
How Much Does Garbage
Collection Cost? A Study on the

Effects of Garbage Collection

Kunal Sareen

A thesis submitted for the degree of
Bachelor’s of Advanced Computing (Honours)

(Research & Development)
The Australian National University

November 2021

© Kunal Sareen 2021

Except where otherwise indicated, this thesis is my own original work.

Kunal Sareen
18 November 2021

To my family and friends.

Acknowledgments

First and foremost, I would like to thank my supervisor Professor Steve Blackburn for
guiding me through my journey. Thank you for being an inspiration and imparting
your wisdom and insights to me. You have taught me how to be a good researcher
for which I cannot thank you enough. Thank you for giving me this opportunity to
work with you over the past year.

Over the course of completing my degree I have had the chance to interact and
work with many great people. I’ve had the pleasure of working with Shoaib Akram,
Ranald Clouston, Adrian Herrera, Peter Höfner, Tony Hosking, Charles Martin,
Michael Norrish, Peter Strazdins, Ben Titzer, and Alwen Tiu. Thank you for pro-
viding valuable insight and opportunities to increase my understanding of computer
science. I am truly fortunate to have been able to meet and work with you all. I
would also like to thank the MMTk research group: Javad Amiri, Zixian Cai, Yi Lin,
Kunshang Wang, and Wenyu Zhao, who made this thesis possible with their work
on the MMTk codebase.

I would like to thank all my friends who added some zest to my life. I would
like to especially thank Riley Baile, Niko Bakker, Zak Brighton-Knight, Zixian Cai,
Aditya Chilukuri, Ben Gray, Fergus Rogers, Erik Still, Shiva Shah, James Taylor, V
Vijendran, and Allie Zhou. Thank you for listening to my late-night rants and for
your help and support throughout my university life.

Finally I would like to thank my family: my parents, Yogesh and Saroj Sareen,
without whom I would not be able to achieve what I have today; my sister, Shivangi
Sareen, who has been a pillar of support throughout my life; and our family dog,
Snoopy, who was the best dog one could ask for.

vii

Abstract

A key decision all modern programming language designers face is the choice of
how to tackle dynamic memory management. Broadly, the two options are manual
memory management and automatic memory management a.k.a. garbage collection. Both
options provide their own sets of benefits and come with their own sets of costs.
Manual memory management provides finer-grain control over how memory is al-
located and freed, however it is error-prone with bugs like use-after-free dominating
the Common Vulnerabilities and Exposures (CVE) database. On the other hand,
while garbage collection greatly simplifies memory management, it is well-known
that it has performance implications for a language. However there have only been
a handful of comprehensive studies on its overheads and benefits in comparison to
manual memory management.

What makes this comparison difficult is that it is quite hard to construct exper-
iments to make a fair comparison. For example, it is not possible to insert state-of-
the-art collectors into languages which were designed with manual memory man-
agement in mind since an application may encode raw pointers by XOR-ing them (a
common example being an XOR linked list) and hence if we move objects around,
we risk breaking the semantics of the application. On the other hand, applications
written in a managed language can not easily be translated to manually memory
managed applications as it is hard to determine where a certain object is no longer re-
quired and can be explicitly freed, or more importantly, where a programmer would
insert a free. This is compounded by the fact that the programming idioms and
paradigms of both styles of languages are quite different and so even direct trans-
lations between the two (if possible) may not be a fair comparison since the overall
programming style may be biased to one form of memory management over the
other. It is also easier to write code in a managed language since we don’t have to
reason about memory management. This is not an easy to quantify advantage which
further muddies the water.

The key contributions of this thesis are the new methodologies and experiments
we designed in order to understand and test certain aspects and effects of garbage
collection. Most notably we investigate: (i) the space-overheads of garbage collection;
(ii) the effects of garbage collection on the execution of the mutator; (iii) the effects of
garbage collection on mutator locality; and finally (iv) the effects of inserting garbage
collection-like behaviour to a manually memory managed application. We conduct
this study in a modern setting using modern CPU microarchitectures allowing us
to shed new light onto garbage collection overheads in a modern context given the
rapid advancements in recent microarchitectures.

Our results show that common garbage collector algorithms such as SemiSpace
and an Appel-style Generational Copying collector have space-overheads of around

ix

x

1.75× an approximation of manual memory management, while Immix has a space-
overhead of 1.15× on average. We measure locality effects of garbage collection using
a transaction-based benchmark as a case-study and find a weak correlation between
the execution time of a transaction and its proximity to the execution of a GC. Finally,
we insert garbage collection-like behaviour to manually memory managed applica-
tions and find that the space- and time-overheads vary widely across different al-
locator architectures, having modest space-overheads but significant time-overheads
(around 20% time-overheads on average, reaching < 3× overheads at a maximum)
for the best allocator configurations.

This work deepens the understanding of the overheads and benefits of garbage
collection in comparison to manual memory management allowing for language de-
signers and implementers to make an informed decision regarding their choice of
dynamic memory management. This work also enhances knowledge regarding the
the locality benefits of garbage collectors. Finally, this work lays down a framework
for systematically examining the effects of different garbage collectors on an applica-
tion’s behaviour.

Contents

Acknowledgments vii

Abstract ix

1 Introduction 1
1.1 Thesis Statement . 3
1.2 Contributions . 3
1.3 Thesis Structure . 4

2 Background and Related Work 5
2.1 Terminology and Taxonomy of Garbage Collection 5
2.2 MMTk . 6
2.3 Related work . 7

3 Space Overheads of Garbage Collection 9
3.1 Objectives . 9
3.2 Approximating Manual Memory Management 9
3.3 Design and Implementation . 10

3.3.1 Stress Garbage Collection . 10
3.3.2 Configurable malloc Mark-Sweep 11

3.4 Experimental Methodology . 12
3.4.1 Benchmarks . 12
3.4.2 Hardware and Operating System 13
3.4.3 MMTk and OpenJDK . 13
3.4.4 Experimental Design . 14

3.5 Results and Evaluation . 14
3.6 Summary . 15

4 Time Overheads of Garbage Collection 17
4.1 Objectives . 17
4.2 Garbage Collection “Signals” . 17
4.3 Design and Implementation . 19
4.4 Experimental Methodology . 20

4.4.1 Benchmarks . 20
4.4.2 Hardware and Operating System 20
4.4.3 MMTk and OpenJDK . 20
4.4.4 Experimental Design . 20

xi

xii Contents

4.5 Results and Evaluation . 21
4.5.1 Discussion . 24

4.6 Summary . 24

5 Locality Effects of Garbage Collection 25
5.1 Objectives . 25
5.2 Measuring Locality Effects . 25
5.3 Design and Implementation . 26

5.3.1 Instrumenting lusearch . 26
5.3.2 Instrumenting MMTk . 27

5.4 Experimental Methodology . 27
5.4.1 Hardware and Operating System 27
5.4.2 MMTk and OpenJDK . 27
5.4.3 Experimental Design . 28

5.5 Results and Evaluation . 29
5.5.1 Discussion . 32

5.6 Summary . 33

6 Garbage Collection Behaviour in an Unmanaged Context 35
6.1 Objectives . 35
6.2 Approximating Garbage Collection Behaviour 35
6.3 Design and Implementation . 36
6.4 Experimental Methodology . 38

6.4.1 Benchmarks . 38
6.4.2 Hardware and Operating System 39
6.4.3 Experimental Design . 39

6.5 Results and Evaluation . 39
6.5.1 mimalloc . 40
6.5.2 jemalloc . 44
6.5.3 hoard . 46
6.5.4 ptmalloc2 . 47
6.5.5 Discussion . 49

6.6 Summary . 49

7 Conclusion 51
7.1 Future Work . 51

7.1.1 Performance Evaluation on Different Microarchitectures 51
7.1.2 Time Overheads of Garbage Collection 52
7.1.3 Locality Effects of Garbage Collection 52
7.1.4 Garbage Collection Behaviour in an Unmanaged Context 52

A Figures 1

List of Figures

3.1 Minimum heap size required to complete a benchmark for the SemiS-
pace, Generational Copying, and Immix collectors in comparison to
the 64 KB and 128 KB Mark-Sweep stress collectors. A lower value is
better. 14

4.1 Noisy signal obtained due to the addition of the Gaussian noise to a
clean signal. Note how the original signal can still be made out in the
resultant additive signal. Image obtained from James Trichilo. 18

4.2 Schematic showcasing signal transmission over a noisy medium using
differential signaling. Note the increased amplitude at the Receiver’s
end. Image obtained from Wikipedia [2021]. 19

4.3 Mutator execution time (normalized to best value) averaged over 30
runs for a GC limit of 1 using the mimalloc Mark-Sweep collector with
three different stress factor values. A lower value is better. 21

4.4 Mutator execution time (normalized to best value) averaged over 30
runs for a GC limit of 16 using the mimalloc Mark-Sweep collector
with three different stress factor values. A lower value is better. 22

4.5 Mutator execution time (normalized to best value) averaged over 30
runs for the mimalloc Mark-Sweep collector with a stress factor of
16MB and three different GC limit values. A lower value is better. . . . 23

5.1 Density of closeness to a GC for Query 0380 using the Immix collector
on the Haswell system. Note that executions where the query was
interrupted by a GC have been removed. The red line in 5.1a and
dashed blue lines in 5.1b and 5.1c are the median for the entire dataset.
The red lines in 5.1b and 5.1c are the median for the best and worst
5th percentile of executions with respect to execution time. 28

5.2 Density of closeness to a GC for Query 0380 using the SemiSpace col-
lector on the Haswell system. Note that executions where the query
was interrupted by a GC have been removed. The red line in 5.2a and
dashed blue lines in 5.2b and 5.2c are the median for the entire dataset.
The red lines in 5.2b and 5.2c are the median for the best and worst
5th percentile of executions with respect to execution time. 30

xiii

xiv LIST OF FIGURES

5.3 Density of closeness to a GC for Query 0380 using the Mark-Sweep
collector on the Haswell system. Note that executions where the query
was interrupted by a GC have been removed. The red line in 5.3a and
dashed blue lines in 5.3b and 5.3c are the median for the entire dataset.
The red lines in 5.3b and 5.3c are the median for the best and worst
5th percentile of executions with respect to execution time. 31

6.1 mimalloc average execution time over 20 runs with a thread-local buffer
size of 40 KB and with six different configurations. The values are nor-
malized to the mi configuration. A lower value is better. Note that
the larson benchmark has a fixed execution time and hence we use the
“relative execution time” as reported by the benchmark. 40

6.2 mimalloc average maximum RSS over 20 runs with a thread-local buffer
size of 40 KB and with six different configurations. The values are nor-
malized to the mi configuration. A lower value is better. Note the
xmalloc-test results should be ignored since the benchmark allocates
more the faster it runs. Hence, we have removed them from this (and
all future) graph(s) in order to not affect other calculations. 41

6.3 mimalloc average execution time over 20 runs with a thread-local buffer
size of 128 KB and with six different configurations. The values are
normalized to the mi configuration. A lower value is better. 42

6.4 mimalloc average maximum RSS over 20 runs with a thread-local buffer
size of 128 KB and with six different configurations. The values are
normalized to the mi configuration. A lower value is better. 43

6.5 jemalloc average execution time over 20 runs with a thread-local buffer
size of 40 KB and with six different configurations. The values are
normalized to the je configuration. A lower value is better. 44

6.6 jemalloc average maximum RSS over 20 runs with a thread-local buffer
size of 40 KB and with six different configurations. The values are
normalized to the je configuration. A lower value is better. 45

6.7 hoard average execution time over 20 runs with a thread-local buffer
size of 40 KB and with six different configurations. The values are
normalized to the hoard configuration. A lower value is better. 46

6.8 hoard average maximum RSS over 20 runs with a thread-local buffer
size of 40 KB and with six different configurations. The values are
normalized to the hoard configuration. A lower value is better. 47

6.9 glibc average execution time over 20 runs with a thread-local buffer
size of 40 KB and with six different configurations. The values are
normalized to the glibc configuration. A lower value is better. 48

6.10 glibc average maximum RSS over 20 runs with a thread-local buffer
size of 40 KB and with six different configurations. The values are
normalized to the glibc configuration. A lower value is better. 49

LIST OF FIGURES xv

A.1 Mutator execution time (normalized to best value) averaged over 30
runs for a GC limit of 4 using the mimalloc Mark-Sweep collector with
three different stress factor values. A lower value is better. 1

A.2 Mutator execution time (normalized to best value) averaged over 30
runs for the mimalloc Mark-Sweep collector with a stress factor of
32MB and three different GC limit values. A lower value is better. . . . 2

A.3 Mutator execution time (normalized to best value) averaged over 30
runs for the mimalloc Mark-Sweep collector with a stress factor of
64MB and three different GC limit values. A lower value is better. . . . 2

A.4 Density of closeness to a GC for Query 0667 using the Immix collector
on the Haswell system. 3

A.5 Density of closeness to a GC for Query 0667 using the SemiSpace col-
lector on the Haswell system. 4

A.6 Density of closeness to a GC for Query 0667 using the Mark-Sweep
collector on the Haswell system. 5

A.7 Density of closeness to a GC for Query 1009 using the Immix collector
on the Haswell system. 6

A.8 Density of closeness to a GC for Query 1009 using the SemiSpace col-
lector on the Haswell system. 7

A.9 Density of closeness to a GC for Query 1009 using the Mark-Sweep
collector on the Haswell system. 8

A.10 Density of closeness to a GC for Query 0380 using the Immix collector
on the Xeon system. 9

A.11 Density of closeness to a GC for Query 0380 using the SemiSpace col-
lector on the Xeon system. 10

A.12 Density of closeness to a GC for Query 0380 using the Mark-Sweep
collector on the Xeon system. 11

A.13 Density of closeness to a GC for Query 0667 using the Immix collector
on the Xeon system. 12

A.14 Density of closeness to a GC for Query 0667 using the SemiSpace col-
lector on the Xeon system. 13

A.15 Density of closeness to a GC for Query 0667 using the Mark-Sweep
collector on the Xeon system. 14

A.16 Density of closeness to a GC for Query 1009 using the Immix collector
on the Xeon system. 15

A.17 Density of closeness to a GC for Query 1009 using the SemiSpace col-
lector on the Xeon system. 16

A.18 Density of closeness to a GC for Query 1009 using the Mark-Sweep
collector on the Xeon system. 17

A.19 jemalloc average execution time over 20 runs with a thread-local buffer
size of 128 KB and with six different configurations. The values are
normalized to the je configuration. A lower value is better. 18

xvi LIST OF FIGURES

A.20 jemalloc average maximum RSS over 20 runs with a thread-local buffer
size of 128 KB and with six different configurations. The values are
normalized to the je configuration. A lower value is better. 19

A.21 hoard average execution time over 20 runs with a thread-local buffer
size of 128 KB and with six different configurations. The values are
normalized to the hoard configuration. A lower value is better. 19

A.22 hoard average maximum RSS over 20 runs with a thread-local buffer
size of 128 KB and with six different configurations. The values are
normalized to the hoard configuration. A lower value is better. 20

A.23 glibc average execution time over 20 runs with a thread-local buffer
size of 128 KB and with six different configurations. The values are
normalized to the glibc configuration. A lower value is better. 20

A.24 glibc average maximum RSS over 20 runs with a thread-local buffer
size of 128 KB and with six different configurations. The values are
normalized to the glibc configuration. A lower value is better. 21

List of Tables

1.1 The 2021 Common Weakness Enumeration Top 5 Most Dangerous
Software Weaknesses. Data obtained from CWE [2021]. 2

3.1 Minimum heap size (in MB) measured for different collectors. Note
that certain benchmarks did not complete for some collectors. Here,
“mi-MS (64KB)” and “mi-MS (128KB)” refer to the mimalloc Mark-
Sweep 64KB and 128KB stress collectors respectively. 13

5.1 Geometric mean of normalized medians for the best and worst 5th
percentile of executions (per query) over all 2048 queries per collector.
Note how most of the best queries for Immix are farther away from a
GC. 29

5.2 Geometric mean of normalized medians for the best and worst 5th
percentile of executions (per query) over all 2048 queries per collector.
Note how most of the best queries for Immix and SemiSpace are far-
ther away from a GC, whereas for Mark-Sweep they are much closer
to the execution of a GC. 32

xvii

xviii LIST OF TABLES

Chapter 1

Introduction

Programming languages have been a foundational building block of computer sci-
ence since the advent of the field. Modern research focusses on improving both
the usability of programming languages (generally in terms of high-level language
features such as object-orientation, abstract data types, etc.) as well as their perfor-
mance. However, it is often the case that improving the usability of a programming
language negatively affects the performance. For example, a key decision that a lan-
guage implementer has to make while creating a new language is how to handle
dynamic memory allocations. The two broad approaches are manual memory man-
agement (like with C, C++, etc.) and automatic memory management (like with Java,
Python, JavaScript etc.) a.k.a. garbage collection. It is well-known that the addition of
garbage collection to a language affects the execution time of an application since the
application will spend part of its time collecting garbage. Fundamentally, garbage
collection is a space-time trade-off, in other words, the larger the heap we provide to
an application, the fewer times it has to collect garbage.

Garbage collection allows a language to provide an abstraction over memory
instead of exposing raw pointers to application programmers. An abstraction over
memory is quite useful, both cognitively (i.e. a programmer does not have to reason
about pointers and pointer arithmetic) as well as functionally since all objects are
only accessible by a reference which can allow the garbage collector to move objects
around in memory to reduce the heap footprint. Garbage collection also provides a
key benefit to programmers, namely memory safety. Manual memory management
is notoriously error prone. Bugs such as use-after-frees, out-of-bounds reads and
writes are commonplace in languages such as C and C++. Table 1.1 lists the top 5
most dangerous software weaknesses of 2021 as measured by the CWE Team [2021].
Note how both out-of-bounds reads and writes are within the top 3. Such bugs are
generally impossible in a garbage collected language since all memory is managed
by the language.

There has long been a debate in the world of programming languages regarding
the overheads of garbage collection. To some, the costs and overheads imposed by
garbage collection are unacceptable, while others believe the benefits of garbage col-
lection far outweigh the costs. However, we note that literature comparing the costs
and benefits of modern garbage collection against manual memory management is
scarce. This has lead to the spread of several misconceptions and misunderstandings

1

2 Introduction

Table 1.1: The 2021 Common Weakness Enumeration Top 5 Most Dangerous Software
Weaknesses. Data obtained from CWE [2021].

Rank ID Name Count

1 CWE-787 Out-of-bounds Write 3033
2 CWE-79 Cross-site Scripting 3564
3 CWE-125 Out-of-bounds Read 1448
4 CWE-20 Improper Input Validation 1120
5 CWE-78 OS Command Injection 833

surrounding the true costs and benefits of garbage collection. The effects of garbage
collection on the locality of an application are also poorly understood. Huang et al.
[2004] suggest that garbage collection can in fact improve an application’s locality,
resulting in better performance, whereas in direct contrast, Hertz and Berger [2005]
suggest that garbage collection adversely affects an application’s locality, degrading
its performance.

What makes the comparison difficult between the two styles of memory man-
agement is that it is quite hard to construct experiments to make a fair comparison.
More concretely, it is impossible to insert a state-of-the-art garbage collector into a
language designed with manual memory management in mind as an application
may encode raw pointers, for example, by XOR-ing them (a common use-case being
an XOR linked list). This means that we cannot move objects around in memory since
we may break the semantics of the application. In addition, any garbage collector in
a language without type-accurate information (as is the case with most manually
memory managed languages) has to be conservative when it scans for heap refer-
ences [Boehm and Weiser, 1988]. What this means is that the collector assumes any
sequence of bytes that looks like a pointer to be a pointer. This can include a (large)
number that just happens to be a valid address. Hence this leads to an overestimation
of the number of objects that are actually alive.

On the other hand, in applications written in a managed language, it is difficult
to ascertain where a certain object is not required anymore and should be freed, or
more precisely where a programmer will insert a call to free. In addition to the
above, each style of language has its own set of programming paradigms and idioms
that are quite different from each other. Hence direct translations between the two,
if possible, may not be a fair comparison since the code may be biased to one form
of memory management over the other.

