5 return x;
6 }
7

8 double bar() {
9 long x = baz(); // stop here

10 double y = (double)(x + 1);
11 return y;
12 }
13

14 int foo() {
15 double y = bar(); // stop here
16 int z = printf("%lf\n", y);
17 return z;
18 }

(a) Example Code

moo

baz

bar

foo

(caller of foo)

top
long

long

double

int

(b) Stack Structure

baz : (long)→ (long)

bar : (long)→ (double)

foo : (double)→ (int)

(c) Expected and Return Types

Figure 7.3: Example of nested calls. The expected types are determined by the call sites, and
the return types are determined by the functions’ return types. The return type of each frame
must match the expected type of its caller’s frame.

§7.3 An API for Stack Operations 73

For example, in Figure 7.3, foo calls bar, bar calls baz, and baz calls moo. The
expected type and the return type of the frames of foo, bar and baz appear in
Figure 7.3(c) in expect/return type notation. As we can see, the expected type of a
frame is determined by the call site (and the callee), and the function signature of a
frame determines its return type.

A stack is return-type consistent if the return type(s) of every frame matches the
expected type(s) of the frame below. It is obvious that if all stack frames are created
by function calls, the stack is always return-type consistent.2 However, the OSR API
can create stack frames of arbitrary expected and return types. Therefore, the client
must take care to ensure that the stack is return-type consistent at all times.

With our abstract stack view in mind, we now introduce the operations in the
API.

7.3.3 Frame Cursor Abstraction

A frame cursor is an iterator of stack frames. A frame cursor always points to one
frame at any time, and can move from top to bottom frame by frame. The API for
both introspection and OSR depends on frame cursors.

7.3.4 The Swapstack Operation

A stack bound to a thread always has its top frame active and other frames inactive,
because the thread executes on its top frame. As we described in Section 5.3.6, Swap-
stack unbinds a thread from its stack, and rebinds it to another stack. Swapstack

deactivates the top frame of its old stack, and reactivates the top frame of the destina-
tion stack, optionally passing one or more values. After the top frame of the origin
stack becomes inactive, the frame waits for another Swapstack operation to bind a
thread (any thread, not necessarily the original thread) to it and reactivate its top
frame, optionally receiving one or more values.

It is easy to observe that an inactive frame stopping on a Swapstack site is similar
to an inactive frame stopping at a call site. Both of them are expecting values, and
can be reactivated by receiving values. The only difference is whether the values
are received by returning or Swapstack. Therefore, the expect/return type notation
frm : (E) → (R) is still applicable for Swapstack, where E is the type of the value
expected from the incoming Swapstack operation.

In the Mu instruction set, the TRAP, WATCHPOINT and SWAPSTACK instructions
perform Swapstack operations, as introduced in Section 5.3. TRAP and WATCHPOINT
are special Swapstack operations that rebind a Mu thread to a client stack, where a
client-provided trap handler is activated.

2In dynamic languages a function can return a value of any type—they do not enforce return-type
consistency. However, Mu IR is statically typed. When implementing dynamic languages like Python,
the Mu-level return type should be the most general type, such as PyObject, and all Python frames
should have (PyObject)→ (PyObject), which is always return-type consistent with respect to the Mu
type system.

74 A Practical OSR API for the Client

1 %call_retval = CALL <@sig> @callee (%arg1 %arg2) KEEPALIVE(%a %b %c %d)
2

3 %trap_retval = TRAP <@i32> KEEPALIVE(%e %f %g)
4

5 %wp_retval = WATCHPOINT 1024 <@i64> %dest1() %dest2() KEEPALIVE(%h %i %j)
6

7 %ss_retval = SWAPSTACK %new_stack
8 RET_WITH <@float>
9 PASS_VALUES <@T1 @T2> (%v1 %v2)

10 KEEPALIVE(%k %l %m %n)

Figure 7.4: Example of OSR point instructions. The KEEPALIVE clause specifies the local
variables that can be introspected through the dump_keepalive API function. Exactly these
variables can be introspected at the specific OSR point.

The Swapstack operation deactivates all frames of an unbound stack, making it
ready for introspection and manipulation. All API functions related to stacks require
the stack to be in the unbound (inactive) state. We now proceed to the introspection
mechanisms before moving on to OSR.

7.3.5 Stack Introspection

In Section 7.1, we showed that the client needs to extract the execution state, including
the program counter and the values of local variables, to guide optimisation and de-
optimisation.

As shown in Figure 7.2, the cur_func, cur_func_ver and cur_inst API func-
tions report the current code position of a frame.

In Mu IR, all call sites (the CALL instruction) and Swapstack sites (the SWAPSTACK,
TRAP and WATCHPOINT instructions) may have a keep-alive clause that specifies which
variables are eligible for introspection. Consider the following snippet:

1 [%trap1] TRAP <> KEEPALIVE (%v1 %v2 %v3)

When the TRAP instruction %trap1 executes, local variables %v1, %v2 and %v3 are
kept alive in the frame, and their values can be introspected using the dump_keepalives
API function. Other local variables are not guaranteed to be live, which leaves Mu
much room for machine-level optimisation. Figure 7.4 lists all ‘OSR point’ instructions
which may have keep-alive clauses.

We let the client decide what variables are introspectable. The client, which
compiled the high-level language into Mu IR, has full knowledge about what variables
are relevant for the desired kind of run-time re-compilation, such as optimisation or
de-optimisation. In the extreme, the client can retain all local variables, thereby
preserving full information about the execution.

We now introduce the way the API allows modification of the stack.

§7.3 An API for Stack Operations 75

7.3.6 Removing Frames

The pop_frames_to API function removes all frames above the current frame. This
will expose the current frame, an inactive frame below the top frame, to the stack top.
Remember that the Swapstack operation passes values to the destination stack’s top
frame. When a thread rebinds to this stack using Swapstack, it will reactivate the
current frame which is stopping at a call site instead of a Swapstack site. The values
passed via Swapstack will be received by the frame as if the values were the return
values from the call site’s original callee.

Popping frames will lose information about the removed frames. The client should
use dump_keepalives to save the execution states before popping frames if needed.

The pop_frames_to API can only remove frames above the specified frame. If
the client desires to replace a frame when the frame is re-entered, usually due to de-
optimisation, the client should insert the WATCHPOINT instruction into the guarded
function.

7.3.7 Creating New Frames Using Return-oriented Programming

The push_frame function pushes a frame for a given function onto the top of a stack.
The frame stops at the entry point of the function.

Our approach to creating new frames is based on return-oriented programming
(ROP).3 We define a ROP frame to be a stack frame that is stopped at the entry point
of a function: its return address is the entry point of the function. In contrast, the
return address of a normal frame is the next instruction after a call site or Swapstack

site. By definition, frames created by the push_frame API function are ROP frames.
When a ROP frame resumes, it receives the values returned by the frame above it,

or passed during a Swapstack operation, as the arguments of its function which now
executes from the entry point.

Consider the code snippet in Figure 7.5. If the client has pushed three ROP frames
on a stack for the three functions respectively, in the order of print, times_two
and then plus_one, then plus_one will be on the top of the stack and print at the
bottom. When a subsequent Swapstack reactivates the stack, passing the value 42
to the top frame, then the top frame executes as if it was a call to plus_one(42). It
returns 43, transferring control to an activation of times_two with the argument y
receiving the value 43. This returns 86, transferring control to the activation of print

3ROP originates from the field of computer security to describe a particular attack technique. The
attack uses malicious data to cause a buffer overflow on the stack, overwriting existing stack frames to
fashion new stack frames. The return address of each frame is set to the entry point of the next function
to execute. Therefore, after each function returns, the processor will execute the next function specified
by its return address. This lets the attacker drive control flow using return instructions to transfer
control to the next function, hence the name. This chain of frames is called the ROP chain. Prandini
and Ramilli [2012] provided a more detailed overview of this attack. It is possible that future hardware
will incorporate security-focused features, such as tagged memory. We believe that this may make the
ROP-based OSR API harder to implement, but not impossible, because such features are intended to
stop malicious use of ROP, while a micro virtual machine is a trusted underlying substrate, and will
execute with adequate privilege to perform ROP in a controlled manner.

76 A Practical OSR API for the Client

1 int plus_one(int x) {
2 return x + 1;
3 }
4

5 int times_two(int y) {
6 return y * 2;
7 }
8

9 void print(int z) {
10 printf("%d\n", z);
11 exit(0);
12 }

(a) C-like Pseudocode

plus_one

times_two

print

Swapstack

top
42

43

86

(b) Stack Structure

Figure 7.5: ROP example. These three functions do not call each other. But if the run-
time pushes three ROP frames for print, times_two and plus_one, respectively, the three
functions will execute one after another from the top of the stack to the bottom (in the order
of plus_one, times_two and then print). Each function passes its return value as the
argument of the next function, making it a pipeline or, in cyber-security terms, a ROP chain.

with the formal parameter z bound to this value. This prints 86 to standard output
and exits.

Just like frames created by function calls, ROP frames also expect values and
eventually return values. We can describe the stack in the previous example in the
expect/return type notation as:

plus_one : (int)→ (int)

times_two : (int)→ (int)

print : (int)→ ()

Unlike frames stopped at call sites and Swapstack sites, the parameter types of the
stopped function determine the expected types of ROP frames, as opposed to the call
site. Users of the API can push frames for any functions, and as many frames as they
desire, as long as the stack remains return-type consistent as defined in Section 7.3.2.

In Section 5.3.3, we mentioned that Mu functions may return multiple return
values. In this return-oriented programming scenario, if a function takes multiple
parameters, the frame above can return multiple return values, each of which are
received as an argument. Otherwise we would have to force all ROP frame functions
to take exactly one parameter. To make the VM design consistent, all resumption
points (defined in Section 8.1.2), including call sites, Swapstack sites and function
entry points, may be resumed by receiving multiple values instead of one. This is
consistent with the IR design that a Mu function may return multiple values, and a
Mu instruction may produce multiple results.

The pushed new frame is always a ROP frame which starts at the function entry
point. However, in the typical run-time re-compilation scenario, the new frame must
resume at the program counter equivalent to where the old frame stopped. Fink and

§7.4 Demonstration of the OSR API 77

Qian [2003] solved this problem by inserting assignments and a jump instruction at
the beginning of the new function, as follows:

1 %var1 = %oldVar1
2 %var2 = %oldVar2
3 ...
4 %varN = %oldVarN
5 JUMP %cont
6 ...
7 %cont:
8 ...

D’Elia and Demetrescu [2016] call these instructions ‘compensation code’. The
assignments set local variables of the new frame to their values in the old frame, and
the jump instruction jumps to the equivalent PC. Recall that the cur_inst and the
dump_keepalives API gives the client the old PC and variable values. Therefore,
while the Mu API requires the new frame to start at the entry point, the client still has
all the information and capability to transition the old frame state to the equivalent
new state.

7.4 Demonstration of the OSR API

In this section, we demonstrate the utility of the OSR API as an aid to language
implementers.

We built JS-Mu,4 a prototype JavaScript client. It implements a small subset of
JS, including operators such as the JS addition operator ‘+’, which applies to both
numbers and strings. Such dynamism gives the specialiser a chance to showcase spec-
ulative optimisation that requires OSR. We implemented JS-Mu in Scala. Examples
in this section are modified to match the current version of the Mu API because Mu
has evolved since JS-Mu was developed.

Like SpiderMonkey and V8, the JS-Mu execution engine consists of a baseline
compiler and an optimizing compiler. There is no JS interpreter. The baseline com-
piler plays the role of the lowest-tier execution engine, while the optimizing compiler
will optimise hot functions and loops.

7.4.1 Supported Subset of JavaScript

As a proof-of-concept project, the priority of JS-Mu is to demonstrate Mu’s support
for dynamic optimisation with the simplest client. We only implement a very small
subset of JavaScript with the following limitations:

• The type system only includes undefined, null, boolean, number, string
and array.

• We do not implement closures, thus the scope of a variable is either global or
the function that defines the variable, but not nested functions.

4Source code: https://gitlab.anu.edu.au/mu/obsolete-js-mu

https://gitlab.anu.edu.au/mu/obsolete-js-mu

78 A Practical OSR API for the Client

• Performing operations on incompatible types will immediately cause an error
rather than implicitly converting operands as the ECMAScript specification
requires.

• Only a subset of operations (operators and methods) are supported. This in-
cludes the add operator ‘+’ that works for both numbers and strings.

7.4.2 Baseline Compiling and Trap Placement

The JS-Mu baseline compiler does not attempt to infer the concrete types of JS vari-
ables. All JS variables are represented using Mu’s tagged reference type tagref64.
All operations, such as addition, subtraction, etc., accept all types of values, and raise
type errors at run time.

Like SpiderMonkey and V8, we use counters to detect hot loops at loop headers.

1 %header(...):
2 ...
3 %c0 = LOAD <@i64> @COUNTER
4 %c1 = ADD <@i64> %c0 @CONST_1
5 STORE <@i64> @COUNTER %c1
6 %hot = SGE <@i64> %c1 @THRESHOLD
7 BRANCH2 %hot %trapbb(...) %body(...)
8

9 %trapbb(...):
10 [%trap1] TRAP <> KEEPALIVE (%v1 %v2 ...)

We use Mu IR code to increment the counter, and execute the TRAP instruction
when the counter reaches a threshold. The KEEPALIVE clause annotates local vari-
ables for introspection. The client maintains a simple HashMap to record the AST
node and compiler metadata relevant to each TRAP.

1 class TrapInfo(val blFunc: BaselineFunction,
2 val node: Node, // AST node
3 val headBB: MuBB, val trapBB: MuBB)
4 val trapInfoMap = new HashMap[String, TrapInfo]()

7.4.3 Optimisation and On-stack Replacement

The TRAP instruction transfers control to the trap handler.

1 def handleTrap(ctx: Context, st: MuStackRefValue, ...): TrapHandlerResult {
2 val cursor = ctx.newCursor(st)
3 val inst = ctx.curInst(cursor)
4 val locals = ctx.dumpKeepalives(cursor)
5 val trapInfo = trapInfoMap(nameOf(inst))
6 ...

The trap handler uses cur_inst to identify the executed TRAP, and uses dump_keepalives
to recover the current values of local variables. Using the Mu-level instruction ID
and the HashMap described above, the optimiser finds the high level implementation
(including the AST node) of the hot loop.

§7.5 Summary 79

The main optimisation performed is specialisation, which is crucial to dynamic
languages [Castanos et al., 2012]. Using the type information encoded in tagged
references, the optimiser infers the types of JS variables, lowering the types to more
concrete types and eliminating run-time type checking operations where possible.
After specialisation, the client generates Mu IR code, and loads the code into the
micro virtual machine. As we described in the end of Section 7.3.7, the optimised
function takes the old local variables as parameters, and uses assignments and a jump
to transfer to the equivalent code point5 [Fink and Qian, 2003; D’Elia and Demetrescu,
2016].

After JIT compilation, the client uses pop_frames_to and push_frame to replace
the stack frame.

1 ...
2 val newFunc = compileFunction(...)
3 ctx.nextFrame(cursor)
4 ctx.popFramesTo(cursor)
5 ctx.pushFrame(cursor, newFunc)
6 ctx.closeCursor(cursor)
7 Rebind(st, PassValues(locals))

When the client returns from the trap handler, Mu uses Swapstack to rebind
the current thread to the old stack, passing the old values of local variables. The JS
application resumes execution, executing the optimised version, continuing with the
equivalent state to that at the time the optimisation was triggered.

7.4.4 Result

Figure 7.6 gives a concrete example of a simple JS function, JIT-compiled during OSR
triggered at a hot loop. The OSR API provided sufficient type information that the
optimised Mu IR code for the tight loop is almost equivalent to the LLVM IR code
that Clang might have generated from an equivalent C program with static types.

JS-Mu is built on Holstein [Wang, a], the proof-of-concept reference implementa-
tion of Mu which is unsuitable for performance evaluation. However, the implemen-
tation is sufficient to demonstrate the completeness and correctness of the API. Note
that the OSR mechanism itself is not performance critical, since it executes just once
for each recompilation, which will be dominated (by many orders of magnitude) by
the subsequent execution of the optimised code in any typical OSR setting.

7.5 Summary

This chapter discussed how a well-designed stack introspection and on-stack replace-
ment API can facilitate the construction of a virtual machine. From two mature
JavaScript VMs, namely SpiderMonkey and V8, we revealed the difficulty of imple-
menting run-time optimisation without any abstraction for introspection and OSR.

5See Figure 7.6 for a concrete snippet.

