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Abstract

Garbage collection is an integral part of modern programming languages. It auto-
matically reclaims memory occupied by objects that are no longer in use. Garbage
collection began in 1960 with two algorithmic branches — tracing and reference count-
ing. Tracing identifies live objects by performing a transitive closure over the object
graph starting with the stacks, registers, and global variables as roots. Objects not
reached by the trace are implicitly dead, so the collector reclaims them. In contrast,
reference counting explicitly identifies dead objects by counting the number of incom-
ing references to each object. When an object’s count goes to zero, it is unreachable
and the collector may reclaim it.

Garbage collectors require knowledge of every reference to each object, whether
the reference is from another object or from within the runtime. The runtime provides
this knowledge either by continuously keeping track of every change to each reference
or by periodically enumerating all references. The collector implementation faces two
broad choices — exact and conservative. In exact garbage collection, the compiler and
runtime system precisely identify all references held within the runtime including
those held within stacks, registers, and objects. To exactly identify references, the
runtime must introspect these references during execution, which requires support
from the compiler and significant engineering effort. On the contrary, conservative
garbage collection does not require introspection of these references, but instead
treats each value ambiguously as a potential reference.

Highly engineered, high performance systems conventionally use tracing and
exact garbage collection. However, other well-established but less performant systems
use either reference counting or conservative garbage collection. Reference counting has
some advantages over tracing such as: a) it is easier implement, b) it reclaims memory
immediately, and c) it has a local scope of operation. Conservative garbage collection
is easier to implement compared to exact garbage collection because it does not
require compiler cooperation. Because of these advantages, both reference counting
and conservative garbage collection are widely used in practice. Because both suffer
significant performance overheads, they are generally not used in performance critical
settings. This dissertation carefully examines reference counting and conservative
garbage collection to understand their behavior and improve their performance.

My thesis is that reference counting and conservative garbage collection can per-
form as well or better than the best performing garbage collectors.

The key contributions of my thesis are: 1) An in-depth analysis of the key design
choices for reference counting. 2) Novel optimizations guided by that analysis that
significantly improve reference counting performance and make it competitive with
a well tuned tracing garbage collector. 3) A new collector, RC Immix, that replaces
the traditional free-list heap organization of reference counting with a line and block
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heap structure, which improves locality, and adds copying to mitigate fragmentation.
The result is a collector that outperforms a highly tuned production generational
collector. 4) A conservative garbage collector based on RC Immix that matches the
performance of a highly tuned production generational collector.

Reference counting and conservative garbage collection have lived under the
shadow of tracing and exact garbage collection for a long time. My thesis focuses
on bringing these somewhat neglected branches of garbage collection back to life
in a high performance setting and leads to two very surprising results: 1) a new
garbage collector based on reference counting that outperforms a highly tuned pro-
duction generational tracing collector, and 2) a variant that delivers high performance
conservative garbage collection.
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Chapter 1

Introduction

This thesis addresses the challenges and opportunities of achieving high performance
for two areas of memory management that have historically suffered from poor
performance, but are still widely used — reference counting and conservative garbage
collection.

1.1 Problem Statement

Today garbage collection is ubiquitous; almost every managed programming lan-
guage has support for garbage collection. It automatically reclaims memory occupied
by objects that are no longer in use. It frees the programmer from manually dealing
with memory deallocation. The benefits of garbage collection are increased reliability,
a decoupling of memory management from other software engineering concerns,
and less developer time spent chasing memory management errors. The memory
manager is key to overall performance of managed applications because it includes
the direct cost of garbage collection as well as the indirect cost of locality due to its
layout of objects in memory.

Garbage collection algorithms have been built upon two branches since 1960 —
tracing and reference counting. Tracing indirectly identifies garbage, and directly iden-
tifies live objects by performing a transitive closure over the object graph starting with
the stacks, registers, and global variables as roots [McCarthy, 1960]. Reference count-
ing directly identifies garbage by maintaining a count of incoming references to each
object [Collins, 1960]. It has immediacy of reclamation and simple implementation
and is thus used in well-established systems for PHP, Perl, and Objective-C.

Garbage collector implementations have two choices — exact and conservative. In
exact garbage collection, the runtime precisely identifies all references, including
those in stacks, registers, and objects, which requires support from the compiler and
a significant engineering effort. A conservative garbage collector does not exactly
identify these references, instead it inspects all values held within the runtime and
dynamically tests whether they point to a valid object [Bartlett, 1988; Boehm and
Weiser, 1988; Demers et al., 1990; Smith and Morrisett, 1998; WebKit, 2014]. Although
conservatism forces some restrictions upon the runtime, the compiler and runtime are
free of the onerous implementation issues of exactly tracking references in all code.

1
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Conservative garbage collection is used to provide automatic memory management
support for unmanaged languages such as C/C++, and managed languages such as
JavaScript.

Highly engineered systems, such as HotSpot, J9, and .NET, conventionally use trac-
ing and exact garbage collection for high performance. Many other well-established
systems use either reference counting or conservative garbage collection implemen-
tations, such as PHP and Chakra for JavaScript. These systems are widely used,
but suffer significant performance overheads compared to exact generational tracing
garbage collection. This thesis addresses this problem.

In the following, we briefly describe reference counting and conservative garbage
collection. They are described in more detail in Section 2.5 and 2.7.

Reference Counting The two algorithmic roots of the garbage collection family
tree were born within months of each other in 1960 [McCarthy, 1960; Collins, 1960].
Reference counting works by keeping a count of incoming references to each object
and collecting objects when their count falls to zero [Collins, 1960]. Therefore all
that is required of its implementation is to notice each pointer change, increment
the target object’s count whenever a pointer to it is created and decrement the target
object’s count when a pointer to it is overwritten. The collector reclaims objects when
their count reaches zero and then decrements all of their descendants’ counts. This
algorithm is simple, immediate, and requires no global computation. The simplicity
of this naive implementation is particularly attractive and thus widely used in well-
established systems such as PHP, Perl and Objective-C. By contrast, tracing collectors
start with a set of roots, which requires the runtime to enumerate all references into
the heap held within the runtime such as, global variables, stacks, and registers. The
collector performs a transitive closure from these roots, marking each reachable object
as live. The collector then reclaims unmarked objects.

However, naive reference counting is slow. Intercepting every pointer mutation,
including those to the stacks and registers is costly. Several approaches reduce this
cost. Deferral overlooks changes to the stacks and registers by periodically enumerat-
ing the old and new values [Deutsch and Bobrow, 1976; Bacon et al., 2001]. Coalescing
elides repeated changes to the same heap references [Levanoni and Petrank, 2001,
2006]. Ulterior reference counting ignores operations for young objects [Blackburn
and McKinley, 2003]. Even with these optimizations, reference counting is slow.
We compare a state-of-the-art reference counting collector and a highly tuned mark-
sweep implementation and find that reference counting is over 30% slower than its
tracing counterpart. The best performing collectors are generational tracing [Black-
burn et al., 2004a; Blackburn and McKinley, 2008] and are widely used for Java and
C#. We find that reference counting is over 40% slower than a generational tracing
collector. Consequently, reference counting is not used in any high performance
systems today. In spite of being one of the major algorithmic branches of garbage
collection, the performance of reference counting is still poor. By contrast, researchers
have extensively studied tracing collectors. We claim that with proper understanding
of its behavior and different key design points, reference counting has the potential
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to produce high performance garbage collection alongside tracing. By bringing one
of the two major algorithmic branches back into contention, language implementers
will be presented with a much richer choice of implementation alternatives.

Conservative Garbage Collection Managed language semantics guarantee that the
runtime can exactly identify references held within heap objects because type of each
heap object is known by the runtime. However, exactly identifying references held
within dynamic runtime state such as stacks and registers requires compiler coopera-
tion. Modern managed languages such as Java and C# use exact garbage collection
by enforcing a strict compiler disciple and runtime interface. Many implementations
of other popular languages, including PHP, Perl, JavaScript, and Objective-C, avoid
the engineering headache of exact garbage collection by using conservative garbage
collection or naive reference counting.

A conservative garbage collector is constrained by its reliance on ambiguous
references [Bartlett, 1988; Boehm and Weiser, 1988; Demers et al., 1990; Smith and
Morrisett, 1998; WebKit, 2014]. The collector must (1) retain the referent since the
ambiguous reference may actually be a pointer, and (2) pin (not move) the referent
(object held by the reference) since the ambiguous reference may actually be a value
and therefore cannot be modified. These constraints prevented previous conserva-
tive collectors for managed languages from achieving performance competitive to
generational tracing because either (1) they forgo moving objects altogether, which
is essential to the best performing collectors, or (2) they pin any page targeted by
an ambiguous root, incurring significant overheads. Conservative root identification
treats every value in the stacks, registers, and statics as a potential ambiguous root.
The collector first checks whether the value falls within the range of valid heap ad-
dresses and if so, applies filtering to determine whether it points to a valid object.
Conservative garbage collection is widely used but current implementations incur
significant performance overheads compared to the high performance exact tracing
collectors that move objects.

1.2 Scope and Contributions

The aim of this thesis is to address the performance barriers affecting reference count-
ing and conservative garbage collection. Reference counting and conservative garbage
collection are widely used, but prior implementations suffer from poor performance.
We achieve high performance reference counting with novel optimizations guided by
detailed analysis of its key design points and changing its free-list heap organization.
We build conservative variants of existing exact garbage collectors with negligible
overhead. We demonstrate that conservatism is compatible with high performance
even though the prior conservative implementations do not achieve it. We achieve
high performance conservative garbage collection by building a conservative garbage
collector on top of our fast reference counting with changed heap structure, and with
a low overhead object map to validate ambiguous references. With our contribu-
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tions, for the first time, the performance of both reference counting and conservative
garbage collection are competitive with the best copying generational tracing collec-
tors.

This thesis uses Java as a representative of modern high-level languages and the
Jikes RVM virtual machine as the managed runtime implementation [Alpern et al.,
2000, 2005]. Java is, as of 2014, one of the most popular programming languages in
use [TIOBE, 2014a,b] and Jikes RVM won 2012 SIGPLAN Software Award because
of its high quality and modular design that made it easy for researchers to develop,
share, and compare advances in programming language implementation [Jikes, 2012].
To evaluate different garbage collectors, we implemented them in Jikes RVM. The
methodology and insights developed here should be applicable beyond this specific
context. The analyses and optimizations we introduce throughout the thesis are
general and can be implemented in other JVMs as well as in non-Java managed
languages.

Optimizing Reference Counting We first show that a prior state-of-the-art reference
counting implementation using a free list lags the performance of a highly tuned
tracing collector by more than 30% on average. We perform an in-depth analysis
of the key design choices of reference counting with a free list: a) how to store
the count, b) how to correctly maintain the count, and c) how to collect cycles of
garbage. We confirm that limited bit reference counting is a good idea because the
vast majority of objects have a maximum count of seven or less [Jones et al., 2011].
We identify that young objects are responsible for more than 70% of increments and
decrements and that on average only 10% of them survive. We introduce two novel
optimizations that eliminate reference counting operations for non-surviving young
objects, significantly reduce the workload for the cycle detector, and use limited bit
reference counting to significantly improve performance. The ultimate outcome is the
first reference counting implementation with performance competitive with a well
tuned tracing collector. However because it uses a free list, its performance still lags
the best performing generational collectors.

Reference Counting Immix Free-list allocation divides memory into cells of var-
ious fixed sizes [Wilson et al., 1995]. It allocates an object into a free cell in the
smallest size class that accommodates the object instead of following the allocation
order. A free-list allocator suffers from fragmentation and poor cache locality [Black-
burn et al., 2004a]. Moreover, unlike tracing, reference counting is a local operation,
which suggests that it is not possible to move objects to mitigate fragmentation. For
state-of-the-art reference counting, we identify the free-list heap organization as the
major performance bottleneck due to the poor locality it induces of the application
and the instruction load of piecemeal zeroing. We identify two opportunities for
copying with reference counting. We introduce a new collector, RC Immix, that re-
places the free-list heap organization of reference counting with the line and block
heap structure introduced by the Immix collector [Blackburn and McKinley, 2008].
Immix is a mark-region collector that uses a simple bump pointer to allocate objects
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into regions of contiguous memory where objects may span lines in a block, but
not blocks. RC Immix also integrates Immix’s opportunistic copying with reference
counting to mitigate fragmentation. This is the first collector to perform copying with
pure reference counting. The ultimate outcome is that RC Immix outperforms the
highly tuned production generational Immix collector in Jikes RVM [Blackburn and
McKinley, 2008].

Fast Conservative Garbage Collection We next examine conservative garbage col-
lection for safe languages in a modern context and surprisingly find that two sources
of overhead associated with conservatism — excess retention and the number of
pinned objects — are normally very low (less than 1%). We show that these modest
overheads are dominated by the consequences of the prior work’s reliance on non-
copying free list and page grained pinning, and that for significant use cases, such as
in managed languages, these designs are needlessly pessimistic. We identify Immix’s
line and block structure and opportunistic copying as a good match for conservative
collection. Most of the existing conservative collectors use a non-moving free list,
or pin at page granularity [Bartlett, 1988; Smith and Morrisett, 1998; WebKit, 2014]
whereas Immix can pin at line granularity, reducing the amount of pinned heap space
by an order of magnitude. We use a low overhead object map to determine the va-
lidity of ambiguous references. We introduce the design and implementation of the
conservative variants of existing garbage collectors that leverage these mechanisms.
We implemented conservative reference counting and conservative variants of Immix
collectors with very low performance penalty compared to their exact counterparts.
We also introduce the design and implementation of a high performance conservative
collector, RC Immixcons, that combines RC Immix with conservative root scanning.
RC Immixcons matches the performance of a highly optimized generational copying
collector. As far as we know, this is the first conservative reference counting collector
and the first conservative collector to match the performance of a high performance
generational copying collector.

1.3 Meaning

Today reference counting and conservative garbage collection are widely used, but
generally in non-performance critical settings because their implementations suffer
significant performance overheads. We improve the performance of both reference
counting and conservative garbage collection significantly to the point where they are
competitive with the best copying generational tracing collectors. With these advance-
ments, language implementers now have a much richer choice of implementation
alternatives both algorithmically (reference counting or tracing) and implementation-
wise (exact or conservative) that can all achieve high performance. These insights
and advances are likely to particularly impact the development of new and emerging
languages, where the implementation burden of tracing and exactness is often the
critical factor in the first implementation of a language.



6 Introduction

1.4 Thesis Outline

The body of this thesis is structured around the three key contributions outlined above.
Chapter 2 provides an overview of garbage collection and surveys relevant garbage
collection literature. It provides more detailed background on previous reference
counting optimizations and conservative garbage collectors. Chapter 3 discusses our
experimental methodology.

Chapters 4, 5, and 6 comprise the main body of the thesis, covering the three
key contributions. Chapter 4 identifies the key design choices for reference counting,
provides a detailed quantitative analysis with respect to those design points, intro-
duces novel optimizations guided by the analysis that eliminates reference counting
operations for short lived young objects, and makes its performance competitive
with full heap mark-sweep tracing collector. Chapter 5 identifies the free-list heap
organization as the remaining major performance bottleneck for reference counting
and introduces a new collector, RC Immix, that replaces the free list with the line
and block organization of Immix, performs copying to mitigate fragmentation and
as a result outperforms a highly tuned production generational collector. Chapter 6
first computes the direct cost of conservativeness, finding that conservative roots do
not induce very much excess retention, 1% or less for our Java benchmarks. It then
identifies the line and block heap organization and opportunistic copying mechanism
in the Immix collector as a good match for conservative collection, and introduces
a low overhead object map to validate ambiguous references. It introduces conser-
vative reference counting and conservative Immix collector using these mechanisms
with very low performance penalty, and develops a high performance conservative
garbage collector, RC Immixcons, that matches performance of a generational copying
collector.

Finally Chapter 7 concludes the thesis, describing how the contributions have
identified, quantified, and addressed the challenges of achieving high performance
reference counting and high performance conservative garbage collection. It further
identifies key future directions for research.



Chapter 2

Background

This chapter provides background information on garbage collection basics, reference
counting, Immix garbage collection, and conservative garbage collection to place the
research contributions in context.

This chapter starts with a brief introduction to the field of garbage collection
in Section 2.1. Section 2.2 outlines the garbage collection terminology, Section 2.3
outlines the key components of garbage collection, and Section 2.4 describes the
canonical garbage collectors. Section 2.5 provides a detailed background on reference
counting with different optimizations over the last 50 years or so. Section 2.6 provides
an overview of the Immix collector. Section 2.7 provides background on conservative
garbage collection.

2.1 Overview of Garbage Collection

Garbage collection is an integral part of modern programming languages. It frees the
programmer from manually dealing with memory deallocation for every object they
create. Garbage collection was introduced in LISP [McCarthy, 1960] and it has gained
popularity through Java and .NET. It is also included in languages such as Haskell,
JavaScript, PHP, Perl, Python, and Smalltalk. For a more complete discussion of the
fundamentals of garbage collection see [Jones et al., 2011; Wilson, 1992].

Programs require data to execute and this data is typically stored in memory.
Memory can be allocated: a) statically where memory requirements for the data are
fixed ahead-of-time, b) on the stack where the lifetime of the data is tightly bound
with the currently executing method, and c) dynamically, where memory require-
ments are determined during execution – potentially changing between individual
executions of the same program. Dynamically allocated memory can be managed
either explicitly or automatically by the program. Popular programming languages,
such as C/C++ require the programmer to explicitly manage memory through primi-
tives such as the C function malloc and free, which is tedious and error-prone. Man-
aged languages, such as Java/.NET use a garbage collector to automatically free
memory.

The purpose of garbage collection is to reclaim memory that is no longer in use
by the program. Determining precisely when an object will no longer be accessed is

7
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difficult in general, so garbage collectors usually rely on reachability to conservatively
approximate liveness. An object is reachable if it is transitively reachable from the
running program state. Objects that are not reachable are garbage. A garbage collector
differentiates between objects in the program that are no longer reachable and thus the
program is guaranteed never to access (garbage/dead) and objects that are reachable
(non-garbage/live). The collector then frees the memory that garbage objects are
occupying.

2.2 Terminology

The area of memory used for dynamic object allocation is known as the heap. The
process of reclaiming unused memory is known as garbage collection, a term coined
by McCarthy [1960]. Following Dijkstra et al. [1976], from the point of view of the
garbage collector, the term mutator refers the application or program that mutates the
heap. Collectors that must stop the mutator to perform collection work are known as
stop the world collectors, as compared to concurrent or on-the-fly collectors which
reclaim objects while the application continues to execute. Collectors that employ
more than one thread to do the collection work are parallel collectors. A parallel
collector can either be stop the world or concurrent. The term mutator time is used to
denote the time when the mutator is running and the term GC time is used to denote
the time when the garbage collector is running. A garbage collector that checks the
liveness of all objects in the heap at each collection is known as a full heap collector,
as compared to a generational or incremental collector which may collect only part
of the heap. Some garbage collectors require interaction with the running mutator.
These interactions are generally implemented with barriers. A barrier is inserted by
the compiler on every read or write to track reference read or mutation. The most
common form of barrier is a write barrier, which is invoked whenever the mutator
writes to a reference in the heap. Some collectors require knowledge of the runtime
roots, all references into the heap held by runtime including stacks, registers, statics,
and JNI.

2.3 Garbage Collection Algorithms

Automatic memory management consists of three key components: a) object al-
location, b) garbage identification, and c) garbage reclamation. Different garbage
collection algorithms employ different approaches to handle each of the components.

2.3.1 Object Allocation

The allocator plays a key role in mutator performance since it determines the place-
ment and thus locality of objects. There are two techniques used for object allocation
— contiguous allocation and free-list allocation.
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Contiguous Allocation Contiguous memory allocation appends new objects by in-
crementing a pointer by the size of the new object [Cheney, 1970]. The allocator places
objects contiguously in memory in allocation order. Such allocators are simple and
fast at allocation time and provide excellent locality to the mutator because objects
allocated together in time are generally used together [Blackburn et al., 2004a]. Allo-
cating them contiguously thus provides spatial cache line and page reuse. Contiguous
allocation generally performs synchronized allocation of larger chunks [Garthwaite
and White, 1998; Alpern et al., 1999; Berger et al., 2000], which are then assigned to a
single allocation thread that performs fast and unsynchronized contiguous allocation
within the chunk.

Free-list Allocation Free-list allocation divides memory into cells of various fixed
sizes [Wilson et al., 1995], known as a free list. Each free list is unique to a size
and is composed from blocks of contiguous memory. Free-list allocation allocates
an object into a free cell in the smallest size class that accommodates the object. So
it places objects in memory based on their size and free memory availability rather
than allocation order. When an object becomes free, the allocator returns the cell
containing the object to the free list for reuse. Free-list allocation suffers two notable
shortcomings. First, it is vulnerable to fragmentation of two kinds. It suffers from
internal fragmentation when objects are not perfectly matched to the size of their
containing cell, and it suffers external fragmentation when free cells of particular
sizes exist, but the allocator requires cells of another size. Second, it suffers from poor
locality because it often positions contemporaneously allocated objects in spatially
disjoint memory [Blackburn et al., 2004a].

2.3.2 Garbage Identification

There are two techniques for identifying garbage — reference counting and tracing.
All garbage collection algorithms in the literature use one of these techniques for
garbage identification.

Reference Counting Reference counting directly identifies garbage. It keeps track
for each object a count of the number of incoming references to it held by other objects,
known as a reference count. When a reference count falls to zero, the associated object
is garbage. It is incomplete because it cannot detect cycle of garbage.

Tracing Tracing indirectly identifies garbage by directly identifying all live objects. It
performs a transitive closure over the object graph, starting with the roots – references
in the stacks, registers, statics and JNI. It identifies each visited object as live. All
objects that were not visited during the trace are identified as garbage.
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2.3.3 Garbage Reclamation

Once the collector identifies the garbage objects there are several techniques that
reclaim the space.

Direct to free list With reference counting, the collector may directly return the
space used by garbage objects to a free list when an objects reference count falls to
zero.

Sweep A sweep traverses over all the allocated objects in the heap, freeing the space
associated with dead objects. For tracing garbage collection approaches that indirectly
identify garbage, some form of sweep is required to free the space of the garbage
objects. A sweep may operate over individual free list cells and larger regions of
memory.

Compaction Compaction rearranges live objects within a region to create larger
regions of free memory for future allocation. A classic example is sliding compaction
where all live objects are compressed into a contiguous region of used memory,
leaving a contiguous region of memory free for future allocation [Styger, 1967].

Evacuation Live objects can be evacuated from a region of memory and copied into
another, to create an entire evacuated free region for future allocation. Evacuation re-
quires two different regions of memory. Evacuation can be particularly effective when
there are very few survivors since the cost is proportional to moving the survivors,
and naturally aligns itself with tracing as the identification approach.

2.4 Canonical Garbage Collectors

The canonical garbage collectors use the above approaches for object allocation,
garbage identification, and object reclamation.

2.4.1 Mark-Sweep

The first garbage collection algorithm was created as part of the LISP system [Mc-
Carthy, 1960], and is today known as mark-sweep. Mark-sweep is a tracing collector
that runs in two simple phases. The mark phase performs a transitive closure over
the object graph, marking each object as it is visited. The sweep phase performs a
scan over all of the objects. If an object is not marked, it is unreachable and can be
collected. On the other hand, if an object is marked, it is reachable, so the collector
can clear the mark and retain it. It is possible for part of this sweeping phase to
be performed by the mutator, a technique called lazy sweeping [Hughes, 1982]. Lazy
sweeping reduces garbage collection pause time in stop the world collectors and can
improve overall performance, due to improved cache behavior as sweep operations
and subsequent allocations are performed on the same page in quick succession.
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Mark-sweep is very efficient at collection time, the fastest and simplest full heap
garbage collection mechanism available. This advantage is offset by slow downs it
imposes on the mutator. Its free-list allocator forces the mutator to allocate objects
in the discovered holes surrounding live objects. This policy often results in lower
allocation performance, but the dominant effect is poor locality of reference due to
objects being spread over the heap. Mark-sweep also suffers from fragmentation,
where the total available memory may be sufficient to support an allocation request,
but an empty, contiguous region of sufficient size may not be available.