These poorly understood overheads and benefits can lead to language imple-
menters committing to one form of memory management (or in extreme cases, one
algorithm) without the ability to switch to another. Famously, Swift cites the Hertz
and Berger [2005] paper in a talk [Lattner, 2016] as a motivation for using naïve refer-
ence counting [Collins, 1960] – an automatic memory management algorithm which
has long been dismissed by the research community [Jones et al., 2011, Chapter 5;
Jibaja et al., 2011, Shahriyar et al., 2012; Wang, 2017]. Another example is PHP which

§1.1 Thesis Statement 3

embeds reference counting semantics into its specification [PHP Community Foun-
dation, 2019, Section 4] 1. This has lead to the PHP community largely suffering due
to the poor performance of the reference counting algorithm [Jibaja et al., 2011] as
well as being unable to move to a different garbage collection algorithm.

1.1 Thesis Statement

Given the poor understanding of the effects of garbage collection, we naturally pose
questions regarding the true overheads and benefits of garbage collection in com-
parison to manual memory management: Does a garbage collector actually provide
locality benefits to an application? What space- and time-overheads do common
garbage collection algorithms have? and so-on. This thesis thus tries to demystify
and deepen our understanding of the overheads and benefits of garbage collection in
comparison to manual memory management and clear up misconceptions surround-
ing the costs of garbage collection.

1.2 Contributions

We focus on using the Memory Management Toolkit [Blackburn et al., 2004a; MMTk
Research Group, 2021] with Hotspot, the Java virtual machine by OpenJDK [Open-
JDK Community, 2021]. Our key contributions and insights from this work are:

1. We introduce a new methodology for measuring different aspects of garbage
collectors, namely:

(a) the space-overheads of garbage collection;

(b) the effects of garbage collection on the execution of an application;

(c) the effects of garbage collection on the locality of an application;

(d) the effects of inserting garbage collection-like behaviour in manual mem-
ory managed applications;

2. We deepen the understanding of the overheads and benefits of garbage col-
lection in comparison to manual memory management allowing for language
developers and implementers to make an informed decision regarding their
choice of memory management;

3. We hopefully clear up some misconceptions in the literature regarding the lo-
cality benefits of different garbage collectors;

4. We conduct our study in a contemporary setting using modern hardware (and
more importantly modern CPU microarchitectures) allowing us to reevaluate

1Note that the specification states that a reference counting algorithm is not necessary, however a lot
of applications depend on precise reference counting and deterministic destruction [Yamauchi, 2012;
Wang, 2017] which makes it hard to move away from a precise reference counting algorithm.

4 Introduction

overheads and benefits of garbage collection in the face of rapid CPU and mi-
croarchitecural advancements.

1.3 Thesis Structure

Over the course of our research, we devised multiple experiments that tested dif-
ferent aspects of an application’s performance. Since each of these experiments are
mostly self-contained, we discuss the design, methodologies, results, and evaluations
in their respective chapters. Chapter 2 provides relevant background information and
discusses prior studies on the overheads and benefits of garbage collection. Chapter 3
details our first experiment which dealt with understanding the space-overheads of
garbage collection. Chapter 4 discusses experiments conducted to understand the
effects of garbage collection on an application’s execution. Chapter 5 explores the
effects of garbage collection on an application’s locality. Chapter 6 tackles the thesis
statement from a different direction by approximating garbage collection behaviour
in manual memory management. Finally, Chapter 7 summarizes our results and
contributions as well as discusses future avenues of research.

Chapter 2

Background and Related Work

Automatic memory management or garbage collection is a key aspect of modern man-
aged languages. First introduced as a method to simplify memory management in
LISP by McCarthy [1960], it has been widely adopted by other languages since then.
In this chapter we introduce background knowledge key to understanding our thesis.
We describe common terminology in garbage collection literature and provide a brief
breakdown of the taxonomy of different garbage collection algorithms in Section 2.1.
In Section 2.2, we briefly introduce the framework most of our work is implemented
in. Finally, in Section 2.3, we discuss prior work that is directly relevant to our thesis.

2.1 Terminology and Taxonomy of Garbage Collection

In garbage collection terminology, an application in a managed language can be di-
vided into two parts: (i) the mutator; and (ii) the collector. The mutator executes
the application code which allocates new objects and mutates the object graph2 by
(re)assigning references. The collector (or garbage collector) executes garbage collec-
tion code which deallocates objects which are no longer used or needed.

An interesting observation in the behaviour of garbage collected applications is
that it is periodic. That is to say, over the course of the execution of an application,
there are periods of bulk allocations followed by periods of bulk deallocations. We
term such behaviour as the inhale-exhale behaviour of garbage collection.

Garbage collection has two broad strategies to identify objects to reclaim: (i) trac-
ing garbage collection; and (ii) reference counting. A tracing garbage collector performs a
transitive closure of the object graph, keeping track of any reachable objects. Tracing
garbage collectors work under the assumption that any object that is reachable can
be used in the future by the programmer and should be kept alive. More precisely,
they approximate the liveness of an object with its reachability. We note this implicitly
marks unreachable objects as dead, i.e. ready for reclamation. A reference counting
garbage collector, on the other hand, does not perform a transitive closure of the
object graph, instead operating directly on the object references. In such a scheme,
each object has an associated reference count that specifies how many objects currently

2If we consider objects allocated in the heap, we find that they form what is termed an object graph,
where each node is an object and each edge is a reference.

5

6 Background and Related Work

own a reference to it. An object is considered dead if and only if its reference count is
zero. Hence, tracing garbage collectors work on live objects and reference counting
collectors work on dead objects.

Tracing garbage collection can generally be divided further into different strate-
gies. Mark-Sweep is one of the simplest tracing garbage collectors. It involves two
phases: (i) the mark-phase, where reachable objects are marked with a mark bit de-
noting that an object should not be reclaimed; and (ii) the sweep-phase, wherein the
collector traverses the heap and finds and frees objects that do not have the mark bit
set. Such a collector is non-moving, that is to say, it suffers from heap fragmenta-
tion. Multiple strategies have been invented to combat heap fragmentation. Copying
collectors such as the Semi-Space collector [Cheney, 1970] employ one such strategy.
The Semi-Space collector partitions the heap into two regions (termed semispaces)
and switches between the two every collection cycle. After tracing, live objects are
evacuated from one space to the other, leaving all dead objects behind. There is no
need to explicitly free dead objects as the collector will just allocate over them. Note
that the collector has to rewrite references to objects after moving them in order to
preserve program correctness. Another common strategy to deal with fragmentation
is Compacting. Such collectors generally compact the heap in-place instead of moving
objects to a new space as with copying collectors. A common compacting collector is
the Mark-Compact collector. Here, reachable objects are marked live as with the Mark-
Sweep collector, but instead of the sweep-phase, it compacts the heap by relocating
live objects and rewriting references.

The Mark-Sweep collector works on the smallest region-granularity possible, i.e.
object-granularity, while the Semi-Space collector works on a rather large region-
granularity (i.e. the semispaces). Midway between the two are what are termed Mark-
Region collectors. Mark-Region collectors partition the heap into regions, similar to
Semi-Space, however they keep the size of regions small. This allows for the collector
to support contiguous allocation inside these small regions, while only collecting
objects at a fixed granularity. Immix [Blackburn and McKinley, 2008] is common
example of a Mark-Region collector.

A key concept in garbage collection literature is the (weak) generational hypothesis
[Lieberman and Hewitt, 1983; Ungar, 1984]. The hypothesis states that most objects
die young, i.e. in other words, most objects are short-lived. This key insight has
lead to the development of generational garbage collectors which partition the heap
into a young nursery space and an old mature space. Most high-performance garbage
collectors use such a scheme nowadays.

2.2 MMTk

Often garbage collector implementations are deeply entrenched in their respective
runtimes (famous examples being the Ruby [2021] and C# garbage collectors [2021]
which are massive monolithic files that implement their respective GCs). Hence,
breakthroughs and novel GC implementations in one language are usually very hard

§2.3 Related work 7

to translate into other languages.
The Memory Management Toolkit (MMTk) [2021] is a language-agnostic library

that provides language implementers with a high-performance framework for mem-
ory management. It is a re-write of the original MMTk [Blackburn et al., 2004a,b]
which was written in Java as a part of the JikesRVM Java virtual machine. This
new version is written in Rust after a successful pilot study using Rust for a high-
performance GC implementation [Lin et al., 2016]. MMTk currently maintains sup-
port for the OpenJDK (Java), V8 (JavaScript), and JikesRVM (Java) runtimes. A core
objective of MMTk is to allow for researchers and language implementers to quickly
design and test garbage collector (GC) implementations. MMTk facilitates this due to
its novel approach of breaking GCs down to different key components which allows
for a GC algorithm to be defined by composing different components together. This
composability is a key driving factor which allows MMTk to be an excellent tool for
garbage collection researchers.

As of writing this thesis, all garbage collectors in the MMTk re-write are stop-
the-world (STW) collectors, that is to say, they pause the mutator in order to let the
garbage collector collect garbage. This obviously induces larger pause times on the
mutator. The alternative is concurrent garbage collection wherein the collector and
mutator runs at the same time. We note that there is work being done to support
concurrent garbage collectors into MMTk.

2.3 Related work

Huang et al. [2004] describe an approach to exploit data locality using copying
garbage collection. Standard copying collectors generally only use a single static
order (often simple breadth-first or depth-first ordering). Such an order is not nec-
essarily optimal for all applications. Huang et al. introduce online object reordering
(OOR) which uses copying orders that are based on application traversal patterns.
They achieve this by piggybacking off of the runtime method sampling in the adap-
tive JIT compiler in JikesRVM, a research Java virtual machine. The JIT compiler uses
(timer-driven) sampling to identify hot methods in order to recompile them at higher
optimization tier. OOR analysis collects information regarding field accesses during
compilation. When the JIT compiler recompiles hot methods, OOR marks hot field
accesses using information from before. Later, during garbage collection, the hot
fields are traversed (and copied) first. The authors conduct an experiment compar-
ing the execution time of this OOR collector against an idealized manual memory
management approximation. They use a Mark-Sweep collector with a free list allo-
cator and only measure the mutator time (which is calculated as the difference of
total execution time and GC time). This is an imperfect approximation, as the mu-
tator time does not include time to free objects, as well as the recycling of allocation
slots is not as prompt as in manual memory management. They find that the OOR
collector is generally comparable to if not better than the idealized manual memory
management even at small heap sizes. We note however, such an implementation

8 Background and Related Work

is non-trivial as well as requires support from the target VM so it is not necessarily
applicable to all languages and collectors. We also note that modern freelist alloca-
tor designs have improved significantly, in terms of both space- and time-efficiency.
Hence the Mark-Sweep mutator results may not be indicative of the current state of
manual memory management.

Perhaps the most relevant prior work to our thesis is by Hertz and Berger [2005]
who develop a framework comparing the costs of garbage collection to manual mem-
ory management. Using Dynamic SimpleScalar (an architectural simulator) and
JikesRVM, they create an “oracular memory manager” for Java which uses malloc
and free to allocate and deallocate objects. The framework directly inserts calls to
free as soon as objects are considered dead. They describe a reachability-based or-
acle, which frees objects just before they become unreachable; and a liveness-based
oracle, which uses object lifetimes to free objects just after their last use. These ora-
cles require two preconditions to work: (i) fixed object allocation order; and (ii) a list
ordered by allocation time that indicates which objects should be freed at that time.
Hence, when an application allocates an object in this framework, the simulator first
checks if any objects need to be freed. If some objects need to be freed then it calls
free on them explicitly before it passes control onto malloc to actually service the
allocation request.

Using the lea allocator [Doug Lea, 1998] and a modified version of the freelist
allocator3 with support for explicit freeing (named MSExplicit), they compare the
space- and time-overheads for various garbage collectors in the JikesRVM MMTk.
They find that garbage collection in MMTk requires at least 5× more memory (than
the explicit memory management scheme using the lea allocator) in order to pro-
vide the same execution time performance. For space-overheads, they find the best
garbage collector in MMTk at that time GenMS (an Appel-style generational collec-
tor with a Mark-Sweep mature space) requires at least 2–2.5× the heap size of the
explicit memory manager using the lea allocator. They also find that the MSExplicit
allocator generally has a 60% space-overhead in comparison to the lea allocator.

We believe there are certain aspects the authors overlook or forget to account for.
The authors use heap footprints in terms of total pages allocated as a measure of
space-overheads instead of heap usage numbers reported by MMTk. We note that
MMTk did not have support to unmap allocated pages at that time.4 Hence, the
space-overhead results reported for all collectors (and even the MSExplicit allocator)
are not indicative of actual space-overheads since MMTk does not unmap allocated
pages. On the other hand, as mentioned previously, there have been significant
improvements to freelist allocator architectures and hence the above results may not
be indicative of modern manual memory management.

3The freelist allocator implemented in MMTk at that time was based directly on the lea allocator.
4Confirmed by MMTk authors.

https://twitter.com/stevemblackburn/status/1331739091159793665

Chapter 3

Space Overheads of Garbage
Collection

It is well known that garbage collection is fundamentally a space-time tradeoff. How-
ever this space-time tradeoff is generally only measured between different garbage
collectors and not between garbage collection and manual memory management. In
this chapter we describe our methodology, design and implementation, and results
for an experiment that aims to understand the space-overheads of classic garbage col-
lection algorithms against manual memory management.

3.1 Objectives

As discussed in Chapter 2, Hertz and Berger [2005] find that certain garbage col-
lection algorithms require a heap size 2–2.5× larger than if the heap was manually
managed. We explore the space-overheads of garbage collection by creating an ex-
periment to measure the space-overheads of classic garbage collection algorithms
against an approximation of manual memory management.

3.2 Approximating Manual Memory Management

The core insight we use to calculate space-overheads is simple: A manually mem-
ory managed application will free objects whenever they are considered dead by the
programmer. Hence, in order to emulate an ideal manually memory managed appli-
cation in a managed language such as Java, we can simply perform a GC every al-
location. Note how we’ve inserted the manual memory management-like behaviour
here, i.e. we free an object as soon as possible. This gives us the perfect baseline. That
is to say, we can never do better (in terms of reducing the heap size) than performing
a GC every allocation. Note that programmers cannot achieve the same in manual
memory management since calls to free are generally placed as they see fit.

However, some benchmarks allocate in the order of magnitude of gigabytes. It is
infeasible to run experiments where we perform a full heap GC at every allocation

9

10 Space Overheads of Garbage Collection

as they may take months to complete5. Hence, we approximate this perfect baseline
by decreasing the periodicity of GCs, or more precisely, by increasing the allowed
number of bytes allocated between subsequent GCs.

We choose to model our perfect baseline on the Mark-Sweep algorithm (described
in Chapter 2) for this experiment. Mark-Sweep best approximates the manual mem-
ory management behaviour of malloc-free with its freelist allocator. Since our ex-
periment performs a GC every allocation (or every X bytes of allocation), we can also
exploit the fact that we can immediately reuse freelist slots (if the new object alloca-
tion fits) further improving the accuracy of our approximation of manual memory
management. A Mark-Sweep garbage collector faces similar issues regarding frag-
mentation as malloc-free due to its non-moving characteristic.

We pick the mimalloc [Leijen et al., 2019] allocator as the freelist allocator of choice
for our Mark-Sweep implementation. Mimalloc is a relatively new freelist allocator
that is designed for use-cases including highly parallel and concurrent applications as
well as predictable performance overheads6. Paige Reeves [2021] compares different
freelist implementations – such as jemalloc [Evans, 2006], hoard [Berger et al., 2000],
mimalloc, and glibc 2.27 – for the DaCapo Java benchmarks [Blackburn et al., 2006a,b]
and finds that mimalloc consistently outperforms the other allocators in terms of the
mutator performance.

We can then calculate the minimum heap required to run the benchmarks for
classic GC algorithms such as Semispace, Generational copying, Immix etc. and
compare against our perfect baseline to give us a better idea regarding the space-
overheads of these algorithms.

3.3 Design and Implementation

There are two key aspects of the design: (i) a mechanism to allow for changing
the periodicity of a GC (based on number of allocated bytes) a.k.a. Stress GC; and
(ii) internally using a malloc library as a freelist allocator. We break down our design
and implementation for the two in this section.

3.3.1 Stress Garbage Collection

Generally when an allocation request comes to MMTk, it can either take the fast path
or the slow path. The fast path is the usual case and is heavily optimized in order to
reduce the time taken to allocate an object. In a bump-pointer allocator, for example,
the fast path simply checks if there is enough (local) space to allocate the object. If
there is, then it will allocate it, otherwise it will go to the slow path. The slow path
is the exceptional case and we are less concerned about its performance since it is
executed infrequently. It is responsible for various things such as allocating more
local space for an allocator, or checking if we have exhausted the heap and a GC is

5And indeed, it did take more than a month for one benchmark to finish with a GC every allocation.
6Mimalloc is intended to be used as a backend for reference counting.

§3.3 Design and Implementation 11

required, etc. Hence, if we trick the allocation to always go through the slow path,
then we can forcefully perform a GC every X bytes of allocation.

This is simple to accomplish in MMTk. We can maintain a global atomic variable
denoting the number of bytes allocated since the last GC. This variable is updated
with the number of bytes allocated every allocation. We can then check this variable
every allocation and force a GC if we have allocated more than X bytes, resetting the
variable to 0 after a GC. A key aspect of this design is that it can be achieved with
a run time flag allowing us to control the periodicity of a GC at run time instead of
recompiling every time we want to change the periodicity.

3.3.2 Configurable malloc Mark-Sweep

Paige Reeves [2021] implemented a Mark-Sweep implementation with a configurable
malloc freelist allocator in MMTk. We first briefly describe her work and then de-
scribe extensions we made to this implementation for the purposes of our work.

The malloc freelist allocator in MMTk (as implemented by Reeves) allows one
to choose between the glibc, Hoard [Berger et al., 2000], jemalloc [Evans, 2006], and
mimalloc [Leijen et al., 2019] malloc implementations. This allocator is selected at
compile time using compiler flags. Since MMTk can’t control where the malloc
library allocates, in order to keep track of allocated objects, a side-metadata bitmap
is used where each bit represents whether an object starting at that address has been
allocated or not. This is termed as the alloc-bit. This alloc-bit is set when an object is
initialized by MMTk. The alloc-bits are used in the sweep-phase to perform a linear
scan of all the allocated objects. As with a normal Mark-Sweep implementation, any
unmarked (i.e. dead) objects are deallocated in the sweep-phase. However, free is
used to deallocate objects here.

In the above implementation, in order to determine the current heap footprint
of an application, MMTk simply keeps track of the sum of the sizes of all allocated
objects, rounding it to the nearest OS page-aligned size. This is an approximation,
however, as the actual heap footprint could be larger owing to fragmentation. We
extend the original implementation by adding a side-metadata bytemap where each
byte represents if an OS page starting at that address is active or not, with active
defined as containing a live object. This is termed as the active page-byte. We chose
to use a byte over a bit due to synchronization overheads in the case where multiple
threads are trying to set different bits in the same metadata byte. Having each page
be represented as a byte allows us to not worry about access races. The active page-
bytes are set when an object is allocated (and in the case where the object size is larger
than a page, we set the bytes for all the pages the object occupies). We then unset
them in the sweep-phase if an object has been deallocated. The sum of these bytes
then gives us the number pages that are active which we can then use to determine
the current heap footprint.

Note that in the current malloc Mark-Sweep implementation all allocations di-
rectly go through the slow path since there is no internal local freelist we can allocate
from in a fast path. Hence, no changes were required to the above implementation

12 Space Overheads of Garbage Collection

in order to support Stress GC. Also note that all allocations regardless of size go
through the malloc allocator (as opposed to having another space and allocator for
large objects). This allows us to more accurately measure the heap footprint.

3.4 Experimental Methodology

We use the following experimental methodology.

3.4.1 Benchmarks

We use the DaCapo benchmarks [Blackburn et al., 2006a,b] (Chopin evaluation ver-
sion7) for our benchmarks. The DaCapo benchmark suite is a suite of real-world
open source Java applications each with different levels of parallelism, data access
patterns, and memory requirements etc. The Chopin update to the DaCapo bench-
mark suite adds new benchmarks and updates previous ones with more intensive
workloads. We give a brief outline of each of the benchmarks used:

• avrora A cycle-accurate simulator for embedded sensing programs.

• batik A toolkit for dealing with SVG images.

• biojava A set of tools to process biological data.

• cassandra† A NoSQL database management system.

• eclipse An integrated development environment (IDE).

• fop An output-independent print formatter.

• graphchi A large-scale graph computing engine.