80 A Practical OSR API for the Client

1 function sum(f, t) {
2 var s = 0;
3 for (var i = f; i <= t; i++) {
4 s = s + i;
5 }
6 return s;
7 }
8

9 var result = sum(1, 10);
10 print(result);

(a) JavaScript

1 .funcdef @optfunc1_sum VERSION @optfunc1_sum.v1 <@optfunc1_sum.sig> {
2 %entry(<@tagref64> %osrParam_f <@tagref64> %osrParam_t
3 <@tagref64> %osrParam_s <@tagref64> %osrParam_i):
4 // Compensation code
5 %raw_f = INTRINSIC @uvm.tr64.to_fp (%osrParam_f)
6 %raw_t = INTRINSIC @uvm.tr64.to_fp (%osrParam_t)
7 %raw_s = INTRINSIC @uvm.tr64.to_fp (%osrParam_s)
8 %raw_i = INTRINSIC @uvm.tr64.to_fp (%osrParam_i)
9 BRANCH %forHead(%raw_f %raw_t %raw_s %raw_i)

10

11 %forHead(<@double> %f <@double> %t <@double> %s <@double> %i):
12 %i_le_t = FOGE <@double> %t %i
13 BRANCH2 %i_le_t %forBody(%f %t %s %i) %forEnd(%f %t %s %i)
14

15 %forBody(<@double> %f <@double> %t <@double> %s <@double> %i):
16 %s2 = FADD <@double> %s %i
17 %i2 = FADD <@double> %i @CONST_1
18 BRANCH %forHead(%f %t %s2 %i2)
19

20 %forEnd(<@double> %s)
21 %tagged_s = INTRINSIC @uvm.tr64.from_fp (%s)
22 RET <@tagref64> %tagged_s
23 }

(b) Mu IR

Figure 7.6: Result of JS-Mu compiling a JS program. Sub-figure (a) is a simple JS program that
sums over a range. Sub-figure (b) is the optimised Mu IR code generated when optimisation
is triggered at the loop header. The IR code is adjusted to match the current Mu IR design.
Auto-generated variable names are simplified for readability. The %entry block contains
compensation code, which initialises the values of local variables from parameters, and jumps
to the loop header that triggered optimisation. The compensation code also removes the tags
of the values to make them plain double type. Therefore, within the loop of %forHead and
%forBody, all variables have been specialised to the double type, and no conversion to or
from the tagged reference type (@tagref64) is present. This is equivalent to the LLVM IR
code which Clang could have generated from an equivalent C program with static types.

§7.5 Summary 81

We demonstrated how the Mu API can help the high-level language developers using
an experimental JavaScript client.

In the next chapter, we will discuss how the Mu stack API can be efficiently
implemented on concrete hardware.

82 A Practical OSR API for the Client

Chapter 8

Implementation of the Mu Stack
API

We have introduced the platform-independent OSR API. However, the API does
not remove the fundamental complexity of OSR. Rather, it hides it beneath a layer
of abstraction. In this chapter we turn to the question of whether such an API is
realizable in a realistic setting.

This chapter is structured as follows. Section 8.1 uses the concepts of ‘resumption
points’ and ‘resumption protocols’ to formulate the consistency of stack states at a
lower level, and guide the correct implementation of OSR; Section 8.2 presents a
proof-of-concept project that implements the Mu stack API for native C programs,
and the difficulties encountered; Section 8.3 discusses other existing implementations
of OSR and compares them with Mu; Section 8.4 concludes this chapter.

8.1 Resumption Points and Resumption Protocols

Our approach is to introduce the abstractions of resumption protocols and resumption
points. We use the x641 and the AArch642 architectures as our concrete setting, but
the ideas are not specific to those architectures.

To demonstrate how resumption protocols can guide the implementation of the
OSR API in a more realistic scenario, we developed another proof-of-concept project
libyugong that implements the Swapstack operation and the OSR API for native
programs (in C, C++, LLVM, etc.) which follow the platform ABI on GNU/Linux.
We will discuss libyugong in greater detail in 8.2.

8.1.1 Frame Cursors and Introspection

For completeness, before we start discussing OSR, we briefly introduce how frame
cursors and stack introspection can be implemented. Although they are integral parts
of the API, they are well-developed technologies, and this thesis does not attempt to
make improvements over existing approaches.

1Also known as AMD64, x86-64 or Intel64, an extension to the IA32 instruction set architecture.
2AArch64 is the 64-bit execution mode of the ARMv8 architecture. The instruction set is called A64.

83

84 Implementation of the Mu Stack API

The frame cursor is an abstraction over stack unwinding, the process of restoring
register states of frames below the top frame of a stack. Key to the implementation
is how to restore callee-saved registers of the caller given the program counter. C++
compilers, such as GCC, generate stack unwinding metadata in the DWARF [DWARF
Standards Committee, 2010] format on GNU/Linux for exception handling. We will
discuss more about stack unwinding in Section 8.2.1.

Stack introspection uses stack maps, a data structure that maps machine-level
execution states (including stack frame contents and callee-saved register values) to
high-level language states (values of local variables). As we discussed in Section 2.2.3,
stack maps are required for exact garbage collection, therefore many virtual machines,
such as JikesRVM [Alpern et al., 2009], already implement stack maps. LLVM also
provides the ‘@statepoint’ intrinsic which generates stack maps to decode frames
for LLVM-level variable values.

The rest of this section assumes these techniques are readily available, and focuses
on OSR on top of those techniques.

8.1.2 Resumption Point

We define a resumption point as the point in the function body where an inactive frame
stopped. In Mu, a resumption point can be a call site, a swap-stack site, or the entry
point of a function (ROP frame).

The resumption point is an internal execution state not visible to its neighboring
frames, while the expected type and returned type are the ‘interface’ through which
the frame communicates with the frames above and below. However, the resumption
point determines the frame’s resumption protocol which we now define.

8.1.3 Resumption Protocol

The concept of resumption protocol is related to calling conventions. A calling con-
vention describes the rules of function calling at the machine level, including the
responsibility to set up and tear down the frames, the registers and stack locations
used to pass parameters and return values, and the set of registers preserved across
function calls (i.e. , the callee-saved registers). The calling convention is the agreement
between the caller and the callee.

However, we are more interested in the resumption of frames than the set-up of
frames. We define the resumption protocol as the machine-level rules governing the
passing of values to an inactive frame to resume its execution.

The concrete rules are determined by the resumption points. We now describe
the resumption protocols of each resumption point.

Resumption at Call Sites

When a frame is stopped at a call site, the resumption protocol is the ‘returning’ part
of the calling convention.

§8.1 Resumption Points and Resumption Protocols 85

For example, consider a function that is suspended, having called a function that
returns a 32-bit integer. On x64 on GNU/Linux, the resumption protocol is:

‘Move the return value into register EAX, and then pop and jump to the
return address at the top of the stack.’

The resumption protocol on AArch64 is:

‘Move the return value into register w0, and then restore the program
counter from the link register x30.’

We use ‘CCC_Ret(int)’ (C Calling Convention: Returning) as the symbolic nota-
tion for the resumption protocol. We can also generalise it to ‘CCC_Ret(T)’ for the
protocol of returning type T using the C calling convention. We omit the platform
name in the symbol, because the C calling convention refers to the definition in the
ABI of the platform.

At a call site, the function receives the return value from the callee according to
the callee’s calling convention; when the function itself returns, it will pass the return
value to its caller according to the function’s own calling convention. Therefore, every
frame has both an expected resumption protocol which is the resumption protocol to
re-activate the frame itself, and a returned resumption protocol which is used to re-active
its caller. We use the following notation:

frm : rp1 (E1, E2, . . .)→ rp2 (R1, R2, . . .)

to denote that the frame frm itself is resumed using the resumption protocol rp1 (E1, E2, . . .),
and will re-activate its caller using the resumption protocol rp2 (R1, R2, . . .) when it
returns. We call this notation the expect/return protocol notation because it involves not
only the types but also the resumption protocols.

Consider the example in Figure 7.3. The expected and returned protocols of baz,
bar and foo are straightforward:

baz : CCC_Ret (long)→ CCC_Ret (long)

bar : CCC_Ret (long)→ CCC_Ret (double)

foo : CCC_Ret (double)→ CCC_Ret (int)

because both baz, bar and foo are stopped on call sites.
We now proceed to describe the resumption protocol for Swapstack sites.

Resumption at Swapstack Sites

Recall that the Swapstack operation unbinds the thread from one stack and rebinds it
to another stack. Similar to function calls, Swapstack involves preserving the context
and transferring control. Currently, there are no widely-applicable standards about
the implementation of Swapstack. However, when implementing Swapstack, there

86 Implementation of the Mu Stack API

&ss_cont
saved R15
saved R14
saved R13
saved R12
saved RBX
saved RBP
swapper retaddr

(swapper frame)

RSP

(a) x64

&ss_cont
saved d8
saved ...
saved d15
saved x19
saved ...
saved x29
saved x30 (PC)

(swapper frame)

SP

(b) AArch64

Figure 8.1: Stack-top structure of unbound stacks in libyugong. The callee-saved register
values and the resumption point PC are all saved at the top of the stack. When rebinding
a thread to an unbound stack, it continues from the address of the ss_cont routine which
restores the callee-saved registers from the stack top, and returns to the swapper frame.

must not be any ‘swappee-saved’3 registers because it is unpredictable where the
swappee stack will swap back to the swapper, or whether it will swap back from that
stack at all.4 Therefore, the Swapstack operation must treat all machine registers as
swapper-saved registers.

We use the symbolic notation SS (T1, T2, . . .) for the resumption protocol of a
Swapstack site that receives a value of type T1, T2, . . . when the stack is rebound.

This protocol can be implemented in many ways. In our libyugong library, we
implemented Swapstack similar to boost-context [Kowalke, 2016]. The Swapstack

implementation (See Figure 8.4) saves the execution state on the top of the unbound
stack as in Figure 8.1. Therefore, resuming the swapper frame is done by restoring
the callee-saved registers from the stack top structure, and jumping to the resumption
point of the swapper.

Resumption at Entry Points

Remember that a ROP frame is stopped at the entry point of a function, expecting to
receive values as its parameters. Therefore, the resumption point for ROP frames is
the same as the ‘calling’ part of a calling convention.

3Similar to ‘callee’ which means the function called by a call site, we use the word ‘swappee’ for the
destination stack in a Swapstack operation. The original stack of a Swapstack operation is called the
‘swapper’.

4Intuitively, if we implement a green thread system using each stack as a light-weight task and
randomly schedule the stacks to a pool of threads, then when a task yields using the Swapstack

operation, it is unpredictable which task will be executed next, and which task the thread is swapping
from. In general, Swapstack is much less predictable than call and return.

§8.1 Resumption Points and Resumption Protocols 87

&plus_one
×_two
&print

RSP

Figure 8.2: Stack structure of a naïve (and thus, incorrect) ROP frame implementation on
x64 for the example in Figure 7.5. Each frame simply consists of the address of the entry
point of the function. This approach will execute plus_one, times_two and print in order,
but will not be able to pass return values between frames because the return values and the
parameters are passed via different registers (EAX and EDI, respectively).

For example, consider a function that takes one 32-bit integer as its parameter. On
x64 on GNU/Linux, the calling convention specifies that:

‘The first 32-bit integer parameter is passed via the EDI register, and the
return address is on the top of the stack.’

The calling convention on AArch64 is:

‘The first 32-bit integer parameter is passed via the w0 register, and the
return address is held in the link register x30.’

Therefore, as long as the arguments and the return address are put in the right
place, and the stack pointer is set properly, the function will start executing until it
returns. We use the symbol CCC_Entry for the resumption protocols of ROP frames
that follow the C calling convention, and CCC_Entry(int) denotes ROP frames that
have int as their sole parameter.

We have introduced all three resumption points and their resumption protocols.
A stack is return-protocol consistent if the returned protocol of every frame matches the
expected protocol of the frame below.

However, it remains a question how to construct concrete ROP frames on the
stack. Figure 8.2 shows a naïve ROP frame implementation on x64 for the example
given in Figure 7.5. Each frame simply consists of the address of the entry point
of the function, and the RSP register points directly at the location that holds the
return address of the topmost function, plus_one. When the thread ‘returns’ by
popping the return address from the stack, it will start execution from the entry point
of plus_one. When plus_one returns, it will ‘return’ to times_two which will in
turn start from its entry point. Eventually print will be executed, too.

But this naïve approach cannot pass the return value of one function to another
because of the difference of register use between return values and parameters. Note
that on x64, CCC_Ret and CCC_Entry expect integer values to be passed in different
registers (RAX and RDI, respectively). Therefore, when the function of the next ROP
frame starts, it will not find the parameter in the EDI register, and will not be able to
receive the return value from the frame above.

Since all functions are compiled to use the CCC_Ret protocol for normal returning,
the returned protocols of these functions are all CCC_Ret. Using the protocol-sensitive

88 Implementation of the Mu Stack API

notation, we have:

plus_one : CCC_Entry (int)→ CCC_Ret (int)

times_two : CCC_Entry (int)→ CCC_Ret (int)

print : CCC_Entry (int)→ CCC_Ret ()

The stack is not return-protocol consistent. The returned types match the expected
types (int and int), but the resumption protocols (CCC_Entry and CCC_Ret) do not.
This is the reason why this naïve approach will not work. To correctly implement
ROP frames, we need adapters to convert mismatching resumption protocols.

8.1.4 Adapter Frames

An adapter frame sits between two frames where the type of the passed values match,
but the resumption protocols do not. The adapter frame satisfies:

adapter : rp1 (T1, T2, . . .)→ rp2 (T1, T2, . . .)

for some T1, T2, . . ., that is it converts one resumption protocol to the other while
preserving the value.

The following snippet implements an adapter frame on x64 of CCC_Ret(int) →
CCC_Entry(int), that is a frame that transfers the return value to the register which
holds the parameter.

1 adapter_x64:
2 MOV EDI, EAX
3 RET

The MOV instruction moves the value to the correct register, and the RET instruction
resumes the next frame.

Figure 8.3 shows a correct implementation for the example in Figure 7.5. On
x64, adapter frames are inserted between adjacent ROP frames. Each adapter frame
consists of only the address of the adapter_x64 assembly routine shown above.
When plus_one returns, the return value is held in the EAX register, and the control
flow jumps to the adapter_x64, where the MOV instruction moves the value from
EAX to EDI. At this point, the address of the times_two function is at the top of the
stack. Therefore, the RET instruction in the adapter frame resumes the times_two
function, and the return value of plus_one has already been moved to the expected
EDI register which times_two receives as the argument. This process will happen
again when times_two returns, and print will eventually receive and print out the
correct value.

AArch64 faces a different challenge. The return address of the CCC_Entry pro-
tocol is in the link register x30 instead of on the stack, therefore we cannot put the
address of the return address on the stack and expect the ROP frame to automatically
return into it. We use the adapter to restore the link register:

1 adapter_a64:

§8.1 Resumption Points and Resumption Protocols 89

&plus_one
&adapter_x64
×_two
&adapter_x64
&print

RSP

(a) x64

&plus_one (PC)
&adapter_a64 (LR)
×_two (PC)
&adapter_a64 (LR)
&print (PC)
NULL (LR)

SP

(b) AArch64

Figure 8.3: Correct ROP frame implementation with adapter frames on x64 and AArch64 for
the example in Figure 7.5. On x64, addresses of functions are interleaved with addresses of
the adapter frame. When one function returns, the adapter will be executed before the next
function starts, giving the adapter a chance to move the return value to the argument register.
On AArch64, every pair of addresses from the top are restored into the x30 (LR) and the PC
registers respectively, allowing the ROP function to execute correctly.

2 LDP x9, x30, [sp], 16
3 BR x9

The above code pops the ROP function address into the PC, and pops the return
address of the ROP frame into x30 (LR). It uses a scratch register x9 because we
cannot directly load into the PC. After plus_one returns, it returns into x30 which
holds the address of adapter_a64, which restores the next ROP frame. The last
function, print, does not return, therefore x30 holds NULL when entering print.

Using the expect/return protocol notation, we have:

plus_one : CCC_Entry (int)→ CCC_Ret (int)

adapter : CCC_Ret (int)→ CCC_Entry (int)

times_two : CCC_Entry (int)→ CCC_Ret (int)

adapter : CCC_Ret (int)→ CCC_Entry (int)

print : CCC_Entry (int)→ CCC_Ret ()

The returned protocol of each frame matches the expected protocol of the frame
below, therefore the stack state is now return-protocol consistent.