2.4.2 Reference Counting

Reference counting was the second garbage collection algorithm published, also for
the LISP system [Collins, 1960]. Reference counting operates under a fundamentally
different strategy from that of tracing garbage collectors. Reference counting tracks
for each object a count of the number of incoming references to it held by other objects,
termed as the reference count. Whenever a reference is created or copied, the collector
increments the reference count of the object it references, and whenever a reference is
destroyed or overwritten, the collector decrements the reference count of the object it
references. Write barriers implement counting. If an object’s reference count reaches
zero, the object has become inaccessible, and the collector reclaims the object and
decrements the reference count of all objects referenced by that reclaimed object.
Removing a single reference can potentially lead to many objects being freed. A
common variation of the algorithm allows reference counting to be made incremental;
instead of freeing an object as soon as its reference count becomes zero, it is added
to a list of unreferenced objects, and periodically one or more items from this list are
freed [Weizenbaum, 1969]. This naive algorithm is simple, inherently incremental,
and requires no global computation. The simplicity of this naive implementation is
particularly attractive and thus widely used, including in well-established systems
such as PHP, Perl, and Python.

Reference counting has two clear limitations. It is unable to collect cycles of
garbage because a cycle of references will self-sustain non-zero reference counts.
Moreover, naive implementation of reference counting performs increment and decre-
ment operations on every reference operation, including those to variables in stacks
and registers. This overhead is further increased on multi-threaded systems, because
the collector must perform reference count updates atomically to maintain correct
counts. Prior optimizations overcome some of these limitations (see Section 2.5), and
this thesis overcomes the remaining performance limitations.

2.4.3 Semi-Space

Semi-space collection is a tracing collector that uses evacuation to reclaim memory.
The available heap memory is divided into two equal sized regions. During the
execution of the program, the program allocates and uses objects in one region
while the other region is empty. When garbage collection is triggered, the region
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containing objects is labeled as from-space and the empty region is labeled as to-space.
The garbage collector performs a transitive closure over the object graph as in a
mark-sweep collector. But instead of simply marking the object, each live object is
copied when it is first encountered from the from-space to the to-space. It leaves a
forwarding pointer to the new location in the old location. The collector then updates
all references to the old location so that they point to the copied objects in the to-space.
At the end of the collection, all reachable objects now reside in the to-space and the
collector reclaims the whole from-space. At the start of each collection, roles of the
spaces are switched. Initial implementations of semi-space collectors used a recursive
algorithm [Minsky, 1963; Fenichel and Yochelson, 1969], which has unbound depth,
but Cheney [1970] later implemented a simple iterative algorithm.

Semi-space collection makes less efficient use of memory because it must reserve
half of the total memory to ensure there is space to copy all objects in the worst case. It
can be expensive in collection time when all live objects need to be copied, but if very
few objects survive it is efficient. It has good allocation performance and induces
good mutator locality because contemporaneously allocated objects are allocated
contiguously. During copying, the semi-space collector automatically compacts the
heap, so it does not suffer from fragmentation.

2.4.4 Mark-Compact

Mark-compact collection aims to combine the benefits of both semi-space and mark-
sweep collection. It addresses the fragmentation often seen in the mark-sweep collec-
tion by compacting objects into contiguous regions of memory. But it does so in place
rather than relying on the large reserved space required by the semi-space collection.
While this in-place transition saves space, it involves significant additional collection
effort because it must traverse objects many times. The simplest form is sliding com-
paction, originally implemented in LISP-2 as a four phase algorithm [Styger, 1967].
In the first phase, the collector performs a transitive closure over the object graph,
marking objects as they are visited. In the second phase, the collector calculates the
future location of each marked object and remembers that location for each object. In
the third phase, the collector updates all references to reflect the addresses calculated
in the second phase. In the fourth and final phase, the collector copies objects to their
new locations. Copying is done in strict address order to ensure that no live data is
overwritten.

The additional phases of simple compaction algorithms make them significantly
more expensive than simple mark-sweep or semi-space collection. While optimized
versions of mark-compact collectors exist, they are rarely used as the primary collector
in high performance systems. However, compaction is commonly combined with
mark-sweep collection to provide a means to escape fragmentation issues, and is
sometimes used alongside semi-space collection to allow execution to continue when
memory is tight [Sansom, 1991]. Compaction does, however, have the advantage
of excellent mutator locality because it preserves allocation order, and has very low
space overheads.
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2.4.5 Mark-Region

Mark-region collection combines contiguous allocation of semi-space with the collec-
tion strategy of mark-sweep. The motivation is to achieve the mutator performance
of semi-space and the collection performance of mark-sweep. In terms of allocation,
mark-region is similar to semi-space, with objects allocated into contiguous regions
of memory. In terms of collection, mark-region is similar to mark-sweep, but instead
of sweeping individual objects it sweeps regions; regions with no reachable objects
are made available for allocation. A mark-region collection consists of two phases.
The mark phase performs a transitive closure over the object graph, it marks objects
as well their regions as they are visited. The sweep phase scans all the regions, and
regions that were not marked in the mark phase are made available for future allo-
cation. Immix provides the first detailed analysis and description of a mark-region
collector [Blackburn and McKinley, 2008], although a mark-region approach was
previously used in Oracle’s JRockit and IBM’s production virtual machines.

Mark-region collection combines excellent allocation performance and good col-
lection performance, with good mutator locality. But it is susceptible to issues with
fragmentation, because a single live object may keep an entire region alive and un-
available for reuse. To combat this problem, mark-region collectors often employ
techniques to relocate objects in memory to reduce fragmentation. The JRockit collec-
tor performs compaction of the heap at each collection, the IBM collector performs
whole heap compaction when necessary. Immix combats this problem by defining
hierarchy of two regions (blocks divided into lines) and then adds lightweight defrag-
mentation as required when memory is in demand. Immix is described further in
Section 2.6.

2.4.6 Generational

Generational garbage collection is based on the weak generational hypothesis that
‘most object dies young’ [Ungar, 1984; Lieberman and Hewitt, 1983] and was at that
time the most important advancement in garbage collection since the first collectors
were developed in 1960. Generational collectors divide the heap into regions for
objects of different ages, and perform more frequent collections on more recently
allocated objects and less frequent collections on the oldest objects. The youngest
generation is generally known as the nursery and a minor collection collects only the
nursery. The space containing the oldest objects is known as the mature space. A
full heap major collection collects both young and old generation. During a minor
collection, generational collectors must remember all references from the mature
space into the nursery and assume they are live. A generational write barrier takes
note of references from older generations to younger generations, keeping them in a
remembered set for use during minor collections. The remembered set in combination
with the standard root set provide the starting point for a transitive closure across
all live objects within the nursery. A partial copying collection can be performed
during this closure, with live objects evacuated from the nursery into the mature
space. When the weak generational hypothesis holds, this collection is very efficient
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because only a small fraction of nursery objects survive and must be copied into the
mature space. Various mature space strategies are possible.

In generational collection, objects are allocated in the nursery contiguously, pro-
viding good allocation performance and better mutator locality. The collection per-
formance is also very good compared to full heap collectors. The majority of high
performance collectors (e.g., HotSpot, J9, and .NET) are generational collectors.

In the next section, we describe prior work on reference counting with different
optimizations on which we build.

2.5 Reference Counting Garbage Collection

The first account of reference counting was published by George Collins in 1960, just
months after John McCarthy described tracing garbage collection [McCarthy, 1960].
Reference counting directly identifies dead objects by keeping a count of the number
of references to each object, freeing the object when its count reaches zero.

2.5.1 Naive Reference Counting

Collins’ simple, immediate reference counters count all references, in the heap, stacks,
registers and local variables. The compiler inserts increments and decrements on
referents where ever references are created, copied, destroyed, or overwritten. Because
such references are very frequently mutated, immediate reference counting has a
high overhead. However, immediate reference counting needs very minimal runtime
support, so is a popular implementation choice due to its low implementation burden.
The algorithm requires just barriers on every pointer mutation and the capacity to
identify all pointers within an object when the object dies. The former is easy to
implement, for example compilers for statically and dynamically typed languages
directly and easily identify pointer references, as do smart pointers in C++; while the
latter can be implemented through a destructor. Objective-C, Perl, Delphi, PHP, and
Swift [Stein, 2003; Thomas et al., 2013; Apple Inc., 2013, 2014] use naive reference
counting.

Collins’ reference counting algorithm suffers from significant drawbacks includ-
ing: a) an inability to collect cycles of garbage, b) overheads due to tracking frequent
stack pointer mutations, c) overheads due to storing the reference count, and d) over-
heads due to maintaining counts for short lived objects. We now briefly outline five
important optimizations developed over the past fifty years to improve over Collins’
original algorithm.

2.5.2 Deferral

To mitigate the high cost of maintaining counts for rapidly mutated references, Deutsch
and Bobrow [1976] introduced deferred reference counting. Deferred reference count-
ing ignores mutations to frequently modified variables, such as those stored in reg-
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isters and on the stacks. Deferral requires a two phase approach, dividing execution
into distinct mutation and collection phases. This tradeoff reduces reference count-
ing work significantly, but delays reclamation. Since deferred references are not
accounted for during the mutator phase, the collector counts other references and
places zero count objects in a zero count table (ZCT), deferring their reclamation.
Periodically in a GC reference counting phase, the collector enumerates all deferred
references from the stacks and registers into a root set and then reclaims any object
in the ZCT that is not a referent of the root set.

Bacon et al. [2001] eliminate the zero count table by buffering decrements between
collections. Initially the buffered decrement set is empty. At collection time, the
collector temporarily increments a reference count to each object in the root set and
then processes all of the buffered decrements. Deferred reference counting performs
all increments and decrements at collection time. At the end of the collection, it adds
a buffered decrement for every root. Although much faster than naive immediate
reference counting, deferred reference counting typically uses stack maps [2.7.1] to
enumerate all live pointers from the stacks. Stack maps are an engineering impedi-
ment, which discourages many reference counting implementations from including
deferral [Jibaja et al., 2011].

2.5.3 Coalescing

Levanoni and Petrank [2001, 2006] observed that all but the first and last in any chain
of mutations to a reference within a given window can be coalesced. Only the initial
and final states of the reference are necessary to calculate correct reference counts.
Intervening mutations generate increments and decrements that cancel each other
out. This observation is exploited by remembering (logging) only the initial value of
a reference field when the program mutates it between periodic reference counting
collections. At each collection, the collector need only apply a decrement to the initial
value of any overwritten reference (the value that was logged), and an increment to
the latest value of the reference (the current value of the reference).

Levanoni and Petrank implemented coalescing using object remembering. The first
time the program mutates an object reference after a collection phase: a) a write
barrier logs all of the outgoing references of the mutated object and marks the object
as logged; b) all subsequent reference mutations in this mutator phase to the (now
logged) object are ignored; and c) during the next collection, the collector scans
the remembered object, increments all of its outgoing pointers, decrements all of
its remembered outgoing references, and clears the logged flag. This optimization
uses two buffers called the mod-buf and dec-buf. The allocator logs all new objects,
ensuring that outgoing references are incremented at the next collection. The allocator
does not record old values for new objects because all outgoing references start as
null.
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2.5.4 Ulterior

Blackburn and McKinley [2003] introduced ulterior reference counting, a hybrid collec-
tor that combines copying generational collection for the young objects and reference
counting for the old objects. They observe that most mutations are to the nursery
objects. Ulterior reference counting extends deferral to include all nursery objects. It
restricts copying to nursery object and reference counting to old objects, the object
demographics for which they perform well. It safely ignores mutations to select heap
objects. Ulterior reference counting is not difficult to implement, but the implemen-
tation is a hybrid, and thus manifests the implementation complexities of both a
standard copying nursery and a reference counted heap. Azatchi and Petrank [2003]
independently proposed the use of reference counting for the old generation and
tracing for the young generation. During a nursery collection, their collector marks
all live nursery objects, and sweeps the rest. Their reclamation is thus proportional
to the entire nursery size, rather than the survivors as in a copying nursery. They
also explored the use of the reference counting buffers of update coalescing as a
source of inter-generational pointers. This collector is also hybrid, so manifests the
implementation complexities of two orthodox collectors.

2.5.5 Age-Oriented

Paz et al. [2005] introduced age oriented collection, which aimed to exploit the gen-
erational hypothesis that most objects die young. Their age-oriented collector uses
a reference counting collection for the old generation and a tracing collection for
the young generation that establishes reference counts during tracing. This collector
provides a significant benefit as it avoids performing expensive reference counting
operations for the many young objects that die. It does not perform copying. Like
ulterior reference counting, this collector is a hybrid, so manifests the implementation
complexities of two orthodox collectors.

2.5.6 Collecting Cyclic Objects

Reference counting suffers from the problem that cycles of objects will sustain non-
zero reference counts, and therefore cannot be collected. There exist two general
approaches to deal with cyclic garbage: backup tracing [Weizenbaum, 1969; Frampton,
2010] and trial deletion [Christopher, 1984; Martinez et al., 1990; Lins, 1992; Bacon and
Rajan, 2001; Paz et al., 2007]. Paz et al. [2007] compared backup tracing with trial
deletion and found that backup tracing performed slightly better and predicted in
future trial deletion will outperform backup tracing. Later Frampton [2010] conducted
a detailed study of cycle collection and showed that backup tracing, starting from
the roots, performs significantly better than trial deletion and has more predictable
performance characteristics.
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2.5.6.1 Backup Tracing

Backup tracing performs a mark-sweep style trace of the entire heap to eliminate
cyclic garbage. The only key difference to a classical mark-sweep is that during the
sweep phase, decrements must be performed from objects found to be garbage for
their descendants into the live part of the heap. To support backup tracing, each
object needs to be able to store a mark state during tracing. Backup tracing can also
be used to restore stuck reference counts due to use of limited bits to store the count.
Backup tracing must enumerate live root references from the stacks and registers,
which requires stack maps. For this reason, naive reference counting implementations
usually do not perform backup tracing.

2.5.6.2 Trial Deletion

Trial deletion collects cycles by identifying groups of self-sustaining objects using a
partial trace of the heap in three phases. In the first phase, the sub-graph rooted
from a selected candidate object is traversed, with reference counts for all outgoing
pointers (temporarily) decremented. Once this process is complete, reference counts
reflect only external references into the sub-graph. If any object’s reference count
is zero then that object is only reachable from within the sub-graph. In the second
phase, the sub-graph is traversed again, and outgoing references are incremented
from each object whose reference count did not drop to zero. Finally, the third phase
traverses the sub-graph again, sweeping all objects that still have a reference count
of zero. The original implementation was due to Christopher [1984] and has been
optimized over time [Martinez et al., 1990; Lins, 1992; Bacon and Rajan, 2001; Paz
et al., 2007].

Lins [1992] performed cycle detection lazily, periodically targeting the set of can-
didate objects whose counts experienced decrements to non-zero values. Bacon and
Rajan [2001] performed each phase over all candidates in a group after observing that
performing the three phases for each candidate sequentially like Lins could exhibit
quadratic complexity. Bacon and Rajan also used simple static analysis to exclude the
processing of objects they could identify as inherently acyclic. Paz et al. [2007] com-
bines the work of Bacon and Rajan [2001] with update coalescing that significantly
reduces the set of candidate objects. They also develop new filtering techniques to
filter out a large fraction of the candidate objects. They also integrate their cycle
collector with the age oriented collector [2.5.5] that greatly reduces the load on the
cycle collector.

2.5.7 Reference Counting and the Free List

Free lists support immediate and fast reclamation of individual objects, which makes
them particularly suitable for reference counting. Other systems, such as evacuation
and compaction, must identify and move live objects before they may reclaim any
memory. Also, free lists are a good fit to backup tracing used by many reference
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counters. Free lists are easy to sweep because they encode free and occupied mem-
ory in separate metadata. The sweep identifies and retains live objects and returns
memory occupied by dead objects to the free list.

Blackburn et al. [2004a] show that contiguous allocation in a copying collector
delivers significantly better locality than free-list allocation in a mark-sweep collector.
When contiguous allocation is coupled with copying collection, the collector must
update all references to each moved object [Cheney, 1970], a requirement that is at
odds with reference counting’s local scope of operation. Because reference counting
does not perform a closure over the live objects, in general, a reference counting
collector does not know of and therefore cannot update all pointers to an object it
might otherwise move. Thus far, this prevented reference counting from copying and
using a contiguous allocator.

This section provided a detailed overview on how reference counting works, its
shortcomings, and different optimizations to overcome some of them. This section
also explained why reference counting uses a free list for allocation. These are the
necessary background for Chapter 4. In the next section, we describe Immix garbage
collection.

2.6 Immix Garbage Collection

As introduced in Section 2.4.5, mark-region memory managers use a simple bump
pointer to allocate objects into regions of contiguous memory [Blackburn and McKin-
ley, 2008]. A tracing collection marks each object and marks its containing region.
Once all live objects have been traced, it reclaims unmarked regions. This design ad-
dresses the locality problem in free-list allocators. A mark-region memory manager
can choose whether to move surviving objects or not. By contrast, evacuating and
compacting collectors must copy, leading them to have expensive space (semi-space)
or time (mark-compact) collection overheads compared to mark-sweep collectors.
Mark-region collectors are vulnerable to fragmentation because a single live object
may keep an entire region alive and unavailable for reuse, and thus must copy some
objects to attain space efficiency and thus performance.

2.6.1 Heap Organization: Lines and Blocks

Immix is a mark-region collector that uses a region hierarchy with two sizes: lines,
which target cache line locality, and blocks, which target page level locality [Blackburn
and McKinley, 2008]. Each block is composed of lines, as shown in Figure 2.1. The
bump pointer allocator places new objects contiguously into empty lines and skips
over occupied lines. Objects may span lines, but not blocks. Several small objects
typically occupy a line. Immix uses a bit in the header to indicate whether an object
straddles lines, for efficient line marking. Immix recycles free lines in partially free
blocks, allocating into them first. Figure 2.1 shows how Immix allocates objects
contiguously in empty lines and blocks.
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Figure 2.1: Immix Heap Organization [Blackburn and McKinley, 2008]

2.6.2 Opportunistic Copying

Immix tackles fragmentation using opportunistic defragmentation, which mixes mark-
ing with copying. At the beginning of a collection, Immix determines whether to
defragment, e.g., based on fragmentation levels. Blocks with free lines at the start of
a collection indicate fragmentation because although available, the memory was not
usable by the mutator. Furthermore, the live/free status for these blocks is up-to-date
from the prior collection. During a defragmenting collection, Immix uses two bits
in the object header to differentiate between marked and forwarded objects. At the
beginning of a defragmenting collection, Immix identifies source and target blocks
based on the statistics from the previous collection. During the mark trace, when Im-
mix first encounters an object that resides on a source block and there is still available
memory for it on a target block, Immix copies the object to a target block, leaving a
forwarding pointer. Otherwise Immix simply marks the object as usual. When Immix
encounters forwarded objects while tracing, it updates the reference accordingly. This
process is opportunistic, since it performs copying until it exhausts free memory to
defragment the heap. The result is a collector that combines the locality of a copying
collector and the collection efficiency of a mark-sweep collector with resilience to
fragmentation. The best performing production collector in Jikes RVM is generational
Immix (Gen Immix), which consists of a copying nursery space and an Immix old
space [Blackburn and McKinley, 2008].

This section provided a detailed overview of the Immix garbage collection. It de-
scribed the line and block heap organization of Immix with contiguous allocation
and the opportunistic copying mechanism to mitigate fragmentation. These are the
necessary background for Chapter 5. In the next section, we describe conservative
garbage collection.

2.7 Conservative Garbage Collection

Conservative collectors have thus far been tracing. A tracing garbage collector per-
forms a transitive closure over the object reachability graph, starting with the roots,
which are references into the heap held by the runtime, including stacks, registers,
and static (global) variables. An exact garbage collector precisely identifies root ref-
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erences and references between objects while a conservative collector must handle
ambiguous references — values that may or may not be valid pointers. Three broad ap-
proaches exist to enumerate references: a) compiler supported exact, b) uncooperative
exact, and c) conservative.

2.7.1 Requirements and Complexities of Exact Garbage Collection

Exact garbage collection for managed languages requires cooperation from the com-
piler and language runtime. The language runtime must identify references from
roots and references within the heap (between heap objects). The type system iden-
tifies references in heap objects at allocation time. The runtime must dynamically
examine the stacks, registers, statics, and any other source of references into the
heap to identify root references. Dynamically tracking roots is more challenging
if the runtime uses aggressive optimizations, for example, with a just-in-time (JIT)
compiler.

Compiler-supported exact The compiler for an exact collector generates and main-
tains stack maps — data structures that, for every point in execution where collection
may ensue, report the precise location of every live reference stored by local variables
in stacks, or registers. Engineering accurate stack maps is challenging [Agesen et al.,
1998; Hirzel et al., 2002]. Precise pointer tracking burdens the compiler with signif-
icant bookkeeping in optimizations and intermediate representations [Diwan et al.,
1992]. It also inhibits some optimizations, such as code motion.

Nonetheless, many mature high performance managed runtimes use exact root
enumeration, such as .NET for C#, and HotSpot, Jikes RVM, and J9 VMs for Java.
The interpreter and/or JIT compilers in these systems maintain precise stack maps
for every point in execution where a garbage collection may occur. The garbage
collector walks each thread’s stack frame-by-frame, consulting pre-generated stack
maps to enumerate the location of all live references. Because these systems are
exact, the collector is free to move objects and redirect program references. All of
these systems implement exact copying generational collectors, which are the best
performing collectors [Blackburn et al., 2004a; Blackburn and McKinley, 2008].

Uncooperative exact Exact uncooperative systems are also in use for strongly typed
languages that are implemented with C as an intermediate language [Henderson,
2002; Baker et al., 2009; LLVM, 2014]. In principle, strong typing allows precise
pointer identification, but a stock C compiler loses that type precision. Instead, these
runtimes dynamically maintains a shadow stack, a separate data structure for each
frame that identifies precisely the set of live object references. This approach avoids
conservatism and the engineering cost of introducing precise pointer tracking and
stack map generation within the C compiler, but it does so at the cost of explicitly,
dynamically maintaining a shadow stack with the set of live references. This cost
is significant because stack operations are frequent and it must perform shadow
operations for every stack operation involving references.
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2.7.2 Ambiguous References

A conservative collector must reason about ambiguous references — values that may or
may not be valid pointers. To ensure correctness, a conservative collector must retain
and not move the referent of an ambiguous reference and must retain any transitively
reachable objects. The collector must retain the referent in case the ambiguous ref-
erence is a valid pointer. The collector must not change the ambiguous reference in
case it is a value, not a pointer. In addition, it must carefully manage object metadata.
For example, if the collector stores metadata on liveness in an object header, it must
guarantee that the referent is a valid object before updating its metadata in order to
guarantee that it does not corrupt visible program state. Ambiguous references thus
constrain conservative collectors in the following ways.

• Because ambiguous references may be valid pointers, the collector must retain
their referents and transitively reachable objects.

• Because ambiguous references may be values, the collector may not modify
them, pinning the referents.

• In order to avoid corrupting the heap, the collector must guarantee that referents
are valid objects before it updates per-object metadata.

The above constraints lead to three consequences. Conservative collectors a) incur
excess retention due to their liveness assumptions; b) cannot move (must pin) ob-
jects that are targets of ambiguous references; and c) must either filter ambiguous
references to assure the validity of the target, or maintain metadata in side structures.