• jme A 3D game engine in Java.

• jython A python interpreter written in Java.

• luindex A text indexing tool.

• lusearch A text search tool.

• pmd A source code analyzer for Java.

• sunflow A rendering system for photo-realistic image synthesis.

• tomcat An HTTP web server environment.

• xalan An XSLT processor for transforming XML documents.

• zxing A barcode image processing library.

The benchmark suite is packaged as a jar file. The jar file contains just the bench-
marks. The testing data is located in a separate folder. The source code and the
benchmark harness are available on the DaCapo Chopin GitHub repository [Steve
Blackburn, 2021]. Note that benchmarks labelled with † crashed or did not terminate
in our experiments.

7Obtained with permission from authors. Git hash used: 69a704e [2021].

https://github.com/dacapobench/dacapobench/commit/69a704ef4436196295e8e107f0a5f5f5212c125a

§3.4 Experimental Methodology 13

Table 3.1: Minimum heap size (in MB) measured for different collectors. Note that
certain benchmarks did not complete for some collectors. Here, “mi-MS (64KB)” and
“mi-MS (128KB)” refer to the mimalloc Mark-Sweep 64KB and 128KB stress collectors

respectively.

benchmark mi-MS (64KB) mi-MS (128KB) SemiSpace GenCopy Immix
avrora 7 7 13 14 9
batik 280 280 487 495 331
biojava - 188 377 382 191
eclipse 224 224 374 380 254
fop 21 22 41 41 29
graphchi 176 177 256 256 256
jython 57 57 105 106 84
luindex 27 27 53 - 28
lusearch 25 26 36 37 24
pmd 173 178 313 - 173
sunflow 19 20 29 29 20
tomcat - 59 81 98 65
xalan 11 13 18 19 11
zxing 100 102 125 124 99

3.4.2 Hardware and Operating System

We ran our experiments on the following hardware platforms:

(i) Intel i7-4770 Haswell with a 3.4 GHz clock, a 4 x 32 KB, 64 B/line, 8-way L1
cache, a 4 x 256 KB, 64 B/line, 8-way L2 cache, and 16 GB DDR3 RAM;

(ii) AMD FX-8320 Piledriver with a 3.5 GHz clock, a 8 x 16 KB, 64 B/line, 4-way L1
cache, a 4 x 2 MB, 64B/line, 16-way L2 cache, and 8GB DDR3 RAM;

(iii) 4 (sockets) x Intel Xeon Gold 5118 Skylake with a 2.3 GHz clock, a 12 x 32 KB,
64 B/line, 8-way L1 cache, a 12 x 1 MB, 64 B/line, 16-way L2 cache, and a 512
GB DDR4 RAM.

All systems ran Ubuntu 18.04.6 LTS with Linux 5.4.0-87 kernels. All CPUs operate in
64-bit mode and use 64-bit kernels.

3.4.3 MMTk and OpenJDK

We use the Rust rewrite of MMTk (see Chapter 2) with mmtk-core revision 42328e24,
mmtk-openjdk revision 55cc6f7, and a modified version of OpenJDK 11 (revision
425d41085f1) which has support for MMTk. All experiments use the HotSpot C2
JIT compiler with pre-compilation enabled and explicit GCs disabled. Measurements
were captured using the DaCapo benchmark harness and probes. Since our measure-
ments are not time-sensitive, we do not perform any warmup iterations.

14 Space Overheads of Garbage Collection

avrora batik biojava eclipse fop graphchi jython luindex lusearch pmd sunflow tomcat xalan zxing Geomean
Benchmark

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

M
in

he
ap

 R
eq

ui
re

d
(N

or
m

al
ize

d
to

 B
es

t V
al

ue
)

MMTk mimalloc MarkSweep (64KiB Stress)
MMTk mimalloc MarkSweep (128KiB Stress)
MMTk SemiSpace
MMTk Generational Copying
MMTk Immix

Figure 3.1: Minimum heap size required to complete a benchmark for the SemiSpace,
Generational Copying, and Immix collectors in comparison to the 64 KB and 128 KB

Mark-Sweep stress collectors. A lower value is better.

3.4.4 Experimental Design

We measure the minimum heap size required to run the benchmarks for collectors
such as SemiSpace, Appel-style Generational Copying, and Immix and compare them
with the minimum heap footprint as reported by the approximation of manual mem-
ory management as discussed above. The Immix collector was configured with op-
portunistic defragmentation enabled in order to compact the heap when possible.
We chose relatively low stress factors (64KB and 128KB) which allow us to get a rea-
sonable confidence in their accuracy. We conduct our experiment in a standalone
setting where we run without any other significant resource-consuming processes in
order to limit the experimental noise in our measurements. Since our experiment is
not measuring time-sensitive components, we simply report the minimum heap size
required by all our GCs across the different hardware. For the stress collectors, we
use an arbitrarily large heap size since our highly periodic GCs will reduce the total
heap footprint anyway.

3.5 Results and Evaluation

Figure 3.1 and Table 3.1 show the minimum heap required to run a benchmark for
different GC algorithms in comparison to the 64KB and 128KB Mark-Sweep stress
GCs. The results are normalized to the best value for that benchmark. Note that some
benchmarks did not complete with certain GCs such as luindex for the Generational
Copying collector. We simply leave the respective column blank in such cases.

Almost immediately we can see that the different GC algorithms are in the 1–2×
range in terms of heap size required to complete most of the benchmarks in compari-
son to the Mark-Sweep stress collectors. Surprisingly, Immix seems to be competitive
to the Mark-Sweep stress collectors in the minimum heap size required. SemiSpace
and Generational Copying both require around 2× the Mark-Sweep stress collectors
which is in-line with expectations due to their large space requirements. Note that in

§3.6 Summary 15

certain benchmarks such as lusearch, we have the Immix collector beating out the
Mark-Sweep stress collectors. We believe this suggests that we can reduce the heap
size for lusearch further by increasing the periodicity of the Mark-Sweep stress col-
lector. This could also partly be explained by heap fragmentation since lusearch is
a highly parallel benchmark. Since we use the opportunistic defragmentation mode
for Immix, we could theoretically make a highly fragmented heap smaller.

The geometric mean of the space-overheads per collector give us an idea of the
average (space) cost for that collector. Notably, we see that both the SemiSpace and
Generational Copying collectors have around a 1.75× space-overhead in comparison
to the Mark-Sweep stress collectors. Immix fairs much better, only having around a
1.15× space-overhead. We believe this is due to Immix’s mark-region design which
helps in minimizing space in comparison to other copying collectors. The oppor-
tunistic defragmentation mechanism in Immix also contributes to its lower space-
overheads.

We compare and contrast our results against the work by Hertz and Berger [2005]
(see Section 2.3). They report at least a 2–2.5× space-overhead for the GenMS (an
Appel-style generational collector with a Mark-Sweep mature space) in comparison
to their explicit memory manager using the lea allocator [Doug Lea, 1998]. While
we did not test the GenMS algorithm, we find that the SemiSpace and Generational
Copying algorithms, which are arguably worse than GenMS in terms of space re-
quirements, have a 1.75× space-overhead on average. This apparent contradiction
confirms our belief that they overestimate the space-overheads for garbage collectors
in their work due to MMTk not unmapping allocated pages.

3.6 Summary

We outline a novel methodology for calculating the space-overheads of GC algo-
rithms in comparison to manual memory management by modelling an approxima-
tion of manual memory management-like behaviour by increasing the periodicity of
garbage collection cycles. We find and demonstrate through an experiment that com-
mon GC algorithms generally use around 1–2× the heap size in comparison to (an
approximation of) manual memory management. We find that the Immix allocator
is competitive with our manual memory management approximation, with SemiS-
pace and an Appel-style Generational Copying collector having a space-overhead of
roughly 1.75×, which is in-line with expectations due to their large space require-
ments.

16 Space Overheads of Garbage Collection

Chapter 4

Time Overheads of Garbage
Collection

Due to the nature of garbage collection, there is an appreciable effect of the execu-
tion of the garbage collector on the execution of the mutator. This could be a positive
effect such as collecting garbage so that the mutator can allocate more objects, or
it could be negative such as the overheads imposed by garbage collection by stop-
ping the mutator’s execution or through the execution of barriers. In this chapter
we describe our methodology, design and implementation, and results for an exper-
iment that aims to tease away the benefits of garbage collection from its cost in order to
understand the effects of garbage collection on the mutator’s execution.

4.1 Objectives

Garbage collection imposes some form of overhead on the execution of a mutator.
However, it can also potentially improve the execution time of a mutator by reorga-
nizing objects or allowing for faster allocation, for example. Hence it is difficult to
actually understand the true cost of garbage collection (on the mutator’s execution)
since the benefits might hide or even overshadow the true costs. We construct an
experiment to tease away the costs and benefits of garbage collection and measure
how the mutator’s execution changes in hopes of understanding how the garbage
collection “signal” affects it.

4.2 Garbage Collection “Signals”

Signal processing theory has a concept of interference wherein a signal we want to
measure has some noise added to it resulting in a noisy signal. In order to measure
or extract the signal we’re interested in, we need to be able to remove or dampen the
noise from the noisy signal somehow. We build upon this signal processing theory
concept. We believe that the execution of an application can be considered a “signal”
with occasional noise added to it due to the execution of the garbage collector. Hence,
here, the signal we want to measure is the steady-state of the mutator and the added
noise is the costs and benefits of garbage collection.

17

18 Time Overheads of Garbage Collection

Figure 4.1: Noisy signal obtained due to the addition of the Gaussian noise to a clean
signal. Note how the original signal can still be made out in the resultant additive

signal. Image obtained from James Trichilo.

Figure 4.1 gives an example of a noisy signal in signal processing theory. Here,
a clean signal (top) has some Gaussian noise (middle) added to it in order to get a
noisy signal (bottom). While in signal processing, noise is usually removed through
techniques such as using filters on Fourier Transforms, we do not have the liberty for
such an approach here as there is no literal “signal” that we can measure. Hence, we
need to construct a different experiment to be able to extract or dampen the “noise”
due to garbage collection. We propose that we can extract this noise by separating
the costs and benefits of garbage collection. By separating these costs and benefits
we can create multiple “views” of the application’s (noisy) signal which could help
us understand the mutator’s underlying steady-state “signal”.

While not exactly what we are describing above, an analogous concept in signal
processing is differential signaling. Figure 4.2 depicts a schematic showing how dif-
ferential signaling can be used to transmit signals over a noisy medium. Note how
the Sender sends two copies of the signal, with one being the negation of the true
signal we want to send. Given the noisy medium, both signals have noise added to
them resulting in the signals received on the Receiver’s end. The Receiver can then
subtract the two signals to remove the noise and get the original signal back. Note
how the amplitude of the resultant signal is much larger at the Receiver. This is due
to the subtraction of the two signals since one is the negation of the other. Due to
its simplicity and effectiveness, differential signaling is widely used today in making
twisted-pair cables such as Ethernet as well as on modern printed circuit boards.

§4.3 Design and Implementation 19

Figure 4.2: Schematic showcasing signal transmission over a noisy medium using
differential signaling. Note the increased amplitude at the Receiver’s end. Image

obtained from Wikipedia [2021].

One method we can use to separate the costs and benefits of garbage collection
is by deferring the freeing of objects (also termed quarantining)8. Hence, instead of
freeing objects as soon as they are dead, we place them in a quarantine buffer and
only free them after N GCs have occurred. Simultaneously, we increase the period-
icity of a GC to once every X bytes (described in Section 3.2) in order to make the
effects of the GC’s “noise” on the mutator’s “signal” more prominent. The combi-
nation of the two techniques above means that applications do not see the benefits
of a GC immediately while still incurring the heavy cost of a GC (such as polluting
the cache, tracing the entire object graph, etc.), effectively divorcing the costs from
the benefits of a GC. Further, we can change the periodicity as well as the number of
GCs between actual collections to get different views or pictures of how a GC (or the
lack thereof) affects the mutator’s execution time.

4.3 Design and Implementation

In principle, the technique described above is not limited to any GC algorithm, how-
ever we choose to focus on Mark-Sweep as it makes the implementation of deferred
freeing easier than other collectors owing to its non-moving behaviour.

In order to change the periodicity of garbage collection, we use the same imple-
mentation as described in Section 3.3. On top of this, we allow a user to configure the
periodicity of an actual GC as well. We implement support for quarantining using
a simple global buffer where pointers to dead objects are placed. During the sweep-

8Deferred freeing in manually memory managed applications is explored in much more detail in
Chapter 6.

20 Time Overheads of Garbage Collection

phase of the Mark-Sweep collector, we identify dead objects as usual, however we
place them inside this global buffer instead of freeing them immediately. Given we
allow a user to configure the periodicity of an actual GC, at the end of the sweep, we
check if we have crossed this threshold and if we have, then we free all objects in the
quarantine buffer. While the simple global buffer require synchronization overheads
between different GC threads, we also implemented quarantining using thread-local
buffers, but did not observe any appreciable differences in the mutator performance
in our (simple) tests. Hence, we stick with the global buffer implementation due to
its simplicity.

4.4 Experimental Methodology

We use the following experimental methodology.

4.4.1 Benchmarks

We use the DaCapo benchmarks [Blackburn et al., 2006a,b] (Chopin evaluation ver-
sion9) for our benchmarks. The list of benchmarks and a brief description of them
can be found in Section 3.4.1.

4.4.2 Hardware and Operating System

We ran our experiments on the following hardware platform: Intel i7-6700K Skylake
with a 4 GHz clock, a 4 x 32 KB, 64 B/line, 8-way L1 cache, a 4 x 256 KB, 64 B/line,
4-way L2 cache, and 16 GB DDR4 RAM. The system ran Ubuntu 18.04.6 LTS with a
Linux 5.4.0-87 kernel. The CPU operates in 64-bit mode and uses 64-bit kernels.

4.4.3 MMTk and OpenJDK

We use the Rust rewrite of MMTk (see Chapter 2) with mmtk-core revision 37a229c9,
mmtk-openjdk revision 55cc6f7, and a modified version of OpenJDK 11 (revision
425d41085f1) which has support for MMTk. All experiments use the HotSpot C2
JIT compiler with pre-compilation enabled and explicit GCs disabled. Measurements
were captured using the DaCapo benchmark harness and probes. Since we are mea-
suring time-sensitive values, we perform two warmup iterations before starting our
timing iteration in order to reduce any noise due to compilation or other VM opera-
tions.

4.4.4 Experimental Design

The key idea of this experiment is we want to measure the mutator’s execution time
to see if it is affected by varying the periodicity of “fake” garbage collections (i.e.

9Obtained with permission from authors. Git hash used: 69a704e [2021].

https://github.com/dacapobench/dacapobench/commit/69a704ef4436196295e8e107f0a5f5f5212c125a

§4.5 Results and Evaluation 21

0.985

0.99

0.995

1

1.005

1.01

1.015

1.02

1.025

1.03

avrora
batik

cassandra

eclipse
fop graphchi

jme luindex
lusearch

pmd
sunflow

tomcat
xalan

zxing
min max

mean
geomean

tim
e.

m
u

(mi-MarkSweep) Stress Garbage Collection (16Mb)

(mi-MarkSweep) Stress Garbage Collection (32Mb)

(mi-MarkSweep) Stress Garbage Collection (64Mb)

...
1.

22
...

1.
33

...
1.

22
...

1.
33

Figure 4.3: Mutator execution time (normalized to best value) averaged over 30 runs
for a GC limit of 1 using the mimalloc Mark-Sweep collector with three different

stress factor values. A lower value is better.

stress factor) as well as “real” garbage collections (i.e. GC limit). This can give us in-
sight into how the underlying mutator’s steady-state is affected by garbage collection
operations. We use the above Mark-Sweep collector with the mimalloc freelist alloca-
tor as described in Section 3.3. We vary the stress factor in coarsely, with the values
16MB, 32MB, and 64MB. We generally note that these result in a > 6× increase in
the number of GCs if ran with the minimum heap size as well as do not take too
long to finish execution. On the other hand, we vary the GC limit as 1, 4, and 16
which means that we perform a “real” GC every 1, 4, and 16 “fake” GCs. We run
each benchmark 30 times, averaging the mutator execution time over them in order
to reduce the effect of noise in our measurements. We conduct our experiment in a
standalone setting where we run without any other significant resource-consuming
processes in order to limit the experimental noise in our measurements. We use an
arbitrarily large heap size for the benchmarks since we are artificially controlling the
heap size with our periodic GCs.

4.5 Results and Evaluation

We present our results through two views: per GC limit and per stress factor. We
discuss the per GC limit results first. For the sake of conciseness and completeness,
we place some figures in Appendix A.

Figure 4.3 depicts the average mutator execution time for the DaCapo bench-
marks with a GC limit of 1. The idea of this experiment is to estimate the costs
associated with our framework. We can immediately see that even though we have
a lot of runs, there is still a lot of noise present in the experimental results. Note
that most of the trends for the mutator execution times are statistically insignificant
given they are within < 1% of the best configuration as well as are extremely noisy.

22 Time Overheads of Garbage Collection

0.985

0.99

0.995

1

1.005

1.01

1.015

1.02

1.025

1.03

avrora
batik

cassandra

eclipse
fop graphchi

jme luindex
lusearch

pmd
sunflow

tomcat
xalan

zxing
min max

mean
geomean

tim
e.

m
u

(mi-MarkSweep) Stress Garbage Collection (16Mb)

(mi-MarkSweep) Stress Garbage Collection (32Mb)

(mi-MarkSweep) Stress Garbage Collection (64Mb)

...
1.

24
...

1.
35

...
1.

24
...

1.
35

Figure 4.4: Mutator execution time (normalized to best value) averaged over 30 runs
for a GC limit of 16 using the mimalloc Mark-Sweep collector with three different

stress factor values. A lower value is better.

Unfortunately, we believe this is due to our choice of using the malloc Mark-Sweep
as the basis of our implementation. We believe the significant mutator overhead for
allocating objects (recall that a library call to a malloc library of choice is performed)
hides or overshadows the costs of our periodic “fake” and “real” GCs. Note that most
of the benchmarks which have the statistically insignificant results are benchmarks
which have a high allocation rate, lending credence to our theory that the latency for
allocating objects far outweighs any other costs.

We note that we see certain benchmarks showcase interesting behaviours regard-
less of the above flaws in our implementation. The results for cassandra are most
intriguing. While generally we would expect more periodic GCs to degrade muta-
tor performance, it seems like the mutator time for cassandra actually significantly
benefits from having more frequent GCs. We believe this is to do with the database
workload that cassandra simulates. The benchmark uses the YCSB core workload
[Cooper et al., 2010] which performs multiple operations such as inserting, updating,
reading, etc. against a database. These operations tend to create many short-lived
objects. We believe frequent GCs can help with locality in such a case as these al-
location slots are recycled more quickly.10 This also suggests that the costs of a GC
such as trashing the cache etc. are less significant for the benchmark. Indeed if we
run cassandra while further decreasing the stress factor (i.e. increasing the period-
icity), we find that the smallest stress factor has the best mutator time. Note that the
total time for the benchmark increases, however, given that the GC time increases
dramatically.

The avrora, fop, and lusearch benchmarks behave more as expected, with the
smallest stress factor having the largest mutator overhead. These are still within
< 2% of the best configuration, however, likely due to the high latency for allocations

10Hence, we believe a generational collector could be very beneficial for a benchmark like cassandra.

§4.5 Results and Evaluation 23

0.985

0.99

0.995

1

1.005

1.01

1.015

1.02

1.025

1.03

1.035

avrora
batik

cassandra

eclipse
fop graphchi

jme luindex
lusearch

pmd
sunflow

tomcat
xalan

zxing
min max

mean
geomean

tim
e.

m
u

(mi-MarkSweep 16MB) GC Limit = 1 (mi-MarkSweep 16MB) GC Limit = 4 (mi-MarkSweep 16MB) GC Limit = 16

Figure 4.5: Mutator execution time (normalized to best value) averaged over 30 runs
for the mimalloc Mark-Sweep collector with a stress factor of 16MB and three differ-

ent GC limit values. A lower value is better.

as mentioned previously. These costs are likely due to the excessive GCs that can
trash the cache and other machine state.