Different types need different adapter frames. For example, on x64 on GNU/
Linux, both the first floating point parameter and the floating point return value are
held in the XMM0 register. Apparently no register movement is necessary. But the ABI
also has a 16-byte stack alignment rule at the entry point of every function.5 Thus a
frame for a trivial adapter routine such as:

5SIMD vector instructions, such as MOVABS, usually have strict alignment requirements for the
memory operand. In order for arrays allocated on the stack to be eligible for such instructions, the
array must be allocated at properly aligned locations. When all stack frames are required to be properly
aligned, stack allocation can be greatly simplified for the compiler.

90 Implementation of the Mu Stack API

1 ret_to_entry_double:
2 RET

can be used to ‘pad’ the size of the one-word (8 bytes on x64) ROP frame to a multiple
of 16 bytes in order to meet the alignment requirement.

One adapter routine needs to be written for each pair of resumption protocols for
each type. JIT compilers can generate adapters on demand.

Adapter frames help us abstract out the differences between resumption proto-
cols, which are essentially architectural details. Clients only need to reason about
return-type consistency instead of return-protocol consistency, as we described in
Section 7.3.2.

A Mu implementation can designate a particular resumption protocol as the
‘default’ protocol between high-level language frames, and insert adapter frames
when the resumption protocols do not match. The default protocol should usually
be the protocol for call sites, because the vast majority of stack frames are created by
function calls, not OSR. The top stack frame, if stopped, usually stops on a Swapstack

site, although OSR can push ROP frames at the top of a stack in rare cases. Therefore,
it is advisable to let the top stack frame have the expected resumption protocol of
Swapstack, while all other frames have the expected resumption protocol for normal
return.

When a frame cursor iterates through a stack, it can identify the presence of
adapter frames by their code addresses, and skip those frames so that they remain
invisible to the client.

8.1.5 Conclusion

Summarizing, the correct implementation of the OSR API relies on maintaining
consistent stack frame states. At the machine level, the consistency manifests as the
matching of resumption protocols between adjacent frames. Different resumption
points give frames different resumption protocols, but the difference can be hidden
from the API user by using adapter frames which convert between protocols while
preserving the value.

This means that the OSR API of Mu can be simple for the client to use while
still being realistic to implement on concrete machines. In the next section, we will
demonstrate the concept by implementing the OSR API for the C programming
language.

8.2 Stack Operations in Native Programs

Because Holstein, the reference implementation, is implemented as an interpreter,
complex stack manipulation is trivially implementable. However, the real-world
feasibility of the Mu stack API should also be evaluated in a natively compiled envi-
ronment. However, we cannot use Zebu — our high-performance Mu implementation
— as the experiment platform since it still does not support the stack API at the time
of writing.

§8.2 Stack Operations in Native Programs 91

Instead, we used native programs (in C, C++, LLVM, etc.) as the test bed of
the stack operation implementation. Existing compilers for native languages, such
as GCC, already generate metadata for stack unwinding to support C++ exception
handling. Such information can be reused to to implement a Mu-like stack API.

We developed libyugong6, a library that implements the Mu-like OSR API for
native programs, and the Mu-like stack introspection API for LLVM-based languages.
To support OSR, we reused the DWARF stack unwinding information generated by
LLVM as well as commodity C/C++ compilers such as GCC and Clang, and used
libunwind [Mosberger] to assist the stack unwinding process. To experiment with
machine-independent stack introspection, we used LLVM IR [Lattner and Adve, 2004]
as the machine-independent intermediate language, and used the experimental ‘stack
map’ feature of LLVM to locate the value of LLVM-level SSA variables from the stack
or registers, which serves as the counterpart of the keep-alive variables in Mu IR.

As the result, libyugong successfully supported the Swapstack operation, the
removal of stack frames from native stacks, and the creation of ROP frames (explained
in Section 7.3.7). However, due to many obstacles in LLVM and native system libraries,
stack introspection for LLVM IR does not work properly. We eventually gave up the
attempt.

The source code of libyugong is available online at: https://gitlab.anu.edu.au/
kunshanwang/libyugong

We first look at the stack unwinding information available in native programs and
how it can help us implement the Mu stack API.

8.2.1 Stack Unwinding Information

The Mu API for stack operations includes stack introspection and on-stack replace-
ment, but the foundation of both technologies is the ability to unwind the stack. Stack
unwinding is the process of iterating through stack frames and restoring the states of
registers and the stack layout at the resumption point (usually call site) of each frame.

If a platform does not use callee-saved registers and always uses frame pointers
(such as EBP on x86), stack frames can be iterated by simply following the frame
pointers. However, the calling conventions of modern platforms (such as ARM as
well as x64 on GNU/Linux, Mac OS X and Windows) define callee-saved registers
and do not demand the use of frame pointers. Every function may structure its
frame arbitrarily, and may save an arbitrary subset of callee-saved registers anywhere
in its frame, provided that it cleans up its own frame and restores the callee-saved
registers when returning. Therefore extra metadata is necessary for unwinding the
stack outside the usual control flow.

Commodity C/C++ compilers, such as GCC and Clang, generate stack unwinding
information when compiling C/C++ functions (unless explicitly disabled by compiler
flags, such as ‘-fno-exceptions’). This mechanism exists to support exception

6Yu Gong, literally ‘foolish old man’, is a legendary character in the Chinese fable The Foolish Old
Man Removes the Mountains. We use ‘mountains’ as a metaphor for stacks, and the library is going to
achieve the seemingly impossible task of removing (part of) it.

https://gitlab.anu.edu.au/kunshanwang/libyugong
https://gitlab.anu.edu.au/kunshanwang/libyugong

92 Implementation of the Mu Stack API

handling for the C++ programming language. When an exception is thrown in C++,
the runtime will search through the stack frames for an appropriate exception handler.
These compilers generate the stack unwinding information even for C functions, so
C++ exceptions can propagate through C frames even though the C language has no
knowledge about C++ exceptions.

On GNU/Linux, the stack unwinding information is encoded in a DWARF4-like
format and is stored in the .eh_frame section of ELF images. It uses an incremental
format to efficiently encode ‘how to unwind the current function frame’ at every
program counter position in a function. Mac OS X can use both DWARF and a more
concise ‘compact unwind information’ encoding in the __compact_unwind section
of its Mach-O images.

Since the stack unwinding information already exists in the executable images of
C/C++ programs, we can make use of such information to implement the Mu-like
OSR API.

8.2.2 Implementing OSR for Native Functions

The proof-of-concept project libyugong is implemented on x64 for GNU/Linux and
Mac OS X. It includes the Swapstack operation for C/C++ and a Mu-like frame
cursor which iterates through the stack frames, pops frames and creates ROP frames.

For ease of implementation, the two platforms are chosen because both use the
System V ABI for AMD64. We limited the type of the value passed between stacks
by the Swapstack operation, and the return types of functions, to uintptr_t. Other
types can also be passed according to the calling convention.

Resumption Protocols

As discussed in Section 8.1.4, resumption protocols are the key to implementing a
unified view of stack frames, where the expected type of one frame only needs to
match the returned type of the frame above.

Consider that a commodity C compiler will compile most functions to return
using the CCC_Ret protocol. We add adapter frames such that all frames expect
the CCC_Ret protocol from the frame above. Thus, adapter frames only need to be
inserted above ROP frames.

The top frame of a stack is special: when a stack is unbound, it is always expecting
to be re-bound by a Swapstack operation, thus may be different from other frames
which are expecting normal returns. We design the structure of the top of an unbound
stack as in Figure 8.4(b). The top word, as pointed to by the saved stack pointer,
is always the address of the _yg_ss_cont routine (in Figure 8.4(a)). When the
Swapstack operation rebinds to a new stack, it will always pop the top word and
jump to it. The value of all callee-saved registers are immediately below the stack-top
word, which the _yg_ss_cont routine pops to actual registers. The return address
returns to the resumption point of the first user frame of the swappee stack. Using
this design, all unbound stack can be resumed the same way.

§8.2 Stack Operations in Native Programs 93

The SWAPSTACK Operation

The Mu API requires a Swapstack operation to be performed to leave the current
stack in an unbound state before the stack can be unwound. Dolan et al. [2013]
suggested that the most efficient implementation of Swapstack needs the assistance
of the compiler which can optimise for register usage. Since we are building a proof-
of-concept project, we take a less efficient but much simpler approach.

The yg_stack_swap routine in Figure 8.4(a) performs a Swapstack operation
and passes a value to the swappee stack. We force this routine to be called as if it is
a C function. This effectively forces the C compiler to save all caller-saved registers
of the C calling convention at the caller’s side. Thus yg_stack_swap only needs to
save all callee-saved register so that all registers are saved on the swapper stack.

The yg_stack_swap routine lays out the current stack in the format of Fig-
ure 8.4(b). When the RET instruction in yg_stack_swap is executed, the current
thread always jumps to the _yg_ss_cont routine which restores the callee-saved
registers and resumes the top frame of the swappee. When another Swapstack oper-
ation swaps back to the swapper, the _yg_ss_cont routine resumes the swapper’s
stack in the same way.

The Initial Stack Layout

When creating a new stack, we allocate a memory buffer, and lay out the top of
the stack as in Figure 8.5. This layout is compatible with Figure 8.4(b), and can be
resumed by the Swapstack operation in the same way.

There is a ROP frame for the user-specified stack-bottom function below the saved
registers. The implementation of the ROP frame and its adapter frame is exactly
as described in Section 8.1.4. When swapping to such a stack, execution will start
from the entry point of the stack-bottom function. With the adapter frame, the value
passed to the swappee stack by yg_stack_swap (in the return value register RAX)
will be received by its sole parameter.

Stack Unwinding

With the stack-unwinding metadata available in the .eh_frame section, we could
have implemented our own stack unwinder. However, we used the libunwind
library to do it for us. libyugong has to initialise the register states for libunwind
by decoding the stack-top layout we defined; after this, libunwind can unwind other
stack frames using the information from the .eh_frame section, and help us restore
the values of the program counter, the stack pointer, callee-saved registers in each
stack frame.

libunwind can usually identify the function by the return address and look up
the metadata accordingly. However, libunwind does not have enough information to
unwind adapter frames, which must be unwound manually by libyugong. libyu-
gong must also behave like the Mu API and skip adapter frames so that the user does
not see them as part of the stack. As described in Section 8.1.4, libyugong knows

94 Implementation of the Mu Stack API

1 yg_stack_swap:
2 push rbp
3 push rbx
4 push r12
5 push r13
6 push r14
7 push r15
8

9 mov rax, rdx
10

11 lea rcx, [_yg_ss_cont+rip]
12 push rcx
13

14 mov [rdi], rsp
15 mov rsp, [rsi]
16 ret
17

18 _yg_ss_cont:
19 pop r15
20 pop r14
21 pop r13
22 pop r12
23 pop rbx
24 pop rbp
25 ret

(a) Implementation

&_yg_ss_cont
saved R15
saved R14
saved R13
saved R12
saved RBX
saved RBP
swapper return address

(the swapper’s frame)

RSP

(b) Stack-top Structure of Unbound Stacks

Figure 8.4: Swapstack implementation in libyugong. Figure (a) shows the assem-
bly code for x64 on GNU/Linux. The yg_stack_swap function is called by the swap-
per, and must be called using the C calling convention with the signature ‘uintptr_t
yg_stack_swap(void** swapper, void** swappee, uintptr_t value)’. The first
two parameters (RDI and RSI) are the locations where the stack pointer of the current stack
is saved and where the stack pointer of the swappee is loaded from. The third parameter
is the value to be passed to the other. When called using the C calling convention, the
caller-saved registers must have already been saved by the caller compiled by a compliant C
compiler. Lines 2–7 then save all callee-saved registers; line 9 moves the third argument (RDX)
to the return value register (RAX); lines 11–12 push the address of _yg_ss_cont; lines 14–15
save the current stack pointer and load the stack pointer of the swappee stack; and line 16
finally returns to the swappee. In libyugong, the top of all suspended stacks is laid out
as in Figure (b), and the stack pointer always points to the address of the assembly snippet
_yg_ss_cont. When the swapper executes the RET instruction in line 16, the thread contin-
ues at line 19, restoring the callee-saved registers saved by the swappee stack and returns to
the resumption point of the top frame of the swappee. The resumption point is usually the
next instruction after the call to yg_stack_swap. But when OSR happens and stack frames
are popped and pushed, libyugong will fix the stack top layout to match Figure (b) so that
any thread can swap to any unbound stack the same way.

§8.2 Stack Operations in Native Programs 95

&_yg_ss_cont
0 (saved R15)

0 (saved R14)

0 (saved R13)

0 (saved R12)

0 (saved RBX)

0 (saved RBP)

address of the adapter routine

address of the stack-bottom function

RSP

Figure 8.5: The structure of newly-created stacks. The stack is laid out in a way compatible
with Figure 8.4(b), except the callee-saved registers all have zero values. Below the saved
registers, there is the ROP frame for the stack-bottom function.

the addresses of the adapter routines, and reports to the client as a ROP frame for a
function.

Popping and Pushing Frames

The unwinding information can restore the callee-saved registers at the resumption
point of any stack frame. If the client wants to pop all frames above a give frame,
libyugong only needs to re-construct the stack-top structure above the stack location
where the return address of the frame is held. The callee-saved registers of the
resumption point will be saved in the stack top structure as usual.

To push ROP frames on the stack, libyugong can simply remove the stack-
top structure, place the ROP frame right above the stack location where the return
address of the original stack-top frame is held, and push a new stack-top structure
above it. ROP frames do not modify callee-saved registers, because when resuming
from the entry point, the function will always save the callee-saved registers for its
caller. Therefore pushing ROP frames preserves all saved callee-saved registers in the
stack-top structure.

A Limitation of libyugong

The limitation of libyugong is its sensitivity to inlining. When the C/C++ compiler
inlines one function into a call site, the frame for the callee is no longer created, and
cannot be identified by libyugong. To overcome this limitation, the compiler must
assist the stack unwinder to identify logical frames within physical frames, as done
by JikesRVM [Alpern et al., 2009] and the Self VM [Hölzle et al., 1992].

96 Implementation of the Mu Stack API

8.2.3 LLVM and Stack Maps

In order to experiment with the Mu-style machine-independent stack-introspection
API, we need a machine-independent intermediate language. LLVM IR is an obvious
choice since Mu IR itself is designed with LLVM IR as its baseline.

The LLVM intrinsic function ‘@stackmap’7 is the counterpart of the KEEPALIVE
variables of Mu IR. The LLVM stack map was originally designed to help garbage
collectors locate the values of object references in local variables. The LLVM backend
generates a stack map at every ‘@stackmap’ intrinsic function. Each stack map
records the way to retrieve the values of user-selected variables at its program counter.
A variable may be held in a register, may be computed by adding a register and a
value, may be held in a certain offset of the stack frame, and may also be a constant
because LLVM may perform constant folding before stack map generation. The stack
map is stored in the ‘__llvm_stackmaps’ section of the generated ELF or Mach-O
image, and has an open format which can be decoded using a library provided by
LLVM.

To use the LLVM stack map, the application must be written in LLVM IR, and
keep-alive variables must be annotated with the ‘@stackmap’ intrinsic function. The
intrinsic function is usually placed after call sites so that its program counter is the
next instruction after the machine-level CALL instruction. The LLVM client must
maintain a map between stack map program counters and the high-level call sites. At
each call site, the client also needs to enumerate all keep-alive variables in order to
interpret the stack map correctly.

We developed the libyugong-llvm module to assist this process. At compile
time, the module helps the LLVM client emit call instructions annotated with keep-
alive variables. At run time, the module helps the client decode the stack map and
restore the LLVM-level variable values. The run-time goal is achieved by collaboration
between the .eh_frame unwinding information and the LLVM stack maps, with the
former restoring the values of callee-saved registers and stack pointers, and the latter
mapping the machine-level stack frame states to LLVM-level values.

However, the libyugong-llvm module did not work as reliably as expected.
Unfortunately, the LLVM backend compiler may insert instructions between the
machine-level CALL instruction and the stack map. For example, after a function
returns, there will be MOV instructions that copy the return value into the desired
register or memory location. This will cause the stack maps to be generated after
those MOV instructions instead of immediately following the CALL. As a result, the
keep-alive values can only be successfully retrieved when LLVM eliminates those
MOV instructions when certain optimisations are turned on, which does not always
happen.

Then we realised we had been using the @stackmap intrinsic the wrong way, be-
cause the stack map must be generated together with the function call. Given enough
time, we could eventually work around the problem by either modifying LLVM or

7We abbreviated the names for simplicity. The full names of the intrinsic functions discussed in this
section are @llvm.experimental.stackmap and @llvm.experimental.gc.statepoint.