Excess retention Constraint a) leads to a direct space overhead (excess retention),
because the collector will conservatively mark a dead object as live, as well as all of
its transitively reachable descendants.

Pinning Pinning leads to fragmentation and constrains algorithm design. Because
reference types in unsafe languages are ambiguous, all references, regardless of
whether in the runtime or heap, are ambiguous, and therefore all objects must be
pinned. For safe languages, such as Java, C#, JavaScript, PHP, Python, and safe C
and C++ variants, the only references that are not well typed are those whose type
the compiler does not track, such as local variables in stacks and registers. Therefore,
conservative collectors for these languages may move objects that are only the target
of well typed references. They will need only to pin objects that are the target of
ambiguous roots. Below we describe how pinning influences the design of the two
prior classes of conservative collection algorithms in more detail.

Filtering Filtering ambiguous references eliminates those that do not point to viable
objects, but increases processing costs for each reference. There are three sources
of spurious pointers on a conservatively examined stack. a) Some program value
in the stack may by chance correspond to a heap address. b) The compiler may
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temporarily use pointers, including interior pointers, that are not object references. c)
The stack discipline invariably leads to values, including valid references, remaining
on the stack well beyond their live range. The collector therefore filters ambiguous
references, discarding those that do not point to valid objects. Valid objects were either
determined live at the last collection or allocated since then. The particular filtering
mechanism depends on the collector and we describe them below.

2.7.3 Non-Moving Conservative Collectors

The most mature, widely used, and adopted conservative garbage collector is the
Boehm-Demers-Weiser (BDW) collector [Boehm and Weiser, 1988]. The BDW collec-
tor is a non-moving collector that uses a free-list allocator and a mark-sweep trace
to reclaim unused objects. The allocator maintains separate free lists for each size of
object. For unsafe C, the collector is conservative with respect to roots and pointers
within the heap. The BDW collector includes a non-moving generational configura-
tion [Demers et al., 1990].

BDW filters ambiguous references by testing whether they point to a valid, allo-
cated, free-list cell. It first identifies the free-list block into which the reference points
and then it establishes the size class for the cells within that block. It tests whether
the reference points to the start of a valid cell for that particular block, and finally
tests whether that cell is allocated (live and not free). Only references to the start of
live cells are treated as valid object references.

The BDW collector can be configured to exploit type information when available,
so that it is conservative only with respect to stacks and registers, and precise with
respect to the heap and other roots. These qualities make the BDW collector suitable
for other language implementations, particularly initial implementations of managed
languages that use C as an intermediate language.

The problem with a non-moving free list in a managed language setting is that
mutator time suffers. Allocating objects by size spreads contemporaneously allocated
objects out in memory and induces more cache misses than contiguous bump pointer
allocators, such as those used by copying collectors and the Immix collector [Black-
burn et al., 2004a; Blackburn and McKinley, 2008].

For languages with object type precision, a non-moving collector design is overly
restrictive since, as we will show in Chapter 6, most heap objects will not be the target
of ambiguous references.

2.7.4 Mostly Copying Collectors

Bartlett [1988] first described a mostly copying conservative collector for memory safe
languages, a design that has remained popular [Hosking, 2006; Smith and Morrisett,
1998; Attardi and Flagella, 1994; WebKit, 2014]. Bartlett’s collector is a classic semi-
space collector that uses bump pointer allocation. A semi-space collector divides the
heap into to-space and from-space. Objects are allocated into to-space. At the start
of each collection, the collector flips the spaces. The collector then copies reachable
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objects out of from-space into the new to-space. At the end of a collection, alloca-
tion resumes into the to-space. Bartlett’s collector has two twists over the classic
semi-space design. First, the to-space and from-spaces are not adjacent halves of a
contiguous address space, but instead they are logical spaces comprised of linked
lists of discontiguous pages. Second, at the start of each collection, the collector
promotes each page referenced by an ambiguous root — the collector unlinks the
referent page from the from-space linked list and puts it on the to-space linked list.
Thus ambiguously referenced objects are logically promoted into to-space rather than
copied. The promoted pages serve as the roots for a final copying collection phase
that completes a transitive closure over the heap. Bartlett assumes that all objects on
promoted pages are live, exacerbating excess retention.

Attardi and Flagella [1994] improve over Bartlett’s MCC by only using the ambigu-
ous referents as roots, rather than using all objects on the ambiguously referenced
page as roots. They introduce a live map, and during the initial promotion phase they
remember the target of each ambiguous pointer. Then during the final copying phase,
when scanning promoted pages for roots, they use the live map to select only live
objects as sources, significantly reducing excess retention.

Many mostly copying collectors, including Apple’s WebKit JavaScript VM, use seg-
regated fits free lists and, like BDW, introspect within the page to determine whether
an ambiguous pointer references a valid allocated cell [Bartlett, 1988; Hosking, 2006;
WebKit, 2014]. Hosking’s [Hosking, 2006] mostly copying collector is concurrent
and supports language-level internal references, which requires a broadening of the
definition of validity to include ambiguous references that point within valid objects.

Smith and Morrisett [1998] take a different approach to filtering ambiguous roots.
Since they use a bump pointer rather than a free list, objects are tightly packed, not
uniformly spaced. To determine whether an ambiguous reference points to a valid
object, they scan the pages from the start. They traverse the contiguous objects on
a page introspecting length and skipping to the next object, until the ambiguous
reference is reached or passed. If the ambiguous reference matches the start of an
object, it is treated as valid, otherwise it is discarded. This mechanism is not efficient.

Mostly copying collectors suffer a number of drawbacks. Because pages are not
contiguous, objects may not span pages, which leads to wasted space on each page,
known as internal fragmentation. Because any page containing a referent of an am-
biguous reference is pinned and cannot be used by the allocator, more space is wasted.

This section provided detailed overview of the mechanisms and requirements for
conservative and exact garbage collection. It described the implications of conser-
vative garage collection due to ambiguous references — excess retention, pinning,
and filtering. It also described existing non-moving and mostly copying conservative
collectors. These are the necessary background for Chapter 6.
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2.8 Summary

This chapter introduced key background material. We discussed reference count-
ing with different existing optimizations, which provides necessary background for
Chapter 4. We discussed the Immix garbage collection, which along with reference
counting provides necessary background for Chapter 5. We further discussed con-
servative garbage collection, which provides necessary background for Chapter 6.
Before we move to the primary contributions of the thesis, we next give an overview
of our experimental methodology.
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Experimental Methodology

This section presents software, hardware, and measurement methodologies that we
use throughout the evaluations presented in this thesis.

3.1 Benchmarks

We draw 20 benchmarks from DaCapo [Blackburn et al., 2006], SPECjvm98 [SPEC,
1999], and pjbb2005 [Blackburn et al., 2005]. The pjbb2005 benchmark is a fixed
workload version of SPECjbb2005 [SPEC, 2006] with 8 warehouses that executes
10,000 transactions per warehouse. We do not use SPECjvm2008 because that suite
does not hold workload constant, so is unsuitable for GC evaluations unless modified.
Since a few DaCapo 9.12 benchmarks do not execute on our virtual machine, we use
benchmarks from both 2006-10-MR2 and 9.12 Bach releases of DaCapo to enlarge our
suite.

We omit two outliers, mpegaudio and lusearch, from our figures and averages, but
include them grayed-out in tables, for completeness. The mpegaudio benchmark is a
very small benchmark that performs almost zero allocation. The lusearch benchmark
allocates at three times the rate of any other. The lusearch benchmark derives from
the 2.4.1 stable release of Apache Lucene. Yang et al. [2011] found a performance
bug in the method QueryParser.getFieldQuery(), which revision r803664 of Lucene
fixes [Seeley, 2009]. The heavily executed getFieldQuery() method unconditionally
allocated a large data structure. The fixed version only allocates a large data structure
if it is unable to reuse an existing one. This fix cuts total allocation by a factor of
eight, speeds the benchmark up considerably, and reduces the allocation rate by over
a factor of three. We patched the DaCapo lusearch benchmark with just this fix and
we call the fixed benchmark lusearch-fix.

3.2 Software Platform

3.2.1 Jikes RVM and MMTk

We use Jikes RVM and MMTk for all of our experiments. Jikes RVM [Alpern et al.,
2000, 2005] is an open source high performance Java virtual machine (VM) written
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in a slightly extended version of Java. We use Jikes RVM release 3.1.3+hg r10761 to
build each of our systems. MMTk is Jikes RVM’s memory management sub-system.
It is a programmable memory management toolkit that implements a wide variety of
collectors that reuse shared components [Blackburn et al., 2004a].

All of the garbage collectors we evaluate are parallel [Blackburn et al., 2004b].
They use thread local allocation for each application thread to minimize synchro-
nization. During collection, the collectors exploit available software and hardware
parallelism [Cao et al., 2012]. To compare collectors, we vary the heap size to under-
stand how well collectors respond to the time space tradeoff. We selected for our
minimum heap size the smallest heap size in which all of the collectors execute, and
thus have complete results at all heap sizes for all collectors.

Jikes RVM does not have a bytecode interpreter. Instead, a fast template-driven
baseline compiler produces machine code when the VM first encounters each Java
method. The adaptive compilation system then judiciously optimizes the most fre-
quently executed methods. Using a timer-based approach, it schedules periodic
interrupts. At each interrupt, the adaptive system records the currently executing
method. Using a cost model, it then selects frequently executing methods it predicts
will benefit from optimization. The optimizing compiler compiles these methods at
increasing levels of optimizations.

3.2.2 Performance Analysis

To reduce perturbation due to dynamic optimization and to maximize the perfor-
mance of the underlying system that we improve, we use a warmup replay method-
ology. Before executing any experiments, we gathered compiler optimization pro-
files from the 10th iteration of each benchmark. When we perform an experiment,
we execute one complete iteration of each benchmark without any compiler opti-
mizations, which loads all the classes and resolves methods. We next apply the
benchmark-specific optimization profile and perform no subsequent compilation. We
then measure and report the subsequent iteration. This methodology greatly reduces
non-determinism due to the adaptive optimizing compiler and improves underlying
performance by about 5% compared to the prior replay methodology [Blackburn
et al., 2008]. We run each benchmark 20 times (20 invocations) and report the average.
We also report 95% confidence intervals for the average using Student’s t-distribution.

3.2.3 Program and Collector Analyses and Statistics

To perform detailed program and collector analysis of different program and collector
behaviors, such as maximum reference count and excess retention, we instrument rele-
vant garbage collection configuration to gather information on different metrics while
running the benchmarks. This instrumentation does not affect the garbage collection
workload (the exact same objects are collected with or without the instrumentation).
The instrumentation slows the collector down considerably, but these analyses are
for understanding behaviors, not used in production executions, this slowdown is
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irrelevant. We do not use the instrumentation for any of our performance studies.

3.3 Operating System

We use Ubuntu 12.04.3 LTS server distribution and a 64-bit (x86_64) 3.8.0-29 Linux
kernel.

3.4 Hardware Platform

We report performance results on a 3.4 GHz, 22 nm Core i7-4770 Haswell with 4 cores
and 2-way SMT. The two hardware threads on each core share a 32 KB L1 instruction
cache, 32 KB L1 data cache, and 256 KB L2 cache. All four cores share a single 8 MB
last level cache. A dual-channel memory controller is integrated into the CPU with
8 GB of DDR3-1066 memory.
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Chapter 4

Optimizing Reference Counting

Among garbage collection algorithms, reference counting has some interesting ad-
vantages such as the possibility of simpler implementation, local scope of operation,
and immediacy of reclamation. Traditional reference counting is however very slow
compared to tracing and consequently has not been used in high performance sys-
tems. This chapter identifies key design choices for reference counting, presents a
detailed analysis of reference counting with respect to those design choices, and then
shows how to optimize reference counting. As far as we are aware, this is the first
such quantitative study of reference counting. The analysis confirms that limited bit
reference counting is a good idea because the majority of objects have a low reference
count. The analysis also identifies that the majority of the reference count increments
and decrements are due to objects that are very short lived. This chapter introduces
optimizations that overlook reference counting operations for short lived young ob-
jects and significantly improve the performance of reference counting. The result
is the first reference counting implementation that is competitive with a full heap
mark-sweep tracing collector.

This chapter is structured as follows. Section 4.2 describes the key design choices
for reference counting — storing and accurately maintaining the reference count and
collecting cyclic garbages. Section 4.3 describes the quantitative analysis of those
key design points for different benchmarks. Section 4.4 discusses and evaluates
different choices for limited bit reference counting. Section 4.5 describes the two
novel optimizations that eliminate reference counting operations for short lived young
objects in detail and their effect on performance. Section 4.6 evaluates our improved
reference counting with a well tuned full heap mark-sweep tracing collector and with
some existing high performance collectors.

This chapter describes work published as “Down for the Count? Getting Reference
Counting Back in the Ring” [Shahriyar, Blackburn, and Frampton, 2012].

4.1 Introduction

In an interesting twist of fate, the two algorithmic roots of the garbage collection
family tree were born within months of each other in 1960, both in the Communi-
cations of the ACM [McCarthy, 1960; Collins, 1960]. On the one hand, reference

29
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counting [Collins, 1960] directly identifies garbage by noticing when an object has
no references to it, while on the other hand, tracing [McCarthy, 1960] identifies live
objects and thus only indirectly identifies garbage (those objects that are not live). Ref-
erence counting offers a number of distinct advantages over tracing, namely that it: a)
can reclaim objects as soon as they are no longer referenced, b) is inherently incremen-
tal, and c) uses object-local information rather than global computation. Nonetheless,
for a variety of reasons, reference counting is rarely used in high performance settings
and has been somewhat neglected within the garbage collection literature. Other than
the systems developed in this thesis, we are not aware of any high performance sys-
tem that relies on reference counting. However, reference counting is popular among
new languages with relatively simple implementations. The latter is due to the ease
with which naive reference counting can be implemented, while the former is due to
reference counting’s limitations. We compare the state-of-the-art reference counting
implementation on which we build and a well tuned mark-sweep implementation
and find that reference counting is over 30% slower than its tracing counterpart. The
goal of this chapter is to revisit reference counting, understand its shortcomings, and
address some of its limitations.

We identify the key design points of reference counting and evaluate the intrinsic
behaviors such as maximum reference counts of Java benchmarks with respect to
those design points. Our analysis of benchmark intrinsics motivates three optimiza-
tions: 1) using just a few bits to maintain the reference count, 2) eliding reference
count operations for newly allocated objects, and 3) allocating new objects as dead,
avoiding a significant overhead in deallocating them. We then conduct an in-depth
performance analysis of reference counting and mark-sweep, including combinations
of each of these optimizations. We find that together these optimizations eliminate
the reference counting overhead, leading to performance consistent with high perfor-
mance mark-sweep.

In summary, this chapter makes the following contributions.

1. We identify and evaluate key design choices for reference counting implemen-
tations.

2. We conduct an in-depth quantitative study of intrinsic benchmark behaviors
with respect to those design choices.

3. Guided by our analysis, we introduce optimizations that greatly improve refer-
ence counting performance.

4. We conduct a detailed performance study of reference counting and mark-
sweep, showing that our optimizations eliminate the overhead of reference
counting.

Our detailed study of intrinsic behaviors should help other garbage collector
implementers design more efficient reference counting algorithms. Our optimizations
remove the performance barrier to using reference counting rather than mark-sweep,
thereby making the locality and immediacy of reference counting compelling and
providing the platform on which the subsequent chapters in this thesis build.
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4.2 Design Space

We now explore the design space for reference counting implementations. In par-
ticular, we explore strategies for: 1) storing the reference count, 2) maintaining an
accurate count, and 3) dealing with cyclic objects. We describe each of these and
survey major design alternatives.

4.2.1 Storing the Count

Each object has a reference count associated with it. This section considers the choices
for storing the count. This design choice is a tradeoff between the space required to
store the count, and the complexity of accurately managing counts with limited bits.

Use a dedicated word per object By using a dedicated word we can guarantee that
the reference count will never overflow. In a 32-bit address space, in the worst case,
if every word of memory pointed to a single object, the count would only be 230.
However, an additional header word has a significant cost, not only in terms of space,
but also time, as allocation rate is also affected. For example, the addition of an extra
32-bit word to the object header incurs an overhead of 2.5% in total time and 6.2% in
GC time, on average across our benchmark suite when using Jikes RVM’s production
garbage collector.

Use a field in each object’s header. Object headers store information to support
runtime operations such as virtual dispatching, dynamic type checking, synchroniza-
tion, and object hashing. Although header bits are valuable, it may be possible to use
a small number of bits to store the reference count. The use of a small number of
bits means that the reference counter must handle overflow, where a count reaches a
value too large for small number of bits. Two basic strategies to deal with overflow
exist: 1) an auxiliary data structure, such as a hash table, stores accurate counts, 2)
sticky counts, once they overflow future increments and decrements are ignored. In
the latter case, one may depend on a backup tracing cycle collector to either restore
counts or directly collect the object [Jones et al., 2011].

4.2.2 Maintaining the Count

There are several ways to maintain accurate reference count as mentioned in Sec-
tion 2.5.

1. Naive immediate reference counting that counts all references including the
heap, stacks, and registers [2.5.1]

2. Deferral ignores mutations to frequently modified variables, such as those stored
in registers and on the stacks [2.5.2]
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3. Coalescing ignores many mutations to heap references by observing that all but
the first and last in any chain of mutations to a reference within a given window
can be coalesced [2.5.3]

4. Ulterior reference counting combines copying generational collection for the
young objects and reference counting for the old objects [2.5.4]

5. Age-oriented collector uses a reference counting collection for the old generation
and a tracing collection for the young generation that establishes reference
counts during tracing [2.5.5]

4.2.3 Collecting Cyclic Objects

Reference counting alone cannot collect cyclic garbage. There exist two general
approaches to deal with cyclic garbage as mentioned in Section 2.5.6.

1. Trial deletion collects cycles by identifying groups of self-sustaining objects using
a partial trace of the heap

2. Backup tracing performs a mark-sweep style trace of the entire heap to eliminate
cyclic garbage

Cycle collection is not the focus of this chapter, however some form of cycle
collection is essential for completeness of reference counting. We use backup tracing,
which performs substantially better than trial deletion and has more predictable
performance characteristics [2.5.6]. Backup tracing also provides a solution to the
problem of reference counts that become stuck due to limited bits. We invoke the
backup tracing cycle collector when the memory available for allocation falls below a
specific threshold (in our case it is 4 MB, but other values or fractions are possible).

4.3 Analysis of Reference Counting Intrinsics

Recall that despite the implementation advantages of simple immediate reference
counting, reference counting is rarely used in high performance settings because
historically it has been comprehensively outperformed by tracing collectors. To help
understand the sources of overhead and identify opportunities for improvement, we
now study the behavior of standard benchmarks with respect to operations that are
intrinsic to reference counting. In particular, we focus on metrics that are neither
user-controllable nor implementation-specific.

4.3.1 Analysis Methodology

We instrument Jikes RVM to identify, record, and report statistics for every object allo-
cated. We control the effect of cycle collection by performing measurements with cycle
collection policies at both extremes (always collect cycles versus never collect cycles)
and report when this affects the analysis. To perform our analysis, we instrument
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Figure 4.1: Most objects have very low maximum reference counts. This graph plots the cumu-
lative frequency distribution of maximum reference counts among objects in each benchmark.

the standard configuration of reference counting in MMTk to gather information on
different metrics while running the benchmarks. See Section 3.2.3 for more method-
ology details.

Note that the analysis of intrinsic properties we present in this Section does not depend
on Jikes RVM or MMTk. The measurements we make here could have been made on
any other JVM to which we had access to the source.

4.3.2 Distribution of Maximum Reference Counts

We start by measuring the distribution of maximum reference counts. For each object
our instrumented JVM keeps track of its maximum reference count, and when the
object dies we add the object’s maximum reference count to a histogram. In Table 4.1
we show the cumulative maximum reference count distributions for each benchmark.
For example, the table shows that for the benchmark eclipse, 68.2% of objects have
a maximum reference count of just one, and 95.4% of all objects have a maximum
reference count of three. On average, across all benchmarks, 99% of objects have a
maximum reference count of six or less. The data in Table 4.1 is displayed pictorially
in Figure 4.1.
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Figure 4.2: The number of objects which suffer overflowed reference counts drops off rapidly
as the number of available bits grows from two to five.

4.3.3 Limited Reference Count Bits and Overflow

When the number of bits available for storing the reference count is restricted, the
count may overflow. In Table 4.2 we show for different sized reference count fields,
measurements of: a) the percentage of objects that would ever overflow, and b) the
percentage of reference counting operations that act on overflowed objects. The first
measure indicates how many objects at some time had their reference counts overflow.
An overflowed reference count will either be stuck until a backup trace occurs, or
will require an auxiliary data structure if counts are to be unaffected. The second
measure shows how many operations occurred on objects that were already stuck,
and is therefore indicative of how much overhead an auxiliary data structure may
experience.

Results for reference count fields sized from one to five bits are shown in Table 4.2.
For example, the table shows that when three bits are used, only 0.65% of objects
experience overflow, and for compress and mpegaudio, none overflow. Although the
percentage of overflowed objects is less than 1%, it is interesting to note that these
overflowed objects attract nearly 23% of all increment and decrement operations, on
average. Overflowed objects thus appear to be highly popular objects. The data in
Table 4.2 is displayed pictorially in Figure 4.2.
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(a) Increments
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(b) Decrements

Figure 4.3: New objects are responsible for the majority of reference counting operations.
We show here the percentage of (a) increments and (b) decrements that are due to objects
allocated within the most recent 2 MB and 16 MB of allocation.

4.3.4 Sources of Reference Counting Operations

Table 4.3 shows for each benchmark the origin of the increment and decrement oper-
ations. In each case we account for the operations as being due to: a) newly allocated
objects (new), b) mutations to non-new scalar and array objects, and c) temporary
operations due to root reachability when using deferred reference counting. For
decrements, we also include a fifth category that represents decrements that occur
during cycle collection. We performed this measurement with collections artificially
triggered at a range of intervals from 2 MB to 16 MB, and report only 2 MB and 16 MB
to show the significant differences. This choice of interval is guided by typical nursery
sizes for a generational garbage collector [2.4.6]. The definition of new is anything
allocated within the last interval, so as the interval becomes larger, a larger fraction
of the live objects are new. This measurement related to new objects depends on the
object header size and alignment restrictions, which may slightly vary in different
JVMs.

On average, 71% of increments and 71% of decrements are performed upon newly
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Figure 4.4: Most benchmarks have very low object survival ratios. This graph shows the
percentage of objects that survive beyond 2 MB and 16 MB of allocation.

allocated objects (over 90% for some benchmarks). For most benchmarks increments
and decrements to non-new objects are low (around 9-10%), consistent with previous
findings [Blackburn and McKinley, 2003]. Around 10% of operations are due to root
reachability. Cycle collection performs 4% of decrements.

Figures 4.3(a) and 4.3(b) illustrate data from Table 4.3 graphically, showing the
percentage of increments and decrements due to new objects, where new is defined
in terms of both 2 MB and 16 MB allocation windows.

Conventionally, when using deferred reference counting, new objects are born
live, with a temporary increment of one. A corresponding decrement is enqueued
and applied at the next collection. Thus a highly allocating benchmark will incur a
large number of increments and decrements simply due to the allocation of objects.
Furthermore, newly allocated objects are relatively more frequently mutated, so
contribute further to the total count of reference counting operations.

Table 4.4 shows the percentage of increments as a function of maximum refer-
ence count. For example, the table shows that on average 31% of increments are
performed for objects having maximum reference count of one and 18% increments
are performed for objects having maximum reference count of two. Interestingly, on
average 17% of increments are due to objects with very high maximum reference
counts (>63).

