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Abstract

Object-oriented programing languages are becoming increasingly important as are
managed runtime-systems. An area of importance in such systems is dynamic auto-
matic memory management. A key function of dynamic automatic memory manage-
ment is detecting and reclaiming discarded memory regions; this is also referred to as
garbage collection.

A significant proportion of research has been conducted in the field of memory
management, and more specifically garbage collection techniques. In the past, ade-
quate comparisons against a range of competing algorithms and implementations has
often been overlooked. JMTk is a flexible memory management toolkit, written in
Java, which attempts to provide a testbed for such comparisons.

This thesis aims to examine the implementation of one algorithm currently avail-
able in JMTk: the deferred reference counter. Other research has shown that the refer-
ence counter in JMTk performs poorly both in throughput and responsiveness. Sev-
eral aspects of the reference counter are tested, including the write barrier, allocation
cost, increment and decrement processing and cycle-detection.

The results of these examinations found the bump-pointer to be 8% faster than the
free-list in raw allocation. The cost of the reference counting write barrier was deter-
mined to be 10% on the PPC architecture and 20% on the i686 architecture. Processing
increments in the write barrier was found to be up to 13% faster than buffering them
until collection time on a uni-processor platform. Cycle detection was identified as a
key area of cost in reference counting.

In order to improve the performance of the deferred reference counter and to con-
tribute to the JMTk testbed, a new algorithm for detecting cyclic garbage was de-
scribed. This algorithm is based on a mark scan approach to cycle detection. Using
this algorithm, two new cycle detectors were implemented and compared to the orig-
inal trial deletion cycle detector.

The semi-concurrent cycle detector had the best throughput, outperforming trial
deletion by more than 25% on the javac benchmark. The non-concurrent cycle detector
had poor throughput attributed to poor triggering heuristics. Both new cycle detec-
tors had poor pause times. Even so, the semi-concurrent cycle detector had the lowest
pause times on the javac benchmark.

The work presented in this thesis contributes to an evaluation of components of
the reference counter and a comparsion between approaches to reference counting
implementation. Previous to this work, the cost of the reference counter’s components
had not been quantified. Additionally, past work presented different approaches to
reference counting implementation as a whole, instead of individual components.
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Chapter 1

Introduction

1.1 Motivation

With industry leaders such as Sun, IBM and Microsoft pushing managed run-times
such as Java and .NET, automatic dynamic memory management is becoming in-
creasingly important. This is especially highlighted by papers which suggest that a
program could spend up to a third of its running time performing garbage collection
[Levanoni and Petrank 2001].

Study in the field of automatic dynamic memory management dates back to 1960
and much research has been conducted. While there are many papers and reports
available on the performance of memory management algorithms and implemen-
tations, they are often implemented in different environments. Unfortunately this
makes it difficult to compare different collection algorithms as other elements from
the underlying runtime affect the comparison.

Reference counting is one approach to automatic memory management that has not
had its differing implementations thoroughly compared and examined. For example,
the mark-scan and trial-deletion approaches to cycle detection have been described and
implemented but not compared with each other. Instead, implementations of refer-
ence counters and their components are presented as a whole when they are really
several orthogonal components [Bacon et al. 2001; Levanoni and Petrank 2001].

The reference counter is also considered to perform poorly in throughput when
compared to other collection algorithms [Blackburn and McKinley 2003; Blackburn
et al. 2003]. However the reasons for this poor performance have not been examined.

The cost of maintaining reference counts for each object is also thought to be high
[Wilson 1992; Jones 1996], but again the costs have not been quantified.

This thesis aims to dissect the costs involved in the components of the one refer-
ence counter implementation and, where possible, offer improvements.

1.2 Approach

The costs involved in allocation, the write barrier, processing increments, processing
decrements, processing roots and cycle detection will be examined and their costs
quantified.

1



2 Introduction

Using these results and the knowledge of the algorithm, improvements to the cur-
rent implementation will be proposed and tested.

All work will be done in JMTk, a flexible memory management toolkit written in
Java [Blackburn et al. 2003]. This will allow any improvements to be compared against
other collectors in the same platform.

1.3 Contribution

The main costs involved in reference counting are dissected. Allocation cost, the cost
of the write barrier, different approaches for handling increments and the costs of
processing decrements, roots and cycle detection are quantified.

A new algorithm for collecting cyclic garbage is described and discussed. Using
this new approach to cycle detection, two new cycle detector implementations are
provided to JMTk.

The new cycle detectors are compared to the original cycle detector. One of the
cycle detector implementations performed well in throughput. However, both per-
formed poorly in responsiveness.

1.4 Organisation

Chapter 2 gives an overview of the garbage collection problem domain. Some ap-
proaches to garbage collection are discussed, particularly those relating to reference
counting.

Chapter 3 describes the environment in which the reference counter is currently im-
plemented.

Chapter 4 examines the various costs involved in deferred reference counting garbage
collection. Preliminary results indicate that cycle detection is a major cost in the refer-
ence counter.

Chapter 5 describes a new algorithm for collecting cyclic garbage. Based on this algo-
rithm, two alternate cycle detectors are implemented. These implementations aim to
improve the performance of the reference counter.

Chapter 6 presents results from the cost analysis and an evaluation of the new cycle
detectors.

Chapter 7 critically examines the result obtain in Chapter 6.

Chapter 8 makes recommendations based on the findings from chapter 7. Further
areas of research are also presented.



Chapter 2

Background

This chapter aims to provide background information on the general problem of mem-
ory management. The differences between traditional methods for memory manage-
ment and automatic dynamic memory management are examined. Alternative ap-
proaches for memory allocation and reclamation are described with respect to garbage
collection in object-oriented systems. Approaches to mark-sweep and reference count-
ing collection are described in more detail.

2.1 Traditional Dynamic Memory Management

Traditional memory management places the onus of memory management on the pro-
grammer. The programmer must explicitly instruct the program when to allocate and
release regions of memory as well as indicate the quantity of memory required by
the program. The programmer must also ensure that any pointers in the program are
valid. During the program execution and in a concurrent setting, the programmer
must also ensure that the order in which the memory is accessed is legal and resulting
data is consistent. If any of these components of the program’s memory management
is defective, undesirable and unpredictable behaviour can result [Jones 1996].

Special care must be taken when sharing data between modules [DeTreville 1990;
Wilson 1992]. It must be checked that one module does not free the allocated memory
while another module is using it. It must also be checked that the allocated memory
is eventually freed when all modules have finished using it.

In addition, pointer arithmetic and pointers to arbitrary memory regions are al-
lowed. Thus the programmer must check that memory locations reference by these
pointers are only accessed when the pointers are referencing valid locations.

2.2 Automatic Dynamic Memory Management

Automatic dynamic memory management is a high level facility provided to the pro-
grammer that removes the need for explicit memory management. It allows memory
regions to be allocated automatically as they are required and collected automatically
as they become discarded [Wilson 1992].

3
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Many object-oriented languages have automatic dynamic memory management
as part of their specification. These languages include C# [ECMA 2002], Java [Joy
et al. 2000] and Smalltalk [Committee 1997]. When referred to in this context, auto-
matic dynamic memory management is called garbage collection. These languages also
ensure that all references are either valid or null, thus removing another burden from
the programmer.

Meyer considers that automatic dynamic memory management is an important
part of a good object-oriented language. Further, he states that leaving developers
responsible for memory management complicates the software being developed and
compromises its safety [Meyer 1988].

It is possible to implement automatic dynamic memory management for most lan-
guages, even those that do not include garbage collection in their specification. This
is the case for two popular languages, C and C++ [Jones 1996]. However, these im-
plementations may need to operate without communication from the compiler. Addi-
tionally, these languages usually have very different allocation and collection patterns
to languages commonly associated with garbage collection [Jones 1996].