Figure A.1 depicts the average mutator execution time for the DaCapo bench-
marks with a GC limit of 4. Hence, every 4th “fake” GC we actually collect the
quarantine buffer. The idea for this experiment was to see how separating the costs
from the benefits of a GC affects mutator performance. We note that the trends for
the GC limit = 1 case are still present. The only differences are with batik wherein
the GC limit = 1 case had < 0.75% overhead for the stress factor = 16MB configura-
tion, while there is no perceivable overhead for the GC limit = 4 case. Note that these
overheads are still statistically insignificant.

Figure 4.4 depicts the average mutator execution time for the DaCapo bench-
marks with a GC limit of 16. The idea for this experiment was to understand the
effects of further increasing the time between proper collections. We note that the
overheads for most of the benchmarks except batik are unchanged. Interestingly,
batik seems to have significantly larger overheads in comparison to the experiment
with GC limit = 4 (see Figure A.1). We believe this suggests that the increased peri-
odicity of the deferred freeing of objects adversely affects its execution.

We now discuss the results per stress factor. Figure 4.5 depicts the average muta-
tor execution time for the DaCapo benchmarks with a stress factor of 16MB. Unfor-
tunately, as before, most the the results are statistically insignificant with overheads
being within < 1% of the best configuration as well as are extremely noisy. The only
benchmark we can reasonably comment on is avrora. Here, the GC limit = 1 case
has significantly more overhead than the other two. Given that the only differences
between the configurations is the GC limit, we believe this suggests that the bench-
mark either suffers significantly from the cost of freeing continuously (with GC limit
= 1) or benefits from deferred freeing. We don’t see any reason why freeing immedi-
ately will perform worse (if anything it should allow for allocation slots to be recycled

24 Time Overheads of Garbage Collection

quicker), hence we believe that the benchmark benefits from deferred freeing instead.
This could be due to the due to the fact that the cost of freeing continuously (in the
malloc Mark-Sweep) can be expensive and deferred freeing can amortize the cost.

Figures A.2 and A.3 depict the average mutator execution time for stress factors
32MB and 64MB respectively. We note no appreciable differences in comparison to
the 16MB case except for batik and cassandra. We note that the overheads for the
GC limit = 16 case for batik are minimum, with the other two configurations having
a < 2% overhead. It is likely the increased periodicity of “fake” GCs causes this trend
to not show up for the stress factor = 16MB case (see Figure 4.5). While we do not
have any conclusive evidence to back this up, we believe that increasing the GC limit
for batik results in amortizing the costs of freeing objects.

4.5.1 Discussion

We believe that using the malloc Mark-Sweep collector in MMTk for our imple-
mentation was poor a choice in hindsight. The significant mutator overhead due to
the slow allocation may actually hide the costs associated with increasing the peri-
odicity of “fake” and “real” GCs. We suspect this may also be the cause why we
didn’t see any improvements (in terms of mutator time) for the thread-local quaran-
tining implementation. Unfortunately, due to these oversights, we do not have any
statistically significant results. However, we believe, that our broad proposal and
experiments are novel and have merit to provide interesting insight into the costs of
garbage collection. In the future we hope to implement a similar decoupling of the
costs and benefits for a GC like SemiSpace or Immix or revisit Mark-Sweep with a
native freelist allocator.

4.6 Summary

In this chapter we describe a novel methodology to understand the costs imposed by
garbage collection in managed applications. We appeal to signal processing theory,
wherein there is a concept of noise interfering with a signal we want to measure. We
further draw the analogy that garbage collection interferes with the steady-state of
an application by adding “noise”. Hence, our core idea is to decouple the costs from
the benefits of garbage collection. One proposed method could be to increase the
periodicity of GCs while only actually collecting dead objects after a certain number
of GCs. This way we have compounded the costs of garbage collection – through
periodic “fake” GCs that perform all GC operations except collection – without any
associated benefits as we only collect objects occasionally. Unfortunately, we find that
using the malloc Mark-Sweep collector in MMTk as a basis for our implementation
was a poor choice due to the significant overheads it incurs for allocating objects.
This overhead hides or overshadows the costs of increasing the periodicity of both
“fake” and “real” GCs. In the future we would like to revisit this methodology for
a different GC algorithm such as SemiSpace, Immix or Mark-Sweep with a native
freelist allocator.

Chapter 5

Locality Effects of Garbage
Collection

How an application manages and uses its data locality can drastically affect its perfor-
mance. Good cache locality and data placement/alignment can dramatically improve
the runtime of an application. However, the effects of garbage collection on a muta-
tor’s locality are not well understood. In this chapter we describe our methodology,
design and implementation, and results for an experiment that aims to understand
the effects of garbage collection on the locality of the mutator.

5.1 Objectives

We believe garbage collection can have both positive and negative effects on an ap-
plication’s data locality, depending on the garbage collection algorithm used. A
copying or compacting GC could rearrange objects in memory to make objects that
are frequently accessed sit on the same cache line. On the other hand, garbage col-
lectors such as the classical Mark-Sweep are unlikely to improve application locality,
and in fact could hurt it due to internal fragmentation. We construct an experiment
that tries to understand the locality effects of classical GC algorithms such as Immix,
SemiSpace, and Mark-Sweep.

5.2 Measuring Locality Effects

We believe that certain garbage collection algorithms can benefit an application’s
locality. However, these locality benefits may not be immediate, that is to say, an
application will see improved locality some period of time after a GC disrupts the
application’s execution. More precisely, while a GC may negatively the affect the
locality of an application at the moment it occurs (due to trashing the cache and the
working set of the application), the application could benefit from the rearranged
and compacted objects in the future.

In order to measure these delayed benefits, we want to use a benchmark with
many small transactions that we can individually measure. We can coalesce various
measurements for these transactions such as start and end times, total execution

25

26 Locality Effects of Garbage Collection

time, cache misses, etc. Each transaction is executed multiple times in order to get
different measurements in time. We then calculate the proximity of execution of
these transactions to the execution of the “closest” GC. Here, we define the closest GC
as the GC just prior to the query executing. Given we want to measure the “delayed
effects” of a GC, we believe this is a sound definition of “closest”. Using this we can
see if there is a correlation with the (best) execution time(s) of a transaction to how
close it was to a GC.

We pick the lusearch benchmark from the DaCapo suite of Java benchmarks
[Blackburn et al., 2006a,b] as our benchmark of choice. lusearch is a simple text
search application using the Apache Lucene Java search library [Apache, 2021]. Here,
each transaction is a single text query. We can then instrument the benchmark to
report various measurements of each query. Further, running the benchmark using
OpenJDK with MMTk, we can generate a trace of the start and ends of all GCs.
Now we can place each query in comparison to its distance from a previous GC on a
timeline.

5.3 Design and Implementation

Our implementation is simple: we want to instrument both the benchmark (i.e.
lusearch) and MMTk. We discuss both in this section.

5.3.1 Instrumenting lusearch

Given lusearch is written in Java where (almost) everything is an object, we want
to minimize our memory footprint (as well as allocation rate) in order to not trigger
excessive GCs. To this end, we bulk allocate three arrays when the benchmark starts,
namely: two long arrays to store the start and execution times (in nanoseconds) of
queries, and a String array to store a unique query identifier. We felt the use of
a String array is reasonable since we do not actually allocate more objects as each
query internally stores a unique String identifier anyway. Just before a query is
primed to execute, we get the current time in nanoseconds. Immediately after the
end of the query, we calculate the execution time (in ns) and update the three arrays.

Given lusearch is a highly parallel benchmark, we need to synchronize access
to each of the arrays. Instead of using locks or other synchronization primitives, we
opted to use a simple shared atomic integer that is atomically incremented to get
an index value before a query starts execution. This allowed us to have a fairly low
profile in terms of both memory and execution time.

Finally, at the end of the benchmark, we create and dump a CSV file of all the
queries that were executed. The CSV file is named with a timestamp in order to easily
distinguish between runs. Our changes to the benchmark can be found publicly on
GitHub at k-sareen/dacapobench.

Unfortunately, due to time constraints, we were not able to implement support
for measuring different performance counters (such as cache misses, branch mispre-
dictions, etc.) per query without directly using simple Java Native Interface (JNI)

https://github.com/k-sareen/dacapobench/tree/lusearch-locality-chopin

§5.4 Experimental Methodology 27

calls. Simple JNI calls11 are generally expensive operations, and hence are unsuitable
for the scale of measurements we want. We note, however, that there is prior work
by Yang et al. [2016] that could be used to support measuring performance counters
on a per query-granularity. We leave investigation into this area as potential future
work.

5.3.2 Instrumenting MMTk

On the MMTk side, we want to report the start and end of a GC in order to place the
execution of a query to its closest GC. This is easy to implement in MMTk. Every GC
algorithm implemented in MMTk schedules a collection by registering work (through
the form of work packets, i.e. small units of GC work) with the GC scheduler. We can
then get the current time (in ns) just before all the work is scheduled, and calculate
the total execution time (in ns) when all work has finished. We then create a CSV file
and store the GC’s unique ID (assigned via a simple atomic integer), start time, and
execution time. The CSV file is named with a timestamp in order to easily associate
it with the CSV files generated by lusearch.

5.4 Experimental Methodology

We use the following experimental methodology.

5.4.1 Hardware and Operating System

We ran our experiments on the following hardware platforms:

(i) Intel i7-4770 Haswell with a 3.4 GHz clock, a 4 x 32 KB, 64 B/line, 8-way L1
cache, a 4 x 256 KB, 64 B/line, 8-way L2 cache, and 16 GB DDR3 RAM;

(ii) Intel Xeon Gold 5118 Skylake with a 2.3 GHz clock, a 12 x 32 KB, 64 B/line,
8-way L1 cache, a 12 x 1 MB, 64 B/line, 16-way L2 cache, and a 512 GB DDR4
RAM.

All systems ran Ubuntu 18.04.6 LTS with Linux 5.4.0-87 kernels. All CPUs operate
in 64-bit mode and use 64-bit kernels. In order to avoid NUMA effects on the Intel
Xeon, we limit our experiment to just a single socket, that is to say, only 12 cores (24
threads).

5.4.2 MMTk and OpenJDK

We use the Rust rewrite of MMTk (see Chapter 2) with mmtk-core revision 0ccf09cc,
mmtk-openjdk revision c1bc366, and a modified version of OpenJDK 11 (revision
6dc618e2811) which has support for MMTk. All experiments use the HotSpot C2

11We specify simple JNI calls here as the JVM does include backdoors for certain performance-critical
JNI calls such as timers and array copying which generally avoid the overheads associated with JNI.

28 Locality Effects of Garbage Collection

0 1 2 3 4 5 6
Closeness to GC (ms)

0.00

0.05

0.10

0.15

0.20

0.25

De
ns

ity
 o

f C
lo

se
ne

ss
 to

 E
xe

cu
tio

n
of

 a
 G

C

Immix: query0380

(a) Density of closeness to a GC for all exe-
cutions

1 0 1 2 3 4 5 6
Closeness to GC (ms)

0.00

0.05

0.10

0.15

0.20

0.25

De
ns

ity
 o

f C
lo

se
ne

ss
 to

 E
xe

cu
tio

n
of

 a
 G

C

Immix: query0380

(b) Density of closeness to a GC for the best
5th percentile of executions

1 0 1 2 3 4 5
Closeness to GC (ms)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

De
ns

ity
 o

f C
lo

se
ne

ss
 to

 E
xe

cu
tio

n
of

 a
 G

C

Immix: query0380

(c) Density of closeness to a GC for the worst 5th percentile of executions

Figure 5.1: Density of closeness to a GC for Query 0380 using the Immix collector on
the Haswell system. Note that executions where the query was interrupted by a GC
have been removed. The red line in 5.1a and dashed blue lines in 5.1b and 5.1c are
the median for the entire dataset. The red lines in 5.1b and 5.1c are the median for

the best and worst 5th percentile of executions with respect to execution time.

JIT compiler with pre-compilation enabled and explicit GCs disabled. Measurements
were captured using the DaCapo benchmark harness and probes. Since we are mea-
suring time-sensitive values, we perform two warmup iterations before starting our
timing iteration in order to reduce any noise due to compilation or other VM opera-
tions.

5.4.3 Experimental Design

As mentioned previously in Section 5.2, we measure the start and execution times
of text search queries in the lusearch DaCapo benchmark. The workload for the
lusearch benchmark in DaCapo consists of 2048 text search queries. Each query
is executed 256 times per run of the benchmark. We run the benchmark 20 times
in order to get a large dataset to work with. Hence for each query, there are 5120
unique executions.

§5.5 Results and Evaluation 29

Table 5.1: Geometric mean of normalized medians for the best and worst 5th per-
centile of executions (per query) over all 2048 queries per collector. Note how most

of the best queries for Immix are farther away from a GC.

Immix SemiSpace Mark-Sweep
Best 5th Percentile 1.30 1.08 1.06
Worst 5th Percentile 0.76 0.86 0.90

We gather results for three classic garbage collector algorithms: SemiSpace, Im-
mix, and Mark-Sweep. We use an Immix configuration that opportunistically de-
fragments the heap. Note the the Mark-Sweep implementation still internally uses
a malloc library as a freelist (see Chapter 3). Hence we stress that the results for
our implementation of Mark-Sweep collector do not necessarily reflect the results
of a native freelist Mark-Sweep collector. As of writing this thesis, MMTk does not
currently have a native freelist implementation, however there is work being done to
port the mimalloc freelist design into MMTk. We chose a heap size large enough for
each of the different collectors to complete the benchmark in a reasonable time, while
also small enough such that we have a significant number of GCs (around 3000 GCs
per run). This is to make sure that we have enough queries that are actually affected
(both directly and indirectly) by the execution of a GC.

We conduct our experiment in a standalone setting where we run the benchmark
without any other significant resource-consuming processes on the system in order
to limit the experimental noise in our measurements. After the benchmark finishes,
we collect the CSV files generated by both MMTk and lusearch in order to analyse
their data on a separate device.

5.5 Results and Evaluation

We select three representative queries from the 2048 in order to study them in more
detail. For the sake of conciseness and completeness, we place some figures in Ap-
pendix A. We discuss the Intel i7-4770 Haswell results first.

Figures 5.1–5.3 plot the density of closeness of execution to a GC for Query 0380,
where closeness of execution to a GC is defined as before. Note that we remove all
executions where the query was interrupted by a GC. We note that only around 150
executions (each per collector) are actually interrupted by a GC, still giving us a
sizable dataset to work with.

From Figure 5.1a, we see that most queries actually execute close to a GC. Hence,
it is not a surprise that we note that the queries in the best 5th percentile in terms
of execution time (i.e. the shortest execution times) and the worst 5th percentile
(i.e. the longest execution times) are also generally close to the execution of a GC.
Interestingly, we note that it is generally the case that the best queries are skewed
towards being farther away from a GC (with respect to the global median) while the
worst queries are skewed towards being closer to a GC (with respect to the global
median). We note that this trend is apparent for the rest of the collectors as well.

30 Locality Effects of Garbage Collection

0 1 2 3 4 5 6
Closeness to GC (ms)

0.00

0.05

0.10

0.15

0.20

0.25

De
ns

ity
 o

f C
lo

se
ne

ss
 to

 E
xe

cu
tio

n
of

 a
 G

C

SemiSpace: query0380

(a) Density of closeness to a GC for all exe-
cutions

1 0 1 2 3 4 5 6
Closeness to GC (ms)

0.00

0.05

0.10

0.15

0.20

0.25

De
ns

ity
 o

f C
lo

se
ne

ss
 to

 E
xe

cu
tio

n
of

 a
 G

C

SemiSpace: query0380

(b) Density of closeness to a GC for the best
5th percentile of executions

1 0 1 2 3 4 5
Closeness to GC (ms)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

De
ns

ity
 o

f C
lo

se
ne

ss
 to

 E
xe

cu
tio

n
of

 a
 G

C

SemiSpace: query0380

(c) Density of closeness to a GC for the worst 5th percentile of executions

Figure 5.2: Density of closeness to a GC for Query 0380 using the SemiSpace collector
on the Haswell system. Note that executions where the query was interrupted by a
GC have been removed. The red line in 5.2a and dashed blue lines in 5.2b and 5.2c
are the median for the entire dataset. The red lines in 5.2b and 5.2c are the median

for the best and worst 5th percentile of executions with respect to execution time.

For the Mark-Sweep collector, we can see that the distribution of the proximity to a
GC is 3× larger than for the rest of the collectors. We attribute this to the slowdown
imposed by using the malloc Mark-Sweep implementation.

Further, we note that the above trends are generally true for the other selected
queries as well (see Figures A.4–A.9). We believe this trend suggests that the best
queries are generally farther away from a GC. We note that this trend is more appar-
ent for the Immix collector than the SemiSpace and Mark-Sweep collectors. For the
latter two collectors, the median of the best queries nearly coincides with the median
of all the executions (for the queries we have chosen).

We investigate our claim that the best executions of a query are generally farther
away from a GC by using a crude metric to estimate the variance of these medians:
we simply calculate the median for the best and worst 5th percentile of executions
for each query and normalize them with respect to the median of all the executions
for that particular query. Table 5.1 reports the geometric mean for each of the two

§5.5 Results and Evaluation 31

2.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0
Closeness to GC (ms)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
De

ns
ity

 o
f C

lo
se

ne
ss

 to
 E

xe
cu

tio
n

of
 a

 G
C

MarkSweep: query0380

(a) Density of closeness to a GC for all exe-
cutions

2.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Closeness to GC (ms)

0.00

0.02

0.04

0.06

0.08

De
ns

ity
 o

f C
lo

se
ne

ss
 to

 E
xe

cu
tio

n
of

 a
 G

C

MarkSweep: query0380

(b) Density of closeness to a GC for the best
5th percentile of executions

2.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0
Closeness to GC (ms)

0.00

0.02

0.04

0.06

0.08

De
ns

ity
 o

f C
lo

se
ne

ss
 to

 E
xe

cu
tio

n
of

 a
 G

C

MarkSweep: query0380

(c) Density of closeness to a GC for the worst 5th percentile of executions

Figure 5.3: Density of closeness to a GC for Query 0380 using the Mark-Sweep collec-
tor on the Haswell system. Note that executions where the query was interrupted by
a GC have been removed. The red line in 5.3a and dashed blue lines in 5.3b and 5.3c
are the median for the entire dataset. The red lines in 5.3b and 5.3c are the median

for the best and worst 5th percentile of executions with respect to execution time.

sequences generated. Note that the raw numbers do not necessarily mean anything
and we only mention them in order to understand if there is a significant variance in
the medians of the best and worst executions per query or not.

We can immediately see that most of the best queries for Immix are farther away
from a GC, while the worst performing queries are closer to the execution of a GC.
We note that for SemiSpace and Mark-Sweep, while the median for the best queries
do not significantly differ from the global median, the worst performing queries
are closer to the execution of a GC. We believe the above trend is due to the GC
disrupting an application’s steady state and then the application converging back to
its steady state after a while. Hence, queries which are sufficiently farther away from
a GC generally have the shortest execution times.

32 Locality Effects of Garbage Collection

Table 5.2: Geometric mean of normalized medians for the best and worst 5th per-
centile of executions (per query) over all 2048 queries per collector. Note how most
of the best queries for Immix and SemiSpace are farther away from a GC, whereas

for Mark-Sweep they are much closer to the execution of a GC.

Immix SemiSpace Mark-Sweep
Best 5th Percentile 1.30 1.17 0.34
Worst 5th Percentile 0.69 0.72 0.98

We now discuss the results from the Intel Xeon Gold 5118 Skylake processor.
From Figures A.10–A.18 and Table 5.2, we note that the general trends we find in
the Haswell results are still apparent (if not more pronounced) with the exception of
the Mark-Sweep collector. For the Mark-Sweep collector on the Skylake system, the
queries that are much closer to the execution of a GC perform the best. This goes
against the general trend set for other collectors as well as the Haswell system. We
do not have any conclusive hypotheses or explanations for this surprising behaviour.
One potential cause could be due to the freelist allocator recycling blocks for alloca-
tion right after a GC, however we would have expected to see similar results for the
Haswell system then. An interesting observation we note for the Mark-Sweep collec-
tor is how the execution of a query is much more spread out in terms of proximity
to a GC (even reaching to 150 ms away from a GC for some executions) than for
the other collectors. We believe this is due to the very slow allocation of the freelist
allocator, as the allocator will perform a library call to mimalloc internally. We see
that in comparison to the Haswell system, the distribution for proximity to a GC is
larger by a factor of 10. We believe this is a side effect of the much slower clock speed
of the Xeon, which results in dilation of the execution time.