Figure 4.4 shows that most benchmarks have a survival ratio of under 10%, in-
dicating that over 90% of objects are unreachable by the time of the first garbage
collection. This information and the data which shows that new objects attract a
disproportionate fraction of increments and decrements confirms previous sugges-
tions that new objects are likely to be a particularly fruitful focus for optimization of
reference counting [Blackburn and McKinley, 2003; Azatchi and Petrank, 2003; Paz
et al., 2005].
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4.3.5 Efficacy of Coalescing

Coalescing [2.5.3] is most effective when individual reference fields are mutated many
times, allowing the reference counter to avoid performing a significant number of
reference count operations. To determine whether this expectation matches actual
behavior, we compare the total number of reference mutation operations to the num-
ber of reference mutations observable by coalescing (i.e., where the final value of a
reference field does not match the initial value). We control the window over which
coalescing occurs by triggering collection after set volumes of application allocation
(from 2 MB to 8 MB).

Table 4.5 shows, for example, that with a window of 8 MB, coalescing observes
50.5% and 92.2% of reference mutations for compress and jess respectively. For a few
benchmarks, such as avrora, luindex, and sunflow, coalescing is extremely effective,
eliding 90% or more of all reference mutations. However, for many benchmarks,
coalescing is not particularly effective, eliding less than half of all mutations. In
addition to measuring this for all objects, we separately measure operations over new
objects — those allocated since the start of the current time window. This data shows
that coalescing is significantly more effective with old objects. This is consistent with
the idea that frequently mutated objects tend to be long lived, and is not inconsistent
with the prior observation [Blackburn and McKinley, 2003] that most mutations occur
to young objects (since over the life of a program, young objects typically outnumber
old objects by around 10:1). Table 4.6 provides a different perspective by showing the
breakdown of total reference mutations per unit time (millisecond).

4.3.6 Cyclic Garbage

Table 4.7 shows key statistics for each benchmark related to cyclic garbage. For each
benchmark we show: 1) the percentage of objects that can be reclaimed by pure
reference counting, and 2) the percentage of objects that are part of a cyclic graph
when unreachable, so can only be reclaimed via cycle collection, and 3) the percentage
of objects that are statically known to be acyclic (i.e., an object of that type can never
transitively refer to itself). Note that 2) may not be directly participating in a cycle
but may be referenced by a cycle. These results show that the importance of cycle
collection varies significantly between benchmarks, with some benchmarks relying
heavily on cycle collection (javac, mpegaudio, eclipse, hsqldb and pmd) while the cycle
collector is responsible for reclaiming almost no memory (less than 1% for jess, db,
jack, avrora, bloat and sunflow).

4.4 Limited Bit Reference Counting

Because the vast majority of objects have low maximum reference counts, the use of
just a few bits for the reference counting is appealing. The idea has been proposed
before [Jones et al., 2011], but to our knowledge has not been systematically analyzed.
Key insights that can be drawn from our analysis are that most objects have maxi-
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mum reference counts of seven or less, and that objects with high maximum reference
counts account for a disproportionate fraction of reference counting operations. The
former motivates using around three bits for storing the count, while the latter sug-
gests that any strategy for dealing with overflow must not be too expensive since it
is likely to be heavily invoked. We now describe three strategies for dealing with
reference count overflow.

4.4.1 Hash Table on Overflow

When an object’s reference count overflows, the reference count can be stored in
a hash table. Increments and decrement are performed in the hash table until the
reference count drops below the overflow threshold, at which point the hash table
entry is released. Each entry in the hash table requires two words, one word for the
object (key) and one word for the count (value). We measure the size of hash table
across the benchmarks and find that 1 MB table is sufficient for all benchmarks.

4.4.2 Stuck on Overflow and Ignored

When an object’s count overflows, it may be left stuck at the overflow value and all
future increments and decrements will be ignored. Reference counting is thus unable
to collect these objects, so they must be recovered by a backup tracing cycle collector.
Note that a trial deletion cycle collector cannot collect such objects.

4.4.3 Stuck on Overflow and Restored by Backup Trace

A refinement to the previous case has the backup trace restore reference counts within
the heap during tracing, by incrementing the target object’s count for each reference
traversed. Although this approach imposes an additional role upon the backup trace,
it has the benefit of freeing the backup trace from performing recursive decrement
operations for collected objects.

4.4.4 Evaluation

Figure 4.5 shows our experimental evaluation of these strategies. In Jikes RVM we
have up to one byte (8 bits) available in the object header for use by the garbage
collector. We use two bits to support the dirty state for coalescing, one bit for the
mark-state for backup tracing, and the remaining five bits to store the reference
count. All results are normalized to MMTk’s default reference counting configuration,
Standard RC, a coalescing deferred collector using an additional header word that is
fully precise and that uses backup tracing cycle collector.

As we mentioned before, an additional header word has a cost, not only in terms
of space, but also time, as allocation rate is also affected. This result is visible in
mutator time (Figure 4.5(b)) where all the three strategies are more than 2% faster
than Standard RC.
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For the majority of the benchmarks HashTable RC performs poorly, with Standard
RC 2% better in total time (Figure 4.5(a)) and 17% better in collection time (Fig-
ure 4.5(c)) than HashTable RC on average. The performance of jess and db is much
worse in HashTable RC compared to other benchmarks. This was predicted by our
analysis, which showed that these benchmarks had high rates of reference counting
operations on overflowed objects. While HashTable RC benefits from not requiring an
additional header word, this benefit is outweighed by the cost of performing incre-
ment and decrement operations in the hash table. In HashTable RC, the processing of
increments and decrements are 34% and 19% slower than in Standard RC, respectively.

Given the poor performance of the hash table approach, we turn our attention to
the systems that use backup tracing to collect objects with sticky reference counts,
StuckIgnore RC and StuckRestore RC. Both StuckIgnore RC and StuckRestore RC outper-
form Standard RC (by 4% and 5% respectively). This is primarily due to no longer
requiring an additional header word, although there is also some advantage from
ignoring reference counting operations. Comparing the two sticky reference count
systems, StuckRestore RC performs slightly better in both total time and collection
time. Backup tracing in StuckRestore RC performs more work than StuckIgnore RC
because it restores the count for the objects. But as mentioned earlier, during backup
tracing if any object’s reference count is zero then only the object is reclaimed and
count of the descendants are not decremented, giving StuckRestore RC a potential
advantage.

We also measured (but do not show here) the three overflow strategies with an
additional header word, to factor out the source of difference with Standard RC. In
this scenario, the extra word is not used to store the reference count but simply acts as
a placeholder to evaluate the impact of the space overhead. In that case, StuckIgnore
RC performs same as Standard RC and StuckRestore RC only marginally outperformed
Standard RC (by 1% in total time), indicating that most of their advantage comes from
the use of a small reference counting field.

4.5 Improving Reference Counting

Our analysis shows that reference counting overheads are dominated by the behavior
of new objects, and yet the vast majority of those objects do not survive a single
collection. We use these observations of new objects to optimize reference counting.

4.5.1 Exploiting the Weak Generational Hypothesis

We leverage two insights that allow us to ignore new objects until their first collection,
at which point they can be processed lazily, as they are discovered. First, coalescing
reference counting uses a dirty bit in each object’s header to ignore mutations to
objects between their initial mutation and the bit being reset at collection time. A col-
lector that ignores new objects could straightforwardly use this mechanism. Second,
in a deferred reference counter, any new object reachable from either the roots or old
objects will be included in the set of increments. Furthermore, the set of increments
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(a) Increments
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(b) Decrements

Figure 4.6: Lazy mod-buf insertion and born dead optimizations for new objects greatly
reduce the number of reference counting operations necessary compared to Standard RC. The
effectiveness varies substantially among the benchmarks. On average over 80% of increments
and 90% of decrements are eliminated.

will only include references to new objects that are live. We further observe that if
new objects are allocated as logically dead, and only made live upon discovery, then
a significant fraction of expensive freeing operations can be avoided, since the vast
majority of objects do not survive the first collection.

We start by considering the treatment of new objects in a collector that uses de-
ferred reference counting and coalescing, and we use this as our point of comparison.
In such a collector, new objects are allocated dirty with a reference count of one. The
object is added to the deque of decrements (dec-buf ), and a decrement cancelling
the reference count of one is applied once the dec-buf is processed at the next collec-
tion [2.5.2]. The object is also added to the deque of modified objects (mod-buf ) used
by the coalescing mechanism. At the next collection, the collector processes the mod-
buf and applies an increment for each object that the processed object now points to.
Because all references within a new object are initially null, the coalescing mechanism
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does not need to explicitly generate decrements corresponding to outgoing pointers
from the initial state of the object [2.5.3].

4.5.1.1 Lazy Mod-Buf Insertion Optimization

Our first optimization is to not add new objects to the mod-buf. Instead, we add a
new bit to the object header, and add objects lazily to the mod-buf at collection time,
only if they are encountered during the processing of increments. During collection,
whenever the subject of an increment is marked as new, the object’s new bit is cleared,
and the object is pushed onto the mod-buf. Because in a coalescing deferred reference
counter, all references from roots and old objects will increment all objects they reach,
our approach will retain all new objects directly reachable from old objects and the
roots. Because each object processed on the mod-buf will increment each of its children,
our scheme is transitive. Thus new objects are effectively traced. However, rather than
combing reference counting and tracing to create a hybrid collector [Blackburn and
McKinley, 2003; Azatchi and Petrank, 2003; Paz et al., 2005], our scheme achieves a
similar result via a very simple optimization to existing reference counting collector. It
reduces the reference counting bits from five to four due to the new bit, but only 0.11%
objects suffer overflow instead of 0.06% for five bits [Table 4.2]. This optimization
required only very modest changes to MMTk’s existing reference counting collector.
Figure 4.6(a) shows the massive reductions in the total number of increments (over
80%).

4.5.1.2 Born Dead Optimization

As a simple extension of the above optimization, instead of allocating objects live,
with a reference count of one and a compensating decrement enqueued to the dec-buf,
our second optimization allocates new objects as dead with a reference count of zero
and does not enqueue a decrement. This inverts the presumption: the reference
counter does not need to identify those new objects that are dead, but it must rather
identify those that are live. This inversion means that work is done in the infrequent
case of a new object being reachable, rather that the common case of it being dead.
New objects are only made live when they receive their first increment while pro-
cessing the mod-buf during collection time. Our optimization removes the need for
creating compensating decrements and avoids explicitly freeing short lived objects.
Figure 4.6(b) shows the massive reduction in the total number of decrements (over
90%).

We evaluate the performance of lazy mod-buf insertion and born dead optimiza-
tion for new objects. Figures 4.7(a), 4.7(b), and 4.7(c) (the leftmost and midmost
columns) show the effect of the optimizations on total time, mutator time, and
garbage collection time respectively relative to orthodox deferred reference count-
ing with coalescing (Standard RC). The first optimization (Lazy Mod-Buf ) improves
over Standard RC by 14% in total time, 3% in mutator time, and 59% in collection
time, on average, over the set of benchmarks. The two optimizations combined (Lazy
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Standard RC 16 8 0.3 0 23 36 7 0.1 0.2 1 53 19 73 9 16 14 20 0.01 10
With our optimization 10 1 0.3 0 16 36 7 0.1 0.01 1 4 14 71 8 1 13 11 0.01 1

Table 4.8: Exploiting the weak generational hypothesis results in a 37% reduction in dead
cyclic objects, from 16% to 10% on average, when cycle collection is triggered every 4 MB of
allocation. These results vary considerably among the benchmarks, and is as high as 92% for
eclipse and 90% for xalan.

Mod-Buf (Born Dead)) are 18% faster in total time, 7% faster in mutator time, and 67%
faster in collection time than Standard RC on average.

4.5.1.3 Reducing Cyclic Objects

The lazy mod-buf insertion and born dead optimizations for new objects also reduce
the impact of cyclic garbage. If a cycle is dead by the time of the first GC, it is
implicitly collected, and thus does not place a load on the reference counting collector
or its cycle detection mechanism. Table 4.8 shows that when cycle collections are
artificially triggered every 4 MB of allocation, the number of cycles found by the cycle
detector is reduced by 37%, from 16% to 10% by applying our optimizations. The
effect of this optimization is reduced heap pressure due to dead cyclic objects that
would otherwise remain in the heap until the next cycle collection.

4.5.2 Bringing It All Together

Figure 4.7 (the rightmost column) also presents an evaluation of the impact of the
three most effective optimizations operating together: a) limited bits for the refer-
ence count and restore counts during backup trace, b) lazy mod-buf insertion, and
c) born dead. The combined effect of these optimizations is 23% faster in total time
(Figure 4.7(a)), 10% faster in mutator time (Figure 4.7(b)), and 74% faster in collec-
tion time (Figure 4.7(c)) compared to our base case (Standard RC), on average over
the benchmarks. This substantial improvement over an already optimized reference
counting implementation should change perceptions about reference counting and
its applicability to high performance contexts.

4.6 Results

The conventional wisdom has been that reference counting is totally uncompeti-
tive compared to a modern mark-sweep collector [Blackburn and McKinley, 2003].
Figure 4.8 shows the evaluation of Standard RC and Lazy Mod-Buf (Born Dead) with
StuckRestore against a well tuned mark-sweep collector. Consistent with conventional
wisdom, Standard RC performs substantially worse than mark-sweep, slowing down
by 30%. However, our optimized reference counter, Lazy Mod-Buf (Born Dead) with
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StuckRestore, is able to entirely eliminate the overhead and performs marginally faster
than mark-sweep on average, and is at worst 23% worse than mark-sweep (javac
whose performance largely depends on the triggering of cycle collection) and at best
20% better than mark-sweep (hsqldb).

We also compare our improved reference counting with sticky mark bits collec-
tors [Demers et al., 1990; Blackburn and McKinley, 2008]. These collectors are similar
to ours in that they combine generational ideas in a non-moving or less aggressive
moving context. However, they use tracing and they use a write barrier to avoid
tracing the whole heap at every collection. Like our approach, they identify new ob-
jects using bits in the object header to treat them separately. Immix is a mark-region
based tracing garbage collector that allocates contiguously in lines and blocks, and
perform opportunistic copying to mitigate fragmentation. It achieves space efficiency,
fast reclamation, and mutator performance. Much of its performance advantage
over mark-sweep is due to its line and block heap organization. Sticky MS and
Sticky Immix are the non-moving generational variant of mark-sweep and Immix.
Figure 4.9 shows that our improved reference counting collector is only 1% slower
than Sticky MS and 10% slower than Sticky Immix. Sticky Immix should therefore be
a good indicator of the performance of our improved reference counting projected
onto the Immix heap organization. This is an exciting prospect because Sticky Immix
is only 2% slower than Jikes RVM’s production collector. An exploration of this
collector is the focus of the next chapter.

4.7 Summary

This chapter identifies that a reference counting implementation following the prior
state-of-the-art lags the performance of a highly tuned mark-sweep tracing collector
by 30% on average. The chapter introduced a detailed quantitative analysis of ref-
erence counting’s key design points. The analysis reveals that: a) the vast majority
of reference counts are low, less than five, b) many reference count increments and
decrements are to newly allocated young objects but few of them survive, and c)
many cycles die with young objects. This chapter introduces two novel optimizations
that overlook reference counting operations for short lived newly allocated objects in
a limited bit reference counting system. The resulting reference counting collector,
which is a deferred coalescing collector that uses limited bits to store the count and
optimizations that exploit the weak generational hypothesis, performs the same as a
highly tuned full heap mark-sweep tracing collector.

The improved reference counting collector is still 10% slower than production gen-
erational tracing collectors; a substantial barrier to adoption in performance-critical
settings. The next chapter will focus on how to attack that performance gap and
make reference counting competitive with high performance generational tracing
collectors.
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Chapter 5

Reference Counting Immix

The previous chapter introduced the first reference counting collector with perfor-
mance matching a full heap mark-sweep tracing collector, and within 10% of a high
performance generational collector, Gen Immix. Though a major advance, this 10%
gap remains a substantial barrier to adoption in performance-conscious application
domains. This chapter identifies reference counting’s free-list heap organization as
the major source of the remaining performance gap. We introduce a new collector,
RC Immix, that replaces the free-list heap structure of reference counting with the
line and block heap structure of the Immix collector. RC Immix extends the refer-
ence counting algorithm to count live objects on each line. RC Immix also integrates
Immix’s opportunistic copying with reference counting to mitigate fragmentation.
In RC Immix, reference counting offers efficient collection performance and the line
and block heap organization delivers excellent mutator locality and efficient alloca-
tion. With these advances, RC Immix closes the 10% performance gap, matching and
outperforming a highly tuned production generational collector, Gen Immix.

This chapter is structured as follows. Section 5.2 presents motivating analysis,
showing that a free-list allocator suffers significant performance overheads compared
to a contiguous allocator due to poor cache locality and additional instructions re-
quired for zeroing. Section 5.3 describes the design of the RC Immix collector, which
combines our improved reference counting and the Immix collector. Section 5.4 eval-
uates RC Immix, comparing it to a production generational collector, Gen Immix, and
some other existing high performance collectors.

This chapter describes work published as “Taking Off the Gloves with Reference
Counting Immix” [Shahriyar, Blackburn, Yang, and McKinley, 2013].

5.1 Introduction

The reference counting collector described in the previous chapter, which we will call
RC, removed the 30% performance gap compared to a full heap mark-sweep tracing
collector, but RC is still 10% slower than a high performance generational tracing
collector, which is a substantial barrier to adoption in performance-critical settings.

This chapter identifies that the major source of the 10% gap is that RC’s free-list
heap layout has poor cache locality and imposes instruction overhead. Poor locality

55
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occurs because free-list allocators typically disperse contemporaneously allocated
objects in memory, which degrades locality compared to allocating them together in
space [Blackburn et al., 2004a; Blackburn and McKinley, 2008]. Instruction overheads
are greater in free lists, particularly when programming languages require objects
be pre-initialized to zero. While a contiguous allocator can do bulk zeroing very
efficiently, a free-list allocator must zero object-by-object, which is inefficient [Yang
et al., 2011].

To solve these problems, we introduce Reference Counting Immix (RC Immix).
RC Immix uses the allocation strategy and the line and block heap organization in-
troduced by Immix mark-region garbage collection [2.6]. Recall that Immix places
contemporaneously created objects contiguously in free lines within blocks. Immix
allocates into partially free blocks by efficiently skipping over occupied lines. Objects
may span lines, but not blocks. Immix reclaims memory at a line and block granular-
ity. The granularity of reclamation is the key mismatch between reference counting
and Immix. RC Immix resolves this problem. Reference counting reclaims objects,
whereas Immix reclaims lines and blocks. The design contributions of RC Immix
are as follows. 1) RC Immix extends the reference counter to count live objects on
a line. When the live object count of a line is zero, RC Immix reclaims the free line.
2) RC Immix extends opportunistic copying, which mixes copying with leaving objects
in place. RC Immix adds proactive copying, which combines reference counting and
copying to compact newly allocated live objects. RC Immix on occasion reactively
copies old objects during cycle detection to eliminate fragmentation.

Combining copying and reference counting is novel and surprising. Unlike tracing,
reference counting is inherently local, and therefore in general, the set of incoming
references to a live object is not known. However, we observe two important opportu-
nities. First, in a reference counter that coalesces increments and decrements [2.5.3],
since each new object starts with no references to it, the first collection must enumer-
ate all references to that new object, presenting an opportunity to move that object
proactively. We find that when new objects have a low survival rate, the remain-
ing live objects are likely to cause fragmentation. We therefore copy new objects,
which is very effective in small heaps. Second, since completeness requires a tracing
cycle collection phase, RC Immix seizes upon this opportunity to incorporate reac-
tive defragmentation of older objects. In both cases, we use opportunistic copying,
which mixes copying and leaving objects in place, and thus can stop copying when it
exhausts available memory.

Two engineering contributions of RC Immix are improved handling of roots and
sharing the limited header bits to serve triple duty for reference counting, backup
cycle collection with tracing, and opportunistic copying. The combination of these
innovations results in a collector that attains great locality for the mutator and very
low overhead for reference counting. Measurements on our Java benchmarks show
that for all but the smallest of heap sizes RC Immix outperforms the best high per-
formance collector in the literature. In some cases RC Immix performs substantially
better.

In summary, this chapter makes the following contributions.
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1. We identify heap organization as the remaining performance bottleneck for
reference counting.

2. We merge reference counting with the heap structure of Immix by marrying
per-line live object counts with object reference counts for reclamation.

3. We identify two opportunities for copying objects — one for young objects and
one that leverages the required cycle collector — further improving locality and
mitigating fragmentation both proactively and reactively.

4. We develop and evaluate RC Immix, which improves performance by 12% on
average compared to RC and sometimes much more, matching or outperform-
ing the fastest production and eliminating the performance barrier to using
reference counting.

Because the memory manager determines performance for managed languages
and consequently application capabilities, these results open up new ways to meet
the needs of applications that depend on performance and prompt reclamation.

5.2 Motivation

This section motivates our approach. We start with a critical analysis of the perfor-
mance of our previous chapter’s improved reference counter, which we now refer
to simply as RC. This analysis shows that inefficiencies derive from: 1) remaining
reference counting overheads and 2) poor locality and instruction overhead due to
the free-list heap structure.

5.2.1 Motivating Performance Analysis

All previous reference counting implementations in the literature use a free-list al-
locator because when the collector determines that an object’s count is zero, it may
then immediately place the freed memory on a free list (See Section 2.5.7). We start
our analysis by understanding the performance impact of this choice, using hardware
performance counters. We then analyze RC further to establish its problems and
opportunities for performance improvements.

5.2.1.1 Free-List and Contiguous Allocation

Recall from Section 2.3.1 and 2.6:

1. A free-list allocator organizes memory into k size-segregated free lists and allo-
cates new objects into a free cell in the smallest size class that accommodates
the object.

2. A contiguous allocator allocates new objects by incrementing a ‘bump’ pointer
by the size of the new object.
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Mutator Immix Mark-Sweep Semi-Space

Time 1.000 1.100 1.007

Instructions Retired 1.000 1.071 1.000

L1 Data Cache Misses 1.000 1.266 0.966

Table 5.1: The mutator characteristics of mark-sweep relative to Immix using the geometric
mean of the benchmarks. GC time is excluded. Free-list allocation increases the number of
instructions retired and L1 data cache misses. Semi-space serves as an additional point of
comparison.

3. A mark-region allocator uses a simple bump pointer to allocate new objects into
regions of contiguous memory.

First, to explore the performance impact of free-list allocation, we evaluate mutator
time, which is the total time minus the collector time, in Table 5.1. We measure mark-
region collector Immix, mark-sweep using a free list, and semi-space [2.4.3], across a
suite of benchmarks. We compare mutator time of Immix to mark-sweep to cleanly
isolate the performance impact of the free-list allocator versus the Immix allocator.
Mark-sweep uses the same free-list implementation as RC, and neither Immix nor
mark-sweep use barriers in the mutator. We also compare to semi-space. Semi-space
is the canonical example of a contiguous allocator and thus an interesting limit point,
but it is incompatible with reference counting. The semi-space data confirms that
Immix is very close to the ideal for a contiguous allocator.

The contiguous bump allocator has two advantages over the free list, both of
which are borne out in Table 5.1. The combined effect is 10% performance advantage.
The first advantage of a contiguous allocator is that it improves the cache locality of
contemporaneously allocated objects by placing them on the same or nearby cache
lines, and interacts well with modern memory systems. Our measurements in Ta-
ble 5.1 confirm prior results [Blackburn et al., 2004a], showing that a free list adds
27% more L1 data cache misses to the mutator, compared to the Immix contiguous
allocator. This degradation of locality has two related sources. 1) Contemporaneously
allocated objects are much less likely to share a cache line when using a free list.
2) A contiguous allocator touches memory sequentially, priming the prefetcher to
fetch lines before the allocator writes new objects to them. On the other hand, a
free-list allocator disperses new objects, defeating hardware prefetching prediction
mechanisms. Measurements by Yang et al. [2011] show these prefetching effects.