2.2.1 Collector Evaluation

When evaluating the performance of garbage collection algorithms several qualities
must be taken into consideration. These include the throughput and pause-times of
the collector and the required meta-data.

The throughput of the collector indicates the speed at which the collector is able
to reclaim garbage. The higher a collector’s throughput the more efficient it will be
able to complete processing its workload. High throughput is important for systems
that generate large quantities of garbage. Throughput provides an indication of the
overhead the collector places on total system running time [Jones 1996].

The collector’s pause-times indicate how long a collection cycle takes. Low pause-
times are important for interactive and hard real-time systems. In most cases there is
a trade-off between short pause-times and high throughput [Blackburn and McKinley
2003].

Some collectors, such as reference counting collectors, require meta-data in order
to operate. This data can be stored both in the object header or associated with the
collector. Some meta-data may be required throughout the execution of the program
while other meta-data is only required at collection time. The quantity of meta-data
required by the collection algorithm is an important consideration for systems with
limited memory [Jones 1996].

2.2.2 Allocation

Two approaches are used to allocate memory to newly created objects. One approach
is to maintain a pointer to the end of the last allocated object. Newly requested space
starts from the pointer position. After allocation the pointer is updated to the end
of the new object. This pointer is known as a bump-pointer, see figure 2.1. Bump-
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pointers provide fast allocation routines as only one field needs to be read and up-
dated. The drawback to using bump-pointers is that they are only able to allocate
into an empty memory region. This means that the region of memory allocated by a
bump-pointer must be freed completely before it can be reused.

Figure 2.1: An example bump-pointer allocator.

The other approach is to allocate objects using a “free-list”. A free-list indicates
regions of memory not containing live objects, see figure 2.2. When the collector finds
a garbage object, the object’s space is recorded in the free-list. Free-lists are more com-
plex than bump-pointers and are slower as a result. However, free-lists can allocate
into a previously allocated space, making them essential in non-copying collectors.

Figure 2.2: An example free-list allocator.

2.2.3 Copying Vs. Non-Copying Collectors

Garbage collection algorithms can either move objects found to be live or leave live
objects fixed and maintain a free-list for the heap.

Copying collectors are able to utilise the fast allocation associated with a bump-
pointer, as they are always allocating into unused space. However, they must pay
the overhead of copying all live objects from the space being collected. In the worst
case, all objects in the collected region will remain live and the collector must have
enough free space to copy these objects [Blackburn et al. 2002]. In the most inefficient
implementation, a copying collector will only be able to allocate half of the memory
region it is managing.

Non-copying collectors avoid the costs associated with copying objects but have
a more complicated allocation routine. Conversely, the free-list avoids the need for a
“copy-to” space that copying collectors require.
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2.2.4 Tracing Vs. Reference Counting Collectors

Garbage collection algorithms use two approaches to determine if an object is live.
The first method is to trace through the graph of live objects. Any object reached in
this traversal must be live due to the nature of garbage objects [McCarthy 1960]. The
other approach is to record the number of references to an object [Collins 1960]. When
an object has a reference count of zero it is garbage, as no live objects are referencing
it.

One advantage of tracing algorithms is that unlike reference counting, no special
action is required to reclaim cyclic garbage [Schorr and Waite 1967]. Since a garbage
cycle only contains internal references, a trace of live objects will never reach the
garbage cycle indicating that is not live. Reference counting algorithms must therefore
employ additional approaches to detect garbage cycles.

Non-incremental, non-concurrent tracing collectors also avoid the overhead of a
write barrier, which is required by reference counting algorithms [Jones 1996].

2.2.5 Write Barriers

A write barrier is a piece of code that is executed every time a reference mutation oc-
curs. The write barrier can either be conditional or fixed. Conditional write barriers
can either execute a “fast-path” or a “slow-path”. The fast-path checks if the refer-
ence mutation should be recorded, while the slow-path actually records the mutation.
Fixed write barriers have no fast-path and execute the slow-path for every mutation.

Conditional write barriers are used in generational collectors, collectors that per-
form incremental collection and also other styles of collectors [Jones 1996]. Reference
counting collectors can be implemented with a fixed write barrier, however coalesc-
ing and generational reference counting still use a conditional write barrier [Levanoni
and Petrank 2001; Blackburn and McKinley 2003].

2.2.6 Object Life-Cycles

In order to improve the performance of garbage collection algorithms, research has
been conducted to identify trends in object life cycles. One trend discovered is that
most objects die young. To take advantage of this behaviour, some collectors take
a generational approach to garbage collection [Lieberman and Hewitt 1983; Ungar
1984]. A nursery is employed into which all new objects are allocated. Objects in the
nursery remain there until the next nursery collection. At this point they are copied
over into the mature object space. The premise is that because the nursery will have a
high mortality rate, only a minimal subset of the nursery object will need to be copied
into the mature space.

An important property of the life cycle for all objects is that when the object dies
and becomes garbage, it cannot be resurrected. Once an object has been lost from
the system (all its references removed) there is no way of re-locating it again [Wilson
1992].
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In modern languages the exception to this rule is finalisation. A finaliser is a piece
of code that is executed after the object dies but before the object is collected. It is
possible for this code to “resurrect” the object by restoring a reference to itself.

2.2.7 Locality of Reference

Locality of reference is the degree to which subsequent memory accesses are close to
each other both temporally and spatially. In both cases, closer references have better
locality. Memory accesses that are close temporally have better locality if a last re-
cently used (LRU) policy is used for the cache or paging system [Tanenbaum 1999].
This is because they are less likely to be bumped out of the cache or have their page
unloaded. Memory accesses which are spatially close will have better locality since
they are more likely to be on the same page, reducing the number of page faults.

A program with good locality will frequently take advantage of objects in the cache
and any cache pre-fetching mechanisms. Programs with good locality will also have
a concentrated working set. As indicated above, a concentrated working set helps to
reduce page faults since most required data is on a small subset of all pages.

Since the allocation strategy and garbage collection policy are both responsible for
the placement of objects, they can both aid or hinder benefits gained from locality.
For example, segregated free-lists group similar sized objects together and copying
collectors compact objects into the “copy-to” space. Thus locality is an important
consideration when dealing with memory management.

2.3 Mark-Sweep Collection

The mark-sweep garbage collection algorithm operates by tracing through all live ob-
jects in the heap and then sweeping the heap for any unmarked objects. Objects that
are unmarked after a traversal of the heap have no live objects referencing them and
are therefore garbage.

To prevent objects from being reclaimed incorrectly the algorithm must retain
garbage until a complete scan of the heap is complete. In contrast, reference counting
algorithms are able to collect garbage objects immediately.1

In basic implementation of the mark-sweep algorithm pause times are large when
compared with some other algorithms, for example reference counting [Blackburn
and McKinley 2003]. The algorithm’s high pause times can be attributed to its need
to traverse large portions of the heap at collection time. In the marking phase, all live
objects in the heap must be traversed. In the sweeping phase, the heap is traversed
again updating the free-lists.

To help minimise the length of the pause times and maximise throughput, various
strategies are attempted in both the marking and sweeping phases of the algorithm.

1This is not the case for deferred reference counting, see section 2.4.1.
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2.3.1 Marking Strategies

The goal of the marking phase is to detect all live objects in the heap and to flag them
as live. The live objects are detected by tracing the graph of live objects from the
roots. A sub-graph is only traced if the root of the sub-graph had not been previously
marked. This prevents unneeded tracing and handles cyclic data structures.

The mark state is typically stored in two locations: in the header of the object or
in a separate bitmap. Storing the mark state with the object is cheaper to access than
storing it in a bitmap but this is not always possible, for example in C collectors [Jones
1996].

The space required to store the bitmap is small when compared to the entire heap.
This means that there is a possibility that the bitmap will remain in the cache or at least
that reading and writing mark bits should not cause as many page faults. The addi-
tional advantage is that large portions of the heap are not written to while marking
occurs. This helps to avoid marking many pages as dirty, thus reducing the number
of page writes the operating system must perform. The downside is that writing to
the mark bit is more expensive [Zorn 1989].