§8.2 Stack Operations in Native Programs 97

trying the newer ‘@statepoint’ intrinsic. However, our attempt to implement the
Mu-style stack API for native programs had been hindered by many other difficulties,
so we abandoned the attempt.

8.2.4 Difficulties in Implementing Stack Operations in Uncooperative Na-
tive Programs

The attempt to support the Mu-style stack operation API proved to be very difficult.
There are at least two major sources of difficulty.

There is no publicly available platform-independent library for unwinding a native stack.
The libunwind implementation from http://www.nongnu.org/libunwind/ is developed
for GNU/Linux. Mac OS X has its own libunwind implementation, and LLVM also
provides an libunwind implementation donated by Apple. These implementations
are API-compatible, but different in implementation details. In fact, libunwind is
designed to unwind the current stack instead of an unbound stack, and is not designed
to modify the stack in the Mu style. Using libunwind this way inevitably requires
deep knowledge of its implementation detail.

The low-level system runtime libraries are poorly documented. For example, libgcc is
responsible for the handling of C++ exceptions on GNU/Linux at run time. When
code is loaded at run time (usually due to the dynamic loading of shared libraries,
or JIT compiling), the __register_frame function needs to be called to register
the .eh_frame section to the runtime system. However, this function is, at the
time of writing, undocumented [LibGCCEH]. On Mac OS X, the stack unwinding
support for C++ exception handling is provided by libunwind itself, and the __reg-
ister_frame function is provided by libunwind as an internal function. The un-
documented API makes it impossible for language implementers to properly support
stack unwinding for JIT-compiled or dynamically loaded native code without digging
deep into the implementation details of system libraries. Moreover, the __regis-
ter_frame function behaves differently on the two platforms we explored. GNU/
Linux requires one call per .eh_frame section, while Mac OS X requires one call
per each frame description entry (FDE) in that section. This further complicated the
situation.

In essence, the native world consists of non-cooperative components that are not
designed to work together to support a Mu-style runtime API. libunwind was not
designed for Mu-style OSR. The exception handling mechanisms of system libraries
were designed to support C++ exceptions which can be turned off by a compiler flag.
LLVM was not designed with introspection and OSR in mind, either.

What language developers need is a single platform that is designed carefully
as an abstraction over execution, providing a clearly defined API for JIT compiling,
execution, stack introspection and OSR.

Mu provides such a platform. The efficient implementation of high-level languages
demands much more than the mere generation of machine code. It is the collaboration
between the high-level client and the low-level substrate that makes an efficient JIT-
compiling language runtime.

http://www.nongnu.org/libunwind/

98 Implementation of the Mu Stack API

8.3 Related Work

This section discusses other existing implementations of OSR in addition to Spider-
Monkey and V8, and compares their approaches with Mu.

Self VM The Self VM [Hölzle et al., 1992; Hölzle and Ungar, 1994] implemented
its own Swapstack mechanism which predates the work of Dolan et al. [2013]. A
thread switches to a dedicated VM stack for handling de-optimisation, and could
therefore manipulate the victim stack using high-level C++ code. The Self VM uses
return address patching8—replacing the return address of a frame so that frame
replacement can happen when the patched frame returns. Unlike Mu, the Self VM
is not a multi-language VM, thus it only uses Swapstack and OSR as an internal
mechanism.

JikesRVM JikesRVM [Alpern et al., 2009] is a JIT-compiling JVM with OSR sup-
port. JikesRVM recompiles methods and generates the contents of new frames in
separate OSR threads. However, JikesRVM uses return address patching to let the
victim thread execute a piece of code to replace its own frames upon returning from
yieldpoints. The code is generated at run time by stitching together platform-specific
assembly snippets,9 because the victim thread is replacing stack frames on the current
stack, and thus must carefully handle the stack layout.

JVM The JVM does not have a public API for its internal OSR facilities. The JVM
Tool Interface (JVM TI) provides some stack-related API functions for debugging,
including introspecting local variables and popping frames. However, unlike the Mu
API, JVM TI does not support constructing new frames on existing stacks, therefore
does not have all tools needed by OSR.

Truffle and Graal [Würthinger et al., 2013] provide a high-level partial evalua-
tion-based language implementation framework and a compiler framework on the
JVM. Truffle also has an abstraction of stack frames to support interpreting and de-
optimisation. This is a higher-level abstraction than Mu. Mu only provides a minimal
API for the Mu client to build higher-level abstraction. Truffle can be viewed as a
potential client that could be implemented upon Mu. If properly designed, Mu should
allow the Truffle API to be implemented in terms of Mu’s API.

LLVM The LLVM [Lattner and Adve, 2004] compiler framework provides stack
maps [LLVMStackMap] for stack introspection, but no high-level OSR API.

8‘Return address patching’ is unrelated to ‘return-oriented programming’ despite the similar names.
ROP is a paradigm where the return values of a function are passed as parameters to the next frame;
while return address patching is a technique that overwrites the return address so that some code can
be executed after the victim function returns, but before the next frame is activated.

9See the org.jikesrvm.osr.ia32.CodeInstaller.install method: https://github.com/JikesRVM/
JikesRVM/blob/master/rvm/src/org/jikesrvm/osr/ia32/CodeInstaller.java#L50

https://github.com/JikesRVM/JikesRVM/blob/master/rvm/src/org/jikesrvm/osr/ia32/CodeInstaller.java#L50
https://github.com/JikesRVM/JikesRVM/blob/master/rvm/src/org/jikesrvm/osr/ia32/CodeInstaller.java#L50

§8.4 Summary 99

D’Elia and Demetrescu [2016] developed OSRKit, a library built on LLVM for
‘dynamically transferring execution between different versions of a function at run
time’, which they define as ‘OSR’. It is an improvement over its predecessor in McJIT
by Lameed and Hendren [2013]. In OSRKit, the old version of a function tail-calls a
stub which recompiles the function and then tail-calls the new version. Both OSRKit
and Mu achieved the goal of transferring execution under the constraint that the high-
level optimiser and de-optimiser must not depend on machine-level details. Built
on LLVM which does not provide any abstraction over stack manipulation, OSRKit
chose to depend only on function calls, and not to ‘adjust the stack so that execution
can continue in f ′ (the new version) with the current frame’ [D’Elia and Demetrescu,
2016], because that ‘requires manipulating the program state at machine-code level
and is highly ABI- and compiler-dependent.’ [D’Elia and Demetrescu, 2016]. Unlike
LLVM frontends, Mu clients can rely on the platform-independent OSR API of Mu to
replace stack frames while still retaining platform independence. As a more powerful
substrate, the Mu API is more flexible than pure call-based approach. For example,
the API can easily replace multiple frames at a time, which is useful for handling
inlining [Hölzle et al., 1992; Hölzle and Ungar, 1994].

8.4 Summary

This chapter discussed the implementation of the Mu stack API. Using resumption
points and resumption protocols, we showed how the API itself can be correctly
implemented by Mu at the machine level. Our partially failed proof-of-concept OSR
implementation for native programs indirectly reflected the importance of a well-
designed platform that abstracts over execution, a principal goal of Mu.

In the next chapter, we will shift our focus to supporting real-world language
implementations as Mu clients.

100 Implementation of the Mu Stack API

Part III

Supporting Real-world Language
Runtimes Using Mu

101

Chapter 9

RPython and GHC as Mu Clients

In Part I and II, we presented the design of Mu, and had a closer look at the support of
stack operations. In this chapter, we will describe our experience in porting RPython
as a client of Mu, and our preliminary research on GHC. The RPython toolchain
from the PyPy project has supported many language other than Python, including
SOM, Racket, Erlang, etc. Therefore, supporting RPython on Mu has the strategic
significance of simultaneously enabling many languages built on RPython to work
on Mu. Investigating a real-world language framework also forced us to address
issues we did not take into consideration before, such as ahead-of-time compilation,
boot-image building, and linking with native programs. GHC is the de-facto standard
Haskell implementation, also known for its performance. We choose Haskell because
we want to address a wide range of different languages, and Haskell is an unorthodox
functional language with lazy evaluation.

This chapter is structured around the two clients. Section 9.1 discusses the
RPython client; Section 9.2 discusses our preliminary research on GHC as a client;
Section 9.3 concludes this section.

The RPython client is collaborative work with my colleague John Jiabin Zhang [Zhang,
2015], and the work on GHC is collaborative work with Nathan Young [Young, 2016]
and Andrew Hall. External collaborators in the University of Massachusetts Amherst
are working with us on meta-tracing JIT compiler of the RPython framework.

9.1 Supporting RPython and PyPy on Mu

In this section, we will introduce our experience in supporting RPython as a client
for Mu, and the impact on the design of Mu.

9.1.1 The RPython Framework

PyPy [Rigo and Pedroni, 2006] is a high-performance virtual machine for the Python
language. Its underlying RPython framework underpins PyPy’s performance.

RPython is a restricted, statically typed subset of Python. There are restrictions
on the integer range, variable usage, the use of container types, etc., and it also
forbids the run-time declaration of new types or methods. Nonetheless, RPython

103

104 RPython and GHC as Mu Clients

language is garbage-collected, has full support for exception handling, and has a
comprehensive (but certainly smaller than CPython) low-level library that implements
string operations and IO. In general, RPython plays the role of a ‘high-level low-level
language’ for VM development as described by Frampton et al. [2009].

As a platform, RPython is relatively high-level compared to C or C++, but is
still a suitable platform for implementing other high-level languages. The high-
level language developer implements the language as an interpreter (such as the
PyPy interpreter) written in RPython with some annotations. At run time, a meta-
tracing JIT compiler records the RPython-level operations the language interpreter has
taken in order to interpret a user-level loop, and JIT-compiles the trace into machine
code [Bolz et al., 2009]. In this way, the meta-tracer works at the level of RPython
operations, and provides JIT compiling for any language that has an interpreter in
RPython, such as PyPy, RPySOM [Marr et al., 2014], Pycket [Baumann et al., 2015],
etc.

RPython also serves as an ahead-of-time compiler that compiles RPython pro-
grams.

The frontend ‘annotator’ and ‘RTyper’ perform type inference on the input RPython
program. Starting at the main function, they visit all functions transitively called from
the main function, and infer the types of all parameters and variables. By the end of
this step, the input RPython functions will have been turned into control flow graphs
(CFGs) with low-level operations (the ‘LL operations’) on the low-level type system
(the ‘LL type system’). The LL type system is at a similar level to the Mu type system,
with both C-like primitive types and garbage-collected object references; and the LL
operations are at a similar level to the Mu instruction set.

The backend of the original RPython implementation injects the implementation
of exception handling and garbage collection into the CFGs, and then translates
the CFGs into C source code which is then compiled using commodity C compil-
ers such as GCC. The injection of exception handling and GC is necessary for C —
the default target — which does not support these mechanisms natively. Similar to
CPython [CPython], exceptions are implemented as a C-level thread-local variable
that points to the current exception object. Each RPython-level function call is fol-
lowed by a check on this variable, which either handles the exception, or returns
prematurely to propagate the exception to its caller, where the same check is per-
formed. Since the C compiler has no knowledge about GC and object references,
the backend also injects GC barriers around write operations of object references to
support generational collectors, and also add information to identify object references
held on the stack to support exact GC.

In order to support the meta-tracing JIT compiler, the RPython backend, when
compiling, not only generates C code, but also serialises the LL-typed CFGs (of the
high-level language interpreter) into ‘JIT code’ which is a compact bytecode format,
but semantically equivalent to the LL-typed CFGs. At run time, a meta-interpreter
(also implemented in RPython) executes the high-level language interpreter by inter-
preting its ‘JIT code’, and records traces which consist of the LL operations performed
by the language interpreter. The ‘meta-trace’ is then optimised and JIT-compiled di-

§9.1 Supporting RPython and PyPy on Mu 105

rectly into machine code. Note that the run-time meta-tracing JIT-compiler toolchain
is separate from the ahead-of-time RPython-to-C toolchain.

9.1.2 Adding Mu as a Backend of the RPython Framework

Given the structure of the RPython framework, we find two places where Mu can fit
into the framework, and replace the existing backends.

Mu as An Ahead-of-time Compilation Backend We can cut into the ahead-of-time
compilation pipeline of the RPython language, replace its backend, and target Mu
IR instead of C source code. A language developer still implements a high-level
language by writing an interpreter in RPython, but the new AoT compiler toolchain
compiles the interpreter into Mu IR, instead. The interpreter will then be executed
on the Mu micro virtual machine, making use of its exception handling mechanism
and garbage collector.

Mu as A Just-in-time Compilation Backend We can replace the code generator of
the JIT compiler of the meta-tracing framework, and target Mu IR instead of native
machine code. After recording traces and optimising, the language implementation
will call into the Mu micro virtual machine, and construct Mu IR for the optimised
traces at run time using the Mu API. In this case, Mu will serve as a platform-
independent execution engine, and will free the developer from having to emit code
for each platform.

The resulting language implementation will be a meta-circular client of Mu — the
language implementation uses Mu as a JIT backend through the Mu API, while the
language implementation itself is also a Mu IR program that executes on Mu.

The implementation of both the AoT and the JIT backends is in progress. This
thesis will focus on the details of the AoT backend, and will briefly introduce the JIT
backend.

We now proceed to the key part of AoT compilation, that is, how to translate
RPython programs into Mu IR.

9.1.3 Translating RPython Programs into Mu IR

The natural place to inject Mu into the RPython compilation pipeline is the point
where the CFGs have been lowered into the LL type system, but before the exception
handling and garbage collection implementation is injected. Exception handling
is directly supported in Mu IR, as described in Section 5.3.3. Since the LL type
system still contains object reference types, Mu can handle the implementation of GC
properly, including the insertion of GC barriers and the generation of stack maps, as
long as the client correctly maps its object references to the Mu-level counterparts.

From the high-level, the translation consists of the mapping of types and the
mapping of operations.

106 RPython and GHC as Mu Clients

LL Types Mu Types

Signed int<32>
Unsigned int<32>
SignedLongLong int<64>
UnsignedLongLong int<64>
Char int<8>
Bool int<1>
Float double
SingleFloat float
Void void
Struct struct<...>
GcStruct struct<@GcHeader ...>
FixedSizeArray array
Array hybrid<int<64> T>
GcArray hybrid<@GcHeader int<64> T>
Ptr<Struct> uptr<struct<...>>
Ptr<GcStruct> ref<struct<@GcHeader ...>>
Ptr<FuncType> funcref
Address uptr

Table 9.1: Mapping Between the LL Type System and the Mu Type System

§9.1 Supporting RPython and PyPy on Mu 107

Mapping of LL Types The LL type system is at a similar level to the Mu type system.
Table 9.1 lists the corresponding Mu types for selected LL types. Primitive types map
directly to primitive Mu types, except that Mu only distinguishes signed values from
unsigned values in instructions instead of types. Composite types usually have Mu
counterparts, too, except that RPython-generated ‘GC headers’1 need to be explicitly
added to Mu structs, and the arrays whose length is determined at allocation time
need to map to the hybrid type in Mu. A major difference between RPython and
Mu is the handling of references. In the LL type system, the Ptr type can be used for
both traced references and untraced pointers. Whether it is traced is determined by
the type it points to, whereas in Mu the traced-ness is determined by the uptr or the
ref types themselves. Therefore, the LL Ptr type maps to the Mu uptr type when
pointing to raw types, but maps to ref when pointing to GcStruct and its derived
types.

Mapping of LL Operations LL operations are also at a similar level to the Mu in-
struction set. The CFG structure in RPython uses the SSI form [Ananian, 1999], which
is equivalent to the form of Mu IR,2 therefore the translation is mostly straightforward.
Table 9.2 lists the corresponding Mu instruction sequences for selected LL operations.
Primitive operations, such as arithmetic, comparison and conversion, have direct
counterparts in Mu. For memory allocation, the malloc LL operation works for both
GC types and non-GC types, in a similar way how the LL type Ptr can express both
traced reference and untraced pointers. We translate the allocation of GC types into
the NEW and the NEWHYBRID heap allocation instructions, but the allocation of non-GC
types has to be off-loaded to the native malloc function. The Mu instruction set is
also more RISC-like, therefore some LL operations, such as getfield, correspond to
more than one Mu instructions.

Since we intercepted the RPython work flow before exception handling injection,
the CFG still represents exception handling as a multi-way branch at the end of a basic
block, mapping each exception type to a different destination. We need to implement
the actual exception handling by manually checking the exception type and branching
to the correct destination, since Mu has no knowledge about the client-level exception
type hierarchies. This translation involves long sequences of Mu instructions, but the
process is straightforward. Similarly, since we intercepted before the injection of GC
implementations, GC-related LL operations, such as barriers, do not appear at this
stage, and we can safely omit them in our RPython-to-Mu translator.