The second advantage of contiguous allocation is that it uses fewer instructions
per allocation, principally because it zeros free memory in bulk using substantially
more efficient code [Yang et al., 2011]. The allocation itself is also simpler because
it only needs to check whether there is sufficient memory to accommodate the new
object and increase the bump pointer, while the free-list allocator has to look up
and update the metadata to decide where to allocate. We inspect generated code
and confirm the result of Blackburn et al. [2004a] — that in the context of a Java
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Mutator Sticky Immix RC Immix

Time 1.000 1.139 0.984

Instructions Retired 1.000 1.092 0.972

L1 Data Cache Misses 1.000 1.329 1.018

Table 5.2: The mutator characteristics of RC and Sticky Immix, which except for heap layout
have similar features. GC time is excluded. RC’s free-list allocator increases instructions
retired and L1 cache misses. Immix serves as a point of comparison.

optimizing compiler, where the size of most objects is statically known, the free-list
allocation sequence is only slightly more complex than for the bump pointer. The
overhead in additional instructions shown in Table 5.1 is therefore solely attributable
to the substantially less efficient cell-by-cell zeroing required by a free-list allocator.
We measure a 7% increase in the number of retired instructions due to the free list
compared to Immix’s contiguous allocator.

5.2.1.2 Analyzing RC Overheads

We use a similar analysis to examine mutator overheads in RC by comparing to
Sticky Immix [Blackburn and McKinley, 2008; Demers et al., 1990], a generational
variant of Immix. We choose Sticky Immix for its similarities to RC. Both collectors
a) are mostly non-moving, b) have generational behavior, and c) use similar write
barriers. This comparison holds as much as possible constant but varies the heap
layout between free list and contiguous.

Table 5.2 compares mutator time, retired instructions, and L1 data cache misses
of RC and Sticky Immix. The mutator time of RC is on average 13.9% slower than
Sticky Immix, which is reflected by the two performance counters we report. 1) RC
has on average 9.2% more mutator retired instructions than Sticky Immix. 2) RC has
on average 33% more mutator L1 data cache misses than Sticky Immix. These results
are consistent with the hypothesis that RC’s use of a free list is the principal source
of overhead compared to Sticky Immix, and motivates our design that combines
reference counting with the Immix heap structure.

5.3 Design of RC Immix

This section presents the design of Reference Counting Immix (RC Immix), which
combines the RC and Immix collectors. This combination requires solving two prob-
lems. 1) We need to adapt the Immix line/block reclamation strategy to a reference
counting context. 2) We need to share the limited number of bits in the object header
to satisfy the demands of both Immix and reference counting.

In addition, RC Immix seizes two opportunities for defragmentation using proac-
tive and reactive opportunistic copying. When identifying new objects for the first time,
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it opportunistically copies them, proactively defragmenting. When it, on occasion,
performs cyclic garbage collection, RC Immix performs reactive defragmentation.

Similar to RC, RC Immix has frequent reference counting phases and occasional
backup cycle tracing phases. This structure divides execution into discrete phases of
mutation, reference counting collection, and cycle collection.

5.3.1 RC and the Immix Heap

Until now, reference counting algorithms have always used free-list allocators. When
the reference count for an object falls to zero, the reference counter frees the space
occupied by the object, placing it on a free list for subsequent reuse by an allocator.
Immix is a mark-region collector, which reclaims memory regions when they are
completely free, rather than reclaiming memory on a per-object basis. Since Immix
uses a line and block hierarchy, it reclaims free lines and if all of the lines in a block
are free, it reclaims the free block. Lines and blocks cannot be reclaimed until all
objects within them are dead.

5.3.1.1 RC Immix Line and Block Reclamation

RC Immix detects free lines by tracking the number of live objects on a line. RC Immix
replaces Immix’s line mark with a per-line live object count, which counts the number
of live objects on the line. It does not count incoming references to the line. Each
object is born dead in RC, with a zero reference count to elide all reference counting
work for short lived objects. In RC Immix, each line is also born dead with a zero live
object count to similarly elide all line counting work when a newly allocated line only
contains short lived objects. RC only increments an object’s reference count when it
encounters it during the first GC after the object is born, either directly from a root or
due to an increment from a live mutated object. We propagate this laziness to per-line
live object counts in RC Immix.

A newly allocated line will contain only newly born objects. During a reference
counting collection, before RC Immix increments an object’s reference count, it first
checks the new bit. If the object is new, RC Immix clears the new object bit, indicating
the object is now old. It then increments the object reference count and the live object
count for the line. When all new objects on a line die before the collection, RC Immix
will never encounter a reference to an object on the line, will never increment the live
object count, and will trivially collect the line at the end of the first GC cycle. Because
Immix’s line marks are bytes (stored in the metadata for the block) and the number
of objects on a line is limited by the 256 byte line size, live object counts do not incur
any space penalty in RC Immix compared to the original Immix algorithm.

5.3.1.2 Limited Bit Count

In Jikes RVM, one byte (eight bits) is available in the object header for use by the
garbage collector. RC uses all eight bits. It uses two bits to log mutated objects for
the purposes of coalescing increments and decrements, one bit for the mark state
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RC!RC!RC!RC! LG!LG!N!M!

(a)  RC! (b)  Immix!

(c)  RC Immix during mutation!
      and  reference counting!

RC!RC!RC! LG!LG!N!M!S!

M! F! F!S!

(d)  RC Immix during tracing!

RC!RC!RC! N!M!S! F! F!

LG:! Logged !
N:! New object!

F:! Forwarded!M:! Marked!
RC: ! Reference Count! S:! Straddles lines !

Figure 5.1: How RC, Immix, and the different phases of RC Immix use the eight header bits.

for backup cycle tracing, one bit for identifying new objects, and the remaining four
bits to store the reference count. Figure 5.1(a) illustrates how RC fully uses all its
eight header bits. Table 4.2 shows that four bits for the reference count is sufficient to
correctly count references to more than 99.8% of objects.

To integrate RC and Immix, we need some header bits in objects for Immix-specific
functionality as well. The base Immix implementation requires four header bits, fewer
header bits than RC, but three bits store different information than RC. Both Immix
and RC share the requirement for one mark bit during a tracing collection. Immix
however requires one bit to identify objects that span multiple lines and two bits
when it forwards objects during copying. (Copying collectors, including Immix and
RC Immix, first copy the object and then store a forwarding pointer in the original
object’s header.) Figure 5.1(b) shows the Immix header bits.

Immix and RC Immix both require a bit to identify objects that may span lines
to correctly account for live and dead lines. Immix and RC Immix both use an
optimization called conservative marking which means this bit is only set for objects
that are larger than one line, which empirically is relatively uncommon [2.6]. Immix
stores its line marks in per-block metadata and RC Immix does the same. Immix and
RC Immix both need to forward objects during copying. Forwarding uses two bits
during a collection to record the forwarding state (not forwarded, being forwarded,
or forwarded).

At first cut, it seems that there are not enough bits since adding Immix func-
tionality to RC requires three bits and would thus reduce the bits for the reference
count to just one. However, we observe that RC Immix only needs the logged bits
for old objects to coalesce increments and decrements during reference counting, and
it only needs forwarding bits when tracing new objects and during backup cycle
collection. These activities are mutually exclusive in time, so they are complementary
requirements.

We therefore put the two bits to use as follows. 1) During mutation, RC Immix
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follows RC, using the logged bits to mark modified objects that it has remembered for
coalescing. 2) During a reference counting collection, RC Immix follows RC. For old
objects, RC Immix performs increments and decrements as specified by coalescing
and then clears the two bits. 3) For new objects and during cycle collection, RC Immix
follows Immix. It sets the now cleared bits to indicate that it has forwarded an object
and at the end of the collection, reclaims the memory. RC Immix thus overloads
the two bits for coalescing and forwarding. Figure 5.1(c) shows how RC Immix uses
the header bits during mutation and reference counting. Figure 5.1(d) shows how
RC Immix repurposes the logged bits for forwarding during a collection. All the other
bits remain the same in both phases.

Consequently, we reduce the number of reference counting bits to three. Three
bits will lead to overflow in just 0.65% of objects on average, as shown in Table 4.2.
When a reference count is about to overflow, it remains stuck until a cycle collection,
at which time it is reset or left stuck depending on the correct count.

Several optimizations and languages such as C# require pinning. Pinned objects
are usually identified by a bit in the header. The simplest way to add pinning is to
steal another bit from the reference count, reducing it to two bits. A slightly more
complex design adds pinning to the logged and forwarded bits, since each of logged
and forwarding only require three states. When we evaluated stealing a reference
count bit for pinning, it worked well (see Section 5.4.3), so we did not explore the
more complex implementation. Our default RC Immix configuration does not use
pinning.

5.3.2 Cycle Collection and Defragmentation

5.3.2.1 Cycle Collection

Reference counting suffers from the problem that cycles of objects will sustain non-
zero reference counts and therefore cannot be collected. The same problem affects
RC Immix, since line counts follow object liveness. RC Immix relies on a backup
tracing cycle collector to correct line counts that contain cyclic garbage and stuck
object counts. It uses a mark bit for each object and each line. It takes one bit from
the line count for the mark bit and uses the remaining bits for the line count. The
cycle collector starts by setting all the line marks and counts to zero. During cycle
collection, the collector marks each live object, marks its corresponding line, and
increments the live object count for the line when it first encounters the object. At the
end of marking, the cycle collector reclaims all unmarked lines.

Whenever any reference counting implementation finds that an object is dead,
it decrements the reference counts of all of the children of the dead object, which
may recursively result in more dead objects. This rule applies to reference counting
in RC and RC Immix. RC and RC Immix’s cycle collection is tasked with explicitly
resetting all reference counts. In addition, RC Immix corrects line counts. This feature
eliminates the need to sweep dead objects altogether and RC Immix instead sweeps
dead lines.
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RC Immix performs cycle collection on occasion. How often to perform cycle
collection is an empirical question that trades off responsiveness with immediacy of
cycle reclamation that we explore below.

5.3.2.2 Defragmentation with Opportunistic Copying

Reference counting is a local operation, meaning that the collector is only aware of
the number of references to an object, not their origin. Therefore it is generally not
possible to move objects during reference counting. However, RC Immix seizes upon
two important opportunities to copy objects and thus mitigate fragmentation. First,
we observe that when an object is subject to its first reference counting collection, all
references to that object will be traversed, giving us a unique opportunity to move
the object during a reference counting collection. Because each object is unreferenced
at birth, at its first GC, the set of all increments to a new object must be the set of all
references to that object. Second, we exploit the fact that cycle collection involves a
global trace, and thus presents another opportunity to copy objects. In both cases,
we use opportunistic copying. Opportunistic copying mixes copying with in-place
reference counting and marking such that it can stop copying when it exhausts the
available memory.

5.3.2.3 Proactive Defragmentation

RC Immix’s proactive defragmentation copies as many surviving new objects as pos-
sible given a particular copy reserve. During the mutator phase, the allocator dynam-
ically sets aside a portion of memory as a copy reserve, which strictly bounds the
amount of copying that may occur in the next collection phase. In a classic semi-space
copying collector, the copy reserve must be large enough to accommodate all surviv-
ing objects because it is dictated by the worst case survival scenario. Therefore, every
new block of allocation requires a block for the copy reserve. Because RC Immix is a
mark-region collector, which can reuse partially occupied blocks, copying is optional.
Copying is an optimization rather than required for correctness. Consequently, we
size the copy reserve according to performance criteria.

Choosing the copy reserve size reflects a tradeoff. A large copy reserve eats into
memory otherwise available for allocation and invites a large amount of copying.
Although copying mitigates fragmentation, copying is considerably more expensive
than marking and should be used judiciously. On the other hand, if the copy reserve
is too small, it may not compact objects that will induce fragmentation later.

Our heuristic seeks to mimic the behavior of a generational collector, while making
the copy reserve as small as possible. Ideally, an oracle would tell us the survival
rate of the next collection (e.g., 10%) and the collector would size the copy reserve
accordingly. We seek to emulate this policy by using past survival rate to predict the
future. Computing fine-gain byte or object survival in production requires looking
up every object’s size, which is too expensive. Instead, we use line survival rate as an
estimate of byte survival rate. We compute line survival rates of partially full blocks
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Immix Min Immix Survival
Alloc Heap Byte Object Line Block

Benchmark MB MB % % % %

compress 0.3 21 6 5 7 11

jess 262 20 1 1 7 53

db 53 19 8 6 8 10

javac 174 30 17 19 32 66

mpegaudio 0.2 13 41 37 44 100

mtrt 97 18 3 3 6 11

jack 248 19 3 2 6 32

avrora 53 30 1 4 8 9

bloat 1091 40 1 1 5 32

chart 628 50 4 5 17 67

eclipse 2237 84 6 6 7 36

fop 47 35 14 13 29 69

hsqldb 112 115 23 23 26 56

jython 1349 90 0 0 0 0

luindex 9 30 8 11 11 15

lusearch 1009 30 3 2 4 22

lusearch-fix 997 30 1 1 2 8

pmd 364 55 9 11 14 26

sunflow 1820 30 1 2 5 99

xalan 507 40 12 5 24 51

pjbb2005 1955 355 11 12 24 87

Table 5.3: Benchmark characteristics. Bytes allocated into the RC Immix heap and minimum
heap, in MB. The average survival rate as a percentage of bytes, objects, lines, and blocks
measured in an instrumentation run at 1.5× the minimum heap size. Block survival rate is
too coarse to predict byte survival rates. Line survival rate is fairly accurate and adds no
measurable overhead.
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Heap Size
Heuristic 1.2× 1.5× 2×

MAX 0.990 0.984 0.976

EXP 0.994 0.990 0.982

Table 5.4: Two proactive copying heuristics and their performance at 1.2, 1.5 and 2 times the
minimum heap size, averaged over all benchmarks. Time is normalized relative to Gen Immix.
Lower is better.

when we scan the line marks in a block to recycle its lines. This computation adds no
measurable overhead.

Table 5.3 shows the average byte, object, line, and block percentage survival rates.
Block survival rates significantly over-predict actual byte survival rates. Line survival
rates over-predict as well, but much less. The difference between line and block
survival rate is an indication of fragmentation. The larger the difference between the
two, the more live objects are spread out over the blocks and the less likely a fresh
allocation of a multi-line object will fit in the holes (contiguous free lines).

We experimented with a number of heuristics and choose two effective ones.
We call our default copy reserve heuristic MAX. MAX simply takes the maximum
survival rate of the last N collections (4 in our experiments). Also good, but more
complex, is a heuristic we call EXP. EXP computes a moving window of survival rates
in buckets of N bytes of allocation (32 MB in our experiments) and then weights each
bucket by an exponential decay function (1 for the current bucket, 1/2 for the next
oldest, 1/4, and so on). Table 5.4 shows that the simple MAX heuristic performs well.

5.3.2.4 Reactive Defragmentation

RC Immix also performs reactive defragmentation during cycle collection. At the
start of each cycle collection, the collector determines whether to defragment based
on fragmentation levels, any available free blocks, and any available partially filled
blocks containing free lines, using statistics it gathered in the previous collection.
RC Immix uses these statistics to select defragmentation sources and targets. If an
object is unmovable when the collector first encounters it, the collector marks the
object and line live, increments the object and line counts, and leaves the object in
place. When the collector first encounters a movable live object on a source block,
and there is still sufficient space for it on a target block, it opportunistically evacuates
the object, copying it to the target block, and leaves a forwarding pointer that records
the address of the new location. If the collector encounters subsequent references to
a forwarded object, it replaces them with the value of the object’s forwarding pointer.

A key empirical question for cycle detection and defragmentation is how often
to perform them. If we perform them too often, the system loses its incrementality
and pays both reference counting and tracing overheads. If we perform them too
infrequently, it takes a long time to reclaim objects kept alive by dead cycles and
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Threshold Heap Size
Cycle Defrag 1.2× 1.5× 2×

1% 1% 0.990 0.983 0.975
5% 5% 0.996 0.983 0.976

10% 10% 1.023 0.993 0.980

Table 5.5: Sensitivity to frequency of cycle detection and reactive defragmentation at 1.2,
1.5 and 2 times the minimum heap size, averaged over all benchmarks. Time is normalized
relative to Gen Immix. Lower is better.

the heap may suffer a lot of fragmentation. Both waste memory. This threshold is
necessarily a heuristic. We explore thresholds as a function of heap size.

We use the following principle for our heuristic. If at the end of a collection, the
amount of free memory available for allocation falls below a given threshold, then we
mark the next collection for cycle collection. We can always include defragmentation
with cycle detection, or we can perform it less frequently. Triggering cycle collection
and defragmentation more often enables applications to execute in smaller minimum
heap sizes, but will degrade performance. Depending on the scenario, this choice
might be desirable. We focus on performance and use a free memory threshold which
is a fraction of the total heap size. We experiment with a variety of thresholds to pick
the best values for both and show the results for three heap sizes in Table 5.5. Based
on the results in Table 5.5, we use 1% for both.

5.3.3 Reference versus Object Level Coalescing

When Levanoni and Petrank [2001] first described coalescing of reference counts, they
remembered the address and value of each reference when it was first mutated. How-
ever, in practice it is easier to remember the address and contents of each object when
the first of its reference fields is mutated. In the first case, the collector compares the
GC-time value of the reference with the remembered value and decrements the count
for the object referred to by the remembered reference and increments the count for
the object referred to by the latest value of the reference. With object level coalescing,
each reference within the object is remembered and compared. The implementation
challenge is due to the need to only remember each reference once, and therefore
efficiently record somewhere that a given reference had been remembered. Using a
bit in the object’s header makes it easy to do coalescing at object granularity. Both RC
and RC Immix use object level coalescing. As part of this work, we implemented ref-
erence level coalescing. We did this by stealing a high order bit within each reference
to record whether that reference had been remembered. We then map two versions
of each page to a single physical page (each one corresponding to the two possible
states of the high order bit). We must also modify the JVM’s object equality tests
to ensure that the stolen bit is ignored in any equality test. We were disappointed
to find that despite the low overhead bit stealing approach we devised, we saw no
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performance advantage in using reference level coalescing. Indeed, we observed a
small slowdown. We investigated and noticed that reference level coalescing places
a small but uniform overhead on each pointer mutation, but the potential benefit for
the optimization is dominated by the young object optimizations implemented in our
improved reference counting (RC) and RC Immix. As a result, we use object level
coalescing in RC Immix.

5.3.4 Optimized Root Scanning

The existing implementation of the RC algorithm treats Jikes RVM’s boot image as
part of the root set, enumerating each reference in the boot image at each collection.
We identified this as a significant bottleneck in small heaps and instead treat the boot
image as a non-collected part of the heap, rather than part of the root set. This very
simple change, which logs mutations to boot image objects instead of scanning them
at each collection, delivers a significant performance boost to RC in modest heaps
and is critical to RC Immix’s performance in small heaps (Figure 5.3(a)).

5.4 Results

We first compare RC Immix with other collectors at a moderate 2× heap size, then
consider sensitivity to available memory, and perform additional in-depth analysis.

5.4.1 RC Immix Performance Overview

Table 5.6 and Figure 5.2 compare total time, mutator time, and garbage collection
time of RC Immix and RC Immix without proactive copying (npc) against a number
of collectors. The figure illustrates the data and the table includes raw performance
as well as relative measurements of the same data. This analysis uses a moderate
heap size of 2× the minimum in which all collectors can execute each benchmark.
We explore the space-time tradeoff in more detail in Section 5.4.2. In Figure 5.2(c),
results are missing for some configurations on some benchmarks. In each of these
cases, either the numerator or denominator or both performed no GC (see Table 5.6).

The table and figure compare six collectors.

1. Full heap Immix [2.6].

2. Gen Immix, which uses a copying nursery and an Immix mature space [Black-
burn and McKinley, 2008].

3. Sticky Immix, which uses Immix with an in-place generational adaptation [Black-
burn and McKinley, 2008; Demers et al., 1990].

4. RC from Chapter 4.

5. RC Immix (npc) which excludes proactive copying and performs well in moder-
ate to large heaps due to very low collection times.

6. RC Immix as described in the previous section.
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Benchmark Gen Immix Immix Sticky Immix RC RC Immix (npc) RC Immix
milliseconds ——————————– Normalized to Gen Immix ——————————–

time timemu timegc time timemutimegc time timemutimegc time timemutimegc time timemutimegc time timemutimegc

compress 1760
±0.3

1741
±0.2

19
±10.0

0.99
±0.2

0.99
±0.2

0.79
±6.1

0.99
±0.2

0.99
±0.2

0.86
±6.9

0.99
±0.2

1.00
±0.2

0.24
±2.2

0.99
±0.2

1.00
±0.1

0.24
±2.2

0.99
±0.2

0.99
±0.2

0.25
±2.0

jess 355
±0.3

323
±0.2

32
±2.6

1.10
±0.4

1.03
±0.2

1.82
±4.6

0.95
±0.3

0.97
±0.3

0.75
±2.0

1.32
±0.4

1.33
±0.3

1.19
±2.8

1.02
±0.4

1.06
±0.3

0.59
±1.9

0.98
±0.8

1.00
±0.8

0.76
±2.0

db 1238
±0.3

1209
±0.3

29
±2.2

0.93
±0.6

0.93
±0.6

0.71
±2.5

1.06
±0.3

1.01
±0.3

3.22
±5.7

1.08
±0.4

1.09
±0.4

0.49
±2.8

0.96
±0.4

0.97
±0.5

0.51
±1.1

0.96
±0.5

0.97
±0.5

0.74
±1.4

javac 773
±0.2

661
±0.2

112
±1.1

0.83
±0.2

0.94
±0.2

0.19
±0.5

0.98
±0.4

0.98
±0.4

1.03
±1.6

0.94
±0.2

1.09
±0.2

0.11
±0.2

0.84
±0.3

0.98
±0.3

0.07
±0.2

0.93
±4.7

0.99
±0.8

0.62
±28.4

mpegaudio 1103
±0.0

1103
±0.0

0
±0.0

1.00
±0.0

1.00
±0.0

0.00
±0.0

1.00
±0.2

1.00
±0.2

0.00
±0.0

1.00
±0.0

1.00
±0.0

0.00
±0.0

1.00
±0.2

1.00
±0.2

0.00
±0.0

1.00
±0.3

1.00
±0.3

0.00
±0.0

mtrt 245
±1.5

215
±1.6

30
±2.9

1.02
±1.3

0.98
±1.2

1.34
±4.5

0.94
±1.3

0.97
±1.2

0.71
±5.2

1.01
±1.2

1.07
±1.2

0.57
±3.9

0.95
±2.2

1.02
±2.5

0.49
±3.1

0.98
±1.2

1.00
±1.2

0.84
±4.6

jack 496
±0.3

453
±0.2

43
±2.7

1.04
±0.3

1.02
±0.2

1.19
±3.1

0.96
±0.3

0.99
±0.2

0.67
±2.1

1.16
±0.3

1.16
±0.2

1.13
±2.6

1.02
±0.7

1.04
±0.7

0.81
±2.1

0.98
±0.5

1.00
±0.4

0.67
±2.4

mean 811
±0.4

767
±0.4

44
±3.6

geomean 0.98 0.98 0.83 0.98 0.98 1.00 1.08 1.12 0.46 0.96 1.01 0.35 0.97 0.99 0.60