The marking process is recursive in nature, however the marking program can-
not use recursive calls to perform the mark because a stack overflow can result. To
overcome this problem two approaches can be used: storing objects that need to be
traversed in a marking queue or traversing the graph using pointer reversals.

Using a marking queue avoids the need to call the marking function recursively,
however it requires additional space to store the queue. Research has been under-
taken to approximate the space needed, and it was found that real applications tend
to produce marking stacks that are shallow in proportion to the heap size [Jones 1996].
Even so, some collectors will push large objects onto the marking queue incrementally
to save space[Jones 1996].

Using the pointer reversal technique does not require any additional space to per-
form the mark however it is suggested to be 50% slower than using a marking queue
[Schorr and Waite 1967]. Thus it is only recommended for use when marking with a
mark queue fills the heap.

2.3.2 Sweeping Strategies

The most basic sweeping strategy is to traverse the entire heap in a linear fashion and
push unmarked objects back onto the free-list. The heap is scanned in a linear fashion
to take advantage of any page pre-fetching mechanism in the hardware or operating
system [Jones 1996].

Sweeping can also be performed concurrently to the mutator. An effective way
to implement this policy is to perform a partial sweep each time an allocation is re-
quested [Hughes 1982]. This is called lazy sweeping and it helps to reduce the collec-
tor’s pause times.
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2.4 Reference Counting

Reference counting garbage collection records the number of references to live ob-
jects. When a reference to an object is created, the reference count of that object is
incremented. When a reference to an object is removed, the reference count of the ob-
ject is decremented. Objects with a reference count of zero are not linked to any live
object and are therefore garbage. When an object’s reference count drops to zero, the
reference counts of child objects are decremented before the object is reclaimed. This
ensures that all objects will have a correct reference count during the execution of the
program.

To update the reference counts of objects when references are altered, a write bar-
rier is used. The write barrier increments the object receiving the reference and decre-
ments the object losing the reference. Since garbage objects can be detected as soon as
their reference counts drop to zero, the collection work is more evenly spread than a
traditional tracing collector. This spread of the workload enables reference counting
to achieve consistently small pause times.

As mentioned above, reference counting is not complete. It requires the assistance
of a cycle detector to collect all garbage on the heap. It is possible to avoid the need for
cycle detection by using weak pointer implementations, however this is suggested to
be highly costly [Jones 1996].

2.4.1 Deferred Reference Counting

It is costly for the run-time to execute the write barrier for every reference mutation.
To reduce this cost a reference counting algorithm can choose to ignore some sets of
frequently mutated references [Deutsch and Bobrow 1976]. References from hardware
registers or the stack are examples of frequently mutated references. To prevent incor-
rect collection of live objects, all objects must be checked for references residing in the
stack and registers before they are reclaimed.

Deferred reference counting typically defers adjusting the reference counts in the
write barrier. Instead increments and decrements are placed into a buffer and pro-
cessed together. This approach requires more meta-data space since buffers for the
increments and decrements are required. It also produces longer pause times but
gains significant increases in throughput [Ungar 1984].

2.4.2 Coalescing Reference Counting

Coalescing reference counting is built on the idea that many updates to reference
counts are unnecessary [Levanoni and Petrank 2001]. Between each collection, to
maintain a correct reference count for an object, only previous reference and final ref-
erences to that object need to be considered. The object can receive a decrement for any
previous reference that is now missing and an increment for any final reference not
previously there. Any intermediate changes in between the collections would cause
both an increment and a decrement causing no net change to the reference count. This
scenario is illustrated in figure 2.3. The object o5 initially references object o1. Before a
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collection takes place the reference from o5 changes to reference o2, then o3 and finally
o4. The coalescing collector only need remember the initial reference to o1 and the
final destination, o4. The objects in between each would receive an increment and a
decrement resulting in no net change.

Figure 2.3: An example of several reference mutations.

2.4.3 Retain Events

To prevent deferred reference counting algorithms from collecting objects referenced
from the stack or from hardware registers, retain events are used. There are three ways
to implement retain events: using a zero count table, using temporary increments and
using a flag in the object’s header.

The zero count table method places all objects with a zero reference count into
a table [Deutsch and Bobrow 1976]. Before the objects are reclaimed each object is
checked for references in the stack and hardware registers. If such a reference exists
the object is left in the zero count table until the next collection, otherwise the object
is reclaimed. If the object’s reference count increases again between collections it is
removed from the zero count table.

The other two methods gather all roots from the stack and the hardware registers
and indicate to the reference counter that these objects should be retained [Bacon et al.
2001; Blackburn and McKinley 2003]. This is achieved either by incrementing the
reference count and decrementing it in the next collection or by setting a flag in the
object’s header.

2.4.4 Cyclic Garbage

A problem with reference counting as a collection algorithm is that it is not complete.
In some cases garbage objects will not be detected and thus not collected using refer-
ence counting alone [McBeth 1963; Deutsch and Bobrow 1976; Lins 1992; DeTreville
1990]. Figure 2.4 describes this situation. When the reference r1 is removed, both ob-
jects in cycle c1 will have non-zero reference counts and the collector will not reclaim
them. To ensure that all garbage objects are collected, a cycle detection algorithm
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must also be used. The two basic cycle detection algorithms are trial deletion and
mark-scan.

Figure 2.4: A cycle of garbage in a reference counted heap.

2.4.4.1 Trial Deletion

The trial deletion cycle detector operates by considering possible cycle roots. For each
possible cycle root, it pretends that the object is dead and then decrements the refer-
ence counts of all child objects [Lins 1992; Bacon et al. 2001]. If the object is the root
of a cycle of garbage, then this process will kill the child objects which will in turn
decrement the parent and kill it. Consider the cycle c1 in figure 2.5. If the possible
cycle root o1 were to decrement all its child objects, in this case just o2, the child ob-
ject would have a reference count of zero. The child object o2 would be marked as a
possible member of a garbage cycle and its child nodes would be decremented, in this
case just o1. This decrement would leave both objects with a reference count of zero
indicating the two objects were members of a garbage cycle.

Figure 2.5: A garbage cycle.

Conversely, figure 2.6 describes a cycle c2 that is not garbage (it is referenced from
a root). In this case, if the object o3 were considered a possible cycle root and its
child nodes decremented, o4 would still have a non-zero reference count. This in turn
would prevent o3 from obtaining a zero reference count. Therefore the cycle remains
live. To maintain correct reference counts after a live cycle is traversed, it must be
traversed again, restoring any decremented reference counts.
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Figure 2.6: A non-garbage cycle.

2.4.4.2 Mark-Scan

An alternative approach to detect cycles is to perform an occasional mark sweep of
the entire heap [DeTreville 1990; Levanoni and Petrank 2001]. Any garbage cycles
uncollected from reference counting would not be reached in the mark phase and
thus could be collected in the sweep phase.

In implementations where a limited number of bits are used to store the reference
count, the mark sweep is also used to reset stuck reference counts back to their correct
values [Jones 1996].

2.5 Summary

In this chapter various approaches to automatic dynamic memory management have
been explored and the general problems associated with reference counting have been
discussed. In the next chapter, the environment for the remainder of the work in this
thesis will be described. Details of the current reference counting implementation will
also be described.



Chapter 3

Jikes RVM, JMTk and the
Reference Counter

The previous chapter looked at the general problem of memory management and
garbage collection. Possible approaches to reference counting were also described.

In this chapter, the software used as a platform for research, the Jikes Research
Virtual Machine is described. The Java Memory management Toolkit (JMTk) is also
described along with details of its reference counter implementation. Important prop-
erties of the platform, such as the approach to compilation and the self-hosting nature
of Jikes, are discussed.