We note that the number of executions (per query) interrupted by a GC also far
exceeds that in the Haswell system. Here, generally > 600 executions per query are
interrupted by the execution of a GC. We believe that this is a side effect of the larger
core count of the system. Given we have more queries executing parallelly (in fact
we have 3× more queries running in parallel than the Haswell system), it is more
likely that multiple queries are interrupted by the same GC. Indeed we find that the
number of queries interrupted in the Xeon system are roughly 3× that of the Haswell
system.

5.5.1 Discussion

While we did not find any conclusive evidence, we believe there is a (weak) correla-
tion between the execution time of a query to its proximity to the execution of a GC,
with queries farther away from a GC executing significantly faster than queries closer
to a GC. The results for the SemiSpace collector generally suggests that the execution
time of a query is indifferent to its proximity to a GC. We note that since most of
the executions per query were also distributed being close to the execution of a GC,
the experiment results could also suggest there is no substantive delayed benefit of a

§5.6 Summary 33

GC to the locality of an application. Further measurements (such as measuring cache
and branch prediction misses per query) need to be done in order gain more insight
regarding the locality benefits of garbage collection.

5.6 Summary

In this chapter we outlined a simple experiment to measure the effects of a GC on
an application’s locality using the case-study of a transaction-based benchmark. We
instrument lusearch – a text query search benchmark – in order to gather data
regarding the execution time of a query and its proximity to a GC. Benchmarking
with a variety of different GC algorithms, we find a weak correlation of the execution
time of a query to its proximity to a GC: it is generally the case (more apparent
in certain GC algorithms) that the best queries execute farther away from a GC.
We believe this is due to the GC disrupting the application’s steady state and the
application converging back to its steady state after a while. However, these benefits
are not too pronounced as we find that most queries execute close to a GC anyway.
We note that the lack of significant benefits could suggest that there is no substantive
delayed benefit of a GC to the locality of an application. Future work could deal with
measuring more relevant quantities such as cache and branch prediction misses per
query which could further help elucidate the locality effects of garbage collection.

34 Locality Effects of Garbage Collection

Chapter 6

Garbage Collection Behaviour in an
Unmanaged Context

It is impossible to insert a fully functional state-of-the-art garbage collector in a man-
ually memory managed language. However, we can easily emulate garbage collection
behaviour, i.e. insert the inhale-exhale behaviour of garbage collection to a manually
memory managed application. In this chapter we describe our methodology, design
and implementation, and results for an experiment that aims to understand the ef-
fects of inserting garbage collection-like behaviour in applications that are manually memory
managed.

6.1 Objectives

Most work surrounding the costs of garbage collection (including ours) seem to ap-
proach understanding it from the managed-to-manual angle. We believe there is in-
sight to be gained if we approach the question from the other direction as well – i.e.
from manual-to-managed. We construct an experiment that adds GC-like behaviour
(i.e. bulk allocation and deallocation) to manually managed C and C++ programs
and measure their maximum heap size as well as their execution time.

6.2 Approximating Garbage Collection Behaviour

We implement the idea of deferred freeing or quarantining, which is often associated
with reference counting [Deutsch and Bobrow, 1976; Blackburn and McKinley, 2003]
or preventing security vulnerabilities such as use-after-free bugs [Ainsworth and
Jones, 2020], and use it as an approximation to the inhale-exhale behaviour of garbage
collectors as discussed in Chapter 2. We then measure the overheads imposed by
this deferred freeing in terms of both the maximum resident set size (i.e. the heap)
as well as the execution time. This gives us an idea of how garbage collection could
affect a manually memory managed application.

Deferred freeing or quarantining does not immediately free a dead object, instead
opting to free it at a later time, and often freeing dead objects in bulk. This can

35

36 Garbage Collection Behaviour in an Unmanaged Context

be achieved by delaying the updating of reference counts (in a reference counting-
based approach) [Deutsch and Bobrow, 1976; Blackburn and McKinley, 2003], or via
placing the data in a quarantine buffer to free later (in a quarantine-based approach)
[Ainsworth and Jones, 2020]. We note that many manually memory languages such
as C++ and Rust have standardized reference counting through their standard library,
however, these are not easily portable to an application written in C, which remains
widely used to this day. Hence, we focus on the quarantining-based approach in our
work since it is universal.

In a quarantining-based approach to adding inhale-exhale behaviour, when a pro-
grammer calls free on an object, instead of directly freeing the associated memory,
we place the object in a (local) buffer termed quarantine list. When either the quaran-
tine list is full or if the total volume of objects in the quarantine list12 exceeds a certain
threshold, the quarantine list is walked, freeing all the objects. Note that this is differ-
ent from using a conservative garbage collector as we do not perform any transitive
closure or walk the heap. Instead, we rely on the programmer to insert (hopefully)
correct calls to free when objects are no longer required. Of interest is that unlike
automatic memory management, here it is the call to free that will stall and result in
the bulk freeing, instead of an allocation call. Our quarantining-based approach was
not developed to prevent use-after-frees or other memory bugs, though we note that
we can significantly reduce the chances of a use-after-free exploit just by deferring
the deallocation of an object to a later time.

We note that by deferring frees to a later point in time, we add the inefficiencies
of garbage collection to a manually memory managed application. Most notably,
since dead objects are not freed immediately, there is a noticeable space-overhead
with applications potentially having larger heap footprints. Given that there is extra
work being done (in terms of placing dead objects in a quarantine list and walking
the quarantine list to free them), there is an aspect of time-overhead as well since
the application cannot continue execution until it returns from the free call. Most
importantly however, like a Mark-Sweep collector, we do not recycle free slots imme-
diately as dead objects are still kept alive in the quarantine list. This could potentially
result in poorer mutator locality as well as contribute to the time-overhead.

Given the above machinery, we can also vary the malloc implementation used
in order to understand how the inhale-exhale behaviour affects the different malloc
implementations. We focus on the jemalloc [Evans, 2006], hoard [Berger et al., 2000],
mimalloc [Leijen et al., 2019], and glibc 2.27 allocators in our work.

6.3 Design and Implementation

We implement our quarantining-based approach as a shared library in C. We name
this shared library libql. libql aims to be a drop-in replacement for malloc-free
(as well as new-delete for C++). We can dynamically use this library by preloading it
in the dynamic linker before executing an application. Such a design is non-intrusive

12Volume is defined as the sum of sizes of all objects in the quarantine list.

§6.3 Design and Implementation 37

as it means we don’t have to recompile programs to link to libql. This design also
allows libql to hide the malloc and free implementations of other allocators such
as mimalloc, jemalloc, etc. We refer to the underlying allocator whose functions we
override as the backing allocator or backing implementation.

Internally, libql allocates a thread-local buffer of fixed size (the default being
40960 bytes, i.e. 5120 pointers on a 64-bit system) for each application thread that
calls into the library to allocate memory. This thread-local buffer acts as the quar-
antine list13. We use a thread-local buffer since we want to avoid synchronization
costs of having serialize access to a global buffer in the case of a multi-threaded ap-
plication. This quarantine list is allocated at the first call to free for that application
thread. We also maintain two thread-local pieces of metadata associated with the
quarantine list: (i) the current volume of objects in the quarantine list (in bytes); and
(ii) the index of the first free element in the quarantine list. These variables help us
check if we need to perform a bulk free operation.

All allocation functions (i.e. malloc, calloc, realloc, etc.) remain unchanged
and we directly call into the backing allocator to service the allocation request. How-
ever, whenever a programmer frees an object, we place the pointer to this object into
the quarantine list. The current volume is incremented by the size of the freed object.
If either the quarantine list is full or the current volume of the objects in the quaran-
tine list has crossed a user-defined threshold, then we iterate through the quarantine
list freeing all the dead objects. Note that this should only stall one application
thread owing to our use of thread-local data structures.14 We term this bulk freeing
operation as a collection. If the collection is initiated due to the thread-local buffer
being exhausted, we term it a capacity-collection; and if the collection is initiated due
to the volume threshold being crossed, we term it a volume-collection. In a collection,
we always iterate through the quarantine list backwards, i.e. we free in a last-freed,
first-freed (LIFO) order. In the case of a volume-collection, freeing LIFO means that
we avoid iterating through the entire quarantine list since we know the index of the
object last inserted into the list. Hence, theoretically, if we set the threshold to 1 B,
then we don’t have to do too much extra work in comparison to not using a quaran-
tine list: there should only be a few extra comparison operations and then the actual
free. However, as we see in Section 6.5, this may not necessarily be true.

As mentioned previously, the threshold (in terms of volume) for when to collect
objects is configurable at runtime. We define an environment variable (QL_SIZE) to
set this threshold. The user can then specify (in bytes) the threshold to collect objects
at runtime by setting this environment variable. The default threshold is 40960 bytes.
Note that we do not allow a QL_SIZE of 0 as it has no meaning. In the case a user
specifies a QL_SIZE of 0, we use the default threshold.

We attach constructors and destructors to the library as well as a destructor for
when POSIX threads (pthreads) exit. At library initialization, we get a function
pointer to the backing free implementation by calling into the runtime dynamic

13Even though we may call it a quarantine list, it is not a linked list and is in fact a fixed size array.
14Unless, of course, another application thread is waiting on a response from the stalled one, which

is out of our hands.

38 Garbage Collection Behaviour in an Unmanaged Context

linker. We also check if the user has overridden the QL_SIZE environment variable,
setting the global threshold appropriately. We expect multi-threaded applications to
use the pthreads library (in some form) and hence, we associate a destructor with the
exit of a pthread. This destructor will collect all objects currently in the quarantine
list and unmap the quarantine list to prevent memory leaks. On program exit, the
library destructor attempts to collect the quarantine list to prevent memory leaks for
single-threaded applications or applications which heavily rely on fork calls.

Finally, we alias all deallocation functions in both C and C++ to our free imple-
mentation in order to override the backing implementation. Note that it does not
matter if we override the allocation functions or not since they remain unchanged.
The source code for the library can be viewed on GitHub: k-sareen/deferred-free.

6.4 Experimental Methodology

We use the following experimental methodology.

6.4.1 Benchmarks

We use standard C and C++ allocation benchmarks to understand the overheads
imposed by the inhale-exhale behaviour we have inserted. We briefly describe the
benchmarks used. We used the following single-threaded benchmarks:

• barnes A hierarchical n-body particle solver [Barnes and Hut, 1986].

• cfrac A continued fraction factorization program.

• espresso A programmable logic array analyzer [Grunwald et al., 1993].

We used the following multi-threaded benchmarks:

• cache-scratch A test for passive false sharing of cache lines [Berger et al., 2000].

• larson A server workload simulation [Larson and Krishnan, 1998].

• sh6bench A test where some objects are deallocated in LIFO order, and others
in reverse (i.e. FIFO) order.

• sh8bench A test where some objects are deallocated in reverse (i.e. FIFO) order,
and others by other threads.

• threadtest A test which continuously allocates and deallocates objects.

• xmalloc-test A produce-consumer benchmark with X allocating threads and X
deallocating threads.

We base the inputs of each benchmark from the benchmark suite curated by the
mimalloc authors [Daan Leijen, 2021].

https://github.com/k-sareen/deferred-free

§6.5 Results and Evaluation 39

6.4.2 Hardware and Operating System

We ran our experiments on the following hardware platform: Intel i7-6700K Skylake
with a 4 GHz clock, a 4 x 32 KB, 64 B/line, 8-way L1 cache, a 4 x 256 KB, 64 B/line,
4-way L2 cache, and 16 GB DDR4 RAM. The system ran Ubuntu 18.04.6 LTS with a
Linux 5.4.0-87 kernel. The CPU operates in 64-bit mode and uses 64-bit kernels.

6.4.3 Experimental Design

The key idea of this experiment is to measure the space- and time-overheads imposed
by inserting our quarantine-based inhale-exhale behaviour to a manually memory
managed application. We measure the execution time as well as the maximum res-
ident set size (RSS) (i.e. heap size) per run. While our implementation is explicitly
designed around keeping space-overheads low, we believe it is still interesting to
measure and compare them specially alongside the time-overheads. We use four dif-
ferent backing allocators: jemalloc, mimalloc, hoard, and the system glibc 2.27 alloca-
tor. We pair each allocator with the libql library in order to insert the inhale-exhale
behaviour to them. We further vary the QL_SIZE environment variable (with values
of 1 B, 4 KB, 40 KB, 512 KB, 1 MB) to get an idea of how the periodicity of collections
affects the performance and max RSS. Hence, each backing allocator has six different
configurations. We also vary the size of the thread-local buffer for the quarantine
list (with values of 40 KB and 128 KB). We conduct our experiment in a standalone
setting where we run without any other significant resource-consuming processes in
order to limit the experimental noise in our measurements. We run each benchmark
20 times and report the average in order to reduce the effect of experimental noise
in our measurements. Note that we fix the number of threads for multi-threaded
benchmarks with configurable threads to 8 (maximum for our system).

6.5 Results and Evaluation

We breakdown our results per allocator per thread-local buffer size since we are
trying to understand how the inhale-exhale behaviour affects an allocator imple-
mentation. Inter-allocator comparisons are not easy to make given the dramatically
different implementations. Each allocator has six different configurations:

(i) {alloc}: A release build of the {alloc} allocator, where alloc can be {mi, je,
hoard, glibc};

(ii) ql-{alloc} (1 B): A release build of the {alloc} allocator with quarantining
and QL_SIZE=1;

(iii) ql-{alloc} (4 KB): A release build of the {alloc} allocator with quarantining
and QL_SIZE=4096;

(iv) ql-{alloc} (40 KB): A release build of the {alloc} allocator with quarantining
and QL_SIZE=40960;

(v) ql-{alloc} (512 KB): A release build of the {alloc} allocator with quarantin-
ing and QL_SIZE=524288; and

40 Garbage Collection Behaviour in an Unmanaged Context

0.9

1

1.1

1.2

1.3

1.4

1.5 ...
2.

54
...

2.
65

...
2.

65
...

2.
65

...
2.

70

...
2.

54
...

2.
65

...
2.

65
...

2.
65

...
2.

70

barnes_hut

cache_scratch

cfrac
espresso

larson
sh6bench

sh8bench

threadtest

xmalloc_test

min max
mean

geomean

tim
e

mi ql-mi (1B) ql-mi (4 KB) ql-mi (40 KB) ql-mi (512 KB) ql-mi (1 MB)

Figure 6.1: mimalloc average execution time over 20 runs with a thread-local buffer
size of 40 KB and with six different configurations. The values are normalized to
the mi configuration. A lower value is better. Note that the larson benchmark has a
fixed execution time and hence we use the “relative execution time” as reported by

the benchmark.

(vi) ql-{alloc} (1 MB): A release build of the {alloc} allocator with quarantining
and QL_SIZE=1048576.

For the sake of conciseness and completeness, we place some figures in Appendix A.

6.5.1 mimalloc

Figures 6.1 and 6.2 show us the average execution time and maximum RSS (respec-
tively) reported over 20 runs with a quarantine thread-local buffer size of 40 KB for
the mimalloc allocator with its six different configurations. For brevity, we shall refer
to the configurations by their number as listed above. For example, the mi configu-
ration will be referred to as configuration (i).

We can immediately see that for benchmarks such as barnes and cache-scratch,
the added inhale-exhale behaviour does not significantly affect the execution time or
the heap size. These benchmarks generally do not allocate much which could explain
their indifference to the inhale-exhale behaviour.

There is almost no space-overhead for the cfrac benchmark between the different
configurations (at max 1.1× configuration (i)). However, there seems to be a constant
execution time-overhead of 1.2× configuration (i) regardless of the periodicity of col-
lections. The cfrac benchmark allocates many (small) short-lived objects during its
execution. We believe this relatively constant time-overhead comes from frequent col-
lections due to the quarantine list filling up. Note how configuration (ii) is marginally
slower than the others. We believe this is due to its more frequent collections.

The space-overhead for the espresso benchmark shows a step-like pattern with
each increasing value of QL_SIZE increasing the heap size. At the most extreme,

§6.5 Results and Evaluation 41

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

barnes_hut

cache_scratch

cfrac
espresso

larson
sh6bench

sh8bench

threadtest

min max
mean

geomean

m
ax

_r
ss

mi ql-mi (1B) ql-mi (4 KB) ql-mi (40 KB) ql-mi (512 KB) ql-mi (1 MB)

Figure 6.2: mimalloc average maximum RSS over 20 runs with a thread-local buffer
size of 40 KB and with six different configurations. The values are normalized to the
mi configuration. A lower value is better. Note the xmalloc-test results should be ig-
nored since the benchmark allocates more the faster it runs. Hence, we have removed

them from this (and all future) graph(s) in order to not affect other calculations.

espresso requires a 30% larger heap size in comparison to configuration (i). This intu-
itively makes sense given increasing the value of QL_SIZE decreases the periodicity
of collections. What is interesting, however, is that the time-overhead is relatively
constant, with execution time of the quarantine list configurations being < 1.1× con-
figuration (i).

Larson follows a similar trend as above with the space-overhead follows a step-
like pattern (at max 1.1× configuration (i)). As mentioned previously, one of the input
parameters for larson is the execution time (in seconds). Hence, we use the “relative
execution time” as reported by the larson benchmark. The relative execution time
is calculated as 1/throughput, where throughput is the total number of allocations
per second. We note that around 7 million objects are allocated over the course of
the benchmark’s execution. Hence, for configuration (ii), we have 7 million collection
operations, and on the other end we have around 400,000 collection operations for
configuration (vi).

We believe that even though the collections for configuration (ii) are very frequent,
the cost of iterating through the quarantine list is negligible in comparison to allo-
cating, accessing, and deallocating the thread-local buffer. In order to confirm this,
we made two different builds of libql. The first build directly calls the free of
the backing allocator without allocating any thread-local buffers. We refer to this
build as no-ql. The second build allocates the thread-local buffer, accesses it to set
the pointer value, updates the current volume, and then immediately frees the ob-
ject. The thread-local buffer is unmapped in the destructor. We refer to this build as
no-collect-ql. Note that we never iterate or collect the quarantine list in this build. The
execution time for no-ql was comparable to configuration (i), whereas the execution
time for no-collect-ql was comparable to the rest. Hence, we believe that the exe-

42 Garbage Collection Behaviour in an Unmanaged Context

0.9

1

1.1

1.2

1.3

1.4

1.5

barnes_hut

cache_scratch

cfrac
espresso

larson
sh6bench

sh8bench

threadtest

xmalloc_test

min max
mean

geomean

tim
e

mi ql-mi (1B) ql-mi (4 KB) ql-mi (40 KB) ql-mi (512 KB) ql-mi (1 MB)

...
2.

55
...

2.
64

...
2.

66
...

2.
93

...
2.

90

...
2.

55
...

2.
64

...
2.

66
...

2.
93

...
2.

90

Figure 6.3: mimalloc average execution time over 20 runs with a thread-local buffer
size of 128 KB and with six different configurations. The values are normalized to

the mi configuration. A lower value is better.

cution time-overhead for the quarantine configurations evens out regardless of the
periodicity of collections due to the overheads imposed by allocating, deallocating,
and accessing the thread-local buffer15. The larson benchmark continuously spawns
(and kills) threads throughout its execution which results in the large execution time-
overhead we see.

This trend is also apparent in sh6bench. While there is no significant space-
overhead for the benchmark, the execution time-overhead is > 2.5× configuration (i).
We find that the no-ql build from above behaves exactly like configuration (i), whereas
the no-collect-ql build behaves exactly like the rest of the quarantine configurations.
While sh6bench does not continuously spawn threads, we believe the costs of access-
ing the thread-local buffer are significant. Annotating the execution of the no-collect-ql
build running sh6bench using perf, we find that nearly 9% of the measured samples
were accessing the thread-local buffer and nearly 35% of the measured samples were
in our free implementation.

Interestingly, sh8bench has no significant time-overheads in comparison to con-
figuration (i). The space-overhead for the larger values of QL_SIZE, however, is sig-
nificant, requiring a 30% larger heap size than configuration (i). We find that most
collections for configuration (v) and configuration (vi) are capacity-collections and not
volume-collections, while most collections for the rest of the quarantine configura-
tions are volume-collections. Hence, configurations (v) and (vi) have similar space-
overheads, whereas the others retain a low profile due to more frequent collections.