avrora 2266
±0.3

2250
±0.3

16
±3.3

0.98
±0.3

0.98
±0.3

0.54
±2.1

0.99
±0.2

0.99
±0.2

0.27
±2.6

1.01
±0.3

1.01
±0.3

0.18
±1.1

0.99
±0.3

1.00
±0.3

0.10
±0.3

0.98
±0.2

0.99
±0.2

0.24
±9.9

bloat 2179
±0.4

2047
±0.5

132
±1.3

1.07
±1.0

0.98
±1.0

2.47
±4.5

1.00
±0.5

0.99
±0.6

1.08
±1.6

1.20
±0.6

1.22
±0.6

0.86
±1.3

1.02
±0.7

1.04
±0.7

0.67
±2.2

0.98
±1.0

1.00
±1.1

0.63
±1.4

eclipse 11272
±0.9

10654
±1.0

618
±1.1

1.01
±0.8

1.00
±0.9

1.15
±2.9

1.04
±0.9

1.00
±1.0

1.72
±1.9

1.12
±0.9

1.13
±1.0

0.88
±1.1

0.99
±0.8

1.01
±0.8

0.66
±1.4

1.00
±1.2

1.01
±1.2

0.87
±2.1

fop 579
±0.5

562
±0.5

17
±2.3

0.95
±0.5

0.98
±0.4

0.05
±10.0

0.99
±0.4

0.98
±0.4

1.07
±2.2

1.06
±0.5

1.06
±0.5

0.86
±1.7

0.99
±0.6

1.00
±0.4

0.62
±9.7

0.99
±0.4

0.99
±0.4

1.02
±3.8

hsqldb 706
±0.5

561
±0.1

145
±2.5

1.30
±2.3

0.91
±2.9

2.85
±5.1

1.09
±1.1

0.99
±0.1

1.48
±5.8

1.19
±0.5

1.27
±0.2

0.88
±1.6

0.94
±0.4

0.99
±0.1

0.78
±1.4

1.06
±0.5

0.98
±0.1

1.36
±2.8

jython 2416
±0.4

2335
±0.4

81
±1.7

1.05
±0.5

0.97
±0.4

3.18
±9.0

1.01
±0.4

0.99
±0.4

1.58
±2.4

1.17
±0.7

1.16
±0.8

1.27
±2.0

0.96
±0.4

0.97
±0.4

0.50
±3.3

0.96
±0.3

0.98
±0.3

0.52
±1.1

luindex 637
±7.8

632
±7.8

5
±6.8

0.98
±6.8

0.99
±6.8

0.00
±0.0

1.02
±9.3

1.01
±9.3

1.99
±17.7

1.01
±8.0

1.01
±8.1

0.71
±4.4

0.94
±6.2

0.95
±6.2

0.00
±0.0

0.94
±6.1

0.95
±6.2

0.04
±8.4

lusearch 1306
±0.4

782
±0.6

524
±0.4

1.21
±0.7

0.79
±0.7

1.83
±1.1

1.34
±1.4

0.85
±0.5

2.06
±3.3

0.89
±0.7

1.07
±1.0

0.63
±0.6

0.63
±0.6

0.80
±0.8

0.36
±0.4

0.62
±0.4

0.79
±0.5

0.36
±0.3

lusearchfix 539
±1.3

497
±1.3

42
±1.2

1.17
±1.2

0.94
±1.2

3.89
±4.8

0.96
±1.4

0.97
±1.5

0.80
±1.3

1.17
±1.4

1.14
±1.5

1.52
±1.9

1.01
±1.3

1.00
±1.4

1.08
±2.0

0.95
±1.3

0.97
±1.4

0.78
±1.0

pmd 621
±0.9

521
±0.8

100
±3.5

1.01
±0.8

0.99
±0.8

1.10
±3.3

0.94
±0.7

0.96
±0.7

0.85
±2.6

1.10
±0.9

1.20
±0.8

0.56
±1.8

0.95
±0.8

1.02
±0.8

0.55
±2.7

0.92
±0.9

0.98
±0.9

0.64
±3.3

sunflow 1725
±1.1

1619
±1.2

106
±0.9

1.19
±1.1

0.97
±1.0

4.56
±8.3

0.99
±1.4

0.99
±1.5

0.96
±1.3

1.16
±1.0

1.10
±1.0

1.94
±2.9

1.17
±1.1

1.04
±0.9

3.18
±8.4

1.05
±1.2

1.06
±1.3

0.88
±3.2

xalan 754
±0.6

579
±0.7

175
±1.0

0.96
±0.5

0.90
±0.6

1.18
±1.3

1.37
±1.4

0.98
±0.7

2.65
±5.4

1.07
±1.0

1.10
±0.9

0.93
±3.1

0.79
±0.7

0.94
±0.9

0.29
±0.4

0.79
±0.6

0.92
±0.7

0.34
±0.5

mean 2154
±1.3

2023
±1.3

131
±2.2

geomean 1.06 0.96 1.90 1.03 0.99 1.14 1.11 1.13 0.84 0.97 1.00 0.60 0.96 0.98 0.51

pjbb2005 2870
±0.4

2606
±0.3

264
±2.1

1.05
±0.7

1.01
±0.4

1.48
±5.4

1.07
±0.4

1.02
±0.3

1.60
±2.9

1.15
±0.9

1.17
±0.4

0.97
±8.4

1.04
±0.5

1.04
±0.4

1.02
±3.6

1.01
±0.9

1.03
±0.4

0.76
±7.7

min 245 215 5 0.83 0.90 0.00 0.94 0.96 0.27 0.94 1.00 0.11 0.79 0.94 0.00 0.79 0.92 0.04
max 11272 10654 618 1.30 1.03 4.56 1.37 1.02 3.22 1.32 1.33 1.94 1.17 1.06 3.18 1.06 1.06 1.36

mean 1746
±0.9

1637
±0.9

109
±2.5

geomean 1.03 0.97 1.37 1.02 0.99 1.11 1.10 1.13 0.69 0.97 1.00 0.51 0.97 0.99 0.55

Table 5.6: Total, mutator, and collection performance at 2× minimum heap size with con-
fidence intervals. Figure 5.2 graphs these results. We report milliseconds for Gen Immix
and normalize the others to Gen Immix. (We exclude mpegaudio and lusearch from averages.)
RC Immix performs 3% better than production Gen Immix.
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Mutator Gen Immix RC RC Immix

Time 1.000 1.126 0.989

Instructions Retired 1.000 1.094 1.012

L1 Data Cache Misses 1.000 1.313 1.043

Table 5.7: Mutator performance counters show RC Immix solves the instruction overhead and
poor locality problems in RC. Applications executing RC Immix compared with Gen Immix
in a moderate heap size of 2× the minimum execute the same number of retired instructions
and see only a slightly higher L1 data cache miss rate. Comparing RC to RC Immix, RC Immix
reduces cache miss rates by around 20%.

We normalize to Gen Immix since it is the best performing in the literature across
all heap sizes and consequently is the default production collector in Jikes RVM. All
of the collectors, except RC, defragment when there is an opportunity, i.e., there are
partially filled blocks without fresh allocation and fragmentation is high, as described
in Section 5.3.2.

These results show that RC Immix outperforms the best performing garbage col-
lector at this moderate heap size and completely eliminates the reference counting
performance gap. The timegc result shows that, not surprisingly, Immix, the only full
heap collector that does not exploit any generational behaviors, has the worst collec-
tor performance, degrading by on average 37%. Since garbage collection time is a
relatively smaller influence on total time in a moderate heap, all but RC perform simi-
larly on total time. At this heap size RC Immix performs the same as RC Immix (npc),
but its worse-case degradation is just 6% while its best case improvement is 21%.
By comparison, RC Immix (npc) has a worst case degradation of 17% and best case
improvement of 21%. Table 5.6 and Figure 5.2(c) show that RC Immix (npc) has
the best garbage collection time, outperforming Gen Immix by 49%. As we show
later, RC Immix has an advantage over RC Immix (npc) when memory is tight and
fragmentation is a bigger issue.

The timemu columns of Table 5.6 and Figure 5.2(b) show that RC Immix matches
or beats the Immix collectors with respect to mutator performance and improves
significantly over RC in a moderate heap. The reasons that RC Immix improves
over RC in total time stem directly from improvements in mutator performance.
RC mutator time is 13% worse than any other system, as we reported in Table 5.2
and discussed in Section 5.2. RC Immix completely eliminates this gap in mutator
performance.

Table 5.7 summarizes the reasons for RC Immix’s improvement over RC by show-
ing the number of mutator retired instructions and mutator L1 data cache misses
for RC and RC Immix normalized to Gen Immix. RC Immix solves the instruction
overhead and poor locality problems in RC because by using a bump pointer, it wins
twice.

First, it gains the advantage of efficient zeroing of free memory in lines and blocks,
rather than zeroing at the granularity of each object when it dies or is recycled in the
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free list (see Section 5.2 and measurements by Yang et al. [2011]). Second, it gains
the advantage of contiguous allocation in memory of objects allocated together in
time. This heap layout induces good cache behavior because objects allocated and
used together occupy the same cache line, and because the bump pointer marches
sequentially through memory, the hardware prefetcher correctly predicts the next line
to fetch, so it is in cache when the program (via the memory allocator) accesses it.
Prefetching measurements by Yang et al. [2011] quantify this effect. Table 5.7 shows
that compared to RC, RC Immix reduces cache misses by around 20% (1.043/1.313).
Gen Immix has slightly lower cache miss rates than RC Immix, which makes sense
because it always allocates new objects contiguously (sequentially) whereas RC Immix
sometimes allocates into partially full blocks and must skip over occupied lines.

5.4.2 Variable Heap Size Analysis

Garbage collection is fundamentally a time-space tradeoff, which this section ex-
amines by varying the heap size. Figure 5.3 evaluates RC Immix performance as a
function of available memory. Each of the three graphs varies heap size between
1× and 6× the minimum in which all collectors can execute the benchmark. In
each graph, performance is normalized to the best performance data point on that
graph, so the best result has a value of 1.0. The graphs plot total time, mutator
time, and garbage collection time as a geometric mean of the benchmarks, showing
Gen Immix, RC, RC (nbs) with no boot image scanning (Section 5.3.4), RC Immix
and RC Immix (npc) with no proactive copying. Figure 5.3(a) shows total time, and
reveals that RC Immix dominates RC at all heap sizes, and consistently outperforms
Gen Immix at heap sizes above 1.2× the minimum. Figures 5.3(b) and 5.3(c) reveal
the source of the behavior of RC Immix seen in Figure 5.3(a). Figure 5.3(b) reveals that
the mutator performance of RC Immix is consistently good. This graph makes it clear
that the underlying heap structure has a profound impact on mutator performance.
Figure 5.3(c) shows that in garbage collection time, RC Immix outperforms RC in
tighter heaps, matches Gen Immix at heap size 1.2× the minimum and outperforms
Gen Immix at heap sizes above 1.3× the minimum.

5.4.3 Pinning

We conducted a simple experiment to explore the tradeoff associated with dedicating
a header bit for pinning (see Section 5.3.1). While a pinning bit could be folded into
the logged and forwarding bits, in this case we simply trade pinning functionality
for reduced reference counting bits. In Jikes RVM, pinning can be utilized by the
Java standard libraries to make IO more efficient, so although no Java application can
exploit pinning directly, there is a potential performance benefit to providing pinning
support.

Table 5.8 shows the result of a simple experiment with three configurations at
three heap sizes. The performance numbers are normalized to Gen Immix and repre-
sent the geometric mean of all benchmarks. In the first row, we have three reference
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Figure 5.3: The performance of Gen Immix, RC, RC with no boot image scanning, RC Immix,
and RC Immix with no proactive copying as a function of heap size.
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Bits Used Heap Size
count pin 1.2× 1.5× 2×

3 0 0.994 0.986 0.976

2 0 0.990 0.982 0.979

2 1 0.988 0.981 0.974

Table 5.8: Performance sensitivity of RC Immix with pinning bit at 1.2, 1.5 and 2 times the
minimum heap size, averaged over all benchmarks. Time is normalized relative to Gen Immix.
Lower is better.

counting bits and no pinning support, which is the default configuration used in
RC Immix. Then we reduce the number of reference counting bits to two, without
adding pinning. Finally we use two reference counting bits and add support for pin-
ning. The results show that to the first approximation, the tradeoff is not significant,
with the performance variations all being within 0.6% of each other. Although the
variations are small, the numbers are intriguing. We see that at the 2× heap, the
introduction of pinning improved total performance by around 0.5% when holding
the reference counting bits constant.

5.4.4 Benchmark Analysis

Table 5.6 reveals that sunflow is significantly slower on RC Immix (npc) than Gen Immix,
whereas xalan and lusearch are significantly faster when using RC Immix. We now
analyze these outlier results.

Sunflow Table 5.6 shows that sunflow is 17% slower in total time on RC Immix (npc)
than Gen Immix, and that this slowdown is entirely due to a garbage collection slow-
down of 3.18×. The source of this problem appears to be high fragmentation among
surviving young objects in sunflow. It was this observation that encouraged us to
explore proactive defragmentation, and this benchmark shows that the strategy is
hugely effective, as RC Immix is only 5% slower than Gen Immix. sunflow has a high
allocation rate [Yang et al., 2011], and our observation that Gen Immix does a large
number of nursery collections, but no mature space collections at 2× minimum heap
size confirms this behavior. RC Immix (npc) does a large number of collections, many
of which are defragmenting cycle collections, and yet sunflow has few cycles [4.3.6].
Furthermore, Table 5.3 shows that although the line survival rate for sunflow is 5%, the
block survival rate is a remarkable 99%. This indicates that surviving objects are scat-
tered in the heap generating fragmentation, thus Immix blocks are being kept alive
unnecessarily. We also established empirically that sunflow’s performance degraded
substantially if the standard defragmentation heuristic was made less aggressive.
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Xalan Both RC Immix (npc) and RC Immix perform very well on xalan, principally
because they have lower GC time than Gen Immix. RC Immix (npc) has 71% lower
GC time than Gen Immix and RC Immix has 66% lower GC time than Gen Immix.
xalan has a large amount of medium lifetime objects, which can only be recovered
by a full heap collection with Gen Immix, but are recovered in a timely way in both
RC Immix (npc) and RC Immix.

Lusearch RC Immix performs much better on lusearch than Gen Immix. In fact
Gen Immix has substantially worse mutator time than any other system. This re-
sult is due to the bug in lusearch that causes the allocation of a very large number of
medium sized objects, leading Gen Immix to perform over 800 nursery collections,
destroying mutator locality. The allocation pathology of lusearch is established [3.1]
and is the reason why we use lusearch-fix in our results, exclude lusearch from all of
our aggregate (mean and geomean) results, and leave it greyed out in Table 5.6. If
we were to include lusearch in our aggregate results then both RC Immix (npc) and
RC Immix would be 5% faster in geomean than Gen Immix.

5.5 Summary

Prior to this work, all reference counting implementations including RC, the collector
we introduced in Chapter 4, use a free-list allocator. A free-list allocator suffers from
fragmentation and poor cache locality compared to a contiguous allocator [Blackburn
et al., 2004a]. The chapter identifies the free-list heap organization as the main
reason for the 10% performance gap between RC and a production generational
tracing collector, Gen Immix. This chapter introduces a new collector, RC Immix, that
replaces the free list with the line and block heap structure of Immix, and is the first to
combine copying with reference counting, which mitigates fragmentation. RC Immix
outperforms a highly tuned production generational collector (Gen Immix) — the
first reference counting collector to achieve that milestone.

RC Immix, like other high performance collectors and each of the collectors dis-
cussed up to this point in the thesis, is an exact garbage collector. It depends on
exact identification of references in the stacks and registers, which requires compiler
cooperation and significant engineering effort. Many implementations of other pop-
ular languages avoid the engineering headache of exact garbage collection by using
conservative garbage collection but do so at the cost of significant performance over-
heads. The next chapter will focus on achieving high performance garbage collection
in conservative settings.



Chapter 6

Fast Conservative Garbage
Collection

This chapter examines conservative garbage collection for managed languages. Con-
servative garbage collectors are robust to ambiguity due to either language impre-
cision or lack of engineering support for exactness. However, conservatism comes
with a significant performance overhead. This chapter identifies the non-moving free-
list heap structure as the main source of this overhead. We present the design and
implementation of conservative Immix and conservative RC Immix collectors, which
overcome the limitations of a free-list heap structure. The conservative RC Immix
collector matches the performance of a well tuned exact generational copying collec-
tor, Gen Immix, showing that conservative garbage collection is compatible with high
performance for managed languages.

This chapter is structured as follows. Section 6.2 describes the design of our object
map filtering mechanism for ambiguous roots and our family of conservative Immix
and reference counting collectors including conservative RC Immix. Section 6.3 per-
forms the detailed study of the impact of conservatism on collector mechanisms and
design including excess retention, ambiguous root filtering, and pinning. Section 6.4
evaluates our family of conservative collectors with their exact counterparts and eval-
uates conservative RC Immix collector with high performance exact RC Immix collec-
tor, with the best copying generational exact tracing collector Gen Immix, and with
two widely used conservative collector Boehm-Demers-Weiser (BDW) and Mostly
Copying (MCC).

This chapter describes work published as “Fast Conservative Garbage Collec-
tion” [Shahriyar, Blackburn, and McKinley, 2014].

6.1 Introduction

Language semantics and compiler implementations determine whether memory man-
agers may implement exact or conservative garbage collection. Exact collectors identify
all references and may move objects and redirect references transparently to appli-
cations. Conservative collectors must reason about ambiguous references, constraining
them in two ways. (1) Because ambiguous references may be pointers, the collector
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must conservatively retain referents. (2) Because ambiguous references may be values,
the collector must not change them and cannot move (must pin) the referent [2.7.2].

Languages such as C and C++ are not memory safe: programs may store and
manipulate pointers directly. Consequently, their compilers cannot prove whether
any value is a pointer or not, which forces their collectors to be conservative and
non-moving. Managed languages, such as Java, C#, Python, PHP, JavaScript, and safe
C variants, have a choice between exact and conservative collection. In principle, a
conservative collector for managed languages may treat stacks, registers, heap, and
other references conservatively. In practice, the type system easily identifies heap
references exactly. However, many systems for JavaScript, PHP, Objective C, and
other languages treat ambiguous references in stacks and registers conservatively.

This chapter explores conservative collectors for managed languages with am-
biguous stacks and registers. We first show that the direct consequences of these
ambiguous references on excess retention and pinning are surprisingly low. Using a
Java Virtual Machine and Java benchmarks, conservative roots falsely retain less than
0.01% of objects and pin less than 0.03%. However, conservative constraints have had
a large indirect cost by how they shaped the choice of garbage collection algorithms.

Many widely used managed systems implement collectors that are conservative
with respect to stacks and registers. Microsoft’s Chakra JavaScript VM implements a
conservative mark-sweep Boehm, Demers, Weiser style (BDW) collector [2.7.3]. This
non-moving free-list collector was originally proposed for C, but some managed
runtimes use it directly and many others have adapted it. Apple’s WebKit JavaScript
VM implements a Mostly Copying Conservative (MCC) collector, also called a Bartlett-
style collector [2.7.4]. MCC divides memory into pages, evacuates live objects onto
empty pages, and pins entire pages that contain targets of ambiguous references.

These systems are purposefully sacrificing proven performance benefits of exact
generational collectors [Blackburn et al., 2004a; Blackburn and McKinley, 2008]. To
quantify this performance cost, we implement and compare them to a copying gen-
erational collection (Gen Immix), the production collector in Jikes RVM. Figure 6.1
summarizes our results, plotting geometric mean of total (mutator + collector) time
on our Java Benchmarks. The total time penalty is 12% for BDW mark-sweep and
45% for MCC.

These systems purposefully chose conservative over exact collection to reduce
their compiler burden. Exactly identifying root references requires a strict compiler
discipline that constructs and maintains stack maps that precisely report every word
on the stack and in registers that holds a live reference for every point in execution
where a collection may occur. This process is a formidable implementation task
that requires tracking every reference in all optimizations and compiler intermediate
forms, and it restricts some optimizations, such as code motion [2.7.1].

An alternative tactic for limiting the compiler burden is naive reference counting,
which is used by Objective-C, Perl, Delphi, PHP, and Swift [2.5.1]. These collectors
never examine the stack because the compiler or interpreter simply inserts increments
and decrements when the program changes an object reference. In Chapter 4 and 5 we
quantify the penalty of deferred reference counting, which eliminates increments and
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Figure 6.1: Performance of exact semi-space (SS), conservative MCC, exact mark-sweep (MS),
conservative BDW, exact RC Immix, and conservative RC Immixcons normalized to exact
Gen Immix at a moderate heap size. Lower is better. Prior conservative collectors sacri-
fice performance. RC Immixcons performs similarly to Gen Immix and RC Immix, the best
exact collectors.

decrements on local variables and is thus faster than naive reference counting, 40%
compared to a copying generational collector [Deutsch and Bobrow, 1976; Apple Inc.,
2014]. All of these language implementations either forbid cycles, leak cycles, or
perform costly trial deletion [2.5.6]. Naive reference counting imposes an even larger
performance sacrifice.

This chapter shows how to combine high performance with the engineering ad-
vantages of conservative collection. We introduce conservative Immix, conservative
deferred reference counting, and combine them in conservative RC Immix. The re-
sult is slightly faster than a well tuned generational collector. We make surprisingly
simple modifications to Immix and reference counting. As far as we are aware, this
collector is the first conservative reference counter.

To make Immix conservative, we simply start the collection by enumerating the
ambiguous roots in stacks and registers, marking their referents live and pinned;
the collector never moves them. To ensure that referents are valid, we introduce an
object map, which identifies objects live at the last collection or allocated since then.
Conservative Immix collectors thus limit pinning overheads to the line granularity
and maximize copying and locality benefits. A similarly surprisingly simple change
makes deferred reference counting conservative. We start collection by enumerating
the ambiguous roots, validating them with the object map, and retaining any object
referenced by an ambiguous root, even if its reference count falls to zero.

We implement six conservative collectors and compare to their exact counterparts
in a Java VM. We implement prior work — conservative BDW and MCC, and their
exact mark-sweep and semi-space counterparts. We design and implement four
new conservative collectors: RCcons, Immixcons, Sticky Immixcons, and RC Immixcons.
Conservative roots degrade all collectors by less than 3% compared to their exact
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counterparts, except for MCC which degrades over semi-space by 9%. Figure 6.1
shows that RC Immixcons improves total performance over BDW by 13% on average
and results later in the chapter show improvements up to 41%. RC Immixcons delivers
excellent performance, competitive with the fastest exact generational collectors.

In summary, this chapter makes the following contributions.

1. We examine conservative garbage collection for managed languages.

2. We show that the direct cost of conservative roots is small for Java workloads:
excess retention is less than 0.01% and pinned objects are just 0.03% of the heap.

3. We design, implement, and evaluate new and prior conservative collectors and
compare to exact collectors.

4. We introduce an optimized object map that filters ambiguous roots to valid
objects.

5. We show that Immix lines and opportunistic copying are well matched to con-
servative garbage collection needs.

6. We extend deferral using the object map and implement the first conservative
reference counting collector.

7. We show that RC Immixcons is the first conservative collector to match the per-
formance of exact generational copying collection.

8. We describe how other managed languages may achieve these results.

These findings demonstrate that high performance garbage collection is possible
for managed languages, whether or not they invest in engineering exact collection.

6.2 Design

We now describe the design of our object map filtering mechanism for ambiguous
roots and our family of conservative Immix and reference counting collectors.

6.2.1 Object Map Filtering

To precisely identify objects, we filter ambiguous roots with an object map, a bitmap
which records the precise location of all objects that were live at the last collection
or have been allocated since. A few details of maintaining the object map vary from
collector to collector, but the fundamentals of the design are common to all.

The bitmap records the location of all potentially live objects. When processing
ambiguous references, the collector consults the object map, discarding any reference
that does not point to the start of a potentially live object.

Initially the object map is empty. At object allocation time, the allocator sets a bit
in the object map that encodes the address of the start of the object. At the start of
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each collection, the collector first scans the stacks and registers. If a value falls in the
range of the heap, the collector consults the object map. If the reference corresponds
to an object map entry, it is a valid ambiguous root and the collector adds it to the
conservative roots. Otherwise it is discarded.