3.1 Jikes RVM

The Jikes Research Virtual Machine (RVM) is an open source research Java Virtual
Machine (JVM) written in Java [Alpern et al. 1999a; Alpern et al. 1999b; Alpern et al.
2000]. It is designed to be a high performance JVM and is intended to run on high end
server machines. To support these goals it incorporates a high performance compiler
system and a family of memory managers.

An interesting property of the RVM is that it is self hosting. This means that the
RVM not only runs the application program it is executing, but also its own internal
components. For example, the RVM’s compiler system can recompile code that the
RVM is itself using. This approach to design opens up many opportunities for optimi-
sation unavailable in other JVMs. For example the RVM has the ability to inline parts
of the supporting Java libraries and the runtime itself, such as the write-barrier and
allocation fast-path, into the application code being executed.

While there are other virtual machines which run in the language they were pro-
grammed in [Ingalls et al. 1997; Taivalsaari 1998], Jikes RVM is the only such imple-
mentation that is both self hosting and aiming to be a high performance VM.

3.1.1 Boot Image

Since the RVM is self hosting, it requires a boot image to commence execution. This
boot image is generated by running the RVM on another JVM. The RVM then uses a
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special boot writer class to write an image of the running RVM into a boot image. This
boot image is then reloaded using limited quantities of C and assembly code.

When generated, the classes in the boot image can either be compiled by the base-
line compiler or by the optimising compiler. A baseline compiled boot image is faster
to generate but runs slower than a boot image generated from the optimising com-
piler.

3.1.2 Threading and Scheduling

When the RVM loads its boot image, it creates a native process for each processor
available in the system. Using these native processes, Java threads are multiplexed
using quasi-preemptive scheduling [Alpern et al. 2000].

Again since the RVM is self hosting threads for compilation, garbage collection
and other services are scheduled using the same scheduling system that runs the ap-
plications threads.

3.1.3 Synchronisation and Locking

The RVM uses a locking mechanism based on thin locks to support Java synchronisa-
tion [Alpern et al. 2000]. Each object has information in its header detailing its current
locking state. When there is no contention for the lock a thin lock is used. When con-
tention occurs the thin lock is promoted into a thick lock. This approach avoids the
need for the heavier thick locks in cases where there is no contention for the object in
question.

The RVM also includes other lower level locking mechanisms only available inside
the RVM [IBM Research 2003].

3.1.4 Compilers

Unlike other JVMs, Jikes RVM does not use an interpreter loop to run its applications.
Instead the RVM takes a compile only approach to bytecode execution. Initially it
compiles every executed method with a very fast “baseline” compiler. Later “hot”
methods are re-compiled using a more aggressive optimising compiler.

The RVM also takes a lazy approach to compilation; when a class is loaded all
methods are left uncompiled until they are called. This approach helps to reduce the
initial time cost of compiling all bytecode.

3.1.4.1 Baseline Compiler

The baseline compiler is a rigorous implementation of a Java stack machine [Alpern
et al. 1999a]. It is able to quickly compile Java bytecode into native machine code.
However, the code produced by the baseline compiler executes much slower than
code produced by the optimising compiler. The baseline compiler performs no code
inlining optimisations.
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3.1.4.2 Dynamic Optimising Compiler

The optimising compiler is more aggressive but also more expensive than the baseline
compiler. It aims to generate the best possible code while at the same time remember-
ing that compilation time is an important factor. The optimising compiler is able to
produce code that performs at a speed comparable to production JIT compilers [Burke
et al. 1999].

Code within the RVM is able to use a compiler pragma to instruct the optimising
compiler how certain portions of code should be handled. For example, it is possible
to instruct the optimising compiler to always inline a specific method [Blackburn et al.
2003].

3.1.4.3 Adaptive Optimisation System

The adaptive optimisation system controls the two compilers and attempts to make
a good cost/performance trade-off. It uses metrics gathered at runtime to recompile
“hot” methods using the optimising compiler. It can also recompile optimised meth-
ods using difference optimisations to achieve even greater performance [Arnold et al.
2000].

The behaviour of the adaptive optimisation system is non-deterministic which can
affect benchmarking [Blackburn et al. 2003].

3.1.5 Object Model

Jikes RVM is implemented with an unusual object model that is inherited from early
versions of the Jalapeño JVM. Object fields are laid out backwards in decreasing mem-
ory from the object reference. Additionally, the length of arrays are stored before the
array reference and the array data starts at the array reference, see figure 3.1.

Figure 3.1: The layout of the object model implemented in Jikes RVM and used by JMTk.

For the hardware and operating system Jalapeño was initially implemented on,
this layout had several benefits [Alpern et al. 2000]. Firstly, it allows cheap null pointer
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checks by protecting high memory to trigger a hardware exception. When the pro-
gram attempts to access any field of a null object (object reference at 0x0), the field
would be high memory (below 0xFFFFFFFF), triggering the exception. This approach
makes the assumption that the field in the object being referenced will be in a pro-
tected region of memory, that is:

fieldoffset >−(protectedpages)× (page size)

Another consequence is that the RVM cannot safely be loaded into high memory as
the page protection system would not work in this case.

The Java language specification ensures that all array accesses are bounds checked,
which implies that the array length needs to be read before an access is attempted.
Again with the length laid out before the array reference, accessing a null array would
trigger an exception.

The other advantage of this object layout is efficient array access. The ith element
in the array is i times the element size from the object header reference. This allows
fast and cheap access to array elements.

3.1.6 Object Headers

In the RVM all objects and arrays are stored with a header. This header contains
information about the type and status of the object or array. The reference counting
header also contains an additional word to store the reference count and data used for
cycle detection.

3.1.7 Memory Management

The RVM supports a family of memory managers. This includes collectors from the
original Jalapeño VM.1 More importantly the RVM includes the versatile Java Mem-
ory management Toolkit (JMTk).

3.2 JMTk

JMTk is a memory management toolkit written in Java. Since Jikes RVM was designed
to run on server machines that possibly have more than one CPU, JMTk is designed
with concurrent operation in mind. Since Jikes RVM is also designed to be high a
performance VM, JMTk is intended to contain high performance algorithms for both
collection and allocation [Blackburn et al. 2003].

JMTk provides a testbed where different memory management strategies can be
examined and compared. It improves upon previous memory management toolkits
by providing both free-list and bump-pointer allocators [Blackburn et al. 2003]. It
supports a range of collection algorithms including copying collectors, mark-sweep
and reference counting. It also has support for generational collectors.

1These collectors are referred to as the Watson collectors, they are now deprecated.
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3.2.1 Plans

JMTk contains a set of “plans” for its range of collectors. Each plan specifies how a
certain memory management approach will allocate and collect objects. The plan also
specifies if a write barrier is required by the collector.

3.2.2 Allocation Spaces

JMTk provides the VM with several different spaces to allocate objects. These spaces
allow collectors and allocators to take different action for objects residing in different
spaces.

Since Jikes RVM is self-running and requires a boot-image to start running some
objects are allocated into the boot space. Objects in the boot space are never allocated
at runtime, they are allocated at build time when the boot image is made.

JMTk also provides an immortal space. JMTk will allocate objects that never need
to be collected into the immortal space, this removes some load off the collector. These
objects are typically internal RVM data structures.

Most JMTk collectors also have a large object space (LOS). The large object space
provides a space to deal with objects so large that they would otherwise hinder the
normal memory management process. Consider a copying collector; during a collec-
tion it would be quite expensive to copy a large object into a new memory region.
The LOS allows the collector to avoid this problem. Segregating large objects into a
separate space may also help collectors by providing better object locality.

JMTk collectors also have a default space used by which ever collection algorithm
is being used. For example the default space for a reference counting collector is the
“RefCount” space.

3.2.3 Allocation Locals

For each space in the system, each processor can have a “local”. Each processor allo-
cates into and collects its own locals. Locals get their memory from their associated
space in large chunks. This prevents the need for fine grain synchronisation during al-
location and collection. Instead only coarse gain synchronisation is needed for access
among processors.