1Despite the name, the so-called ‘GC header’ generated by RPython may contain more than GC-
related fields, such as the hash code of an object. The exact fields of the ‘GC header’ depend on
the concrete GC algorithm. For example, when using reference counting, the ‘GC header’ contains a
reference count and a hash code; when using the ‘minimark’ algorithm, it contains a type ID and several
flags, but no hash code. When translating for Mu, we customised the ‘GC header’ to only contain a
hash code. Mu can generate and manage its own metadata for garbage collection, which is totally based
on the definition of Mu-level types, such as the presence of ref fields in Mu structs, and does not
depend on any GC headers added by RPython.

2Mu was using the LLVM-style SSA form before we moved to the current SSI-equivalent form. The
experience with RPython also spurred the transition.

108 RPython and GHC as Mu Clients

LL Operations Mu Instructions

int_add ADD <@i32>
int_sub SUB <@i32>
int_neg subtract from zero using SUB
int_floordiv_zer SDIV <@i32> ... EXC(...)
int_add_ovf ADD [#V] <@i32>
llong_add ADD <@i64>
int_lt SLT <@i32>
uint_lt ULT <@i32>
llong_lt SLT <@i64>
ullong_lt ULT <@i64>
cast_int_to_longlong SEXT <@i32 @i64>
truncate_longlong_to_int TRUNC <@i64 @i32>
cast_longlong_to_float SITOFP <@i64 @double>
convert_longlong_bytes_to_float BITCAST <@i64 @double>
malloc (of GC types) NEW
malloc (of non-GC types) Call the C function malloc with CCALL
malloc_varsize (of GC types) NEWHYBRID
malloc_varsize (of non-GC types) Call the C function malloc with CCALL
getfield GETFIELDIREF and then LOAD
setfield GETFIELDIREF and then STORE
getarrayelement GETELEMIREF and then LOAD
setarrayelement GETELEMIREF and then STORE
direct_call (to RPython functions) CALL (to Mu functions)
direct_call (to C functions) CCALL (with C calling convention)
cast_ptr_to_adr INTRINSIC @uvm.native.pin
gc_identity_hash implement as Mu IR function

raw_memcopy not directly supported

gc_write_barrier will not appear in the Mu backend

Table 9.2: Mapping Between LL Operations and the Mu Instruction Set

§9.1 Supporting RPython and PyPy on Mu 109

RPython apparently assumed C source code as its eventual target, which intro-
duced some difficulties in the translation.

Under this assumption, the LL operation direct_call can be used to call both
RPython functions and C functions. This works with the C backend, because RPython
functions are translated to C functions too. Therefore both RPython and C function
can be called using the C function call expression in the resulting C source code. This
does not work with the Mu backend, because the Mu backend translates RPython
functions into Mu functions. Mu calls Mu functions using the CALL instruction, and
calls native C functions using the CCALL instruction.

Moreover, RPython can use C macros as if they were variables or functions. For
example, on GNU/Linux, ‘stat64’ is a macro that expands to the actual function
‘__xstat64’:

1 #define stat64(fname, buf) __xstat64 (_STAT_VER, fname, buf)

RPython declares ‘stat64’ as an external function, therefore the LL-typed CFGs con-
tain function call instructions to ‘stat64’, and the C code generator of the RPython
C backend simply emits the identifier ‘stat64’ whenever this ‘function’ is used. This
may generate something like ‘int v3 = stat64(v1, v2);’ which is valid C code
because the code is subsequently compiled by the C compiler which expands this
macro. This does not work with Mu, because Mu interacts with native programs at
the ABI level. If we define such macros as external C variables or functions, the micro
virtual machine will try to resolve symbols, such as ‘stat64’, in the .so or .dylib
files of LibC, which do not always exist.

The RPython-to-Mu translator has to handle calls to RPython and C functions
differently and, if necessary, wrap C macros into our own wrapper functions written
in C in order to be called via the Mu native interface.

Another difficulty is with handling features that are closely related to garbage
collection. In RPython, every object also contains a hash code like a Java hash code
in its header. The ‘gc_identity_hash’ LL operation returns the hash code stored
in the header, or initialises this field with the current address of the RPython object
if it is not yet initialised. We implement this operation as a Mu IR function, which
initialises the hash code with the current address of the corresponding Mu object3.

Some existing low-level RPython code, such as its string library, makes too many
assumptions about how its garbage collector works. The code casts references to
pointers using the cast_ptr_to_adr LL operation, and makes sure GC does not
happen while the raw address is in use. This trick is used to copy large buffers
using the native memcpy function, such as during string concatenation. In Mu, the
address of heap objects can only be obtained by ‘object pinning’ (see Section 5.3.7).
We had to carefully work around by inserting pinning operations. However, copying

3Getting the address of a Mu object requires pinning, which is overkill for hashing. An alternative
approach is to initialise the hash code field with a random number. The number can be the result of
any CPU counter or any random number generation instruction supported by the processor, such as
the RDRAND instruction on x86, as long as the result is cheap to obtain and relatively random. We can
also use traditional address-based hashing like JikesRVM. In that case, the Mu garbage collector should
provide an intrinsic for getting the hash code of a heap object.

110 RPython and GHC as Mu Clients

by pinning and memcpy only works for objects that do not contain references. Object
references cannot be copied with memcpy without completely disabling GC, since GC
may still concurrently update the references while memcpy is running. It is arguable
that Mu should provide an instruction that can copy arrays of GC-traced types, and
implement it in the fastest way with respect to the GC it used.

Influence on the Mu design Working on the RPython-to-Mu translator helped
identifying missing features that need to be provided by Mu. Actually, the ADD
instruction with the overflow flag in Mu is inspired by the need to translate the
corresponding LL operation ‘int_add_ovf’. This is also needed by other languages
that need de-optimisation upon overflow. The unsafe native interface did not exist
when this RPython backend project started, and it pushed the Mu design to address
object pinning and native function calls in detail.

9.1.4 Building Boot Images

Working with RPython forced us to make a concrete design of the boot image mecha-
nism in Mu.

A boot image is a image that contains both executable code and preserved data,
including heap objects and the static memory space. In the case of Mu, a boot image
also includes the contents of loaded Mu IR bundle, such as types and functions.

Boot image has been used by many existing language implementations, including
SMALLTALK-80 [Goldberg and Robson, 1983] and JikesRVM [Alpern et al., 2009]. In
the original RPython C backend, the generated executable file is also a boot image.

Boot image is necessary for supporting RPython. RPython programs contain heap
objects that are pre-allocated before the program starts, such as the string literal
"Hello world" in the following example:

1 def foo():
2 print "Hello␣world"

This demonstrated that Mu needs a way to persistently save heap objects, too, and
load them quickly at start-up time.

We intentionally do not define the exact format of boot images. Concrete Mu im-
plementations can choose the most efficient format for the particular implementation
of the GC and the JIT compiler for the desired platform. An ELF image, as used by
Moxie [Blackburn et al., 2008], is a good candidate, because it is widely supported by
native toolchains. The ideal format may be an object file (.o). The pre-compiled Mu
functions and the saved Mu heap can be simply memory-mapped from the ELF im-
age, and the dynamic linker can be used to resolve dependencies between functions
and objects. Emitting a .o file rather than shared objects or executable files gives the
client more freedom to link the image with the client and external libraries. Metacir-
cular clients can be built directly into the boot image, as depicted in Figure 4.2(b).
Even non-metacircular clients can benefit from boot images by pre-compiling library
objects and functions, such as the implementation of the java.lang.Object in Java.

§9.1 Supporting RPython and PyPy on Mu 111

The Mu API supports building boot images. There is only one extra function:
‘make_boot_image’. It is essentially a ‘one-button’ mechanism to preserve the cur-
rent VM state. The client will supply the following information to this API function
as parameters:

• A white list of top-level definitions. This allows the client to selectively store
only useful items from the bundle to the boot image.

• The state of the primordial thread. A primordial thread is a thread that starts
execution after the boot image is loaded. Its state includes the ‘main’ function
which the thread starts with. In the future, this could be extended to support
multiple primordial threads and preserve stacks.

• The output file. It will specify where to write the boot image, although the
format of the boot image is not specified.

Implementation-wise, the relocation of the heap needs to be handled carefully.
The dynamic loader may load the image at any location in the address space, and the
references to objects in the primordial heap may have different addresses in each run.
Therefore, the boot image builder must assist the dynamic loader with symbols and
relocation entries so that it can fix the addresses after loading. The garbage collector
can identify all references in the heap, and is able to generate appropriate metadata.
Mu may choose not to depend on the system loader, in which case it will have to
implement the relocation manually.

Since real-world programs need to call C functions which are usually also loaded
dynamically, we need to let the dynamic loader find the addresses of native func-
tions at load time so that Mu functions can directly call native functions without
having to look them up manually using system functions such as dlsym. We added
another kind of constant — ‘external constant’ — to Mu IR. For example, ‘.const
@write_addr <@SomeFuncPtrType> = EXTERN "write"’. Different from other
constants whose values are determined at compile time, the values of external con-
stants are determined at load time. This allows the dynamic loader to fix call sites
with the appropriate callee address. The exact way the loader looks up the address
from the symbol, such as ‘write’, has to be left unspecified by the Mu specification,
for it depends on so many run-time libraries that are not well-documented and be-
have subtly differently on different platforms. Fortunately, there is ongoing research
carried out by Kell et al. [2016] on the formalisation of linker behaviours.

The experiences with RPython forces us to think more about ahead-of-time com-
piling. The ‘external constant’ is not necessary for the JIT-compiling scenario, because
at run time, all functions have fixed addresses, and the JIT compiler can simply use
constant addresses instead. There are still many issues about ahead-of-time com-
piling, which Mu has not properly addressed at this time. These issues are mainly
related to linking and loading, such as weak symbols, symbol versioning, native
library dependencies, and symbol resolution with namespaces. It is a future research
topic to address these issues to provide better support for AoT compilation in Mu.

112 RPython and GHC as Mu Clients

9.1.5 Preliminary Results

Currently, we have worked to the point that the RPython client can support the
RPySOM [Marr et al., 2014] interpreter after fixing a few bugs in RPySOM. It runs on
Holstein, and passes the test suite provided by the SOM language.

The RPython client can only support the PyPy interpreter with a minimum set of
RPython modules. In PyPy, low-level modules, such as socket and regular expression,
are implemented in RPython. Some of these modules use low-level RPython primi-
tives which depend on the implementation details of the original RPython backend,
and have not been correctly translated to Mu, yet. Nevertheless, we are able to start
an interactive Python shell on Holstein, and run simple Python programs.

We are also able to run many other smaller programs in the RPython test suite.
Among those tests, we consider the ability to run the SHA-1 message digest algorithm
as a major milestone in the development of the Mu backend. Being able to run this
non-trivial algorithm demonstrated the correctness of the translation, because any
mistake in the computation would result in a completely wrong hash code.

9.1.6 Supporting the Meta-tracing JIT Compiler

We have discussed how to support the ahead-of-time compilation toolchain of RPython
using Mu as its backend. However, the performance advantage of PyPy mainly
comes from its just-in-time compiler that dynamically compiles traces into optimised
machine code. Research on supporting PyPy’s meta-tracing JIT compiler was carried
out at the University of Massachusetts in parallel to our work. When targeting Mu,
the JIT compiler should emit Mu IR code just like the AoT RPython-to-Mu translator
does.

The main challenge for supporting JIT compilation has been to provide enough
Mu-level information to the run-time JIT compiler. The official RPython backend loses
information when persisting LL-typed CFGs into bytecode (i.e. the ‘JIT code’, which
is the compact run-time representation of the CFGs). For instance, heap-allocation
operations no longer know the LL type names. Instead, they are ‘exploded’ into an
allocation of a certain size, followed by operations that fill in the GC headers. This
approach specialised the CFGs too much for the concrete PyPy GC. In Mu, the heap
allocation instruction ‘NEW’ takes the type as its parameter instead of the size, since
Mu does not expose the object layout to the client. Therefore, the persisted ‘JIT code’
has to be augmented with Mu-level type information so that the JIT compiler can
correctly generate Mu instructions with Mu-level type information.

9.1.7 Summary and Future Work

In summary, the ahead-of-time translation from LL-typed RPython code to Mu IR was
relatively straightforward because its LL type system lies roughly at the same level
as Mu. We were able to run the RPySOM interpreter and the PyPy interpreter with a
minimal set of modules on the Holstein reference implementation. This experience

§9.2 Supporting GHC on Mu 113

has influenced the design of Mu to add missing features, and pushed us to think
more deeply about metacircularity and ahead-of-time compiling.

9.2 Supporting GHC on Mu

We have introduced our experiences with RPython. In this section, we will move on
to our preliminary work on supporting GHC, the de-facto standard implementation
of Haskell. This section will briefly discuss our findings so far, because we have not
created any working GHC client at the time of writing.

9.2.1 Haskell and GHC

Haskell is a lazy pure functional language. Unlike imperative languages, Haskell
programs encode the relation between values and expressions, instead of directly
encoding the control flow. Its laziness allows the evaluation of an expression to be
postponed to the time when its value is needed, if needed at all. These characteristics
contrast sharply with physical machines and Mu, which are both imperative and
strict. Therefore, the implementation of such a language has always been a challenge.

GHC compiles Haskell source code into native code via several intermediate
languages, namely Core, STG and C-- (C minus minus).

The Core language is a compact, de-sugared representation of Haskell with only
nine primitives. After parsing, all Haskell programs are de-sugared into Core, and
many optimisations are performed on Core, too.

The Spineless Tagless G-machine (STG) was proposed by Peyton Jones and Salk-
ild [1989] as an abstract machine for non-strict functional languages. Like both
Haskell and Core, the STG language is still lazy and functional, but STG also has an
‘operational semantics’ that can be evaluated imperatively with a stack-based state-
transition model, which serves as a bridge between the functional language and the
imperative hardware.

C-- is a strict, imperative, C-like language without garbage collection. It is de-
signed by Peyton Jones et al. [1997] as a compilation target similar to LLVM. GHC
then compiles C-- to native code using either its ‘Native Code Generator’ (NCG) or
using LLVM as an intermediate step.

GHC also has a runtime system (RTS) which comprises about 50,000 lines of C
and C-- code. This library provides the underlying mechanisms for primitive types,
raising exceptions, garbage collection, concurrency, a byte-code interpreter (GHCi),
profiling, software transactional memory, etc.

9.2.2 Targeting Mu

Given the many levels of translation in GHC, the immediate question is: ‘Which is
the right place to start translating to Mu IR?’

We have been struggling with whether STG or C-- is the right level to start tar-
geting Mu. C-- was initially attractive because it is already imperative, and there is

114 RPython and GHC as Mu Clients

an official backend that translates C-- to the LLVM IR which is similar to the Mu
IR. However, C-- proved to be too low-level for Mu. GC is already translated into
concrete memory operations, and other low-level mechanisms, such as the check
for stack overflow and the management of the stack and the calling convention are
already injected, too. C-- could be a valid source if the target is a non-GC IR or the
machine, but Mu abstracts out all of the above mechanisms so that the client do not
need to, and also not able to, control them directly. Thus we instead start with the
STG language, one step before C--.

STG represents all values, evaluated or not, as closures. A closure in STG is a
self-contained heap-allocated object consisting of a code-pointer and zero or more
argument fields. A closure can be ‘entered’ by jumping to its code-pointer which
evaluates the closure; after evaluation, the closure is updated so that the result value
is stored inside the closure rather than having to be computed again. When targeting
Mu, the closure structure naturally maps to the hybrid type with a function reference
in its fixed part as the code pointer, and an array of references in the variable part to
represent the argument fields. The code can be implemented as Mu functions that
evaluate and update the hybrid. The tagref64 tagged reference type is ideal as the
reference type, so that primitive types, such as integers, can be represented directly
without heap allocation.

STG also has an explicit argument stack. Arguments to functions are passed via
the stack. Mu does not provide such an explicit stack for the client. Although the
client can always emulate such a stack by explicitly allocating an array using Mu’s
heap allocation primitives, it is more advisable to use Mu local SSA variables for
temporary values, and use Mu’s standard CALL instruction instead of any explicit
stacks, since the register allocator in Mu can presumably make better use of machine
registers and generate more efficient code for function calls. Since we do not have
any executable code produced from Haskell programs yet, it is an open topic to find
the best way to translate STG code into the Mu IR.