During collection, the collector must update the object map to account for dead
objects. In reference counting, which explicitly identifies dead objects, the collector
simply unsets the relevant bit in the object map when it reclaims an object with a
zero reference count. Tracing instead directly identifies live objects. After filtering
the roots, the tracing collectors zero the entire object map and then the collector
reconstructs it by setting a bit for each live object when it traces the object. Because
our collectors are parallel, the collector must set or clear the bit atomically to avoid a
race to update the containing word among the parallel collector threads. All allocators
use thread local allocation buffers, so there is no race to set the bit at allocation time.

To minimize the object map overhead, we use the x86 BTS and BTR instructions
to set and clear its bits in the atomic modes when appropriate. We empirically
established that these instructions outperform (0.6% total time improvement) software
bit manipulation instruction sequences, particularly when changing the bit atomically.

Because of object alignment requirements and because Jikes RVM uses a specific
format for its two word header, Jikes RVM can always disambiguate a ‘status word’
and ‘type information block’ (TIB) pointer, the two words in every object’s header.
We use this insight to reduce the object map resolution to one bit per eight bytes.
When validating ambiguous pointers, we first determine whether the ambiguous
reference points to a valid double word and then examine those words to determine
whether the reference points to the start of an object. This optimization halves the
space overhead of the object map from 1:32 (3%) to 1:64 (1.5%). It reduces the mutator
L1 data cache misses by 0.7%. By reducing the cache footprint of the object map, we
improve mutator locality. The average mutator overhead due to the object map falls
from 2.3% to 1.3% as a result of this optimization (Figure 6.2).

6.2.2 Conservative Immix and Sticky Immix

Immix’s fine-grained heap organization with copying is an excellent match for conser-
vative garbage collection. Most objects are allocated contiguously into 32 KB blocks,
and can be copied upon survival. Conservative Immix pins the target objects of am-
biguous references at the granularity of 256 B lines. The size of contiguous allocation
regions and the associated potential for better locality is thus increased by a factor
of eight over MCC, which pins at a page granularity. The granularity of pinning
and associated wasted space is also reduced sixteen-fold. Objects referenced from
ambiguous roots are pinned on the line(s) they occupy, but Immix may copy all other
objects according to its usual heuristics. This feature limits the impact of ambiguous
roots to internal line fragmentation.

Immix allocates into both completely empty blocks and partially occupied blocks,
but never into used lines. When allocating into an empty block, the corresponding
object map entries are first zeroed and then set as each object is allocated. When



80 Fast Conservative Garbage Collection

allocating into a recycled block, the object map areas associated with the free lines in
the block are zeroed and the remaining areas are left as-is. Allocation then proceeds
and sets the object map bits for each new object.

The Sticky Immix in-place generational collector design [Blackburn and McKin-
ley, 2008; Demers et al., 1990] makes maintenance of the object map a little more
difficult because the tracing phase of the collector is confined to the newly allocated
objects that may be scattered throughout the heap. Sticky Immix records each block
that it allocates into and then rather than clear the entire object map at the start of
collection, it selectively clears the portions that were allocated into. Like other genera-
tional collectors, sticky collectors perform periodic full heap collections, during which
conservative Sticky Immix clears the entire object map and refreshes it, as described
above.

Conservative Immix (Immixcons) and Sticky Immix (Sticky Immixcons) use oppor-
tunistic copying. If an object is pinned, the object stays in place. For nursery objects in
Sticky Immix and defragmenting collections in both collectors, the collectors identify
source and target blocks for copying. If an object is not pinned and there is still free
space on a target block, the collectors opportunistically copy unpinned objects from
the source blocks to a target block. They otherwise simply mark the object. This
process mixes copying and marking in the same collection. In both cases, they set the
object map bit.

6.2.3 Conservative Reference Counting

As mentioned earlier, straightforward (naive) reference counting does not need to
identify program roots. However, deferred reference counting depends on root enu-
meration. Deferral works by ignoring increments and decrements to local variables. It
instead periodically establishes the roots, increments all objects that are root-reachable,
only then does it reclaim zero reference count objects. It also buffers balancing decre-
ments for each root. It then applies these decrements at the start of the next garbage
collection, but after the current root increments [2.5.2]. We observe that it is correct
to conservatively consider all objects reachable from ambiguous roots to be pinned
for the duration of each collection cycle. Objects are only reclaimed if their reference
count is zero and they not conservatively pinned.

Object map maintenance is relatively simple with conservative reference counting
(RCcons). It sets the object map bits upon allocation, as usual. When an unpinned
object’s count falls to zero, the collector reclaims the object and clears its object map
bit. The reference counter performs periodic cycle collection using a backup tracing
algorithm. At each cycle collection, it clears the object map and sets object map bits
for each object reached in the cycle collection trace.

6.2.4 Conservative RC Immix

This work was motivated in part by the insight that RC Immix was likely to be a
very good match for conservative collection because it performs as well or better than
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copying generational, while efficiently supporting pinning at a fine granularity. To
realize conservative RC Immix (RC Immixcons), we bring together each of the key ideas
described above for Immixcons and RCcons. RC Immix behaves like a tracing collector
with respect to young objects, so we employ the same approach to pinning and object
map maintenance for them as we do for Sticky Immixcons. Since RC Immix behaves
like a reference counting collector with respect to mature objects, we clear object map
entries for dead mature objects just as we do for RCcons.

6.3 Impact of Conservatism

This section performs the first detailed study of the impact of conservatism on col-
lector mechanisms and design in managed languages. It quantifies the effect of
conservative root scanning with respect to the number of roots returned and its im-
pact and implications on space consumption (excess retention), filtering, and pinning.
Section 6.4 quantifies the performance impacts. We report the full statistics for each
benchmark in Table 6.1. Then we report aggregate statistics in more detail.

Full Statistics Table 6.1 presents individual benchmark statistics that support the
subsequent aggregate analysis. It includes the basic statistics on the heap, exact
roots, and conservative roots for each benchmark. It further quantifies their effects on
filtering, excess retention, and pinning. We examine the number of pinned objects and
how much memory fragmentation this causes MCC pages and Immix line pinning to
consume with an object map. The table presents arithmetic mean for quantities and
geometric mean for percentages.

For this analysis, we modify Jikes RVM to compute statistics that disambiguate
exact and ambiguous roots, and their respective transitive closures in the same exe-
cution. We examine the state of the stacks, registers, and heap at garbage collection
time. We force garbage collections at a fixed periodicity and make the heap suffi-
ciently large that collections are only triggered by our explicit mechanism, never due
to space exhaustion. The periodicity of forced collections is measured in bytes, and we
tailored this setting for each benchmark so as to induce approximately one hundred
collections per execution, which we average across the benchmark execution.

The ‘Live Heap’ column shows the size of live object graph in MB. We compute
all of the analysis in the table by repeatedly performing full heap garbage collec-
tions and measuring and comparing statistics within each collection using exact and
conservative roots. We targeted about 100 GCs per benchmark and the ‘Force GCs’
column shows that the actual number of GCs ranges from 72 to 144.

The set of ‘Roots’ columns show the raw number of ‘Exact’ unique roots and
all roots. The three columns of ‘Conservative’ root statistics are normalized to the
exact unique roots. While the ‘all’ conservative column shows a factor of 8.9 more
conservative roots are processed, filtering reduces them (filt.) and only a factor of 1.6
are unique (uniq).
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avg min max

Unique exact roots 98 35 263

All exact roots 2.21× 1.64× 3.85×
All unfiltered conservative roots 8.9× 5.8× 15.1×

All conservative roots 4.7× 2.7× 9.0×
Unique conservative roots 1.6× 1.2× 2.2×

Table 6.2: Ambiguous Pointers

The ‘Excess Retention’ columns show in KB and as a percentage how many ad-
ditional objects are transitively reachable from the conservative roots and thus kept
live that an exact collector would have reclaimed. Since one root could transitively
reach the whole entire heap, even one conservative roots could have a large effect.
However, we do not observe this behavior.

The ‘Pinned Space’ quantifies the exact number of objects pinned (‘Objects’),
which is the same as BDW will pin, and the effect of Immix line pinning and MCC
page pinning. MCC pins two orders of magnitude more objects than BDW or line
pinning. The last two columns in the table quantifies how much of that increase is
due to the false pinning of other objects on the page — they account for about half of
the excess retention (282 KB of 462 KB). Immix line pinning is extremely effective at
limiting the impact of ambiguous roots to just 0.2% of heap objects.

The next four subsections discuss these results in mote detail and pull out statistics
from Table 6.1 in a summary form.

6.3.1 Ambiguous Pointers

Table 6.2 shows the impact of conservative scanning on the root set gathered from
the stacks and registers. The first row shows the average number of unique objects
referenced from the stacks and registers when performing an exact scan. There are on
average 98 unique objects referenced from the stacks and registers at a given garbage
collection, rising as high as 263 (pmd) and falling to 35 (compress). The next four rows
are all relative to the first row.

The next row indicates the total number of roots returned by an exact scan, as
a factor increase over the unique roots. The average across the benchmarks is 2.21,
which indicates that for exact stack and register scans, the total number of roots
returned is a bit more than twice that of the unique roots. The level of redundancy
among the exact stack and register roots is highest in pmd (3.85×) and lowest in
pjbb2005 (1.64×). Redundancy is not surprising since programs often pass the same
references among methods, leaving multiple copies on the stack.

The next three rows look at unfiltered, filtered, and unique conservative roots,
relative to the unique exact roots. The unfiltered roots are all values in stacks and
registers that when viewed as addresses point within the heap. This set is on average
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avg min max

Excess retention 44 KB 0.2 KB 622 KB

Excess retention / live 0.02% 0.001% 6.1%

Table 6.3: Excess Retention

8.9× larger than the set of unique exact roots. The filtered conservative roots are the
set of those roots that point to valid objects that were allocated since the last collection
or live when last examined. These references are the ambiguous roots. The number
of ambiguous roots is about half the number of unfiltered roots, and is 4.7× the size
of the set of unique exact roots. The set of unique filtered conservative roots is 1.6×
the size the set of unique exact roots, ranging from 1.2× (compress) to 2.2× (sunflow).

In summary, for our Java workloads, conservative scans of stacks and registers
return around 60% more unique roots than exact scans, but the total numbers of roots
is still low.

6.3.2 Excess Retention

Perhaps the most obvious side effect of conservative collection is excess retention
— a few false roots may keep many transitively reachable objects artificially alive.
We measure excess retention in our instrumented JVM by performing two transitive
closures over the heap at each collection, one exact and one conservative. We compare
the size of the two closures at each GC and report the average. Table 6.3 quantifies
the effect of excess retention in terms of KB and as a percentage of the live heap.

Excess retention is generally very low, with a handful of benchmarks reporting
excess retention of less than 1 KB, a handful at around 20 KB or so, and compress
reporting 622 KB. The compress benchmark is small, but it uses several large arrays.
Artificially keeping one such array alive has a significant impact. The average excess
retention is 44 KB. Normalizing those numbers in terms of the total live heap, excess
retention accounts for an insignificant space overhead, 0.02%, and even in the outlier,
compress is only 6%.

This analysis shows that excess retention affects very few objects for our Java
workloads, even though it is the most obvious and direct manifestation of conser-
vatism.

6.3.3 Pointer Filtering

The object map and BDW free-list introspection are functionally equivalent. They
determine whether an ambiguous pointer refers to an address that contains an object
which was either live at the end of the last garbage collection or was allocated since
then. If so, the collector retains the ambiguous root. Otherwise it is discarded.

In this comparison, we evaluate the default object map which uses just one bit
for each eight bytes because it can disambiguate the two Jikes RVM header words
(MSOM). To expose the impact of map density, we also evaluate the object map using
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one bit for each four bytes, doubling the size of the map (MSOM×2). Using an object
map imposes an overhead at allocation time due to updating the map for each new
object to indicate its start address.

By contrast, BDW introspection does not require any extra work during allocation.
At collection time, checking the validity of an ambiguous reference is simpler with a
map than introspecting a free list. On the other hand, the maps must be maintained
during collection, accounting for copying of objects (if any) and for the recycling of
any dead objects; neither overhead is incurred by BDW filtering.

We use full heap mark-sweep (MS) garbage collection to measure the impact of
validating ambiguous references and compare conservative BDW free-list introspec-
tion (BDW), the object map described in Section 6.2.1 (MSOM), and an object map
without header word disambiguation, doubling the size of its map (MSOM×2). We
normalize to exact MS.

Figure 6.2 shows that on average, BDW introspection incurs essentially no mutator
time overhead. The main effect is excess retention, which, although small as shown
above in Section 6.3.2, still increases the live heap, incurring a collection time overhead
of 3.2% compared to exact MS, stemming from a increase in the number of collections
by 3.6% (not shown). The BDW collection time overhead translates into a 1% total
time overhead.

Compared to BDW, object maps incur more overhead due to setting bits at allo-
cation time and a space penalty due to storing the map. All have the same excess
retention. A sparse object map (MSOM×2) incurs a 2.3% overhead on the mutator (i.e.,
the application) compared to exact MS. A sparse object map incurs on average 35.2%
collection time overhead because it performs 13.7% more collections on average. The
header word disambiguation improves the object map significantly. The mutator time
overhead for MSOM drops to 1.3% instead of 2.3% and the collection time overhead is
19.8% on average, instead of 35.2% without the optimization.
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Figure 6.2: Conservative filtering total, mutator, and collection time overheads in mark-sweep.
BDW is cheapest, requiring no additional space or allocation work. The smaller object map
in MSOM improves over object map filtering in both mutator and collection time.
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avg min max

Ac
tu
al

Pinned objects 164 40 435

Pinned objects / live 0.03% 0.004% 0.13%

Pinned bytes 14 KB 5 KB 54 KB

Pinned bytes / live 0.05% 0.008% 0.28%

M
CC

Pinned page / pinned object 0.75 0.56 0.91

Pinned bytes 462 KB 140 KB 1120 KB

Pinned bytes / live 2.1% 0.4% 4.6%

False pinned objects / page 60 27 119

False pinned bytes 282 KB 102 KB 682 KB

Im
m
ix

Pinned line / pinned object 0.89 0.74 0.96

Pinned bytes 36 KB 10 KB 90 KB

Pinned bytes / live 0.2% 0.03% 0.4%

Table 6.4: Pinning Granularity

These statistics reveal that, for a non-moving collector, BDW free-list introspection
is the clear winner. However, as we show later, the advantages of copying in other
collectors outweigh the penalty of the object map.

6.3.4 Pinning Granularity

A conservative collector must pin all objects that are the target of ambiguous refer-
ences, because ambiguous references may be values and therefore cannot be modified.
The direct effect of pinning an object will depend on the granularity at which the
collector pins objects. BDW incurs no additional space overhead due to pinning,
because it never moves any object. The Mostly Copying Collectors (MCC) operate
at a page granularity (4 KB), pinning the object and all the other objects on the page
as well. The Immix collectors pin at the granularity of a 256 B line and only pin the
object, not all objects on the line.

Table 6.4 reports the impact of pinning at the object, line, and page granularity.
The four ‘Actual’ rows report average number of pinned objects and their footprint
in KB. On average, the total number of objects pinned at a given garbage collection
is 164 and consume a total of 14 KB. This statistic is consistent with the conservative
root set that is on average about 60% larger than the exact roots. The actual pinned
objects are only 0.03% of all the live objects and the actual pinned bytes are only
0.05% of the live heap.

The five ‘MCC’ rows show the effect of Bartlett-style pinning at a page granularity.
The first row shows how many pages are pinned on average by a given object. When
more than one pinned object resides on a page, the value is less than one. On average
0.75 pages are pinned by each pinned object. The next row shows how many KB
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are consumed by the pinned pages. On average, the pinned pages consumed 462 KB
which is about 2.1% of the live heap. It next shows the impact of false pinning. Recall
that MCC collectors will pin all objects on a pinned page. The fourth ‘MCC’ row
shows that on average around 60 unpinned objects fall on pages with pinned objects,
resulting in on average 282 KB of falsely pinned objects at each garbage collection.
Although MCC pins a relatively small fraction of the heap (2.1%), it is nearly two
orders of magnitude larger than the actual fraction (0.05%) of pinned objects.

The ‘Immix’ rows in the table show the effect of pinning with Immix’s line granu-
larity. This first row shows on average how many lines are pinned by a given object.
When more than one object pins a line, the value is less than one. On average 0.89
lines are pinned by each pinned object. The chances of another object pinning a given
line is lower than for a page, so the average number of lines pinned grows to 0.89
from 0.75 for pages. The next row shows how many KB are consumed by the pinned
lines. On average, pinned lines consume 36 KB, which is about 0.2% of the live heap.
Compared to pages, which consume 462 KB, the line granularity of Immix decreases
the space footprint by an order of magnitude. Whereas pinning pages effects around
2% of the live heap, pinning lines effects 0.2% of the heap. Section 6.4.4 evaluates
the performance effect of artificially increasing the number of objects pinned due to
ambiguity.

This section establishes that for our Java workloads root processing time and excess
retention are not significant problems for conservative collectors, and pinning due to
Immix-style lines has roughly an order of magnitude less direct impact than pinning
due to MCC pages.

6.4 Performance Evaluation

This section evaluates the design and implementation of six conservative collectors:
MCC, BDW, RCcons, Immixcons, Sticky Immixcons, and RC Immixcons. We compare
them to their exact counterparts: semi-space (SS), mark-sweep (MS), RC, Immix,
Sticky Immix, and RC Immix. The conservative mark-sweep collector (BDW) is a
mature mark-sweep implementation with BDW-style reference filtering. The Mostly
Copying Collector (MCC) is a Bartlett-style mostly copying collector that uses our
object map to identify valid root referents.

6.4.1 Conservative versus Exact Variants

We first evaluate performance penalties incurred by conservative garbage collection
by comparing six different exact collectors to their conservative counterpart. This
experiment holds the algorithms constant to explore the direct impact of ambiguous
roots and pinning, as opposed to their indirect impact on algorithmic choice. Fig-
ure 6.3(a) shows that, except for MCC, the conservative collectors are within 1 to
2.7% of their exact counterparts. MCC suffers because pinning at a page granular-
ity reduces mutator locality and induces fragmentation, resulting in more garbage



88 Fast Conservative Garbage Collection

9.
3%

 

1%
 

2.
3%

 

2.
7%

 

2.
6%

 

2.
7%

 

0.8 

0.9 

1.0 

1.1 

1.2 

SS 
MCC 

MS 
BDW 

RC 
RC 

Im
mix 

Im
mix 

Stic
ky

 Im
mix 

Stic
ky

 Im
mix 

RC Im
mix 

RC Im
mix 

Ti
m

e 
/ E

xa
ct

 

co
ns

co
ns

co
ns

co
ns

(a) Conservative relative to their exact variants. Except for MCC, conservative roots impose
very little overhead.

1.
33

 
1.

45
 

1.
11

 
1.

12
 

1.
10

 
1.

13
 

1.
03

 
1.

06
 

1.
02

 
1.

04
 

0.
97

 
0.

99
 

0.0 
0.2 
0.4 
0.6 
0.8 
1.0 
1.2 
1.4 
1.6 

SS 
MCC 

MS 
BDW 

RC 
RC 

Im
mix 

Im
mix 

Stic
ky

 Im
mix 

Stic
ky

 Im
mix 

RC Im
mix 

RC Im
mix 

Ti
m

e 
/ G

en
 Im

m
ix

 

co
ns

co
ns

co
ns

co
ns

(b) Overall performance relative to exact Gen Immix. RC Immixcons matches exact.

Figure 6.3: Geometric means of total performance for exact and conservative collectors at 2×
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collections (measured but not shown here). BDW has the lowest overhead because
introspecting on the free list is cheap and only performed at collection time, whereas
maintaining the object map incurs small allocation and collection time costs. Sec-
tion 6.3 demonstrated that excess retention, the number of pinned objects, and the
cost of maintaining the object map and filtering objects are all low for Java bench-
marks. That analysis explains why five of the conservative collectors see negligible
overhead relative to their exact variants.

Figure 6.3(b) summarizes the results for all twelve collectors relative to Gen Immix.
Gen Immix is a mature high performance copying generational collector that has been
the Jikes RVM production collector since 2009. All of the collectors that use a free
list (MS, BDW, RC, and RCcons) suffer significant performance penalties compared
to Gen Immix. For example, BDW is 12% slower and RCcons is 13% slower than
Gen Immix. The heap organization is the dominating effect as shown in the previous
chapter [5.2], rather than exact or conservative root processing.

All of the exact and conservative Immix collectors outperform the free-list collec-
tors. Prior work and the previous chapter show that degradations in mutator locality
explain this difference [Blackburn et al., 2004a; Blackburn and McKinley, 2008]. A
free list degrades cache miss rates because the free-list allocator spreads contempo-
raneously allocated objects out in memory on different cache lines. In contrast, the
bump pointer allocator places contemporaneously allocated objects contiguously in
space, often sharing cache lines, improving their locality.

Exact Sticky Immix is only 2% slower and Sticky Immixcons is only 4% slower than
Gen Immix. The best performing conservative collector is RC Immixcons. Even though
conservatism slows it down, it is still 1% faster than Gen Immix.

6.4.2 Total, Mutator, and Collection Time

This section presents a more detailed per-benchmark performance analysis of total,
mutator, and garbage collection times. For simplicity of exposition, we restrict this
analysis to the best performing exact collector (Gen Immix), the best performing
conservative collector (RC Immixcons), its exact counterpart (RC Immix), and the prior
conservative collectors (MCC, BDW) with a heap 2× the minimum in which all
benchmarks execute. We present the numeric results in Table 6.5 and graph them in
Figure 6.4.

The geometric mean in Figure 6.4(a) and the bottom of the four ‘time’ columns
of Table 6.5 show that at this heap size, Gen Immix, RC Immix and RC Immixcons

perform similarly on total execution time, while BDW performs 12% slower, and
MCC performs 45% slower on average across our Java benchmarks. RC Immixcons

lags RC Immix by just 2%, and is 1% better on average than Gen Immix, the produc-
tion collector. RC Immixcons tracks RC Immix total performance closely across the
benchmarks, following RC Immix’s excellent performance on luindex, pmd, and xalan.