3.2.4 Double Ended Queues (Deques)

JMTk provides a set of general purpose queues for storing data. These queues, as the
name suggests, allow values to be inserted at either end.

These queues are implemented using coarse grained synchronisation. Each thread
that accesses a shared queue has its own associated local queue that is not synchro-
nised. When the local queue becomes filled or empties, data is transfered from a global
pool. This global pool is synchronised between threads.
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3.2.5 Approach to Marking

Marking can be done by changing a bit in the object’s header. In the first mark of
the graph, an object is marked by setting the mark bit in the object’s header. Then
instead of unmarking all objects after a mark and sweep, the meaning of the mark bit
is flipped. Thus, in the next mark phase an object will be marked by clearing the mark
bit.

3.2.6 Acyclic Objects

The compiler assists the reference counter by identifying some acyclic objects. Only
classes that only reference scalars and final acyclic classes can be safely treated as
acyclic. This is because a subclass of an acyclic object could be cyclic, causing the
original analysis to be incorrect. Thus the compiler can only perform limited analysis
of which objects are acyclic.

Even with these restrictions Bacon et al. [2001] found that some benchmarks from
the SPECJVM98 suite contained high proportions of acyclic objects. In the two ray-
tracing benchmarks, ray-trace and mtrt, 90% of objects allocated were acyclic.

The trial deletion cycle detector in JMTk never traverses acyclic objects. This is
because an acyclic object cannot be part of a cycle.

3.3 The Reference Counter

The reference counter currently implemented in JMTk is a deferred reference counter.2

This means that all reference mutations to registers and stack variables are ignored.
All other mutations are handled by a write barrier.

3.3.1 Write Barrier

The write barrier in the reference counter handles all non-deferred reference muta-
tions. For each such mutation the corresponding increment and decrement are placed
into increment and decrement buffers. These buffered increments and decrements
grow in size until a collection is needed either due to object allocation or excessive
reference mutation.

3.3.2 Roots

At collection time all roots of the object graph from the previous collection are decre-
mented. All new roots are located and their reference counts incremented. The incre-
mented roots are also placed into a buffer to be decremented in the next collection.
This approach avoids the need for a zero count table (ZCT).

2Ian Warrington, Honours student at Australian National University, has also implemented a coa-
lescing reference counter.
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3.3.3 Increments and Decrements

Increments are processed before decrements. Increments need to be processed first to
avoid an object’s reference count incorrectly dropping to zero or lower. Any object
whose reference count drops (is decremented) to a non-zero value is coloured purple
and placed into a buffer. These purple objects are considered possible roots of cyclic
garbage and need to be handled by the cycle detector. Any object whose reference
count drops to zero is considered garbage and is collected. This involves decrement-
ing all reference objects which may in turn be killed.

3.3.4 Reference Counting Header

The reference counter uses an extra word on top of the standard header. This extra
space is used to store cycle detection state and the reference count. Having this much
space for the header removes the need to “un-stick” reference counts that have over-
flowed.

3.3.5 Allocation Strategy

The reference counter allocates objects using a segregated free-list and a large object
allocator. The large object allocator rounds the object’s size up to the nearest page.

3.3.6 Cycle Detection

The reference counter uses the trial deletion algorithm described by Bacon et al. [2001].
The cycle detector is called at each collection. Instead of performing cycle detection
every time it is called, the implementation occasionally filters out any objects in the
purple buffer that have either been incremented and are now black or have been
decremented to zero. It also filters live purple objects into a “mature” purple buffer
to help reduce the load on the cycle detection. The implementation uses time caps at
each stage of the algorithm to help prevent large pause times.

3.4 Summary

In this chapter the research platform has been described. The details of the current
reference counter implementation have also been documented. In the next chapter
the costs of parts of this implementation will be dissected looking for areas that can
be improved.
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Chapter 4

Costs involved in Deferred
Reference Counting

The previous chapters have described the issues surrounding reference counting. Chap-
ter 2 has described some approaches to the components of the reference counter. The
current implementation of the reference counter has been described in chapter 3.

This chapter aims to describe tests to dissect the costs in the current reference
counter. Justifications for these tests are provided along with expected results.

4.1 Measuring Allocation Cost

As mentioned in chapter 2, the bump-pointer is considered to be the cheapest method
of allocation. However, in JMTk it is unclear how the free-list allocator compares from
a cost perspective. Measuring and comparing the cost of allocation for the different
allocation approaches aims to determine whether the free-list is significantly slower
than the bump-pointer.

While it is not possible to replace the free-list in the reference counter with a bump-
pointer, if the difference in cost is significant future work could try to improve the
free-list performance.

It is expected that free-list allocation will be more costly than allocation using the
bump-pointer. There is no expectation of the degree of difference.

4.1.1 Approach

All automatic memory management systems need an allocator. This requirement
makes determining the cost of the allocator a difficult task. While it is not possible
to run the system without the allocator and determine the system speed-up, it is pos-
sible to change the allocation process and measure any performance improvement or
degradation.

An allocation only plan1 was used to measure the performance difference between
the various allocator strategies available in JMTk. This plan was chosen to remove the

1The “NoGC” plan.
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cost of collection from the total cost. While using the same collector for different allo-
cators is possible, there is no collector that is designed to perform this task. Removing
the collector from the costs removes the possibility of the collector’s design favouring
one allocator over another.

4.1.2 Bump-Pointer

The allocation only plan traditionally uses a bump-pointer to allocate objects. To mea-
sure the difference between allocators, this bump-pointer will be replaced by the other
allocators and differences measured. During testing, a defect was uncovered in the
bump-pointer implementation, thus the optimised version of the bump-pointer was
also compared.

4.1.3 Segregated Free-list

The bump-pointer in the plan was replaced by the segregated free-list allocator used
in the reference counter. This allocator does not handle allocation of large objects2 so
the reference counter’s large object allocator was added.

4.1.4 Bump-Pointer With Large Object Allocator

The bump-pointer was also tested with the large object allocator from the reference
counter and the allocation only free-list plan. This aims to uncover the benefits of
adding the large object allocator.

4.1.5 Allocation Benchmark

While all benchmarks need to allocate objects to function, many are not aimed at test-
ing allocation alone. Instead the benchmarks allocate some data and then perform a
task involving the data. The execution of the task causes other factors, such as locality,
to affect overall performance. To help remove factors like locality from affecting the
results, an additional custom benchmark, gc random alloc, is used.

The gc random alloc benchmark initially allocates a set of data to fill part of the heap,
then allocates sets of garbage objects. The objects allocated are all arrays of random
length.3 This approach is aimed at testing the various size buckets in the free-list as
well as any boundary issues in the bump-pointer. Issues like locality are avoided since
the benchmark does not actually operate on the objects it allocates. Any locality issues
that arise are purely allocation related.

4.1.6 Compiler Settings

When factoring out the cost of the allocator the behaviour of the adaptive optimising
system (AOS) and the optimising (OPT) compiler will have a large impact on the

2Objects greater than 8Kb.
3The random sizes are always generated using the same seed, however they may vary between JVMs
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final results. The runtime must be allowed to perform some optimisations, such as
inlining allocation fast-paths. However, running the system in without a collector
also prevents the possibility of running without the AOS enabled. This is because
OPT compiling every method uses too much memory.

4.2 Approaches for Processing Increments

The reference counter must increment an object’s reference count for every new refer-
ence that the object receives. The reference counter records these changes to a refer-
ence by using a write barrier.

Increments must be processed before decrements to avoid incorrectly lowering an
objects reference count to zero. Aside from this constraint the increments can be pro-
cessed at any point before the decrements. This includes the possibility of processing
the increments directly in the write barrier.