9.3 Conclusion

We have been able to support RPython on Mu to the extent that the RPySOM in-
terpreter and the core of the PyPy interpreter can execute on Holstein — the Mu
reference implementation, while the support for the meta-tracing JIT compiler in
RPython and the support for the GHC Haskell compiler are still work in progress.
Although supporting a real-world language on Mu is not a trivial task, it has already
been shown with RPython that Mu can ease the task of VM construction by remov-
ing difficult low-level implementation details, such as GC, exception handling and
machine code generation from the focus of the high-level language implementers.

The experience with real-world languages also revealed missing features in the
design of Mu. In the end, we refined the Mu IR, added the boot image building API,
and thought more carefully about supporting ahead-of-time compilation.

We also experienced difficulties when the original language implementations

§9.3 Conclusion 115

made too many assumptions about their original targets, which makes these imple-
mentations difficult to port to Mu. For example, RPython is too tightly coupled with
its C backend and its particular GC implementation. We have been working closely
with the upstream, such as the PyPy developers, during our development.

116 RPython and GHC as Mu Clients

Part IV

Conclusions

117

Chapter 10

Conclusion

Many languages suffer from poor performance and inscrutable semantics. A fun-
damental reason is that designing and implementing programming languages is
difficult. Without adequate monetary and intellectual investment, many languages
are developed with naïve implementation strategies, baking bad decisions in at the
early stage of the language design, which has long-term consequences that hinders
the development of the language. On the other hand, existing platforms, such as
LLVM or JVM, are insufficient in helping the language developers. They either miss
crucial abstractions, such as garbage collection, which are important but difficult to
implement, or couple too tightly with specific languages, such as Java, which forms a
semantic gap and also introduces redundant dependencies to the concrete language
to be supported.

This thesis attempts to create a proper platform for the development of managed
languages. We identify that concurrency, execution and garbage collection are the
three major concerns that contribute to the complexity in language development. We
thus introduce the concept of micro virtual machines which are minimalist virtual
machines that provide abstractions over exactly these three major concerns. With
their minimalism avoiding a semantic gap and unnecessary dependencies, and the
abstraction over the most difficult concerns, we expect micro virtual machines to be
the proper platform for the development of managed languages.

We designed Mu, a concrete micro virtual machine. Mu is defined as a spec-
ification which allows multiple compliant implementations. The language imple-
mentation is explicitly divided into the minimalist low-level micro virtual machine
and a high-level ‘client’ that uses the micro virtual machine to implement concrete
languages. Mu is heavily influenced by LLVM. It has an LLVM-like low-level type
system that does not enforce any object model, and also has LLVM-like primitive
operations that are close to the machine. However, unlike LLVM, it provides object
references, heap allocation and garbage collection as primitives, freeing the client
from having to implement the GC manually. To support concurrency, Mu provides
threads, a C11-like memory model with atomic memory operations and explicitly
annotated memory orders, as well as Swapstack operation which supports massive
multi-threaded execution. To support JIT compilation, Mu provides an API that
allows the client to submit code for JIT compiling at run time, and also provides
trap handling, function redefinition, stack introspection and on-stack replacement

119

120 Conclusion

(OSR) mechanisms that allow the client to handle lazy loading and feedback-directed
optimisation during execution. We also developed ‘Holstein’, the Mu reference im-
plementation, in Scala. Despite not being a high-performance implementation, it
provided a platform for early adopters to experiment with.

Stack introspection and on-stack replacement (OSR) are two important low-level
mechanisms to support feedback-directed optimisation and JIT compilation, which
are extremely important for managed languages. However, they are very difficult to
implement due to their connection to the machine architecture and the code gener-
ator, and, to our knowledge, no existing platforms provide them in their APIs for
their clients. We analysed SpiderMonkey and V8, two state-of-the-art JavaScript en-
gines, and revealed the difficulties in implementing stack introspection and OSR from
scratch, mainly the over-reliance on hand-written assembly code. We showed how
the Mu API can help with introspection and OSR during feedback-directed optimi-
sation without exposing machine-level details to the client, using a proof-of-concept
JavaScript client on Mu. We also showed how the stack API of Mu can be imple-
mented on concrete machines using the concepts of ‘return-oriented programming’,
‘resumption points’ and ‘resumption protocols’. We built libyugong, a library that
implements the Mu-like OSR and stack introspection API for native C/C++ programs,
as a proof of concept. Although we managed to get OSR working, stack introspection
did not work properly due to the non-cooperative nature of existing compilers and
system libraries. This indirectly reflected that a carefully-designed low-level platform
like Mu is much needed.

The real-world significance of Mu cannot be demonstrated without real-world
language clients. We are re-targeting RPython and GHC as clients of Mu. RPython is
a subset of Python which is static, ahead-of-time compiled and garbage collected, and
has supported many languages including PyPy (Python), RPySOM (SOM), Pyrlang
(Erlang) and Pycket (Racket). Observing the similarity between the ‘Low-Level’ (LL)
Type System of RPython and the Mu type system, we devised a straightforward
translation process for the types as well as the corresponding operations between
RPython and Mu, although operations that couple tightly with the GC needed careful
handling. The experience influenced the design of Mu itself by adding in missing
instructions needed by RPython, as well as forcing us to think more carefully about
the ahead-of-time compilation of Mu IR code, and concretely design the boot image
building mechanism. As a result, we are able to translate many RPython programs,
including the RPySOM interpreter, the core of the PyPy interpreter, and many small
RPython programs in the RPython test suite, into Mu IR, and run them on the
‘Holstein’ Mu reference implementation. We also made efforts on reusing GHC as
a frontend for Mu. We had some preliminary thoughts about translation of STG
closures, but we still cannot produce executable programs from Haskell at the time
of writing.

§10.1 Future Work 121

10.1 Future Work

The Mu project is in active development. Much work can be done to improved Mu,
and bring more languages onto the Mu platform.

10.1.1 Refining the Design of Mu

As we explore the clients and the real-world language implementations, we frequently
find deficiencies in our existing design. We have already made changes to Mu several
times to adapt to the new ideas, but there is still much room for improvement.

Removing the type parameter of references and pointers

One example is the removal of the type parameter from pointer and reference types,
such as the ‘<T>’ in ref<T>, iref<T> and uptr<T>. In conventional languages such
as C, C++ and Java, the referent type is a part of the pointer or reference type, and the
pointers and references to one type can be cast to that of another type. Mu already
supports check-less type casting between reference types or pointer types with the
REFCAST or PTRCAST instructions, assuming the client has already inserted proper
checks for validity. However, during our work on a Java client, our fellow researcher
reported that it is impossible to construct a Mu-level reference type ref<Foo> to
class Foo without actually loading the class Foo, because the Mu-level structure
type Foo must encode the layout of the class. If lazy loading is to be supported,
references from one class to another must be encoded as ref<void>, and cast to the
appropriate ref<Foo> when accessing the fields of Foo. Colleagues working on the
PyPy client also reported that it is often required to compare the equality between two
references to two different static types, as the concrete values may refer to objects of
derived types. Although REFCAST is essentially a no-op at the machine level, the type
parameter for the ref type appears to be redundant, as the concrete Mu instructions,
such as EQ, NE, LOAD and STORE, are already annotated with the operand type for the
convenience of the Mu backend compiler. Eventually, we realised that only ‘storage
types’ (i.e. the types that determines the representation or layout of values) matter at the
micro virtual machine level, and the enforcement of high-level type consistency (such
as what objects a ref may refer to) could be off-loaded to the client, too. However,
since this change implies a major redesign of the type system, we have postponed
this change to the future as other research projects, such as the PyPy client, depend
on a relatively stable Mu at this moment.

Factored Control Flow Graph

Another alternative design choice we have considered is to loosen the single-exit
requirement of basic blocks and allow side-exits (including branches and potential
excepting instructions such as CALL with ‘exception clauses’) in the middle of basic
blocks. In principle, this is similar to the ‘factored control flow graphs’ (FCFG) intro-
duced by Choi et al. [1999] and used in JikesRVM. FCFGs will have fewer but longer

122 Conclusion

basic blocks than the single-exit counterpart, while still permitting efficient forward
and backward intra-procedural analysis with minor changes to the algorithms. The
compactness of FCFG allows more efficient communication between the client and
Mu, and the benefit could be more significant since the Mu IR needs to pass parame-
ters between basic blocks. The tracing JIT compilers can also benefit from this form
since the trace usually has many ‘guard’ operations which could be simply translated
to comparison operations and side exits without having to break the trace into many
tiny basic blocks just for binary branching. This change would also result in a major
Mu IR redesign, thus we postponed this idea as a future work.

Transactional Memory

Transactional memory provides a scalable, composable alternative to the lock-based
synchronisation mechanisms on parallel hardware. Software transactional memory
(STM) is able to run general transactional programs, but with significant performance
overhead. Meanwhile, recent commodity processors, such as Intel’s Haswell microar-
chitecture, also started to offer best-effort hardware transactional memory (HTM) of
limited transaction sizes. As an abstraction layer over execution and concurrency, Mu
should consider providing primitives for transactional memory, allowing a hybrid
STM/HTM system to be implemented, and the optimal STM or HTM strategy to be
chosen dynamically at run time, similar to the work by Chapman et al. [2016].

10.1.2 Client-side Development

Clients with JIT-compiling Capability

Although Mu is designed from the very beginning as a platform for JIT compilation,
the mechanisms provided by Mu IR and the API need to be tested with real-world
language clients. So far, the only working Mu client capable of JIT-compiling the
high-level language and performing feedback-directed optimisation is the proof-of-
concept JS-Mu project which only implements a subset of JavaScript, as described in
Section 7.4. The meta-tracing JIT compiler in PyPy is a good candidate to evaluate
such JIT-compiling capabilities in a real-world language client.

Supporting Additional Languages

The more language we test on Mu, the better we can demonstrate and improve the
generality of Mu. Some languages may potentially benefit from what Mu offers. For
example, Erlang and Go may use the Swapstack operation to implement their massive
multi-threading model. Java and C#, as conventional static managed languages, may
not see immediate performance improvement when ported on Mu as their original
VMs, namely the JVM and the .NET CLR, are already highly optimised. However,
supporting such languages on Mu will allow us to compare against state-of-the-art
VMs on a common ground. Such static languages may also play the role of ‘high-level

§10.2 Final Words 123

low-level languages’ [Frampton et al., 2009] that assist in the development of other
languages.

Client-side Libraries

Common utilities that are beneficial to multiple languages can be factored out as
reusable client-side libraries. One such library could provide common optimisations,
such as common sub-expression elimination and loop-invariant code motion, at the
Mu IR level. Such a library will optimise the Mu IR inside the client before submitting
to Mu. In particular, the official RPython backend relies on the lower level, namely
the C compiler, to perform aggressive optimisations, and thus generate low-quality
C code as output. Client-side low-level optimisations must be performed for such
clients to even stand a chance against their original implementations, since Mu, as a
minimalist VM, is not obliged to perform any optimisations which can be offloaded
to the client.

10.1.3 High-performance Mu Implementation

Mu will not be useful in supporting efficient language implementations unless Mu
itself is efficient. The Holstein Mu reference implementation is designed for correct-
ness rather than performance. The Zebu high-performance Mu implementation is
under active development. Currently it can compile a subset of the Mu IR, and is
yielding promising results with simple benchmarks.

10.1.4 Formal Verification

One goal of the Mu project is to build a reliable formally-verified language runtime
on the top of the formally-verified seL4 microkernel. We are working on formally
specifying the semantics of Mu in HOL, and much work has been done with the
semantics of the Mu memory model. We are also working on porting the Rust-
based Zebu implementation to seL4. However, given the incredible difficulties in the
verification of the seL4 microkernel, the verification of Mu may not be an easy task,
either.

10.2 Final Words

We have made our first steps in our ambitious Mu micro virtual machine project.
We expect that in a foreseeable future, language developers will be able to use Mu
as a solid foundation for their next languages, and the languages will be properly
designed, efficiently implemented, and easier to develop and maintain than the status-
quo of today. People may also design their own micro virtual machines which have
the same principle of minimalism as Mu, but address their own concerns of their
language development. Eventually, we will see an overall improvement in the quality
of programming languages.

124 Conclusion

Bibliography

Adams, K.; Evans, J.; Maher, B.; Ottoni, G.; Paroski, A.; Simmers, B.; Smith, E.;
and Yamauchi, O., 2014. The HipHop virtual machine. In OOPSLA ’14: Proceedings
of the 2014 ACM SIGPLAN International Conference on Object Oriented Programming
Systems Languages & Applications (Portland, OR, USA, Oct. 2014), 777–790. ACM,
New York, NY, USA. doi:10.1145/2660193.2660199. (cited on page 15)

Alpern, B.; Attanasio, C. R.; Cocchi, A.; Lieber, D.; Smith, S.; Ngo, T.; Barton, J. J.;
Hummel Flynn, S.; Sheperd, J. C.; and Mergen, M., 2009. Implementing Jalapeño
in Java. In OOPSLA ’09: Proceedings of the 14th ACM SIGPLAN International Confer-
ence on Object Oriented Programming Systems Languages and Applications (Denver, CO,
USA, Nov. 2009), 314–324. ACM, New York, NY, USA. doi:10.1145/320384.320418.
(cited on pages 8, 26, 84, 95, 98, and 110)

Ananian, C. S., 1999. Static Single Information Form. Master’s thesis, Department of
Electrical Engineering and Computer Science, Massachusetts Institute of Technol-
ogy. (cited on pages 29, 38, and 107)

Appel, A. W., 1998. SSA is functional programming. ACM SIGPLAN Notices, 33, 4
(Apr. 1998), 17–20. doi:10.1145/278283.278285. (cited on page 38)

Baumann, S.; Bolz, C. F.; Hirschfeld, R.; Kirilichev, V.; Pape, T.; Siek, J.; and

Tobin-Hochstadt, S., 2015. Pycket: A tracing JIT for a functional language. In
ICFP ’15: Proceedings of the 20th ACM SIGPLAN International Conference on Functional
Programming (Vancouver, BC, Canada, Aug. 2015), 22–34. ACM, New York, NY,
USA. doi:10.1145/2784731.2784740. (cited on pages 4 and 104)

Behrens, S., 2008. Concurrency and Python. http://www.drdobbs.com/open-source/
concurrency-and-python/206103078. Retrieved: 9 Sep 2018. (cited on pages 1 and 14)

Blackburn, S. M.; Cheng, P.; and McKinley, K. S., 2004. Oil and water? High
performance garbage collection in Java with MMTk. In ICSE ’04: Proceedings of the
26th International Conference on Software Engineering (Edinburgh, Scotland, UK, May
2004). IEEE. doi:10.1109/ICSE.2004.1317436. (cited on page 18)

Blackburn, S. M. and McKinley, K. S., 2008. Immix: A mark-region garbage
collector with space efficiency, fast collection, and mutator performance. In PLDI
’08: Proceedings of the 29th ACM SIGPLAN Conference on Programming Language
Design and Implementation (Tucson, AZ, USA, Jun. 2008), 22–32. ACM, New York,
NY, USA. doi:10.1145/1375581.1375586. (cited on pages 12, 13, and 28)

125

http://dx.doi.org/10.1145/2660193.2660199
http://dx.doi.org/10.1145/320384.320418
http://dx.doi.org/10.1145/278283.278285
http://dx.doi.org/10.1145/2784731.2784740
http://www.drdobbs.com/open-source/concurrency-and-python/206103078
http://www.drdobbs.com/open-source/concurrency-and-python/206103078
http://dx.doi.org/10.1109/ICSE.2004.1317436
http://dx.doi.org/10.1145/1375581.1375586

126 Bibliography

Blackburn, S. M.; Salishev, S. I.; Danilov, M.; Mokhovikov, O. A.; Nashatyrev,
A. A.; Novodvorsky, P. A.; Bogdanov, V. I.; Li, X. F.; and Ushakov, D., 2008.
The Moxie JVM experience. Technical Report TR-CS-08-01, Australian National
University, Department of Computer Science. (cited on page 110)

Boehm, H.-J., 2005. Threads cannot be implemented as a library. In PLDI ’05: Pro-
ceedings of the 2005 ACM SIGPLAN Conference on Programming Language Design and
Implementation (Chicago, IL, USA, Jun. 2005), 261–268. ACM, New York, NY, USA.
doi:10.1145/1065010.1065042. (cited on pages 10 and 18)

Boehm, H.-J. and Adve, S. V., 2008. Foundations of the C++ concurrency memory
model. In PLDI ’08: Proceedings of the 29th ACM SIGPLAN Conference on Programming
Language Design and Implementation (Tucson, AZ, USA, Jun. 2008), 68–78. ACM, New
York, NY, USA. doi:10.1145/1375581.1375591. (cited on pages 10 and 46)