Threadtest seems to have an execution time-overhead of about 10% in comparison
to configuration (i). Using the no-ql and no-collect-ql builds we find that the time-
overhead likely comes from allocating, accessing, and deallocating the thread-local

15Note that we are also considering any extra comparison operations that are inserted into the code
due to the thread-local buffer (such as a check to first allocate it) as part of the overheads.

§6.5 Results and Evaluation 43

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

barnes_hut

cache_scratch

cfrac
espresso

larson
sh6bench

sh8bench

threadtest

min max
mean

geomean

m
ax

_r
ss

mi ql-mi (1B) ql-mi (4 KB) ql-mi (40 KB) ql-mi (512 KB) ql-mi (1 MB)

Figure 6.4: mimalloc average maximum RSS over 20 runs with a thread-local buffer
size of 128 KB and with six different configurations. The values are normalized to

the mi configuration. A lower value is better.

buffer. We annotate the execution of the no-collect-ql build running the threadtest
benchmark using perf. We find that around 5% of the measured samples were in
our free implementation. We note that the space-overheads for threadtest follow a
similar pattern to sh8bench, wherein larger values of QL_SIZE lead to larger heap
sizes. As with sh8bench, most of the collections for configurations (v) and (vi) are
capacity-collections.

Finally, as mentioned previously, the heap size values for xmalloc-test should
be ignored since the benchmark allocates more the faster it runs. This is the only
benchmark where quarantining actually improves the execution time in compari-
son to configuration (i), with configuration (iv) being 0.97× configuration (i). We be-
lieve this slight performance win is related to the asymmetrical producer-consumer
workload that xmalloc-test simulates, however, we do not have any conclusive hy-
potheses or explanations to back up this claim. Note that sh8bench simulates a
similar workload (i.e. wherein objects allocated in one thread are freed by another
thread)16, with performance of the quarantine configurations comparable to config-
uration (i) lending credence to our theory. We also note that running xmalloc-test
under perf shows that nearly 30% of measured samples were in a mimalloc function
(_mi_page_free_collect) for all configurations, suggesting the bottleneck in this
benchmark could be due to mimalloc’s design.

Figures 6.3 and 6.4 show us the average execution time and maximum RSS (re-
spectively) reported over 20 runs with a quarantine thread-local buffer size of 128 KB
for the mimalloc allocator with the previously mentioned six configurations.

Broadly, the trends from Figures 6.1 and 6.2 are still visible when we increase
the buffer size to 128 KB. Notably, we see that benchmarks such as cfrac, larson,

16We note that larson also simulates a similar workload, however it suffers from a significant execu-
tion time-overhead due to its continuous spawning of threads.

44 Garbage Collection Behaviour in an Unmanaged Context

0.6

0.8

1

1.2

1.4

1.6

1.8

2

barnes_hut

cache_scratch

cfrac
espresso

larson
sh6bench

sh8bench

threadtest

xmalloc_test

min max
mean

geomean

tim
e

je ql-je (1B) ql-je (4 KB) ql-je (40 KB) ql-je (512 KB) ql-je (1 MB)

...
16

.3
1

...
2.

87

...
16

.3
1

Figure 6.5: jemalloc average execution time over 20 runs with a thread-local buffer
size of 40 KB and with six different configurations. The values are normalized to the

je configuration. A lower value is better.

and sh8bench have much larger space-overheads for larger values of QL_SIZE. We
can attribute this to the fact that, for configurations (v) and (vi), most collections in
these benchmarks are capacity-collections. We would have expected to see a more
gradual step-like pattern due to the buffer size increasing (as we see in threadtest),
however it seems like these benchmarks allocate a lot of objects which can quickly
fill up the quarantine list. We note that the space-overheads for configurations (v) and
(vi) for threadtest have significantly increased in comparison to the 40 KB case. We
can attribute this to less frequent collections because of the larger buffer size.

Interestingly, we note that the execution time-overheads for configurations (v) and
(vi) for sh8bench and threadtest are slighly larger than for other quarantine configu-
rations. We believe this can be explained by the fact that each collection takes longer
and is generally more expensive, given the larger buffer size.

6.5.2 jemalloc

Figures 6.5 and 6.6 show us the average execution time and maximum RSS (respec-
tively) reported over 20 runs with a quarantine thread-local buffer size of 40 KB for
the jemalloc allocator with the previously mentioned six configurations.

For the execution time-overheads, generally, the jemalloc results agree with the
trends in the mimalloc results. We note, however, that the overheads are generally
more pronounced for jemalloc than for mimalloc (with the exception of sh6bench).
Taking cfrac as an example, Figure 6.1 reports a maximum time-overhead of 20%
for mimalloc, whereas it is around 30% for jemalloc. We attribute these more pro-
nounced effects of quarantining to different allocator architectures and designs. In-
terestingly, we see that for sh6bench, the overheads are less than for mimalloc, with
the maximum execution time being 2× configuration (i). It seems like the xmalloc-

§6.5 Results and Evaluation 45

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

barnes_hut

cache_scratch

cfrac
espresso

larson
sh6bench

sh8bench

threadtest

min max
mean

geomean

m
ax

_r
ss

je ql-je (1B) ql-je (4 KB) ql-je (40 KB) ql-je (512 KB) ql-je (1 MB)

Figure 6.6: jemalloc average maximum RSS over 20 runs with a thread-local buffer
size of 40 KB and with six different configurations. The values are normalized to the

je configuration. A lower value is better.

test benchmark strongly favours quarantining since the quarantine configurations are
significantly faster than configuration (i).

Of note is that for cache-scratch, configuration (ii) has a execution time of 16×
configuration (i)! Checking with perf, we find that configuration (ii) has 2× the cache
misses, and nearly 7× the branch mispredictions of configuration (i). While these
could be symptomatic of the longer runtime (that is to say, we measure more events
since we execute for longer), we believe that these branch mispredictions and cache
misses do contribute to the overhead. Leijen et al. [2019] find that jemalloc suffers
from false cache line sharing when running this benchmark with multiple threads.
We believe this is further compounded by the frequent collection operations for con-
figuration (ii).

We generally note that there are no space-overheads between different configura-
tions for jemalloc. The only notable exceptions are espresso and threadtest wherein
configurations (v) and (vi) require much larger heaps. We believe this is due to the
fact that most collections for these benchmarks are capacity-collections (as discussed
in Section 6.5.1), leading to fewer total collections.

Figures A.19 and A.20 show us the average execution time and maximum RSS
(respectively) reported over 20 runs with a quarantine thread-local buffer size of 128
KB for the jemalloc allocator with the previously mentioned six configurations.

We see that the trends for the execution time-overhead are near identical to the 40
KB case. The only notable differences are the values for configurations (v) and (vi) for
sh6bench are slightly larger. We attribute this to the fact that (capacity-)collections
are more expensive due to the larger buffer size.

The trends in the heap sizes for the different configurations continue from the 40
KB case. Notably, for configuration (v), espresso and threadtest space-overheads have
stabilized, that is to say, most of the collections are now volume-collections instead of
capacity-collections. We note that for configuration (vi), most collections for threadtest

46 Garbage Collection Behaviour in an Unmanaged Context

0

0.5

1

1.5

2

2.5

barnes_hut

cache_scratch

cfrac
espresso

larson
sh6bench

sh8bench

threadtest

xmalloc_test

min max
mean

geomean

tim
e

hoard

ql-hoard (1B)

ql-hoard (4 KB)

ql-hoard (40 KB)

ql-hoard (512 KB)

ql-hoard (1 MB)

Figure 6.7: hoard average execution time over 20 runs with a thread-local buffer size
of 40 KB and with six different configurations. The values are normalized to the

hoard configuration. A lower value is better.

are still capacity-collections, whereas around two-thirds of the collections are now
volume-collections for espresso. Interestingly, we see that the space-overheads for
benchmarks such as cfrac and larson are more prominent for configuration (v) and
(vi). We find that most collections are still capacity-collections for these benchmarks
explaining their larger heap sizes.

6.5.3 hoard

Figures 6.7 and 6.8 show us the average execution time and maximum RSS (respec-
tively) reported over 20 runs with a quarantine thread-local buffer size of 40 KB for
the hoard allocator with the previously mentioned six configurations.

We note that the execution time-overheads for hoard, while generally following
the trend of the previous two allocators, differs significantly for the cache-scratch
and sh8bench benchmarks. The execution time for the cache-scratch benchmark for
configurations (iii)-(vi) are nearly 90% faster than for configurations (i)-(ii). We believe
this is due to the nature of the benchmark as well as the deferred freeing. The cache-
scratch benchmark allocates multiple small objects and passes them onto each thread.
The threads immediately free the object and then allocates another object, accessing
the new object multiple times. Given we don’t free objects immediately, and hence
can’t immediately reuse its free slot to allocate a new object, we find that this greatly
helps in avoiding this passive false sharing case.

sh8bench, on the other hand, displays an interesting trend. Here, configuration
(iii) has a significantly large execution time-overhead, more so than the other quar-
antine configurations. We do not have a conclusive explanation for this behaviour,
but we believe it may have to do with the periodicity of collections. Note that even
though configuration (ii) has more collections, it performs much less work each collec-
tion. Hence, this behaviour may also depend on the amount of work per collection

§6.5 Results and Evaluation 47

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

barnes_hut

cache_scratch

cfrac
espresso

larson
sh6bench

sh8bench

threadtest

min max
mean

geomean

m
ax

_r
ss

hoard

ql-hoard (1B)

ql-hoard (4 KB)

ql-hoard (40 KB)

ql-hoard (512 KB)

ql-hoard (1 MB)

Figure 6.8: hoard average maximum RSS over 20 runs with a thread-local buffer size
of 40 KB and with six different configurations. The values are normalized to the

hoard configuration. A lower value is better.

as well. Interestingly, we see that the execution time for xmalloc-test for the quar-
antine configurations are comparable to configuration (i), going against trends set by
both mimalloc and jemalloc. Leijen et al. [2019] note that most industrial allocators
perform very poorly for the xmalloc-test benchmark. We believe these architectural
and design issues sneak into the quarantine configurations as well resulting in sub-
optimal performance.

The space-overheads for hoard follow the trends of the previous two allocators.
The only benchmark where they notably vary is larson. While the quarantine con-
figurations for mimalloc and jemalloc did not have any significant space-overheads
for larson, we see that configurations (iv)-(vi) for hoard have > 40% space-overheads
in comparison to configuration (i).

Figures A.21 and A.22 show us the average execution time and maximum RSS
(respectively) reported over 20 runs with a quarantine thread-local buffer size of 128
KB for the hoard allocator with the previously mentioned six configurations. We
note no appreciable differences between the 128 KB and 40 KB case for the hoard
allocator, for both the time- and space-overheads. We note that the 128 KB case has
larger space-overheads for configurations (v) and (vi) for a few benchmarks such as
espresso, larson, and threadtest. The larger space-overheads can be explained by the
fact that these benchmarks primarily perform capacity-collections in the 40 KB case.
Notably, larson still primarily performs capacity-collections for the 128 KB case.

6.5.4 ptmalloc2

Figures 6.9 and 6.10 show us the average execution time and maximum RSS (respec-
tively) reported over 20 runs with a quarantine thread-local buffer size of 40 KB for
the glibc allocator with the previously mentioned six configurations.

The quarantine configurations follow a more prominent step-like pattern for the

48 Garbage Collection Behaviour in an Unmanaged Context

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

barnes_hut

cache_scratch

cfrac
espresso

larson
sh6bench

sh8bench

threadtest

xmalloc_test

min max
mean

geomean

tim
e

glibc

ql-glibc (1B)

ql-glibc (4 KB)

ql-glibc (40 KB)

ql-glibc (512 KB)

ql-glibc (1 MB)

Figure 6.9: glibc average execution time over 20 runs with a thread-local buffer size
of 40 KB and with six different configurations. The values are normalized to the

glibc configuration. A lower value is better.

time-overheads for the glibc allocator in comparison to the previous three allocators.
We can immediately see that the glibc configurations follow the hoard configurations’
trend for the cache-scratch benchmark. We believe the explanation of this behaviour
for the hoard configurations can also be applied here (see Section 6.5.3). Interest-
ingly, we find that the time-overheads for threadtest are the same for configurations
(v) and (vi). We believe this is due to both configurations primarily performing
capacity-collections which results in an equal number of collections (and hence sim-
ilar overheads) for both configurations.

The space-overheads for the glibc configurations generally conform to what we
have previously seen with the three other allocators. Of note, however, is that bench-
marks such as cache-scratch, cfrac, and larson have much larger space-overheads
than for other allocators.

Figures A.23 and A.24 show us the average execution time and maximum RSS
(respectively) reported over 20 runs with a quarantine thread-local buffer size of
128 KB for the glibc allocator with the previously mentioned six configurations. We
note no significant differences between the 128 KB and 40 KB case for the glibc
allocator, for both the time- and space-overheads. We note that the 128 KB case
has larger time-overheads for configuration (vi) and (vi) for a few benchmarks such
as sh6bench and threadtest. This could be explained by capacity-collections being
more expensive than the 40 KB case. We further note that the 128 KB case has space-
overheads for configurations (v) and (vi) for benchmarks such as larson and threadtest.
These benchmarks primarily perform capacity-collections in the 40 KB case which
could explain why there is a larger space-overhead for the 128 KB case. Notably,
larson still primarily performs capacity-collections for the 128 KB case for both the
configurations.

§6.6 Summary 49

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

barnes_hut

cache_scratch

cfrac
espresso

larson
sh6bench

sh8bench

threadtest

min max
mean

geomean

m
ax

_r
ss

glibc

ql-glibc (1B)

ql-glibc (4 KB)

ql-glibc (40 KB)

ql-glibc (512 KB)

ql-glibc (1 MB)

Figure 6.10: glibc average maximum RSS over 20 runs with a thread-local buffer size
of 40 KB and with six different configurations. The values are normalized to the

glibc configuration. A lower value is better.

6.5.5 Discussion

Coalescing results across the different allocators and configurations, we find that, for
the configurations we chose, quarantining generally adds modest space-overheads
(≤ 5% on average) but considerable time-overheads (≤ 20% on average). We find
that these overheads also strongly depend on the backing allocator, with mimalloc
generally being the best-pick allocator for quarantining in terms of both (raw) space-
and time-overheads. We believe a QL_SIZE of 4 KB or 40 KB and the default thread-
local buffer size of 40 KB are a good compromise to minimize the space- and time-
overheads for quarantining.

6.6 Summary

In this chapter we demonstrated a simple, yet effective, technique to insert the inhale-
exhale behaviour of garbage collection into manually memory managed applications
using deferred freeing or quarantining. We implement an allocator-agnostic library in
C that inserts inhale-exhale behaviour to applications at runtime. We test our im-
plementation using a variety of different production allocators and find that our
approach generally adds a modest space-overhead of ≤ 5% and a significant time-
overhead of ≤ 20% on average. We find the worst time-overheads widely vary for
different allocator architectures. We find that most of this time-overhead comes from
allocating, accessing, and deallocating internal data structures in our implementa-
tion. We find that quarantining can sometimes help avoid passive false sharing since
we do not immediately free dead objects to reuse their slots.

50 Garbage Collection Behaviour in an Unmanaged Context

Chapter 7

Conclusion

The costs and benefits of garbage collection in comparison to manually managed
applications is a hard problem. In this thesis we introduced various novel method-
ologies for systematically examining and understanding the effects of garbage collec-
tion on an application’s behaviour. We outlined four experiments which investigate:
(i) the space-overheads of garbage collection; (ii) the effects of garbage collection
on the execution of an application; (iii) the effects of garbage collection on an ap-
plication’s locality; and finally (iv) the effects of inserting garbage collection-like
behaviour in manually memory managed applications.

Our thesis deepens the understanding of garbage collection behaviour in man-
aged languages as well as in comparison to manual memory management. We find
that classic GC algorithms such as SemiSpace and Appel-style Generational Copy-
ing collectors in general have a 1.75× space-overhead in comparison to an approx-
imation of manual memory management, while Immix is competitive to this ap-
proximation with a 1.15× space-overhead on average. We draw parallels between
garbage collection behaviour and interference in signal processing and propose a
novel methodology that decouples the costs from the benefits of garbage collection
in order to understand how garbage collection affects an application’s execution. We
measure locality effects of garbage collection using a transaction-based benchmark as
a case-study and find that there is a weak correlation between the execution time of a
transaction and its proximity to the execution of a GC. Finally, we insert the “inhale-
exhale” behaviour of garbage collection to manually memory managed applications
and find that the behaviour has modest space-overheads but can have significant
time-overheads for certain applications. We also find that the worst time-overheads
widely vary for different allocator architectures.

7.1 Future Work

We point out four avenues of future work based on our experiments.

7.1.1 Performance Evaluation on Different Microarchitectures

We would like to run our experiments with more hardware configurations in order
to understand and contrast garbage collection behaviour on different microarchitec-

51

52 Conclusion

tures. This could reveal interesting performance tradeoffs and microarchitectural
idiosyncrasies.

7.1.2 Time Overheads of Garbage Collection

With the benefit of hindsight, we find that using the malloc Mark-Sweep in MMTk
for estimating the time-overheads of garbage collection in Chapter 4 was a poor
choice due to its considerable overheads for allocating objects. We believe this
methodology has a lot of potential to unlock deeper understandings of garbage col-
lection behaviour. In the future we would like to revisit this methodology by imple-
menting a way to decouple the costs and benefits of garbage collection in algorithms
such as SemiSpace, Immix, or Mark-Sweep with a native freelist allocator.

7.1.3 Locality Effects of Garbage Collection

For our experiment which measured locality effects of garbage collection in Chap-
ter 5, we only measure the execution time of queries. We would like to measure other
statistics as well such as using hardware performance counters to measure cache and
branch prediction misses per query. This could give us more insight regarding how
the machine state and locality are affected due to the presence of garbage collection.

7.1.4 Garbage Collection Behaviour in an Unmanaged Context

In Chapter 6, we find that most time-overhead for quarantining comes from allocat-
ing, accessing, and deallocating the thread-local buffer. We could investigate ways
to reduce these overheads by potentially being more branch and cache friendly. We
believe if we can reduce the time-overhead associated with quarantining, we could
see performance benefits for manually memory managed applications with only a
modest space-overhead. We also would like to run our quarantining experiment
with more allocators (such as tcmalloc [Google, 2014], snmalloc [Liétar et al., 2019],
etc.) and more benchmarks in order to see how quarantining affects the space- and
time-overheads of these allocators.