Processing the increments in the write barrier should move some of the collector’s
work load out of collection time and into mutator time. This should cause shorter
pause times, a decrease in collection time, and an increase in mutator time.

This test aims to quantify the difference between processing the increments in the
write barrier and buffering increments to be processed later.

4.2.1 Buffering the Increments

As mentioned in chapter 3, the current reference counter implementation buffers in-
crements in the write barrier to be processed at collection time. This approach is
thought to take advantage of locality benefits. It is hoped that mutations will mostly
be to the working set, and that this set is concentrated in one region.

This method requires more meta-data to store the increments until collection time.
This extra meta-data would cause collections to occur more frequently. Storing the
increments in a buffer also incurs the cost of the push and pop associated with the
buffer.

4.2.2 Incrementing in the Write Barrier

It is possible to avoid the cost of managing the increment buffer by processing the
increments directly in the write barrier.

It also aims to achieve a locality gain as it is expected that in many cases an incre-
mented object will belong to the mutator’s workset helping avoid causing excessive
page faults.

It is expected that fewer collections will be required because less meta-data will
be used. However, having fewer collections is not expected to reduce total time sig-
nificantly as the garbage collection workload is more closely related to the number of
mutations than the state of the heap.
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4.2.3 The Write Barrier

The write barrier for the reference counter is already quite large. Processing the incre-
ments in the write barrier has the potential to increase its size and as such affect code
size and total running time. However, by selectively inlining only parts of the write
barrier the impact of its size is reduced. This results in less load being placed on the
compiler and code generated is smaller [Blackburn and McKinley 2002].

4.2.4 Approach

The benefit of both approaches will be compared by considering total system running
time using the two configurations. Mutator time will be compared to see if some of the
workload is displaced. The number of collections will be compared to highlight the
meta-data impact of buffering all increments. Average and maximum pause times will
also be considered to see if processing increments in the write barrier cause workload
to become more distributed.

4.3 Write Barrier Cost

The cost of using a write barrier is traditionally thought to be non-trivial [Wilson 1992;
Jones 1996]. This is because the write barrier for reference counting is quite large and
must be executed for every non-deferred pointer mutation. Also, the write barrier in
the reference counter is fixed (non conditional) and thus always executes an expensive
slow path.

While there has been work done to examine the cost of conditional write barriers
[Zorn 1990; Blackburn and McKinley 2002], those used in incremental and genera-
tional collectors, little research indicates the overhead of a reference counting write
barrier.

This test seeks to determine the overhead of the reference counting write barrier
used in JMTk. It also aims to determine how dependant the write barrier cost is on
the system architecture.

4.3.1 Approach

The main problem with factoring out the write barrier is that it is an integral part
of the reference counter and the reference counter will not operate with it removed.
Also, the write barrier is executed at many points throughout the running of the VM
and the program being executed. Unlike other components of the reference counter it
is not possible to measure start and end times for each execution of the write barrier
since it is executed too frequently and the timing operation may be more expensive
than the write barrier. Thus to determine the cost of the write barrier it will be placed
into a collector that does not use a write barrier and the overhead will be measured.
A semi-space collector is used for this test since it is simple4 and does not require a

4This will help reduce noise in the results.
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write barrier.

4.3.2 Meta-Data

The write barrier used in the reference counter catches all non-deferred pointer muta-
tions and places a reference to the involved objects into the increment and decrement
buffers. When this meta-data grows too large, the reference counter processes these
buffers.

To fully simulate the cost of the write barrier, the writes to the buffers must be
made as they may cause new pages to be allocated as meta-data (a non-trivial cost if
frequent enough). When placed into a semi-space collector this will uncover a new
problem. Without processing, the meta-data will grow until there is no free space on
the heap.

There are several solutions to this problem. The increment and decrement buffers
can be periodically emptied, however this will incur additional costs. The increment
and decrement buffers could be left unprocessed and the collector run in a large heap.
Due to memory constraints this approach is not possible. Finally, the buffers can be
modified to overwrite the same entry every time a push occurs, however this avoids
the need to fetch extra meta-data pages. The last method will be used in testing since
it avoids extra processing and is able to run within the memory constraints of the
testing system.

4.3.3 Inlining the Write Barrier

As mentioned above, the amount of the write barrier that is inlined can affect the cost
of both running time and compilation. Thus the write barrier will be tested completely
out-of-line and with set portions inlined.

4.4 Processing Decrements, Roots and Cycle Detection

The reference counter must process decrements and perform cycle detection to reclaim
garbage. Since the reference counter in JMTk uses temporary increments to ensure ob-
jects referenced from outside the heap are not collected, roots must also be processed
at each collection.

Processing decrements and roots and collecting cycles happens once each collec-
tion at most. This property makes these components of the reference counter easy to
measure using standard timers. Thus the costs of each item of work will be measured
using the reference counter’s built in statistics.

The number of mutations is fixed across heap sizes, thus it is expected that cycle
detection and processing the roots will contribute to a larger percentage of the cost in
smaller heap sizes.

This test aims to quantify the costs involved in processing the decrements and
roots and also the cost of cycle detection.
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4.5 Summary

In this chapter tests to factor out some areas of cost in the reference counter have been
described. Initial results show that cycle detection is a key area of cost in the reference
counter. In the next chapter a new cycle detector implementation for JMTk will be
described.



Chapter 5

Mark-Scan Cycle Detection

The previous chapter looked at the cost of the reference counter’s components. Initial
results indicated that cycle detection was a major cost in the reference counter. Cur-
rently, the only cycle detection algorithm implemented in JMTk is trial deletion. This
means there is no alternate cycle detector implementation against which to compare
the performance of trial deletion.

This chapter describes the algorithm for an alternative approach to cycle detection.
Two possible variants are described.

5.1 Properties of the Cycle Detector

The cycle detector must obey certain properties to function properly. These are de-
scribed below.

5.1.1 Safety

During the cycle detection process, it is important that the cycle detector only refer-
ences areas of memory that contain object headers for live or unclaimed objects. This
property will be referred to as the safety property.

The safety property implies that the cycle detector will not end up accessing ran-
dom memory regions when it attempts to traverse the object graph. If the cycle de-
tector did not have this property, the virtual machine (VM) would enter an undefined
state.1

For example, if the VM obtained a reference to the fields of an object, instead of
an object header, an incorrect object type could be looked up, see figure 5.1. The VM
would be tricked into thinking it was dealing with a different object and values on the
heap would be treated as references to objects. When traversal of these references was
attempted, access to “random” memory regions would result.

It is acceptable for the cycle detector to access a reference to a dead object provided
it has not been collected and its space re-allocated or cleared. This is because the object
header (and thus the object type) along with any references will remain on the heap

1Under Linux, most likely a segmentation fault would be generated, crashing the VM.
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COLLECT-CYCLES()
1 // Check if cycle detection is required
2 if shouldCollectCycles()
3 then
4 mark()
5 processPurples()
6 scan()
7 processKillQueue()
8
9 else if shouldFilterPurple()

10 then
11 f ilterPurple()

Algorithm 5.1: Top level view of the mark scan cycle detection algorithm.

Figure 5.1: Example of a safe and an unsafe object reference.

until reallocation. To help ensure dead objects are not reallocated while the cycle
detector is using them, flags are set in the object header indicating the the object is
“in use”. Since the normal collection process will retain flagged objects, it is up to the
cycle detector to cleanup any objects that become (or already are2) garbage.

5.1.2 Completeness

The cycle detector must ensure that all cycles are eventually detected and reclaimed,
this property will be referred to as completeness. If the cycle detector did not satisfy
this property, the VM would leak memory and would eventually run out of memory.

Further, it implies that every possible cycle root considered is correctly identified
the first time. This condition arises because a cycle with no remaining references will
not receive any further pointer mutations due to the nature of garbage objects.