Boehm, H.-J. and Weiser, M., 1988. Garbage collection in an uncooperative en-
vironment. Software: Practice & Experience, 18, 9 (Sep. 1988), 807–820. doi:
10.1002/spe.4380180902. (cited on page 13)

Bolz, C. F.; Cuni, A.; Fijalkowski, M.; and Rigo, A., 2009. Tracing the meta-level:
PyPy’s tracing JIT compiler. In ICOOOLPS ’09: Proceedings of the 4th Workshop
on the Implementation, Compilation, Optimization of Object-Oriented Languages and
Programming Systems (Genova, Italy, Jul. 2009), 18–25. ACM, New York, NY, USA.
doi:10.1145/1565824.1565827. (cited on pages 14, 18, and 104)

Bolz, C. F. and Tratt, L., 2015. The impact of meta-tracing on VM design and
implementation. Science of Computer Programming (SCICO), (Feb. 2015), 408–421.
doi:10.1016/j.scico.2013.02.001. (cited on page 16)

Castanos, J.; Edelsohn, D.; Ishizaki, K.; Nagpurkar, P.; Nakatani, T.; Ogasawara,
T.; and Wu, P., 2012. On the benefits and pitfalls of extending a statically typed
language JIT compiler for dynamic scripting languages. In OOPSLA ’12: Proceedings
of the ACM International Conference on Object Oriented Programming Systems Languages
and Applications (Tucson, AZ, USA, Oct. 2012), 195–212. ACM, New York, NY, USA.
doi:10.1145/2398857.2384631. (cited on pages 2, 8, 16, 18, 25, and 79)

Chapman, K.; Hosking, A. L.; and Moss, J. E. B., 2016. Hybrid STM/HTM for
nested transactions on OpenJDK. In OOPSLA ’16: Proceedings of the 2016 ACM
SIGPLAN International Conference on Object Oriented Programming Systems Languages
& Applications (Amsterdam, Netherlands, Nov. 2016), 660–676. ACM, New York,
NY, USA. doi:10.1145/2983990.2984029. (cited on page 122)

Choi, J.-D.; Grove, D.; Hind, M.; and Sarkar, V., 1999. Efficient and precise mod-
eling of exceptions for the analysis of java programs. In PASTE ’99: Proceedings of
the 1999 ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools
and Engineering (Toulouse, France, Sep. 1999), 21–31. ACM, New York, NY, USA.
doi:10.1145/316158.316171. (cited on page 121)

http://dx.doi.org/10.1145/1065010.1065042
http://dx.doi.org/10.1145/1375581.1375591
http://dx.doi.org/10.1002/spe.4380180902
http://dx.doi.org/10.1002/spe.4380180902
http://dx.doi.org/10.1145/1565824.1565827
http://dx.doi.org/10.1016/j.scico.2013.02.001
http://dx.doi.org/10.1145/2398857.2384631
http://dx.doi.org/10.1145/2983990.2984029
http://dx.doi.org/10.1145/316158.316171

Bibliography 127

CPython. Welcome to Python.org. https://www.python.org/. Retrieved: 9 Sep 2018.
(cited on pages 18 and 104)

Cytron, R.; Ferrante, J.; Rosen, B. K.; Wegman, M. N.; and Zadeck, F. K., 1991.
Efficiently computing static single assignment form and the control dependence
graph. ACM Transactions on Programming Languages and Systems, 13, 4 (Oct. 1991),
451–490. doi:10.1145/115372.115320. (cited on page 29)

D’Elia, D. C. and Demetrescu, C., 2016. Flexible on-stack replacement in llvm. In
CGO ’16: Proceedings of the 2016 International Symposium on Code Generation and
Optimization (Barcelona, Spain, Mar. 2016), 250–260. ACM, New York, NY, USA.
doi:10.1145/2854038.2854061. (cited on pages 77, 79, 98, and 99)

Dolan, S.; Muralidharan, S.; and Gregg, D., 2013. Compiler support for
lightweight context switching. ACM Transactions on Architecture and Code Opti-
mization, 9, 4 (Jan. 2013), 36:1–36:25. doi:10.1145/2400682.2400695. (cited on pages
4, 16, 47, 69, 93, and 98)

Drepper, U., 2011. Futexes are tricky. https://www.akkadia.org/drepper/futex.pdf. Re-
trieved: 9 Sep 2018. (cited on page 44)

DWARF Standards Committee, 2010. Dwarf debugging information format, version
4. http://www.dwarfstd.org/doc/DWARF4.pdf. Retrieved: 9 Sep 2018. (cited on page
84)

Ebcioǧlu, K.; Saraswat, V.; and Sarkar, V., 2004. X10: Programming for hierarchical
parallelism and non-uniform data access (extended abstract). (cited on page 16)

Fink, S. J. and Qian, F., 2003. Design, implementation and evaluation of adaptive
recompilation with on-stack replacement. In CGO ’03: Proceedings of the 2003
International Symposium on Code Generation and Optimization (San Francisco, CA,
USA, Mar. 2003), 241–252. IEEE Computer Society, Washington, DC, USA. doi:
10.1109/CGO.2003.1191549. (cited on pages 76 and 79)

Frampton, D.; Blackburn, S. M.; Cheng, P.; Garner, R. J.; Grove, D.; Moss, J. E. B.;
and Salishev, S. I., 2009. Demystifying magic: high-level low-level programming.
In VEE ’09: Proceedings of the 2009 ACM SIGPLAN/SIGOPS International Conference
on Virtual Execution Environments (Washington, DC, USA, Mar. 2009), 81–90. ACM,
New York, NY, USA. doi:10.1145/1508293.1508305. (cited on pages 104 and 123)

Franke, H. and Russell, R., 2002. Fuss, futexes and furwocks: Fast userlevel locking
in Linux. In OLS ’02: Proceedings of the 2002 Ottawa Linux Symposium (Ottawa, ON,
USA, Jun. 2002), 479–495. http://www.kernel.org/doc/ols/2002/ols2002-pages-479-495.
pdf. (cited on page 44)

Garner, R.; Blackburn, S. M.; and Frampton, D., 2011. A comprehensive evaluation
of object scanning techniques. In ISMM ’11: Proceedings of the 2011 International
Symposium on Memory Management (San Jose, CA, USA, Jun. 2011), 33–42. ACM,
New York, NY, USA. doi:10.1145/1993478.1993484. (cited on page 18)

https://www.python.org/
http://dx.doi.org/10.1145/115372.115320
http://dx.doi.org/10.1145/2854038.2854061
http://dx.doi.org/10.1145/2400682.2400695
https://www.akkadia.org/drepper/futex.pdf
http://www.dwarfstd.org/doc/DWARF4.pdf
http://dx.doi.org/10.1109/CGO.2003.1191549
http://dx.doi.org/10.1109/CGO.2003.1191549
http://dx.doi.org/10.1145/1508293.1508305
http://www.kernel.org/doc/ols/2002/ols2002-pages-479-495.pdf
http://www.kernel.org/doc/ols/2002/ols2002-pages-479-495.pdf
http://dx.doi.org/10.1145/1993478.1993484

128 Bibliography

Geoffray, N.; Thomas, G.; Lawall, J.; Muller, G.; and Folliot, B., 2010. VMKit:
A substrate for managed runtime environments. In VEE ’10: Proceedings of the 6th
ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments
(Pittsburgh, PA, USA, Mar. 2010), 51–62. ACM, New York, NY, USA. doi:10.1145/
1735997.1736006. (cited on pages 3, 7, and 18)

Goldberg, A. and Robson, D., 1983. Smalltalk-80: The Language and Its Implementation.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA. ISBN 0-201-
11371-6. (cited on page 110)

Google. V8 JavaScript Engine. https://developers.google.com/v8/. Retrieved: 9 Sep
2018. (cited on pages 8, 15, 35, and 66)

Gosling, J.; Joy, B.; Steele Jr., G. L.; Bracha, G.; and Bucley, A., 2014. The Java
Language Specification, Java SE 8 Edition. Addison-Wesley Professional, 1st edn. ISBN
013390069X, 9780133900699. (cited on pages 10, 37, and 46)

Gudeman, D., 1993. Representing type information in dynamically typed languages.
Technical Report TR 93-27, Department of Computer Science, Gould-Simpson Build-
ing, The University of Arizona, Tucson, AZ 85721, USA. (cited on page 34)

Hack. Hack — Programming Productivity Without Breaking Things. https://hacklang.
org/. Retrieved: 9 Sep 2018. (cited on page 43)

Hejlsberg, A.; Wiltamuth, S.; and Golde, P., 2003. C# Language Specifica-
tion. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA. ISBN
0321154916. (cited on page 51)

Hölzle, U.; Chambers, C.; and Ungar, D., 1992. Debugging optimized code with
dynamic deoptimization. In PLDI ’92: Proceedings of the ACM SIGPLAN 1992
Conference on Programming Language Design and Implementation (San Francisco, CA,
USA, Jun. 1992), 32–43. ACM, New York, NY, USA. doi:10.1145/143095.143114.
(cited on pages 9, 95, 98, and 99)

Hölzle, U. and Ungar, D., 1994. A third-generation self implementation: Rec-
onciling responsiveness with performance. In OOPSLA ’94: Proceedings of the
Ninth Annual Conference on Object-oriented Programming Systems, Languages, and Ap-
plications (Portland, OR, USA, Oct. 1994), 229–243. ACM, New York, NY, USA.
doi:10.1145/191080.191116. (cited on pages 9, 98, and 99)

Ierusalimschy, R.; de Figueiredo, L. H.; and Filho, W. C., 1996. Lua — an extensible
extension language. Software: Practice & Experience, 26, 6 (Jun. 1996), 635–652.
doi:10.1002/(SICI)1097-024X(199606)26:6<635::AID-SPE26>3.0.CO;2-P. https://www.lua.
org/spe.html. (cited on page 13)

ISO, 2012. ISO/IEC 14882:2011 Information technology — Programming languages — C++.
International Organization for Standardization, Geneva, Switzerland. http://www.
iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=50372. (cited on
pages 10 and 46)

http://dx.doi.org/10.1145/1735997.1736006
http://dx.doi.org/10.1145/1735997.1736006
https://developers.google.com/v8/
https://hacklang.org/
https://hacklang.org/
http://dx.doi.org/10.1145/143095.143114
http://dx.doi.org/10.1145/191080.191116
http://dx.doi.org/10.1002/(SICI)1097-024X(199606)26:6<635::AID-SPE26>3.0.CO;2-P
https://www.lua.org/spe.html
https://www.lua.org/spe.html
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=50372
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=50372

Bibliography 129

Itanium. Itanium C++ ABI: Exception Handling (Revision: 1.22). https://
itanium-cxx-abi.github.io/cxx-abi/abi-eh.html. Retrieved: 9 Sep 2018. (cited on pages
20 and 40)

Jibaja, I.; Blackburn, S. M.; Haghighat, M. R.; and McKinley, K. S., 2011. Deferred
gratification: Engineering for high performance garbage collection from the get go.
In MSPC ’11: Proceedings of the 2011 ACM SIGPLAN Workshop on Memory Systems
Performance and Correctness (San Jose, CA, Jun. 2011), 58–65. ACM, New York, NY,
USA. doi:10.1145/1988915.1988930. (cited on pages 1, 12, and 13)

Jibaja, I.; Jensen, P.; Hu, N.; Haghighat, M. R.; McCutchan, J.; Gohman, D.;
Blackburn, S. M.; and McKinley, K. S., 2015. Vector parallelism in JavaScript:
Language and compiler support for SIMD. In PACT ’15: Proceedings of the 2015
International Conference on Parallel Architecture and Compilation (San Francisco, CA,
USA, Oct. 2015), 407–418. IEEE, Washington, DC, USA. doi:10.1109/PACT.2015.33.
(cited on page 33)

JRuby. Home — JRuby.org. http://jruby.org/. Retrieved: 9 Sep 2018. (cited on page 16)

Jython. The Jython Project. http://www.jython.org/. Retrieved: 9 Sep 2018. (cited on
pages 16 and 43)

Kell, S.; Mulligan, D. P.; and Sewell, P., 2016. The missing link: Explaining
ELF static linking, semantically. In OOPSLA ’16: Proceedings of the 2016 ACM
SIGPLAN International Conference on Object Oriented Programming Systems Languages
& Applications (Amsterdam, Netherlands, Nov. 2016), 607–623. ACM, New York,
NY, USA. doi:10.1145/2983990.2983996. (cited on page 111)

Kevin Modzelewski, 2016. Pyston 0.5 release. https://blog.pyston.org/2016/05/25/
pyston-0-5-released/. Retrieved: 9 Sep 2018. (cited on page 13)

Klein, G.; Elphinstone, K.; Heiser, G.; Andronick, J.; Cock, D.; Derrin, P.; Elka-
duwe, D.; Engelhardt, K.; Kolanski, R.; Norrish, M.; Sewell, T.; Tuch, H.;
and Winwood, S., 2009. seL4: Formal verification of an OS kernel. In SOSP
’09: Proceedings of the ACM SIGOPS 22nd Symposium on Operating Systems Prin-
ciples (Big Sky, Montana, USA, Oct. 2009), 207–220. ACM, New York, NY, USA.
doi:10.1145/1629575.1629596. (cited on page 24)

Kowalke, O., 2016. Boost.Context. http://www.boost.org/doc/libs/1_63_0/libs/context/
doc/html/index.html. Retrieved: 9 Sep 2018. (cited on pages 47 and 86)

Lameed, N. A. and Hendren, L. J., 2013. A modular approach to on-stack re-
placement in LLVM. In VEE ’13: Proceedings of the 9th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments (Houston, TX, USA, Mar.
2013), 143–154. ACM, New York, NY, USA. doi:10.1145/2451512.2451541. (cited on
page 99)

https://itanium-cxx-abi.github.io/cxx-abi/abi-eh.html
https://itanium-cxx-abi.github.io/cxx-abi/abi-eh.html
http://dx.doi.org/10.1145/1988915.1988930
http://dx.doi.org/10.1109/PACT.2015.33
http://jruby.org/
http://www.jython.org/
http://dx.doi.org/10.1145/2983990.2983996
https://blog.pyston.org/2016/05/25/pyston-0-5-released/
https://blog.pyston.org/2016/05/25/pyston-0-5-released/
http://dx.doi.org/10.1145/1629575.1629596
http://www.boost.org/doc/libs/1_63_0/libs/context/doc/html/index.html
http://www.boost.org/doc/libs/1_63_0/libs/context/doc/html/index.html
http://dx.doi.org/10.1145/2451512.2451541

130 Bibliography

Lattner, C. and Adve, V., 2004. LLVM: A compilation framework for lifelong
program analysis & transformation. In CGO ’04: Proceedings of the 2004 Inter-
national Symposium on Code Generation and Optimization (Palo Alto, CA, USA, Mar.
2004). IEEE Computer Society, Washington, DC, USA. doi:10.1109/CGO.2004.1281665.
(cited on pages 2, 17, 18, 24, 91, and 98)

LibGCCEH. GNU Compiler Collection (GCC) Internals: Exception handling rou-
tines. https://gcc.gnu.org/onlinedocs/gccint/Exception-handling-routines.html. Retrieved:
9 Sep 2018. (cited on page 97)

Lin, Y.; Wang, K.; Blackburn, S. M.; Norrish, M.; and Hosking, A. L., 2015. Stop
and go: Understanding yieldpoint behavior. In ISMM ’15: Proceedings of the 2015
International Symposium on Memory Management (Portland, OR, USA, Jun. 2015),
70–80. ACM, New York, NY, USA. doi:10.1145/2754169.2754187. (cited on pages
13, 17, 18, and 58)

Lindholm, T.; Yellin, F.; Bracha, G.; and Buckley, A., 2014. The Java Virtual
Machine Specification, Java SE 8 Edition. Addison-Wesley Professional, 1st edn. ISBN
013390590X, 9780133905908. (cited on pages 16 and 26)

LLVMGEP. The Often Misunderstood GEP Instruction — LLVM 8 documentation.
http://llvm.org/docs/GetElementPtr.html. Retrieved: 9 Sep 2018. (cited on page 41)

LLVMGoals. Goals and non-goals — Garbage Collection with LLVM — LLVM 8
documentation. http://llvm.org/docs/GarbageCollection.html#goals-and-non-goals. Re-
trieved: 9 Sep 2018. (cited on page 17)