Bibliography

Ainsworth, S. and Jones, T. M., 2020. Markus: Drop-in use-after-free prevention
for low-level languages. In 2020 IEEE Symposium on Security and Privacy, SP 2020,
San Francisco, CA, USA, May 18-21, 2020, 578–591. IEEE. doi:10.1109/SP40000.
2020.00058. https://doi.org/10.1109/SP40000.2020.00058. (cited on pages
35 and 36)

Apache, 2021. Apache Lucene. https://lucene.apache.org/. (cited on page 26)

Barnes, J. H. and Hut, P., 1986. A hierarchical o(n log n) force-calculation algorithm.
Nature, 324 (1986), 446–449. (cited on page 38)

Berger, E. D.; McKinley, K. S.; Blumofe, R. D.; and Wilson, P. R., 2000. Hoard: A
scalable memory allocator for multithreaded applications. In ASPLOS-IX Proceed-
ings of the 9th International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, Cambridge, MA, USA, November 12-15, 2000, 117–128.
ACM Press. doi:10.1145/378993.379232. https://doi.org/10.1145/378993.
379232. (cited on pages 10, 11, 36, and 38)

Blackburn, S. and McKinley, K. S., 2003. Ulterior reference counting: fast garbage
collection without a long wait. In Proceedings of the 2003 ACM SIGPLAN Conference
on Object-Oriented Programming Systems, Languages and Applications, OOPSLA 2003,
October 26-30, 2003, Anaheim, CA, USA, 344–358. ACM. doi:10.1145/949305.
949336. https://doi.org/10.1145/949305.949336. (cited on pages 35 and 36)

Blackburn, S. M.; Cheng, P.; and McKinley, K. S., 2004a. Myths and realities: the
performance impact of garbage collection. In Proceedings of the International Con-
ference on Measurements and Modeling of Computer Systems, SIGMETRICS 2004, June
10-14, 2004, New York, NY, USA, 25–36. ACM. doi:10.1145/1005686.1005693.
https://doi.org/10.1145/1005686.1005693. (cited on pages 3 and 7)

Blackburn, S. M.; Cheng, P.; and McKinley, K. S., 2004b. Oil and water? high
performance garbage collection in java with mmtk. In 26th International Conference
on Software Engineering (ICSE 2004), 23-28 May 2004, Edinburgh, United Kingdom,
137–146. IEEE Computer Society. doi:10.1109/ICSE.2004.1317436. https://
doi.org/10.1109/ICSE.2004.1317436. (cited on page 7)

Blackburn, S. M.; Garner, R.; Hoffman, C.; Khan, A. M.; McKinley, K. S.;
Bentzur, R.; Diwan, A.; Feinberg, D.; Frampton, D.; Guyer, S. Z.; Hirzel, M.;
Hosking, A.; Jump, M.; Lee, H.; Moss, J. E. B.; Phansalkar, A.; Stefanović,

53

http://dx.doi.org/10.1109/SP40000.2020.00058
http://dx.doi.org/10.1109/SP40000.2020.00058
https://doi.org/10.1109/SP40000.2020.00058
https://lucene.apache.org/
http://dx.doi.org/10.1145/378993.379232
https://doi.org/10.1145/378993.379232
https://doi.org/10.1145/378993.379232
http://dx.doi.org/10.1145/949305.949336
http://dx.doi.org/10.1145/949305.949336
https://doi.org/10.1145/949305.949336
http://dx.doi.org/10.1145/1005686.1005693
https://doi.org/10.1145/1005686.1005693
http://dx.doi.org/10.1109/ICSE.2004.1317436
https://doi.org/10.1109/ICSE.2004.1317436
https://doi.org/10.1109/ICSE.2004.1317436

54 BIBLIOGRAPHY

D.; VanDrunen, T.; von Dincklage, D.; and Wiedermann, B., 2006a. The Da-
Capo benchmarks: Java benchmarking development and analysis. In OOPSLA ’06:
Proceedings of the 21st annual ACM SIGPLAN conference on Object-Oriented Program-
ing, Systems, Languages, and Applications (Portland, OR, USA, Oct. 2006), 169–190.
ACM Press, New York, NY, USA. doi:http://doi.acm.org/10.1145/1167473.
1167488. (cited on pages 10, 12, 20, and 26)

Blackburn, S. M.; Garner, R.; Hoffman, C.; Khan, A. M.; McKinley, K. S.;
Bentzur, R.; Diwan, A.; Feinberg, D.; Frampton, D.; Guyer, S. Z.; Hirzel, M.;
Hosking, A.; Jump, M.; Lee, H.; Moss, J. E. B.; Phansalkar, A.; Stefanović, D.;
VanDrunen, T.; von Dincklage, D.; and Wiedermann, B., 2006b. The DaCapo
Benchmarks: Java benchmarking development and analysis (extended version).
Technical Report TR-CS-06-01, ANU. Http://www.dacapobench.org. (cited on
pages 10, 12, 20, and 26)

Blackburn, S. M. and McKinley, K. S., 2008. Immix: a mark-region garbage collec-
tor with space efficiency, fast collection, and mutator performance. In Proceedings
of the ACM SIGPLAN 2008 Conference on Programming Language Design and Imple-
mentation, Tucson, AZ, USA, June 7-13, 2008, 22–32. ACM. doi:10.1145/1375581.
1375586. https://doi.org/10.1145/1375581.1375586. (cited on page 6)

Boehm, H. and Weiser, M. D., 1988. Garbage collection in an uncooperative envi-
ronment. Softw. Pract. Exp., 18, 9 (1988), 807–820. doi:10.1002/spe.4380180902.
https://doi.org/10.1002/spe.4380180902. (cited on page 2)

Cheney, C. J., 1970. A nonrecursive list compacting algorithm. Commun. ACM, 13,
11 (1970), 677–678. doi:10.1145/362790.362798. https://doi.org/10.1145/
362790.362798. (cited on page 6)

Collins, G. E., 1960. A method for overlapping and erasure of lists. Commun. ACM,
3, 12 (1960), 655–657. doi:10.1145/367487.367501. https://doi.org/10.1145/
367487.367501. (cited on page 2)

Cooper, B. F.; Silberstein, A.; Tam, E.; Ramakrishnan, R.; and Sears, R., 2010.
Benchmarking cloud serving systems with YCSB. In Proceedings of the 1st ACM
Symposium on Cloud Computing, SoCC 2010, Indianapolis, Indiana, USA, June 10-11,
2010, 143–154. ACM. doi:10.1145/1807128.1807152. https://doi.org/10.
1145/1807128.1807152. (cited on page 22)

CWE, 2021. 2021 CWE Top 25 Most Dangerous Software Weaknesses. https://cwe.
mitre.org/top25/archive/2021/2021_cwe_top25.html. (cited on pages xvii,
1, and 2)

Daan Leijen, 2021. mimalloc-bench: Suite for benchmarking malloc implementa-
tions. https://github.com/daanx/mimalloc-bench. (cited on page 38)

http://dx.doi.org/http://doi.acm.org/10.1145/1167473.1167488
http://dx.doi.org/http://doi.acm.org/10.1145/1167473.1167488
http://dx.doi.org/10.1145/1375581.1375586
http://dx.doi.org/10.1145/1375581.1375586
https://doi.org/10.1145/1375581.1375586
http://dx.doi.org/10.1002/spe.4380180902
https://doi.org/10.1002/spe.4380180902
http://dx.doi.org/10.1145/362790.362798
https://doi.org/10.1145/362790.362798
https://doi.org/10.1145/362790.362798
http://dx.doi.org/10.1145/367487.367501
https://doi.org/10.1145/367487.367501
https://doi.org/10.1145/367487.367501
http://dx.doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/1807128.1807152
https://cwe.mitre.org/top25/archive/2021/2021_cwe_top25.html
https://cwe.mitre.org/top25/archive/2021/2021_cwe_top25.html
https://github.com/daanx/mimalloc-bench

BIBLIOGRAPHY 55

Deutsch, L. P. and Bobrow, D. G., 1976. An efficient, incremental, automatic garbage
collector. Commun. ACM, 19, 9 (1976), 522–526. doi:10.1145/360336.360345.
https://doi.org/10.1145/360336.360345. (cited on pages 35 and 36)

Doug Lea, 1998. A memory allocator. http://gee.cs.oswego.edu/dl/html/
malloc.html. (cited on pages 8 and 15)

Evans, J., 2006. Jemalloc. In Proceedings of the 2006 BSDCan Conference,
BSDCan’06, May 2006, Ottawa, CA. http://people.freebsd.org/~jasone/
jemalloc/bsdcan2006/jemalloc.pdf. (cited on pages 10, 11, and 36)

Google, 2014. tcmalloc. https://github.com/gperftools/gperftools. (cited on
page 52)

Grunwald, D.; Zorn, B. G.; and Henderson, R., 1993. Improving the cache
locality of memory allocation. In Proceedings of the ACM SIGPLAN’93 Confer-
ence on Programming Language Design and Implementation (PLDI), Albuquerque, New
Mexico, USA, June 23-25, 1993, 177–186. ACM. doi:10.1145/155090.155107.
https://doi.org/10.1145/155090.155107. (cited on page 38)

Hertz, M. and Berger, E. D., 2005. Quantifying the performance of garbage col-
lection vs. explicit memory management. In Proceedings of the 20th Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Ap-
plications, OOPSLA 2005, October 16-20, 2005, San Diego, CA, USA, 313–326. ACM.
doi:10.1145/1094811.1094836. https://doi.org/10.1145/1094811.1094836.
(cited on pages 2, 8, 9, and 15)

Huang, X.; Blackburn, S. M.; McKinley, K. S.; Moss, J. E. B.; Wang, Z.; and

Cheng, P., 2004. The garbage collection advantage: improving program lo-
cality. In Proceedings of the 19th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA 2004, October
24-28, 2004, Vancouver, BC, Canada, 69–80. ACM. doi:10.1145/1028976.1028983.
https://doi.org/10.1145/1028976.1028983. (cited on pages 2 and 7)

James Trichilo. Simple Denoising Methods. Part I: Signal and Image Noise Models.
http://mason.gmu.edu/~jtrichil/d1. (cited on pages xiii and 18)

Jibaja, I.; Blackburn, S. M.; Haghighat, M. R.; and McKinley, K. S., 2011. De-
ferred gratification: engineering for high performance garbage collection from the
get go. In Proceedings of the 2011 ACM SIGPLAN workshop on Memory Systems Per-
formance and Correctness: held in conjunction with PLDI ’11, San Jose, CA, USA, June
5, 2011, 58–65. ACM. doi:10.1145/1988915.1988930. https://doi.org/10.
1145/1988915.1988930. (cited on pages 2 and 3)

Jones, R. E.; Hosking, A. L.; and Moss, J. E. B., 2011. The Garbage Collection Hand-
book: The art of automatic memory management. Chapman and Hall / CRC Ap-
plied Algorithms and Data Structures Series. CRC Press. ISBN 978-1-4200-8279-1.
http://gchandbook.org/. (cited on page 2)

http://dx.doi.org/10.1145/360336.360345
https://doi.org/10.1145/360336.360345
http://gee.cs.oswego.edu/dl/html/malloc.html
http://gee.cs.oswego.edu/dl/html/malloc.html
http://people.freebsd.org/~jasone/jemalloc/bsdcan2006/jemalloc.pdf
http://people.freebsd.org/~jasone/jemalloc/bsdcan2006/jemalloc.pdf
https://github.com/gperftools/gperftools
http://dx.doi.org/10.1145/155090.155107
https://doi.org/10.1145/155090.155107
http://dx.doi.org/10.1145/1094811.1094836
https://doi.org/10.1145/1094811.1094836
http://dx.doi.org/10.1145/1028976.1028983
https://doi.org/10.1145/1028976.1028983
http://mason.gmu.edu/~jtrichil/d1
http://dx.doi.org/10.1145/1988915.1988930
https://doi.org/10.1145/1988915.1988930
https://doi.org/10.1145/1988915.1988930
http://gchandbook.org/

56 BIBLIOGRAPHY

Larson, P. and Krishnan, M., 1998. Memory allocation for long-running server
applications. In International Symposium on Memory Management, ISMM ’98, Van-
couver, British Columbia, Canada, 17-19 October, 1998, Conference Proceedings, 176–
185. ACM. doi:10.1145/286860.286880. https://doi.org/10.1145/286860.
286880. (cited on page 38)

Lattner, C., 2016. Swift: Challenges and Opportunity for Language and
Compiler Research. https://researcher.watson.ibm.com/researcher/files/
us-lmandel/lattner.pdf. (cited on page 2)

Leijen, D.; Zorn, B.; and de Moura, L., 2019. Mimalloc: Free list sharding in ac-
tion. In Programming Languages and Systems - 17th Asian Symposium, APLAS 2019,
Nusa Dua, Bali, Indonesia, December 1-4, 2019, Proceedings, vol. 11893 of Lecture Notes
in Computer Science, 244–265. Springer. doi:10.1007/978-3-030-34175-6_13.
https://doi.org/10.1007/978-3-030-34175-6_13. (cited on pages 10, 11, 36,
45, and 47)

Lieberman, H. and Hewitt, C., 1983. A real-time garbage collector based on the
lifetimes of objects. Commun. ACM, 26, 6 (1983), 419–429. doi:10.1145/358141.
358147. https://doi.org/10.1145/358141.358147. (cited on page 6)

Liétar, P.; Butler, T.; Clebsch, S.; Drossopoulou, S.; Franco, J.; Parkinson, M. J.;
Shamis, A.; Wintersteiger, C. M.; and Chisnall, D., 2019. snmalloc: a message
passing allocator. In Proceedings of the 2019 ACM SIGPLAN International Symposium
on Memory Management, ISMM 2019, Phoenix, AZ, USA, June 23-23, 2019, 122–135.
ACM. doi:10.1145/3315573.3329980. https://doi.org/10.1145/3315573.
3329980. (cited on page 52)

Lin, Y.; Blackburn, S. M.; Hosking, A. L.; and Norrish, M., 2016. Rust as a
language for high performance GC implementation. In Proceedings of the 2016 ACM
SIGPLAN International Symposium on Memory Management, Santa Barbara, CA, USA,
June 14 - 14, 2016, 89–98. ACM. doi:10.1145/2926697.2926707. https://doi.
org/10.1145/2926697.2926707. (cited on page 7)

McCarthy, J., 1960. Recursive functions of symbolic expressions and their compu-
tation by machine, part I. Commun. ACM, 3, 4 (1960), 184–195. doi:10.1145/
367177.367199. https://doi.org/10.1145/367177.367199. (cited on page 5)

MMTk Research Group, 2021. The Memory Management Toolkit. https://www.
mmtk.io/. (cited on pages 3 and 7)

.NET Platform, 2021. runtime/gc.cpp. https://github.com/dotnet/runtime/
blob/main/src/coreclr/gc/gc.cpp. (cited on page 6)

OpenJDK Community, 2021. HotSpot Group. https://openjdk.java.net/
groups/hotspot/. (cited on page 3)

http://dx.doi.org/10.1145/286860.286880
https://doi.org/10.1145/286860.286880
https://doi.org/10.1145/286860.286880
https://researcher.watson.ibm.com/researcher/files/us-lmandel/lattner.pdf
https://researcher.watson.ibm.com/researcher/files/us-lmandel/lattner.pdf
http://dx.doi.org/10.1007/978-3-030-34175-6_13
https://doi.org/10.1007/978-3-030-34175-6_13
http://dx.doi.org/10.1145/358141.358147
http://dx.doi.org/10.1145/358141.358147
https://doi.org/10.1145/358141.358147
http://dx.doi.org/10.1145/3315573.3329980
https://doi.org/10.1145/3315573.3329980
https://doi.org/10.1145/3315573.3329980
http://dx.doi.org/10.1145/2926697.2926707
https://doi.org/10.1145/2926697.2926707
https://doi.org/10.1145/2926697.2926707
http://dx.doi.org/10.1145/367177.367199
http://dx.doi.org/10.1145/367177.367199
https://doi.org/10.1145/367177.367199
https://www.mmtk.io/
https://www.mmtk.io/
https://github.com/dotnet/runtime/blob/main/src/coreclr/gc/gc.cpp
https://github.com/dotnet/runtime/blob/main/src/coreclr/gc/gc.cpp
https://openjdk.java.net/groups/hotspot/
https://openjdk.java.net/groups/hotspot/

BIBLIOGRAPHY 57

Paige Reeves, 2021. MallocMS. https://www.mmtk.io/assets/videos/
summer-2021-reeves.mp4. (cited on pages 10 and 11)

PHP Community Foundation, 2019. PHP Language Specification. https://phplang.
org. (cited on page 3)

Ruby Programming Language, 2021. ruby/gc.c. https://github.com/ruby/
ruby/blob/master/gc.c. (cited on page 6)

Shahriyar, R.; Blackburn, S. M.; and Frampton, D., 2012. Down for the count?
getting reference counting back in the ring. In International Symposium on Memory
Management, ISMM ’12, Beijing, China, June 15-16, 2012, 73–84. ACM. doi:10.
1145/2258996.2259008. https://doi.org/10.1145/2258996.2259008. (cited
on page 2)

Steve Blackburn, 2021. The DaCapo Benchmark Suite git hash
69a704e. https://github.com/dacapobench/dacapobench/commit/
69a704ef4436196295e8e107f0a5f5f5212c125a. (cited on pages 12 and 20)

Ungar, D. M., 1984. Generation scavenging: A non-disruptive high performance
storage reclamation algorithm. In Proceedings of the ACM SIGSOFT/SIGPLAN Soft-
ware Engineering Symposium on Practical Software Development Environments, Pitts-
burgh, Pennsylvania, USA, April 23-25, 1984, 157–167. ACM. doi:10.1145/800020.
808261. https://doi.org/10.1145/800020.808261. (cited on page 6)

Wang, M., 2017. The Future of HHVM. https://hhvm.com/blog/2017/09/18/
the-future-of-hhvm.html. (cited on pages 2 and 3)

Wikipedia, 2021. Differential Signaling. https://commons.wikimedia.org/wiki/
File:Differential_signal_transmission_over_balanced_line.svg. (cited
on pages xiii and 19)

Yamauchi, O., 2012. On Garbage Collection. https://hhvm.com/blog/431/
on-garbage-collection. (cited on page 3)

Yang, X.; Blackburn, S. M.; and McKinley, K. S., 2016. Elfen scheduling: Fine-grain
principled borrowing from latency-critical workloads using simultaneous multi-
threading. In 2016 USENIX Annual Technical Conference, USENIX ATC 2016, Denver,
CO, USA, June 22-24, 2016, 309–322. USENIX Association. https://www.usenix.
org/conference/atc16/technical-sessions/presentation/yang. (cited on
page 27)

https://www.mmtk.io/assets/videos/summer-2021-reeves.mp4
https://www.mmtk.io/assets/videos/summer-2021-reeves.mp4
https://phplang.org
https://phplang.org
https://github.com/ruby/ruby/blob/master/gc.c
https://github.com/ruby/ruby/blob/master/gc.c
http://dx.doi.org/10.1145/2258996.2259008
http://dx.doi.org/10.1145/2258996.2259008
https://doi.org/10.1145/2258996.2259008
https://github.com/dacapobench/dacapobench/commit/69a704ef4436196295e8e107f0a5f5f5212c125a
https://github.com/dacapobench/dacapobench/commit/69a704ef4436196295e8e107f0a5f5f5212c125a
http://dx.doi.org/10.1145/800020.808261
http://dx.doi.org/10.1145/800020.808261
https://doi.org/10.1145/800020.808261
https://hhvm.com/blog/2017/09/18/the-future-of-hhvm.html
https://hhvm.com/blog/2017/09/18/the-future-of-hhvm.html
https://commons.wikimedia.org/wiki/File:Differential_signal_transmission_over_balanced_line.svg
https://commons.wikimedia.org/wiki/File:Differential_signal_transmission_over_balanced_line.svg
https://hhvm.com/blog/431/on-garbage-collection
https://hhvm.com/blog/431/on-garbage-collection
https://www.usenix.org/conference/atc16/technical-sessions/presentation/yang
https://www.usenix.org/conference/atc16/technical-sessions/presentation/yang

58 BIBLIOGRAPHY

Appendix A

Figures

Time Overheads of Garbage Collection

0.985

0.99

0.995

1

1.005

1.01

1.015

1.02

1.025

1.03

avrora
batik

cassandra

eclipse
fop graphchi

jme luindex
lusearch

pmd
sunflow

tomcat
xalan

zxing
min max

mean
geomean

tim
e.

m
u

(mi-MarkSweep) Stress Garbage Collection (16Mb)

(mi-MarkSweep) Stress Garbage Collection (32Mb)

(mi-MarkSweep) Stress Garbage Collection (64Mb)

...
1.

25
...

1.
36

...
1.

25
...

1.
36

Figure A.1: Mutator execution time (normalized to best value) averaged over 30 runs
for a GC limit of 4 using the mimalloc Mark-Sweep collector with three different

stress factor values. A lower value is better.

1

2 Figures

0.98

0.99

1

1.01

1.02

1.03

1.04

1.05

1.06

avrora
batik

cassandra

eclipse
fop graphchi

jme luindex
lusearch

pmd
sunflow

tomcat
xalan

zxing
min max

mean
geomean

tim
e.

m
u

(mi-MarkSweep 32MB) GC Limit = 1 (mi-MarkSweep 32MB) GC Limit = 4 (mi-MarkSweep 32MB) GC Limit = 16

Figure A.2: Mutator execution time (normalized to best value) averaged over 30
runs for the mimalloc Mark-Sweep collector with a stress factor of 32MB and three

different GC limit values. A lower value is better.

0.98

0.99

1

1.01

1.02

1.03

1.04

1.05

1.06

avrora
batik

cassandra

eclipse
fop graphchi

jme luindex
lusearch

pmd
sunflow

tomcat
xalan

zxing
min max

mean
geomean

tim
e.

m
u

(mi-MarkSweep 64MB) GC Limit = 1 (mi-MarkSweep 64MB) GC Limit = 4 (mi-MarkSweep 64MB) GC Limit = 16

Figure A.3: Mutator execution time (normalized to best value) averaged over 30
runs for the mimalloc Mark-Sweep collector with a stress factor of 64MB and three

different GC limit values. A lower value is better.