2Flagged objects may die before cycle detection starts.
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MARK()
1 // Add all roots into the marking queue
2 markQueue← roots
3
4 while ¬markQueue.isEmpty()
5 do
6 ob ject ← markQueue.pop()
7
8 // Only traverse unmarked subgraphs
9 if ob ject.testAndMark()

10 then
11 for child in ob ject.children()
12 do
13 markQueue.push(child)

Algorithm 5.2: Mark the graph of live objects.

5.1.3 Correctness

The cycle detector must only collect objects that are actually garbage; this property is
the correctness property. If the cycle detector was not correct and reclaimed arbitrary
objects from the program running on the VM, spurious NullPointerException
or ClassCastExceptions could be thrown inside the program. Since the VM also
performs garbage collection on its own data structures, core components of the VM
such as compiled methods, could be reclaimed therefore causing the VM to crash.

5.2 Non-concurrent Cycle Detector

In the non-concurrent case the cycle detector runs in a stop-the-world setting. A top
level overview is described in algorithm 5.1. The cycle detector performs a mark of
all live objects in the heap starting from the roots, see algorithm 5.2. Since the garbage
collector has stopped all other threads from running, no special precautions need to be
taken during marking. It then examines all possible roots of cyclic garbage obtained
after the previous collection, see algorithm 5.3. If any of these objects are unmarked
it cannot be attached to the graph of live objects and is therefore a root of a garbage
cycle, see figure 5.2.

This more conservative approach to scanning should be more efficient for the ref-
erence counter in JMTk. This is because in JMTk, there is no need to scan the entire
heap restoring stuck reference counts. Instead, only possible cycles of garbage and
interconnecting garbage need to be considered.
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PROCESS-PURPLES()
1 while ¬purpleQueue.isEmpty()
2 do
3 ob ject ← purpleQueue.pop()
4
5 // Unmarked purple objects are roots of cyclic garbage
6 if ¬ob ject.isMarked()
7 then
8 // Colour the object white to indicate it is a member of a garbage cycle
9 ob ject.colourW hite()

10 // Queue the object to be reclaimed later
11 killQueue.push(ob ject)
12 for child in ob ject.children()
13 do
14 scanQueue.push(child)

Algorithm 5.3: Process purple objects.

Figure 5.2: Example of a marked live cycle (left) and unmarked dead cycle of garbage (right).

5.2.1 Allocation

It is possible for a program to allocate a cycle that is never connected to the graph of
live objects,3 consider figure 5.3. In the depicted example it is possible for the created
cycle to be considered live by the cycle detector if the objects allocated have the op-
posite mark state to the graph of live objects. In this case, the cycle detector would
consider the cycle to be live after the next mark and leave it uncollected. To avoid this
possibility, all objects must be marked with the current mark state after allocation.
Then when the next mark occurs, any garbage cycle will always be coloured opposite
to the graph of live objects.

3Except being stored in the stack or hardware registers.
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SCAN()
1 while ¬scanQueue.isEmpty()
2 do
3 ob ject ← scanQueue.pop()
4
5 // Unmarked purple are roots of cyclic garbage
6 if ob ject.isMarked()
7 then
8 // Decrement the object’s reference count (a reference from cyclic garbage).
9 decrementQueue.push(ob ject)

10
11 else if ¬ob ject.isW hite()
12 then
13 // Colour the object as member of a garbage cycle
14 ob ject.colourW hite()
15 // Queue the object to be reclaimed later
16 killQueue.push(ob ject)
17 for child in ob ject.children()
18 do
19 scanQueue.push(child)

Algorithm 5.4: Process the scan queue.

5.2.2 Filtering Possible Cycle Roots

It is possible that an object becomes a candidate cycle root, but before cycle detection
can run it becomes garbage. To help reduce the load on the cycle detector, the buffer
containing the possible cycle roots is filtered. The filtering process removes any dead
objects from the buffer and places them onto a kill queue. If the size of this buffer is
small enough after the filtering (if enough memory has been reclaimed), a full mark
and scan of the heap can be postponed until a later collection.

5.2.3 Reclaiming Garbage Cycles

After a root of a garbage cycle has been identified, the algorithm traverses the garbage
cycle and flags any unmarked objects as cyclic garbage, see algorithm 5.4. Flagging
objects as cyclic garbage prevents them being traversed more than once (as will oth-
erwise happen with cyclic garbage). The flagged objects are also added to a kill buffer
to be reclaimed at the end of cycle detection.

The kill buffer is required to prevent reclaiming objects that may still be traversed
by the cycle detector as this would violate the safety property, consider cycle c1 in
figure 5.4. Without a kill buffer, o1 is killed and its reference enumerated. This in turn
kills o2 and its reference is enumerated. However o1 has already been reclaimed and
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Figure 5.3: A cycle that is created disconnected from the graph of live objects.

accessing it would violate the safety property.
If a marked object is encountered it is added to the decrement buffer but not tra-

versed. Adding these objects to the decrement buffer ensures that all reference counts
will remain consistent after cycle detection is complete, consider figure 5.5. When the
cycle is collected the marked object’s reference count should be decremented for it to
be correct.

The cycle detector must avoid performing such a decrement operation on a cycle
of garbage, consider figure 5.4 again. If the cycle c2 was collected and o2 received a
decrement, the safety property would be violated when the decrement was processed.
This is because the cycle c1 would be reclaimed before the decrement to o2 occurred.

Figure 5.4: Configuration that could cause problems during collection of the cycle.

Figure 5.5: Situation where reference counts need to be updated.

5.2.4 Acyclic Objects

Acyclic objects can cause the mark scan cycle detector problems if dealt with in the
same manner as trial deletion. Consider the situation in figure 5.6. Using trial deletion,
the cycle c1 could be reclaimed but the cycle c2 could not (o1 is keeping it alive).
Reclaiming cycle c1 would cause the acyclic object o1 to be decremented. This would
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cause the cycle c2 to be reconsidered by trial deletion and it would be reclaimed at a
later collection.

Using a mark scan cycle detector and taking the same approach to acyclic objects,
a different situation could arise. If the two cycles c1 and c2 were collected, o1 would
be placed on a decrement buffer. Then, when the buffer was processed, the safety
property would be violated; o1’s reference to c2 would no longer be valid.

To prevent this problem, the mark scan cycle detector must treat acyclic objects the
same way as any other unmarked objects. This unfortunately means that the mark
scan cycle detector cannot take advantage of acyclic objects.

Figure 5.6: A possible problem caused by an acyclic object.

5.2.5 Properties

The algorithm ensures the correctness property by marking every live object. With
every live object marked it is not possible to incorrectly collect a live part of the object
graph. Since the algorithm runs in a stop-the-world setting no special precautions
need to be taken while marking the graph.

The algorithm satisfies the completeness property by considering every possible
cycle root before any mutator activity resumes. This means that any cycle that is
unmarked is garbage and any marked cycle is not.

The safety property is enforced by using the kill buffer as mentioned above.

5.3 Parallel Non-concurrent Cycle Detector

The parallel non-concurrent cycle detector operates in a stop-the-world setting but
collects on more than one processor. It uses the same algorithm as the non-parallel
cycle detector with one small change. All CPUs rendezvous in between marking,
scanning and processing the kill queue. This ensures that no CPU is still processing
its marking queue and thus the entire heap is marked before scanning takes place.

5.4 Concurrent Cycle Detector

In the concurrent version of the algorithm, the heap is marked in a separate thread
running concurrently with the mutator thread. The scanning of the cycles is still per-
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formed in a stop-the-world setting, and at this point the marking thread is also sus-
pended.

This approach aims for smaller pause times compared with the non-concurrent
version. This is because the marking work is performed concurrent to the mutator
leaving only the scanning phase during collection time.

5.4.1 Mutation During Marking

The first problem that arises from marking the heap in a concurrent setting is muta-
tions to the object graph. Without proper precautions, a mutation to the graph could
trick the marking thread and prevent it from marking a subtree of the object graph,
see figure 5.7. The reference from the marked object is added after its references are
enumerated. Later, the reference from the unmarked object is removed before it is
marked. This can leave the subgraph in an incorrectly unmarked state.