LLVMStackMap. Stack maps and patch points in LLVM — LLVM 8 documentation.
http://llvm.org/docs/StackMaps.html. Retrieved: 9 Sep 2018. (cited on page 98)

LuaJITGC. New Garbage Collector — The LuaJIT Wiki. http://wiki.luajit.org/
New-Garbage-Collector. Retrieved: 9 Sep 2018. (cited on page 15)

Manson, J.; Pugh, W.; and Adve, S. V., 2005. The Java memory model. In POPL ’05:
Proceedings of the 32nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (California, CA, USA, Jan. 2005), 378–391. ACM, New York,
NY, USA. doi:10.1145/1040305.1040336. (cited on pages 10 and 46)

Marr, S. and Ducasse, S., 2015. Tracing vs. partial evaluation: Comparing meta-
compilation approaches for self-optimizing interpreters. In OOPSLA ’15: Proceed-
ings of the 2015 ACM SIGPLAN International Conference on Object Oriented Program-
ming Systems Languages & Applications (Pittsburgh, PA, USA, Oct. 2015), 821–839.
ACM, New York, NY, USA. doi:10.1145/2858965.2814275. http://stefan-marr.de/
papers/oopsla-marr-ducasse-meta-tracing-vs-partial-evaluation/. (cited on page 20)

Marr, S.; Pape, T.; and Meuter, W. D., 2014. Are we there yet?: Simple language
implementation techniques for the 21st century. IEEE Software, 31, 5 (Sept 2014),
60–67. doi:10.1109/MS.2014.98. (cited on pages 4, 104, and 112)

http://dx.doi.org/10.1109/CGO.2004.1281665
https://gcc.gnu.org/onlinedocs/gccint/Exception-handling-routines.html
http://dx.doi.org/10.1145/2754169.2754187
http://llvm.org/docs/GetElementPtr.html
http://llvm.org/docs/GarbageCollection.html#goals-and-non-goals
http://llvm.org/docs/StackMaps.html
http://wiki.luajit.org/New-Garbage-Collector
http://wiki.luajit.org/New-Garbage-Collector
http://dx.doi.org/10.1145/1040305.1040336
http://dx.doi.org/10.1145/2858965.2814275
http://stefan-marr.de/papers/oopsla-marr-ducasse-meta-tracing-vs-partial-evaluation/
http://stefan-marr.de/papers/oopsla-marr-ducasse-meta-tracing-vs-partial-evaluation/
http://dx.doi.org/10.1109/MS.2014.98

Bibliography 131

Matz, M.; Hubička, J.; Jaegar, A.; and Mitchell, M., 2012. System V Ap-
plication Binary Interface, AMD64 Architecture Processor Supplement. http:
//refspecs.linuxfoundation.org/elf/x86_64-abi-0.99.pdf. Retrieved: 9 Sep 2018. (cited
on page 51)

McCarthy, J., 1960. Recursive functions of symbolic expressions and their compu-
tation by machine, part i. Communications of the ACM, 3, 4 (Apr. 1960), 184–195.
doi:10.1145/367177.367199. (cited on page 12)

Microsoft. .NET — Powerful Open Source Cross Platform Development. https:
//www.microsoft.com/net. Retrieved: 9 Sep 2018. (cited on page 7)

MicroVM. The Mu Micro Virtual Machine Project. http://microvm.org/. Retrieved: 9
Sep 2018. (cited on page 28)

Mono. Mono — Cross platform, open source .NET framework. https://www.
mono-project.com/. Retrieved: 9 Sep 2018. (cited on page 13)

Mosberger, D. The libunwind project. http://www.nongnu.org/libunwind/. Retrieved: 9
Sep 2018. (cited on page 91)

Mozilla. SpiderMonkey — Mozilla | MDN. https://developer.mozilla.org/en-US/docs/
Mozilla/Projects/SpiderMonkey. Retrieved: 9 Sep 2018. (cited on pages 8, 15, 35,
and 66)

National Research Council, 1994. Academic Careers for Experimental Computer
Scientists and Engineers. The National Academies Press, Washington, DC. ISBN
978-0-309-04931-3. doi:10.17226/2236. (cited on page 3)

Oracle. Java Native Interface. http://docs.oracle.com/javase/8/docs/technotes/guides/jni/.
Retrieved: 9 Sep 2018. (cited on page 51)

Pall, M. The LuaJIT Project. http://luajit.org/. Retrieved: 9 Sep 2018. (cited on page
15)

Peyton Jones, S. L.; Nordin, T.; and Oliva, D., 1997. C--: A portable assembly
language. In IFL ’97: Selected Papers from the 9th International Workshop on Imple-
mentation of Functional Languages (St. Andrews, Scotland, UK, Sep. 1997), 1–19.
Springer-Verlag, London, UK. http://dl.acm.org/citation.cfm?id=647976.743227. (cited
on page 113)

Peyton Jones, S. L. and Salkild, J., 1989. The spineless tagless g-machine. In
FPCA ’89: Proceedings of the Fourth International Conference on Functional Programming
Languages and Computer Architecture (Imperial College, London, UK, Sep. 1989), 184–
201. ACM, New York, NY, USA. doi:10.1145/99370.99385. (cited on page 113)

PHP, 2002. Doc Bug #20993 :: Element value changes without asking. https://bugs.php.
net/bug.php?id=20993. Retrieved: 9 Sep 2018. (cited on pages 1 and 43)

http://refspecs.linuxfoundation.org/elf/x86_64-abi-0.99.pdf
http://refspecs.linuxfoundation.org/elf/x86_64-abi-0.99.pdf
http://dx.doi.org/10.1145/367177.367199
https://www.microsoft.com/net
https://www.microsoft.com/net
http://microvm.org/
https://www.mono-project.com/
https://www.mono-project.com/
http://www.nongnu.org/libunwind/
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey
http://dx.doi.org/10.17226/2236
http://docs.oracle.com/javase/8/docs/technotes/guides/jni/
http://luajit.org/
http://dl.acm.org/citation.cfm?id=647976.743227
http://dx.doi.org/10.1145/99370.99385
https://bugs.php.net/bug.php?id=20993
https://bugs.php.net/bug.php?id=20993

132 Bibliography

Prandini, M. and Ramilli, M., 2012. Return-oriented programming. IEEE Security
& Privacy, 10, 6 (Nov. 2012), 84–87. doi:10.1109/MSP.2012.152. (cited on page 75)

PyPyGC. translation.gcrootfinder — PyPy Documentation. http://doc.pypy.org/en/
latest/config/translation.gcrootfinder.html. Retrieved: 9 Sep 2018. (cited on page 20)

PyPyGIL. Does PyPy have a GIL? Why? — Frequently Asked Questions – PyPy Docu-
mentation. http://doc.pypy.org/en/latest/faq.html#does-pypy-have-a-gil-why. Retrieved:
9 Sep 2018. (cited on page 14)

Pyston. The Pyston Blog. https://blog.pyston.org/. Retrieved: 9 Sep 2018. (cited on
page 13)

Rigo, A. and Pedroni, S., 2006. PyPy’s approach to virtual machine construction.
In OOPSLA ’06: Companion to the 21st ACM SIGPLAN Symposium on Object-oriented
Programming Systems, Languages, and Applications (Portland, OR, USA, Oct. 2006),
944–953. ACM, New York, NY, USA. doi:10.1145/1176617.1176753. (cited on pages
2, 4, 19, 43, and 103)

Ruby. Ruby Programming Language. https://www.ruby-lang.org/. Retrieved: 9 Sep
2018. (cited on page 14)

Scala. The Scala Programming Langauge. https://www.scala-lang.org/. Retrieved: 9
Sep 2018. (cited on page 16)

Shahriyar, R.; Blackburn, S. M.; and Frampton, D., 2012. Down for the count?
Getting reference counting back in the ring. In ISMM ’12: Proceedings of the 2012
International Symposium on Memory Management (Beijing, China, Jun. 2012), 73–84.
ACM, New York, NY, USA. doi:10.1145/2258996.2259008. (cited on page 13)

Shahriyar, R.; Blackburn, S. M.; and McKinley, K. M., 2014. Fast conserva-
tive garbage collection. In OOPSLA ’14: Proceedings of the 2014 ACM SIGPLAN
International Conference on Object Oriented Programming Systems Languages & Ap-
plications (Portland, OR, USA, Oct. 2014), 121–139. ACM, New York, NY, USA.
doi:10.1145/2660193.2660198. (cited on page 13)

SIL, 2017. Swift Intermediate Language (SIL) — Swift 2.2 documentation. http:
//apple-swift.readthedocs.io/en/latest/SIL.html. Retrieved: 9 Sep 2018. (cited on page
38)

Tozawa, A.; Tatsubori, M.; Onodera, T.; and Minamide, Y., 2009. Copy-on-write
in the PHP language. In POPL ’09: Proceedings of the 36th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (Savannah, GA, USA, Jan.
2009), 200–212. ACM, New York, NY, USA. doi:10.1145/1480881.1480908. (cited on
pages 1, 14, and 43)

UnladenSwallow, 2011. Unladen swallow project page. https://code.google.com/p/
unladen-swallow/. (cited on page 18)

http://dx.doi.org/10.1109/MSP.2012.152
http://doc.pypy.org/en/latest/config/translation.gcrootfinder.html
http://doc.pypy.org/en/latest/config/translation.gcrootfinder.html
http://doc.pypy.org/en/latest/faq.html#does-pypy-have-a-gil-why
https://blog.pyston.org/
http://dx.doi.org/10.1145/1176617.1176753
https://www.ruby-lang.org/
https://www.scala-lang.org/
http://dx.doi.org/10.1145/2258996.2259008
http://dx.doi.org/10.1145/2660193.2660198
http://apple-swift.readthedocs.io/en/latest/SIL.html
http://apple-swift.readthedocs.io/en/latest/SIL.html
http://dx.doi.org/10.1145/1480881.1480908
https://code.google.com/p/unladen-swallow/
https://code.google.com/p/unladen-swallow/

Bibliography 133

Wang, K., a. Holstein: the reference implementation of Mu. https://gitlab.anu.edu.au/
mu/mu-impl-ref2. Retrieved: 9 Sep 2018. (cited on page 79)

Wang, K., b. The specification of the Mu micro virtual machine. https://gitlab.anu.edu.
au/mu/mu-spec. Retrieved: 9 Sep 2018. (cited on page 46)

Wang, K.; Blackburn, S. M.; Hosking, A. L.; and Norrish, M., 2018. Hop, skip,
& jump: Practical on-stack replacement for a cross-platform language-neutral VM.
In VEE ’18: Proceedings of the 14th ACM SIGPLAN/SIGOPS International Conference
on Virtual Execution Environments (Williamsburg, VA, USA, Mar. 2018), 1–16. ACM,
New York, NY, USA. doi:10.1145/3186411.3186412. (cited on page 65)

Wang, K.; Lin, Y.; Blackburn, S. M.; Norrish, M.; and Hosking, A. L., 2015.
Draining the swamp: Micro virtual machines as solid foundation for language de-
velopment. In SNAPL ’15: Proceedings of the 1st Summit on Advances in Programming
Languages (Asilomar, CA, USA, May 2015), 321–336. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, Dagstuhl, Germany. doi:10.4230/LIPIcs.SNAPL.2015.321.
(cited on page 23)

Wimmer, C.; Haupt, M.; Van De Vanter, M. L.; Jordan, M.; Daynès, L.; and

Simon, D., 2013. Maxine: An approachable virtual machine for, and in, Java.
ACM Transactions on Architecture and Code Optimization, 9, 4 (Jan. 2013), 30:1–30:24.
doi:10.1145/2400682.2400689. (cited on page 32)

Würthinger, T.; Wimmer, C.; Wöß, A.; Stadler, L.; Duboscq, G.; Humer, C.;
Richards, G.; Simon, D.; and Wolczko, M., 2013. One VM to rule them all. In
Onward! ’13: Proceedings of the 2013 ACM International Symposium on New Ideas, New
Paradigms, and Reflections on Programming & Software (Indianapolis, IN, USA, Oct.
2013), 187–204. ACM, New York, NY, USA. doi:10.1145/2509578.2509581. (cited on
pages 19 and 98)

Yang, X.; Blackburn, S. M.; Frampton, D.; Sartor, J.; and McKinley, K. S., 2011.
Why nothing matters: The impact of zeroing. In OOPSLA ’11: Proceedings of the
2011 ACM International Conference on Object Oriented Programming Systems Languages
and Applications (Portland, OR, USA, Oct. 2011), 307–324. ACM, New York, NY,
USA. doi:10.1145/2076021.2048092. (cited on page 41)

Young, N., 2016. A Micro Virtual Machine Backend for the Glasgow Haskell Compiler.
Undergraduate honours thesis, Australian National University, Canberra, Australia.
(cited on page 103)

Zhang, J., 2015. MuPy: A First Client for the Mu Micro Virtual Machine. Undergraduate
honours thesis, Australian National University, Canberra, Australia. (cited on page
103)

https://gitlab.anu.edu.au/mu/mu-impl-ref2
https://gitlab.anu.edu.au/mu/mu-impl-ref2
https://gitlab.anu.edu.au/mu/mu-spec
https://gitlab.anu.edu.au/mu/mu-spec
http://dx.doi.org/10.1145/3186411.3186412
http://dx.doi.org/10.4230/LIPIcs.SNAPL.2015.321
http://dx.doi.org/10.1145/2400682.2400689
http://dx.doi.org/10.1145/2509578.2509581
http://dx.doi.org/10.1145/2076021.2048092

	Acknowledgments
	Abstract
	Contents
	Introduction
	Thesis Statement
	Problem Statement
	Scope and Contributions
	Thesis Outline

	Background
	Difficulties in Managed Language Implementation
	Three Major Concerns
	Just-in-time Compilation
	Concurrency
	Garbage Collection

	Consequences and Summary

	Related work
	Monolithic Language Implementations
	Multi-language Virtual Machines and Frameworks
	The Java Virtual Machine
	LLVM
	VMKit
	Common Language Infrastructure
	Truffle/Graal
	PyPy/RPython

	Summary

	I Mu: A Concrete Micro Virtual Machine
	Mu's High-level Design
	Goals
	Design Principles
	Architecture
	Reference Implementation
	Summary

	Mu Intermediate Representation
	Overview
	Type System
	Untraced numerical types
	Composite types
	Traced reference types
	Miscellaneous types

	Instruction Set
	Basic Instructions
	Control Flow
	Function Calls and Exception Handling
	Memory Operations
	Atomic Instructions and Concurrency
	Stack Binding and the SWAPSTACK Operation
	Unsafe Native Interface
	Intrinsics

	Summary

	Mu's Client Interface
	Overview
	Bundle Building and Loading
	Bundle as the Unit of Loading
	The IR-building API

	Trap Handling and Run-time Optimisation
	Trap Handling
	Function Redefinition
	Stack Operations

	Summary

	II On-stack Replacement and Its Implementation
	A Practical OSR API for the Client
	Background of On-stack Replacement
	Case Study of Two Real-world JavaScript Runtimes
	Overview of SpiderMonkey and V8
	Excessive Use of Assembly for OSR
	Conclusion: SpiderMonkey and V8 Depends on Assembly

	An API for Stack Operations
	Overview
	Abstract View of Stack Frames
	Frame Cursor Abstraction
	The Swapstack Operation
	Stack Introspection
	Removing Frames
	Creating New Frames Using Return-oriented Programming

	Demonstration of the OSR API
	Supported Subset of JavaScript
	Baseline Compiling and Trap Placement
	Optimisation and On-stack Replacement
	Result

	Summary

	Implementation of the Mu Stack API
	Resumption Points and Resumption Protocols
	Frame Cursors and Introspection
	Resumption Point
	Resumption Protocol
	Adapter Frames
	Conclusion

	Stack Operations in Native Programs
	Stack Unwinding Information
	Implementing OSR for Native Functions
	LLVM and Stack Maps
	Difficulties in Implementing Stack Operations in Uncooperative Native Programs

	Related Work
	Summary

	III Supporting Real-world Language Runtimes Using Mu
	RPython and GHC as Mu Clients
	Supporting RPython and PyPy on Mu
	The RPython Framework
	Adding Mu as a Backend of the RPython Framework
	Translating RPython Programs into Mu IR
	Building Boot Images
	Preliminary Results
	Supporting the Meta-tracing JIT Compiler
	Summary and Future Work

	Supporting GHC on Mu
	Haskell and GHC
	Targeting Mu

	Conclusion

	IV Conclusions
	Conclusion
	Future Work
	Refining the Design of Mu
	Client-side Development
	High-performance Mu Implementation
	Formal Verification

	Final Words

	Bibliography