3

Locality Effects of Garbage Collection

0 1 2 3 4 5 6
Closeness to GC (ms)

0.00

0.05

0.10

0.15

0.20

0.25

De
ns

ity
 o

f C
lo

se
ne

ss
 to

 E
xe

cu
tio

n
of

 a
 G

C

Immix: query0667

(a) Density of closeness to a GC for all exe-
cutions

1 0 1 2 3 4 5 6
Closeness to GC (ms)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

De
ns

ity
 o

f C
lo

se
ne

ss
 to

 E
xe

cu
tio

n
of

 a
 G

C

Immix: query0667

(b) Density of closeness to a GC for the best
5th percentile of executions

1 0 1 2 3 4 5
Closeness to GC (ms)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

De
ns

ity
 o

f C
lo

se
ne

ss
 to

 E
xe

cu
tio

n
of

 a
 G

C

Immix: query0667

(c) Density of closeness to a GC for the worst 5th percentile of executions

Figure A.4: Density of closeness to a GC for Query 0667 using the Immix collector
on the Haswell system.

4 Figures

0 1 2 3 4 5
Closeness to GC (ms)

0.00

0.05

0.10

0.15

0.20

0.25

De
ns

ity
 o

f C
lo

se
ne

ss
 to

 E
xe

cu
tio

n
of

 a
 G

C

SemiSpace: query0667

(a) Density of closeness to a GC for all exe-
cutions

1 0 1 2 3 4 5
Closeness to GC (ms)

0.00

0.05

0.10

0.15

0.20

0.25

De
ns

ity
 o

f C
lo

se
ne

ss
 to

 E
xe

cu
tio

n
of

 a
 G

C

SemiSpace: query0667

(b) Density of closeness to a GC for the best
5th percentile of executions

1 0 1 2 3 4 5
Closeness to GC (ms)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

De
ns

ity
 o

f C
lo

se
ne

ss
 to

 E
xe

cu
tio

n
of

 a
 G

C

SemiSpace: query0667

(c) Density of closeness to a GC for the worst 5th percentile of executions

Figure A.5: Density of closeness to a GC for Query 0667 using the SemiSpace collector
on the Haswell system.

5

2 0 2 4 6 8 10 12 14
Closeness to GC (ms)

0.00

0.02

0.04

0.06

0.08

De
ns

ity
 o

f C
lo

se
ne

ss
 to

 E
xe

cu
tio

n
of

 a
 G

C

MarkSweep: query0667

(a) Density of closeness to a GC for all exe-
cutions

2.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0
Closeness to GC (ms)

0.00

0.02

0.04

0.06

0.08

0.10

De
ns

ity
 o

f C
lo

se
ne

ss
 to

 E
xe

cu
tio

n
of

 a
 G

C

MarkSweep: query0667

(b) Density of closeness to a GC for the best
5th percentile of executions

2.5 0.0 2.5 5.0 7.5 10.0 12.5
Closeness to GC (ms)

0.00

0.02

0.04

0.06

0.08

0.10

De
ns

ity
 o

f C
lo

se
ne

ss
 to

 E
xe

cu
tio

n
of

 a
 G

C

MarkSweep: query0667

(c) Density of closeness to a GC for the worst 5th percentile of executions

Figure A.6: Density of closeness to a GC for Query 0667 using the Mark-Sweep
collector on the Haswell system.

6 Figures

0 1 2 3 4 5
Closeness to GC (ms)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

De
ns

ity
 o

f C
lo

se
ne

ss
 to

 E
xe

cu
tio

n
of

 a
 G

C

Immix: query1009

(a) Density of closeness to a GC for all exe-
cutions

1 0 1 2 3 4 5
Closeness to GC (ms)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

De
ns

ity
 o

f C
lo

se
ne

ss
 to

 E
xe

cu
tio

n
of

 a
 G

C

Immix: query1009

(b) Density of closeness to a GC for the best
5th percentile of executions

1 0 1 2 3 4
Closeness to GC (ms)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

De
ns

ity
 o

f C
lo

se
ne

ss
 to

 E
xe

cu
tio

n
of

 a
 G

C

Immix: query1009

(c) Density of closeness to a GC for the worst 5th percentile of executions

Figure A.7: Density of closeness to a GC for Query 1009 using the Immix collector
on the Haswell system.

7

0 1 2 3 4 5
Closeness to GC (ms)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

De
ns

ity
 o

f C
lo

se
ne

ss
 to

 E
xe

cu
tio

n
of

 a
 G

C

SemiSpace: query1009

(a) Density of closeness to a GC for all exe-
cutions

1 0 1 2 3 4 5
Closeness to GC (ms)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

De
ns

ity
 o

f C
lo

se
ne

ss
 to

 E
xe

cu
tio

n
of

 a
 G

C

SemiSpace: query1009

(b) Density of closeness to a GC for the best
5th percentile of executions

0 1 2 3 4
Closeness to GC (ms)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

De
ns

ity
 o

f C
lo

se
ne

ss
 to

 E
xe

cu
tio

n
of

 a
 G

C

SemiSpace: query1009

(c) Density of closeness to a GC for the worst 5th percentile of executions

Figure A.8: Density of closeness to a GC for Query 1009 using the SemiSpace collector
on the Haswell system.

8 Figures

2 0 2 4 6 8 10 12
Closeness to GC (ms)

0.00

0.02

0.04

0.06

0.08

0.10

De
ns

ity
 o

f C
lo

se
ne

ss
 to

 E
xe

cu
tio

n
of

 a
 G

C

MarkSweep: query1009

(a) Density of closeness to a GC for all exe-
cutions

2.5 0.0 2.5 5.0 7.5 10.0 12.5
Closeness to GC (ms)

0.00

0.02

0.04

0.06

0.08

0.10

De
ns

ity
 o

f C
lo

se
ne

ss
 to

 E
xe

cu
tio

n
of

 a
 G

C

MarkSweep: query1009

(b) Density of closeness to a GC for the best
5th percentile of executions

2 0 2 4 6 8 10 12
Closeness to GC (ms)

0.00

0.02

0.04

0.06

0.08

0.10

De
ns

ity
 o

f C
lo

se
ne

ss
 to

 E
xe

cu
tio

n
of

 a
 G

C

MarkSweep: query1009

(c) Density of closeness to a GC for the worst 5th percentile of executions

Figure A.9: Density of closeness to a GC for Query 1009 using the Mark-Sweep
collector on the Haswell system.

9

0 1 2 3 4 5 6
Closeness to GC (ms)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

De
ns

ity
 o

f C
lo

se
ne

ss
 to

 E
xe

cu
tio

n
of

 a
 G

C

Immix: query0380

(a) Density of closeness to a GC for all exe-
cutions

0 1 2 3 4 5
Closeness to GC (ms)

0.0

0.2

0.4

0.6

0.8

De
ns

ity
 o

f C
lo

se
ne

ss
 to

 E
xe

cu
tio

n
of

 a
 G

C

Immix: query0380

(b) Density of closeness to a GC for the best
5th percentile of executions

0 1 2 3 4
Closeness to GC (ms)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

De
ns

ity
 o

f C
lo

se
ne

ss
 to

 E
xe

cu
tio

n
of

 a
 G

C

Immix: query0380

(c) Density of closeness to a GC for the worst 5th percentile of executions

Figure A.10: Density of closeness to a GC for Query 0380 using the Immix collector
on the Xeon system.

10 Figures

0 2 4 6 8
Closeness to GC (ms)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

De
ns

ity
 o

f C
lo

se
ne

ss
 to

 E
xe

cu
tio

n
of

 a
 G

C

SemiSpace: query0380

(a) Density of closeness to a GC for all exe-
cutions

0 1 2 3 4 5 6
Closeness to GC (ms)

0.0

0.2

0.4

0.6

0.8

1.0

De
ns

ity
 o

f C
lo

se
ne

ss
 to

 E
xe

cu
tio

n
of

 a
 G

C

SemiSpace: query0380

(b) Density of closeness to a GC for the best
5th percentile of executions

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Closeness to GC (ms)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

De
ns

ity
 o

f C
lo

se
ne

ss
 to

 E
xe

cu
tio

n
of

 a
 G

C

SemiSpace: query0380

(c) Density of closeness to a GC for the worst 5th percentile of executions

Figure A.11: Density of closeness to a GC for Query 0380 using the SemiSpace col-
lector on the Xeon system.

11

0 50 100 150
Closeness to GC (ms)

0.000

0.002

0.004

0.006

0.008

0.010

De
ns

ity
 o

f C
lo

se
ne

ss
 to

 E
xe

cu
tio

n
of

 a
 G

C

MarkSweep: query0380

(a) Density of closeness to a GC for all exe-
cutions

25 0 25 50 75 100 125 150
Closeness to GC (ms)

0.000

0.005

0.010

0.015

0.020

De
ns

ity
 o

f C
lo

se
ne

ss
 to

 E
xe

cu
tio

n
of

 a
 G

C

MarkSweep: query0380

(b) Density of closeness to a GC for the best
5th percentile of executions

25 0 25 50 75 100 125 150
Closeness to GC (ms)

0.000

0.002

0.004

0.006

0.008

0.010

De
ns

ity
 o

f C
lo

se
ne

ss
 to

 E
xe

cu
tio

n
of

 a
 G

C

MarkSweep: query0380

(c) Density of closeness to a GC for the worst 5th percentile of executions

Figure A.12: Density of closeness to a GC for Query 0380 using the Mark-Sweep
collector on the Xeon system.

12 Figures

0 2 4 6 8
Closeness to GC (ms)

0.0

0.2

0.4

0.6

0.8

1.0

De
ns

ity
 o

f C
lo

se
ne

ss
 to

 E
xe

cu
tio

n
of

 a
 G

C

Immix: query0667

(a) Density of closeness to a GC for all exe-
cutions

0 2 4 6 8
Closeness to GC (ms)

0.0

0.2

0.4

0.6

0.8

1.0

De
ns

ity
 o

f C
lo

se
ne

ss
 to

 E
xe

cu
tio

n
of

 a
 G

C

Immix: query0667

(b) Density of closeness to a GC for the best
5th percentile of executions

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
Closeness to GC (ms)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

De
ns

ity
 o

f C
lo

se
ne

ss
 to

 E
xe

cu
tio

n
of

 a
 G

C

Immix: query0667

(c) Density of closeness to a GC for the worst 5th percentile of executions

Figure A.13: Density of closeness to a GC for Query 0667 using the Immix collector
on the Xeon system.

13

0 1 2 3 4 5
Closeness to GC (ms)

0.0

0.2

0.4

0.6

0.8

1.0

De
ns

ity
 o

f C
lo

se
ne

ss
 to

 E
xe

cu
tio

n
of

 a
 G

C

SemiSpace: query0667

(a) Density of closeness to a GC for all exe-
cutions

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Closeness to GC (ms)

0.0

0.2

0.4

0.6

0.8

1.0

De
ns

ity
 o

f C
lo

se
ne

ss
 to

 E
xe

cu
tio

n
of

 a
 G

C

SemiSpace: query0667

(b) Density of closeness to a GC for the best
5th percentile of executions

0.0 0.5 1.0 1.5 2.0 2.5
Closeness to GC (ms)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

De
ns

ity
 o

f C
lo

se
ne

ss
 to

 E
xe

cu
tio

n
of

 a
 G

C

SemiSpace: query0667

(c) Density of closeness to a GC for the worst 5th percentile of executions

Figure A.14: Density of closeness to a GC for Query 0667 using the SemiSpace col-
lector on the Xeon system.

14 Figures

0 50 100 150
Closeness to GC (ms)

0.000

0.002

0.004

0.006

0.008

0.010

De
ns

ity
 o

f C
lo

se
ne

ss
 to

 E
xe

cu
tio

n
of

 a
 G

C

MarkSweep: query0667

(a) Density of closeness to a GC for all exe-
cutions

20 0 20 40 60 80 100 120
Closeness to GC (ms)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

De
ns

ity
 o

f C
lo

se
ne

ss
 to

 E
xe

cu
tio

n
of

 a
 G

C

MarkSweep: query0667

(b) Density of closeness to a GC for the best
5th percentile of executions

25 0 25 50 75 100 125
Closeness to GC (ms)

0.000

0.002

0.004

0.006

0.008

0.010

0.012

De
ns

ity
 o

f C
lo

se
ne

ss
 to

 E
xe

cu
tio

n
of

 a
 G

C

MarkSweep: query0667

(c) Density of closeness to a GC for the worst 5th percentile of executions

Figure A.15: Density of closeness to a GC for Query 0667 using the Mark-Sweep
collector on the Xeon system.

15

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Closeness to GC (ms)

0.0

0.2

0.4

0.6

0.8

1.0

De
ns

ity
 o

f C
lo

se
ne

ss
 to

 E
xe

cu
tio

n
of

 a
 G

C

Immix: query1009

(a) Density of closeness to a GC for all exe-
cutions

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Closeness to GC (ms)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

De
ns

ity
 o

f C
lo

se
ne

ss
 to

 E
xe

cu
tio

n
of

 a
 G

C

Immix: query1009

(b) Density of closeness to a GC for the best
5th percentile of executions

0.0 0.5 1.0 1.5 2.0 2.5
Closeness to GC (ms)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

De
ns

ity
 o

f C
lo

se
ne

ss
 to

 E
xe

cu
tio

n
of

 a
 G

C

Immix: query1009

(c) Density of closeness to a GC for the worst 5th percentile of executions

Figure A.16: Density of closeness to a GC for Query 1009 using the Immix collector
on the Xeon system.

16 Figures

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Closeness to GC (ms)

0.0

0.2

0.4

0.6

0.8

1.0

De
ns

ity
 o

f C
lo

se
ne

ss
 to

 E
xe

cu
tio

n
of

 a
 G

C

SemiSpace: query1009

(a) Density of closeness to a GC for all exe-
cutions

0 1 2 3 4
Closeness to GC (ms)

0.0

0.2

0.4

0.6

0.8

1.0

De
ns

ity
 o

f C
lo

se
ne

ss
 to

 E
xe

cu
tio

n
of

 a
 G

C

SemiSpace: query1009

(b) Density of closeness to a GC for the best
5th percentile of executions

0 1 2 3 4 5 6
Closeness to GC (ms)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

De
ns

ity
 o

f C
lo

se
ne

ss
 to

 E
xe

cu
tio

n
of

 a
 G

C

SemiSpace: query1009

(c) Density of closeness to a GC for the worst 5th percentile of executions

Figure A.17: Density of closeness to a GC for Query 1009 using the SemiSpace col-
lector on the Xeon system.

17

0 25 50 75 100 125 150
Closeness to GC (ms)

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

De
ns

ity
 o

f C
lo

se
ne

ss
 to

 E
xe

cu
tio

n
of

 a
 G

C

MarkSweep: query1009

(a) Density of closeness to a GC for all exe-
cutions

10 0 10 20 30 40 50 60
Closeness to GC (ms)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

De
ns

ity
 o

f C
lo

se
ne

ss
 to

 E
xe

cu
tio

n
of

 a
 G

C

MarkSweep: query1009

(b) Density of closeness to a GC for the best
5th percentile of executions

20 0 20 40 60 80 100
Closeness to GC (ms)

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

De
ns

ity
 o

f C
lo

se
ne

ss
 to

 E
xe

cu
tio

n
of

 a
 G

C

MarkSweep: query1009

(c) Density of closeness to a GC for the worst 5th percentile of executions

Figure A.18: Density of closeness to a GC for Query 1009 using the Mark-Sweep
collector on the Xeon system.

18 Figures

Garbage Collection Behaviour in an Unmanaged Language

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

barnes_hut

cache_scratch

cfrac
espresso

larson
sh6bench

sh8bench

threadtest

xmalloc_test

min max
mean

geomean

tim
e

je ql-je (1B) ql-je (4 KB) ql-je (40 KB) ql-je (512 KB) ql-je (1 MB)

...
16

.5
1

...
2.

89

...
16

.5
1

Figure A.19: jemalloc average execution time over 20 runs with a thread-local buffer
size of 128 KB and with six different configurations. The values are normalized to

the je configuration. A lower value is better.

19

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

barnes_hut

cache_scratch

cfrac
espresso

larson
sh6bench

sh8bench

threadtest

min max
mean

geomean

m
ax

_r
ss

je ql-je (1B) ql-je (4 KB) ql-je (40 KB) ql-je (512 KB) ql-je (1 MB)

Figure A.20: jemalloc average maximum RSS over 20 runs with a thread-local buffer
size of 128 KB and with six different configurations. The values are normalized to

the je configuration. A lower value is better.

0

0.5

1

1.5

2

2.5

barnes_hut

cache_scratch

cfrac
espresso

larson
sh6bench

sh8bench

threadtest

xmalloc_test

min max
mean

geomean

tim
e

hoard

ql-hoard (1B)

ql-hoard (4 KB)

ql-hoard (40 KB)

ql-hoard (512 KB)

ql-hoard (1 MB)

Figure A.21: hoard average execution time over 20 runs with a thread-local buffer
size of 128 KB and with six different configurations. The values are normalized to

the hoard configuration. A lower value is better.

20 Figures

0.5

1

1.5

2

2.5

3

3.5

barnes_hut

cache_scratch

cfrac
espresso

larson
sh6bench

sh8bench

threadtest

min max
mean

geomean

m
ax

_r
ss

hoard

ql-hoard (1B)

ql-hoard (4 KB)

ql-hoard (40 KB)

ql-hoard (512 KB)

ql-hoard (1 MB)

Figure A.22: hoard average maximum RSS over 20 runs with a thread-local buffer
size of 128 KB and with six different configurations. The values are normalized to

the hoard configuration. A lower value is better.

0

0.5

1

1.5

2

2.5

3

barnes_hut

cache_scratch

cfrac
espresso

larson
sh6bench

sh8bench

threadtest

xmalloc_test

min max
mean

geomean

tim
e

glibc

ql-glibc (1B)

ql-glibc (4 KB)

ql-glibc (40 KB)

ql-glibc (512 KB)

ql-glibc (1 MB)

Figure A.23: glibc average execution time over 20 runs with a thread-local buffer size
of 128 KB and with six different configurations. The values are normalized to the

glibc configuration. A lower value is better.

21

0.8

1

1.2

1.4

1.6

1.8

2

2.2

barnes_hut

cache_scratch

cfrac
espresso

larson
sh6bench

sh8bench

threadtest

min max
mean

geomean

m
ax

_r
ss

glibc

ql-glibc (1B)

ql-glibc (4 KB)

ql-glibc (40 KB)

ql-glibc (512 KB)

ql-glibc (1 MB)

Figure A.24: glibc average maximum RSS over 20 runs with a thread-local buffer size
of 128 KB and with six different configurations. The values are normalized to the

glibc configuration. A lower value is better.

	Acknowledgments
	Abstract
	Contents
	Introduction
	Thesis Statement
	Contributions
	Thesis Structure

	Background and Related Work
	Terminology and Taxonomy of Garbage Collection
	MMTk
	Related work

	Space Overheads of Garbage Collection
	Objectives
	Approximating Manual Memory Management
	Design and Implementation
	Stress Garbage Collection
	Configurable malloc Mark-Sweep

	Experimental Methodology
	Benchmarks
	Hardware and Operating System
	MMTk and OpenJDK
	Experimental Design

	Results and Evaluation
	Summary

	Time Overheads of Garbage Collection
	Objectives
	Garbage Collection ``Signals''
	Design and Implementation
	Experimental Methodology
	Benchmarks
	Hardware and Operating System
	MMTk and OpenJDK
	Experimental Design

	Results and Evaluation
	Discussion

	Summary

	Locality Effects of Garbage Collection
	Objectives
	Measuring Locality Effects
	Design and Implementation
	Instrumenting lusearch
	Instrumenting MMTk

	Experimental Methodology
	Hardware and Operating System
	MMTk and OpenJDK
	Experimental Design

	Results and Evaluation
	Discussion

	Summary

	Garbage Collection Behaviour in an Unmanaged Context
	Objectives
	Approximating Garbage Collection Behaviour
	Design and Implementation
	Experimental Methodology
	Benchmarks
	Hardware and Operating System
	Experimental Design

	Results and Evaluation
	mimalloc
	jemalloc
	hoard
	ptmalloc2
	Discussion

	Summary

	Conclusion
	Future Work
	Performance Evaluation on Different Microarchitectures
	Time Overheads of Garbage Collection
	Locality Effects of Garbage Collection
	Garbage Collection Behaviour in an Unmanaged Context

	Figures