The five benchmarks where RC Immixcons degrades most against RC Immix are
javac, jack, hsqldb, lusearch, and xalan. The javac, jack, and xalan benchmarks have
higher mutator overhead (2.5-3%) compared to RC Immix. On javac, lusearch, and
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Benchmark Gen Immix RC Immix RC Immixcons BDW MCC
milliseconds —————- Normalized to Gen Immix —————-

time timemu timegc time timemutimegc time timemutimegc time timemutimegc time timemu timegc

compress 1760
±0.3

1741
±0.2

19
±10.0

0.99
±0.2

0.99
±0.2

0.25
±2.0

0.98
±0.2

0.99
±0.2

0.27
±2.1

0.99
±0.2

0.99
±0.1

0.67
±5.6

1.01
±0.2

1.01
±0.1

1.73
±13.4

jess 355
±0.3

323
±0.2

32
±2.6

0.98
±0.8

1.00
±0.8

0.76
±2.0

1.01
±0.4

1.02
±0.3

0.88
±2.6

1.31
±0.4

1.26
±0.3

1.79
±3.9

1.69
±0.9

1.14
±0.3

7.18
±15.9

db 1238
±0.3

1209
±0.3

29
±2.2

0.96
±0.5

0.97
±0.5

0.74
±1.4

0.98
±0.4

0.98
±0.4

0.93
±1.7

1.05
±0.5

1.05
±0.5

0.68
±4.1

1.12
±0.6

1.01
±0.4

5.79
±16.2

javac 773
±0.2

661
±0.2

112
±1.1

0.93
±4.7

0.99
±0.8

0.62
±28.4

1.02
±5.0

1.02
±0.8

1.06
±29.9

0.93
±0.3

1.05
±0.3

0.20
±0.4

1.07
±0.6

1.00
±0.3

1.46
±3.8

mpegaudio 1103
±0.0

1103
±0.0

0
±0.0

1.00
±0.3

1.00
±0.3

0.00
±0.0

1.00
±0.0

1.00
±0.0

0.00
±0.0

1.00
±0.0

1.00
±0.0

0.00
±0.0

0.98
±0.2

0.98
±0.2

0.00
±0.0

mtrt 245
±1.5

215
±1.6

30
±2.9

0.98
±1.2

1.00
±1.2

0.84
±4.6

1.01
±2.7

1.00
±2.8

1.05
±8.1

1.04
±1.2

1.05
±1.2

0.98
±3.8

1.97
±3.1

1.09
±1.4

8.17
±23.7

jack 496
±0.3

453
±0.2

43
±2.7

0.98
±0.5

1.00
±0.4

0.67
±2.4

1.02
±0.8

1.03
±0.5

0.86
±4.6

1.12
±0.3

1.12
±0.2

1.08
±3.0

1.46
±0.9

1.13
±0.4

4.91
±11.4

mean 811
±0.4

767
±0.4

44
±3.1

geomean 0.97 0.99 0.60 1.00 1.01 0.77 1.07 1.09 0.75 1.34 1.06 4.02

avrora 2266
±0.3

2250
±0.3

16
±3.3

0.98
±0.2

0.99
±0.2

0.24
±9.9

0.98
±0.2

0.99
±0.3

0.27
±9.3

0.99
±0.3

1.00
±0.3

0.52
±2.8

1.00
±0.3

0.98
±0.3

3.40
±13.3

bloat 2179
±0.4

2047
±0.5

132
±1.3

0.98
±1.0

1.00
±1.1

0.63
±1.4

1.00
±0.8

1.01
±0.8

0.81
±2.7

1.10
±0.4

1.06
±0.4

1.86
±2.7

1.41
±0.6

0.99
±0.5

7.79
±8.9

eclipse 11272
±0.9

10654
±1.0

618
±1.1

1.00
±1.2

1.01
±1.2

0.87
±2.1

1.02
±0.9

1.02
±1.0

1.06
±2.4

1.11
±0.9

1.10
±1.0

1.18
±1.7

1.15
±0.9

1.02
±0.9

3.31
±3.1

fop 579
±0.5

562
±0.5

17
±2.3

0.99
±0.4

0.99
±0.4

1.02
±3.8

1.00
±0.4

0.99
±0.4

1.11
±4.0

1.04
±0.5

1.05
±0.5

0.95
±2.9

1.09
±0.5

1.01
±0.4

3.71
±11.6

hsqldb 706
±0.5

561
±0.1

145
±2.5

1.06
±0.5

0.98
±0.1

1.36
±2.8

1.11
±0.4

0.99
±0.1

1.58
±2.9

1.31
±0.6

1.14
±0.3

1.94
±3.8

2.16
±2.6

1.09
±3.1

6.33
±11.4

jython 2416
±0.4

2335
±0.4

81
±1.7

0.96
±0.3

0.98
±0.3

0.52
±1.1

0.98
±0.5

1.00
±0.5

0.65
±3.4

1.28
±0.4

1.14
±0.4

5.43
±9.3

1.58
±0.7

1.06
±0.6

16.69
±23.0

luindex 637
±7.8

632
±7.8

5
±6.8

0.94
±6.1

0.95
±6.2

0.04
±8.4

0.94
±5.4

0.93
±5.5

0.98
±5.5

1.00
±7.8

1.00
±7.8

1.70
±9.8

0.97
±5.6

0.95
±5.6

2.62
±18.3

lusearch 1306
±0.4

782
±0.6

524
±0.4

0.62
±0.4

0.79
±0.5

0.36
±0.3

0.68
±0.6

0.81
±0.8

0.49
±0.7

1.37
±1.0

0.94
±0.7

2.03
±1.7

2.51
±1.6

0.95
±0.7

4.85
±3.5

lusearchfix 539
±1.3

497
±1.3

42
±1.2

0.95
±1.3

0.97
±1.4

0.78
±1.0

0.98
±1.4

0.98
±1.4

1.04
±1.5

1.39
±1.7

1.08
±1.5

4.98
±7.4

2.51
±2.8

1.14
±1.6

18.80
±20.8

pmd 621
±0.9

521
±0.8

100
±3.5

0.92
±0.9

0.98
±0.9

0.64
±3.3

0.96
±1.1

0.99
±0.9

0.81
±4.6

1.11
±1.6

1.12
±0.9

1.07
±8.1

1.69
±1.8

1.06
±1.0

4.98
±14.7

sunflow 1725
±1.1

1619
±1.2

106
±0.9

1.05
±1.2

1.06
±1.3

0.88
±3.2

1.05
±0.9

1.03
±0.9

1.35
±4.4

1.25
±1.1

1.05
±1.0

4.29
±5.8

2.01
±1.7

1.05
±0.9

16.75
±12.4

xalan 754
±0.6

579
±0.7

175
±1.0

0.79
±0.6

0.92
±0.7

0.34
±0.5

0.85
±0.6

0.95
±0.8

0.51
±0.6

1.17
±1.2

1.06
±1.1

1.55
±2.2

1.61
±1.0

1.03
±0.8

3.52
±3.9

mean 2154
±1.2

2023
±1.3

131
±2.2

geomean 0.96 0.98 0.51 0.98 0.99 0.84 1.15 1.07 1.81 1.49 1.03 6.73

pjbb2005 2870
±0.4

2606
±0.3

264
±2.1

1.01
±0.9

1.03
±0.4

0.76
±7.7

1.04
±1.5

1.04
±0.3

1.03
±16.8

1.11
±0.4

1.11
±0.3

1.09
±2.4

1.74
±2.0

1.07
±0.3

8.25
±25.1

min 245 215 5 0.79 0.92 0.04 0.85 0.93 0.27 0.93 0.99 0.20 0.97 0.95 1.46
max 11272 10654 618 1.06 1.06 1.36 1.11 1.04 1.58 1.39 1.26 5.43 2.51 1.14 18.80

mean 1746
±0.9

1637
±0.9

109
±2.5

geomean 0.97 0.99 0.55 0.99 1.00 0.83 1.12 1.08 1.31 1.45 1.05 5.68

Table 6.5: Total, mutator, and collection performance at 2× minimum heap size with con-
fidence intervals. Figure 6.4 graphs these results. We report milliseconds for Gen Immix
and normalize the others to Gen Immix. (We exclude mpegaudio and lusearch from averages.)
RC Immixcons is 2% slower than RC Immix and still slightly faster than production exact
Gen Immix.
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xalan, RC Immixcons has higher garbage collection overhead compared to RC Immix.
The javac, lusearch, and xalan benchmarks have higher number of collections (18-25%)
compared to RC Immix. The javac benchmark is a very memory-sensitive benchmark
and the object map increases the heap pressure, increasing the number of collections.
The pinning of objects disturbs the locality of the mutator, and for javac, xalan and
lusearch it also introduces line fragmentation that increases the number of collections.
In several cases, these benchmarks have higher than average numbers of conservative
roots. For example, 1.7× for javac, 2.3× for lusearch, and 1.9× for xalan, where
the average is 1.6× (see Table 6.1). However, these effects are modest. Although
RC Immixcons degrades javac, jack, hsqldb, lusearch, and xalan the most compared to
exact RC Immix, RC Immixcons is still faster than Gen Immix on average.

Figure 6.4(b) and the four ‘timemu’ columns of Table 6.5 show that the mutator
time is responsible for the total time results for the most part; Gen Immix, RC Immix
and RC Immixcons perform similarly on mutator time, while BDW performs about
8% slower, and MCC performs about 5% slower on average across our suite of Java
benchmarks. RC Immixcons is only 1% slower than RC Immix on mutator time, with
no programs degrading mutator time by more than 3%. Gen Immix, RC Immix and
RC Immixcons all use write barriers which impose a direct mutator overhead [Yang
et al., 2012]. Nonetheless, despite not requiring a write barrier, BDW consistently
suffers the worst mutator overhead, 8% on average.

BDW collector does not use an object map, and has no other mutator time over-
heads directly associated with conservatism, so based on the results in Chapter 5
and previous experiments [Blackburn et al., 2004a; Blackburn and McKinley, 2008],
we attribute the slowdown to the loss of locality. Despite RC Immixcons having the
mutator time burden of maintaining an object map and a write barrier, its locality
advantages are enough to deliver better mutator performance than BDW.

Figure 6.4(c) and the four ‘timegc’ columns of Table 6.5 show the relative cost
of garbage collection among the four collectors. Both RC Immix and RC Immixcons

perform very well with respect to garbage collection time, outperforming Gen Immix
by 45% and 17% respectively. While RC Immix improves collector time on all but
two programs, RC Immixcons slows down seven and improves eleven compared to
Gen Immix. BDW performs worst on all but six benchmarks. BDW performs excep-
tionally well only on javac, which has an interesting lifetime behavior that builds up
a large structure and then releases it all, four times over. This pattern can defeat
generational collection because the survival rate for each generational collection will
tend to be relatively high until the application releases the data structures.

MCC performs much worse than BDW and its huge garbage collection cost is
the main reason for the overall 45% slowdown. MCC degrades 9% in total time over
standard semi-space collector, but neither are space efficient because they reserve half
the heap for copying.

The three collectors that exploit the weak generational hypothesis do very well
on all benchmarks. RC Immix and RC Immixcons do better than Gen Immix because
they use reference counting for mature objects, which means that those objects are
promptly reclaimed, whereas Gen Immix has to wait for sporadic full heap collections
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to reclaim space from dead mature objects.

Summarizing, RC Immixcons performs extremely well. It suffers only about 1% over-
head in mutator time and a similar overhead in collection time compared to its exact
counterpart RC Immix. At this heap size and with Java workloads, RC Immixcons

outperforms the well tuned production collector, Gen Immix. The 13% advantage
of RC Immixcons over BDW comes from: 1) much better mutator performance due
to the bump pointer operating over coarse grained allocation regions, 2) further
improvements to the mutator performance due to locality benefits that come from
defragmentation with optimistic copying, and 3) much better garbage collection per-
formance due to RC Immixcons’s ability to exploit the weak generational hypothesis
notwithstanding pinning with ambiguous roots.

6.4.3 Sensitivity to Heap Size

Garbage collection is fundamentally a time-space tradeoff, which this section exam-
ines by varying the heap size. Figure 6.5 shows the average total time, mutator time,
and garbage collection time for each system as a function of heap size. In each graph,
performance is normalized to the best performance data point on that graph, so the
best result has a value of 1.0. Figure 6.5(a) shows the classic time-space tradeoff curves
expected of garbage collected systems, with BDW and MCC consistently slower com-
pared to the other collectors. The graphs reveal that RC Immix and RC Immixcons

are very similar, with a slow divergence in total time as the heap becomes smaller
because RC Immixcons has a slightly larger heap and collects more often. Once heap
sizes are tight, Gen Immix starts to outperform RC Immixcons. Figure 6.5(b) shows that
the relationship among the five collectors’ mutator performance is almost unchanged
in moderate heap sizes. For smaller heap sizes, they all degrade. BDW has the
worst mutator performance except at the smallest heap size where BDW outperforms
MCC because MCC disturbs locality by frequently copying nursery objects that have
not had sufficient time to die. Figure 6.5(c) shows the relationship among the five
collectors’ garbage collection performance. RC Immix and RC Immixcons have better
garbage collection performance than Gen Immix and MCC has the worst garbage
collection performance. BDW garbage collection performance approaches Gen Immix
as the heap becomes large and no collector is invoked frequently.

In summary, conservative Immix variants perform very close to their exact counter-
parts, and RC Immixcons performs as well or better than the best exact generational
collector across a wide range of heap sizes.

6.4.4 Discussion and Wider Applicability

Although our empirical results are for Java, we believe that other languages will
benefit from these algorithms.
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Figure 6.5: The performance of MCC, BDW, Gen Immix, RC Immix, and RC Immixcons as a
function of heap size.
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Increased Pinning
2× 4× 8× 16× 32×

Heap Size (0.4%) (0.8%) (1.6%) (3.2%) (6.4%)

2× 0.7% 1.8% 3.4% 6.8% 11%

3× 0.8% 1.1% 2.2% 2.3% 5.3%

Table 6.6: Performance effect of increasing pinning of objects by factors of 2× to 32× com-
pared to RC Immixcons with 0.2% average pinned. The percentage of objects pinned is in
parentheses. A 32-fold increase in pinning results in 11% slowdown in a 2× heap and 5.3%
slowdown in a 3× heap.

Conservatism and Pinning The Immix conservative collector designs apply to any
setting with ambiguous references, including fully conservative systems. However,
the major performance advantage comes from opportunistic copying of unpinned
objects; opportunities which are nonexistent when all references are ambiguous.

To explore the potential benefit of transitioning an existing managed language
runtime to RC Immixcons first requires quantifying the relative fraction of ambiguous
references in representative applications. Ambiguous references will be influenced
by language elements and values in the stacks and heap references. The environment
also influences ambiguous references. For example, JavaScript may have larger num-
bers of conservatively pinned objects because the browser and document model may
refer to JavaScript objects and are typically implemented in C.

Because all of our benchmarks pin so few objects, we explore how much pinning
Immix can tolerate while maintaining its performance advantages. We conduct a
simple experiment that artificially increases the number of pinned objects by factors
of 2 to 32 compared to RC Immixcons with 0.2% average pinned in Java. We find that
in a modest 2× heap, performance was degraded compared to RC Immixcons by 0.7%
to 11% respectively, as shown in Table 6.6.

Of course, other languages may pin more or less than Java. The fewer pinned
objects, the more likely an Immix heap organization and opportunistic copying can
improve locality and performance. The next step for attaining Immix performance
advantages would be to modify the heap organization to use lines and blocks and
implement a full heap tracing Immix collector (Immixcons). Our measurements show
that even this simple system has the potential to deliver 5% or more total performance
improvement.

Performance Potential One issue that may dampen the effects of heap organization
and garbage collector efficiency is code quality. If the language implementation is
immature and uses an interpreter or generates poor quality code, the collector’s effect
on overall performance will likely dampen. To test this hypothesis, we intentionally
crippled our runtime, first by disabling optimization of application code and then
also by deoptimizing the runtime code itself, including the garbage collector. The
first scenario mimics a mature VM with low code quality (mature). The second
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approximates an immature VM with low code quality (immature). We measured both
startup and steady state performance.

We find that RC Immixcons and Immixcons offered measurable, though dampened,
advantages in all scenarios. This result suggests that the Immix heap structure will
benefit both immature and high performance runtimes. Comparing with BDW imple-
mentations in the same scenarios, the benefits were most modest during startup (1%
for ‘mature’ and 5% for ‘immature’), which is unsurprising because the performance
of other parts of the runtime, including the classloader and baseline JIT will dominate
during startup. We were interested to find that in steady state, the immature VM
scenario benefitted by 8%, more than the mature VM scenario at 4%. Presumably
the low code quality of the mature VM scenario dominates, whereas in the imma-
ture VM, all elements are slow, so the locality and algorithmic benefits from Immix
offer performance advantages. In all of these scenarios, RC Immixcons and Immixcons

performed about the same, which suggests that the advantages of reference counting
mature objects do not become apparent unless the VM and the code quality are both
well optimized.

In summary, even while a VM is maturing, if few objects are pinned, conservative
Immix and RC Immix should improve performance. Their benefits are likely to grow
as the VM itself matures and generated code quality improves.

6.5 Summary

This chapter examines conservative garbage collection for managed languages. Con-
servative garbage collection avoids the engineering headache of exact garbage collec-
tion but suffers significant performance overheads. We find that both excess retention
and the number of objects that can’t be moved because of conservatism are very low
for Java. We identify the non-moving free-list heap structure as the main source of
the performance overhead for existing conservative garbage collectors. This chapter
identifies Immix’s line and block heap structure as a good match for conservative
collection because it provides better mutator locality and finer line granularity pin-
ning. We introduce a low overhead object map to validate ambiguous references.
With these mechanisms, this chapter introduces the design and implementation of
conservative variants of existing garbage collector including conservative Immix and
reference counting. In particular, the conservative RC Immix collector, RC Immixcons

matches the performance of a highly optimized copying generational collector, Gen
Immix. This is the first conservative collector to achieve this milestone.



Chapter 7

Conclusion

Garbage collection design and implementation are both characterized by stark choices.
Garbage collection designs must choose between tracing and reference counting.
Garbage collector implementations must choose between exact and conservative col-
lection. Performance concerns have lead to tracing and exact collection dominating,
a choice evident today in highly engineered systems such as HotSpot, J9, and .NET.
However, many other well-established systems use either reference counting or con-
servative garbage collection, including implementations for widely used languages
such as PHP and JavaScript. Today reference counting and conservative garbage
collection are widely used, but generally in non-performance critical settings because
their implementations suffer significant overheads.

This thesis addresses the performance barriers affecting reference counting and
conservative garbage collection. We achieve high performance reference counting
with novel optimizations guided by detailed analysis of its key design points, and by
changing its free-list heap organization to the block and line hierarchy of Immix for
better mutator locality. We achieve high performance conservative garbage collection
by building a conservative garbage collector on top of our fast reference counting
with its Immix heap structure, and with a low overhead mechanism to validate
ambiguous references. With our contributions, for the first time, the performance of
both reference counting and conservative garbage collection are competitive with the
best copying generational tracing collectors.

We conduct a comprehensive analysis of reference counting, show that its perfor-
mance lags mark-sweep by over 30%, and measure a number of behaviors intrinsic to
reference counting, which give insight into its behavior and opportunities for improve-
ment. We identify two significant optimizations that eliminate reference counting
operations for short lived young objects and together they entirely eliminate the
performance gap with mark-sweep. On their own, these advances close but do not
eliminate the performance gap between reference counting and the best generational
tracing collector.

We identify heap organization as the principal source of this remaining perfor-
mance gap for reference counting. Until this thesis, reference counting has always
used a free list because it offered a constant time operation to immediately reclaim
each dead object. Unfortunately, optimizing for reclamation time neglects the more es-
sential performance requirement of cache locality on modern systems. We show that
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indeed reference counting in a free list heap suffers poor locality compared to contigu-
ous and the Immix hierarchical memory organizations. Our insight is that although
contiguous heap organization and freeing at object granularity are incompatible, the
Immix heap organization and reference counting are compatible. We describe the
design and implementation of a new reference counting collector, RC Immix. The key
contributions of our work are an algorithm for performing per-line live object counts
and the integration of proactive and reactive opportunistic copying. We show how
to copy new objects proactively to mitigate fragmentation and improve locality. We
further show how to combine reactive defragmentation with backup cycle detection.
In RC Immix, reference counting offers efficient collection, while the line and block
heap organization offers efficient allocation and better mutator locality, and as a result
RC Immix outperforms the best generational tracing collector, Gen Immix.

VM developers often choose not to implement exact garbage collection because of
the substantial software engineering effort it demands. Instead they have taken one
of three tacks: 1) naive reference counting, 2) conservative non-moving mark-sweep
with a free list, or 3) conservative MCC with page pinning. For example, Objective-
C, Perl, and Delphi use naive reference counting, Chakra uses non-moving mark-
sweep, and WebKit uses MCC. A variety of prior work suggests, and we confirm,
that these garbage collection algorithms sacrifice a lot of performance. We describe
the design and implementation of a high performance conservative collector for
managed languages. This collector combines an object map to identify valid objects,
Immix mark-region collection to limit the impact of pinning to a line granularity,
and deferred reference counting to increase the immediacy of reclaiming old objects.
We observe that we can pin ambiguous root referents at a fine grain with an Immix
line, which minimizes pinning overheads and maximizes locality benefits. Immix’s
opportunistic copying mitigates the cost of pinning because it combines marking
of pinned objects and copying of unpinned objects as space allows. The resulting
RC Immixcons collector attains efficient generational behavior, efficient pinning, and
the fast reclamation of old objects. Combining these collector mechanisms in this
novel way leads to a very surprising result, RC Immixcons matches the performance
of the best generational tracing collector, Gen Immix.

7.1 Future Work

The following sections focus on potential future directions for this line of work.

7.1.1 Root Elision in Reference Counting

A key advantage of reference counting over generational collection is that it contin-
uously collects mature objects. The benefits are borne out by the improvements we
see in xalan for both RC Immix and RC Immixcons, which has many medium lived ob-
jects. These objects are promptly reclaimed by both reference counting and RC Immix,
but are not reclaimed by a generational collector until a full heap collection occurs.
However, this timely collection of mature objects does not come for free. Unlike a
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nursery collection in a generational collector, a deferred reference counting collector
must enumerate all roots, including all pointers from the stacks and all pointers from
globals (statics). We realize that it might be possible to greatly reduce the workload
of enumerating roots by selectively enumerating only those roots that have changed
since the last GC. In the case of globals/statics this could be achieved either by a
write barrier or by keeping a shadow set of globals. We note that the latter may be
feasible because the amount of space consumed by global pointers is typically very
low. In the case of the stack, we could utilize a return barrier [Yuasa et al., 2002] to
only scan the parts of the stack that have changed since the last GC.

7.1.2 Concurrent Reference Counting and RC Immix

All of the garbage collectors we presented are stop the world parallel collectors. That
means all of the mutator threads must stop during garbage collection and multiple
collector threads perform the GC work. Sometimes with strict requirements for re-
sponsiveness, it is necessary to allow mutator to progress during a collection cycle.
Concurrent garbage collection [Steele, 1975; Dijkstra et al., 1978; Bacon and Rajan,
2001; Pizlo et al., 2007, 2008; McCloskey et al., 2008] is used to implement this system
where both collector and mutator threads are running and progressing simultane-
ously. Bacon and Rajan [2001] introduced concurrent cycle collection and Levanoni
and Petrank [2001, 2006] introduced on-the-fly reference counting collection that uses
update coalescing to reduce the concurrency overheads. It should be possible to
make both our improved reference counting and the RC Immix collector concurrent
to support high performance systems that need to reduce pause times.

7.1.3 Reference Counting in Soft Real Time Systems

Unlike tracing, in reference counting, the majority of objects are reclaimed as soon
as they can no longer be referenced, and in an incremental fashion, without long
pauses for collection cycles and with clearly defined lifetimes of each object. In soft
real time systems short pauses are very important to maintain responsiveness [Baker,
1978; Bacon et al., 2003b,a]. So reference counting may be more suitable for soft real
time systems rather than tracing, but poor performance lessens its appeal. Though
high performance tracing garbage collectors exist for soft real time systems, our
improvements may ignite the possible use of reference counting in soft real time
systems.

7.1.4 Applicability to Non-Java Languages

Our analysis and design of reference counting and conservative garbage collection
are all implemented in a Java virtual machine and with Java benchmarks. But we
believe that they are applicable to other languages as well. For example, PHP and
Objective-C uses reference counting, and Chakra VM and WebKit uses conservative
garbage collection. Our analysis can be done for other languages and based on the
outcome of the analysis, our design can be implemented there.
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Figure 7.1: Key results of the thesis — the performance of Gen Immix, old RC, RC, RC Immix,
and RC Immixcons as a function of heap size.

7.2 Final Words

The main contribution of this thesis is the design and implementation of new algo-
rithms and mechanisms for reference counting and conservative garbage collection
that significantly improve performance to the point where they are competitive with
today’s best copying generational tracing collectors. Figure 7.1 summarizes this result.
It shows the performance improvement we achieved compared to Gen Immix, starting
from Old RC to RC (Chapter 4), and then RC Immix (Chapter 5), and RC Immixcons

(Chapter 6). With these advancements, language implementers now have a much
richer choice of implementation alternatives both algorithmically (reference counting
or tracing) and implementation-wise (exact or conservative), without compromising
performance. These insights and advances are likely to particularly impact the de-
velopment of new and emerging languages, where the implementation burden of
tracing and exactness is often the critical factor in the first implementation.
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