To avoid this problem all increments are recorded in the write barrier and these
objects are added back onto the marking queue [Dijkstra et al. 1978].

Figure 5.7: Example of how the mutator can cause problems when marking.

Another problem that arises due to marking concurrently is the issue of safety.
Without precautions it is possible for the marking thread to perform an unsafe access,
consider figure 5.8. In this case some objects could be collected while the marking
thread is still accessing them. To prevent this situation a bit is set in the object’s header
to indicate that it is in the marking queue and should not be collected. As with the
possible cycle roots, the cycle detector is then responsible for collecting any objects
buffered in the mark queue which subsequently die.

5.4.2 Mutation After Marking

It is possible for the marking thread to empty the marking queue before the cycle
detector is ready to perform the scanning. When this happens it is crucial to ensure
that any mutations which occur in this time are processed. Without processing, sub-
graphs of objects in the queue could remain unmarked incorrectly.
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Figure 5.8: Potentially unsafe pointer access.

5.4.3 Roots

While the marking thread is marking the heap, it is important to add any new roots
onto the marking queue. This ensures that when scanning occurs the entire graph of
live objects is marked.

5.4.4 Allocation

The problem that the non-concurrent cycle detector has with allocation of objects does
not apply to the concurrent version. This is because any new pointer that could form
a cycle will be caught in the write barrier and the cycle will be marked to the correct
state. Also, all new objects receive an initial reference count of 1 and a buffered decre-
ment. This decrement would place the cycle into the buffer of possible cycle roots
where it would be processed as usual.

5.4.5 Detecting Cycles

Cycles are detected in the same way as the non-concurrent cycle detector.

5.4.6 Filtering Possible Cycle Roots

Possible cycle roots are filtered in the same way as the non-concurrent cycle detector.

5.4.7 Acyclic Objects

The concurrent mark scan cycle detector suffers the same problems with acyclic ob-
jects as the non-concurrent version.

5.4.8 Reclaiming Garbage Cycles

With the marking concurrent to the scanning process, it is possible to mark a cycle and
then for that cycle to become a possible root of cyclic garbage. To correctly detect if the
possible root is the root of a garbage cycle, the cycle must be retained until after the
next mark, see figure 5.9. In this example, a partial mark of the heap has occurred and
before scanning takes place the cycle becomes garbage. The cycle detector must retain
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the cycle until the epoch when the graph is “unmarked” to determine if the cycle is
actually garbage.

Figure 5.9: Cycle c1 is marked in time t1 and must be retained until “un-marking” is complete
in time t2..

Conversely, if a cycle becomes garbage and it has not already been marked, it can
be processed in the next scanning phase. Due to the nature of garbage, if the cycle is
unmarked, it is definitely garbage, figure 5.10 illustrates the two different scenarios.

Figure 5.10: Cycle c1 will be processed after the current mark, cycle c2 needs to be retained till
after the next mark.

5.5 Comparison to Trial Deletion

The main limitation of the mark scan cycle detector when compared to trial deletion
is that it must perform a mark of the whole graph of live objects. Conversely, trial
deletion only ever considers a local sub-graph when collecting cycles. The main ben-
efit of the mark scan cycle detector is that after a mark is completed it only needs to
traverse a cyclic object once to collect it. Trial deletion on the other hand must traverse
a garbage cycle three times before it can be reclaimed. The pathological worst case for
trial deletion is the best case for the mark scan cycle detector. Consider the case where
most of the heap died as a large cycle. Trial deletion would need to traverse the whole
cyclic structure repeatedly. However, the mark scan cycle detector would have very
little to mark and only need to traverse the cycle once to collect it.

Another weakness of the mark scan cycle detector is that it does not make use of
information regarding acyclic objects. However, acyclic objects can be problematic for
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trial deletion as well, consider figure 5.6. As mentioned in section 5.2.4, the cycle c2
would be retained by the reference from o1. Instead of saving work, taking “advan-
tage” of the acyclic object o1 will cause the cycle c2 to be traversed by trial deletion on
two separate occasions.

5.6 Summary

This chapter has described an algorithm for a new style of mark scan cycle detection.
Two possible implementations of this algorithm have also been described.

In the next chapter the performance of the cycle detectors will be compared against
the original trial deletion cycle detector.
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Chapter 6

Results

Chapter 4 described tests for factoring out cost components of the reference counter.
Tests for comparing approaches to reference counter implementation were also de-
scribed. Chapter 5 described two implementations of the mark scan cycle detector, an
alternative to trial deletion.

In this chapter the results from the tests and the performance of the cycle detectors
will be presented and briefly analysed. Only representative or interesting cases are
displayed and discussed for brevity; complete results are available in appendix B.

6.1 Approach to Benchmarking

Each garbage collection algorithm is compiled using a “FastAdapative” build. This
build configuration turns off assertion checking, optimises the boot image, and en-
ables the adaptive optimising system (AOS). The AOS is chosen in perference to using
the optimising (OPT) compiler exclusively since it provides the most realistic runtime
setting.

Each benchmark was run two times in the same instance of the RVM. This allows
the second run to be free of the cost of OPT compiling hot methods. This is referred to
as a benchmark run.

Each benchmark run was executed five times and the best result is taken. This
result was considered relatively free of system disturbances and the best result from
the natural variation in the AOS.

The primary i686 benchmarking platform consisted of a single Intel Pentium 4
2.4GHz “C” with hyper-threading enabled. The platform had 1GB of primary mem-
ory, 512KB of L2 cache and 8KB of L1 cache. This hardware was running the Linux
2.4.20-19.9smp kernel that is packaged for Redhat 9.0. Even though the platform was
running a SMP kernel, the RVM was instructed to use only one CPU.1 All results were
generated from this platform unless stated otherwise.

The secondary i686 benchmarking plaform was an AMD 1GHz Duron. The plat-
form had 740MB of primary memory, 64KB L2 cache and 128KB L1 cache. The hard-
ware was running the Linux 2.4.20-8 kernel that is packaged for Redhat 9.0. This

1Technically there is only one CPU, however a virtual processor is presented by the kernel.
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platform is only used where indicated.
The Power-PC platform consisted of a single G3 PPC CPU running at 400Mhz. The

platform had 256Mb primary memory, 1MB of L2 cache and 64KB of L1 cache. This
hardware was running the Linux 2.4.19-4a kernel that is packaged for Yellow Dog 2.3.

These tests were run against Jikes RVM release 2.3.0 unless stated otherwise.

6.2 Reference Counting Costs

6.2.1 Allocation

The results for the allocation tests are shown in figure 6.1. Locality seems to play a
large part in the total runtime, as there is no distinguishable trend in the data. The
allocation only gc random alloc benchmark seems to support this claim with the opti-
mised bump-pointer obtaining the best performance. The bump-pointer is 8% faster
than the free-list in the allocation only benchmark.

Figure 6.1: Allocation performance across benchmarks.

6.2.2 Processing Increments

The results for the two approaches to processing increments are shown in figure 6.2.
In both examples processing the increments in the write barrier reduces total running
time by around 5%. In the best case, processing increments in the write barrier was
13% faster than buffering them until collection time.
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The mutator time for the two approaches is shown in figure 6.3. In 6.3(b) it is clear
that mutator time is reduced by 4% when processing increments in the write barrier.
In the best case, processing increments in the write barrier was 10% faster.

As expected, processing the increments in the write barrier triggers fewer garbage
collections, this is shown in figure 6.4. Processing the increments in the write barrier
requires fewer collections since it uses less meta data.

There was little difference in pause times for the two approaches. However, there
were two exceptions to this: the javac benchmark and the db benchmark. The javac
benchmark showed higher average pause times when processing the increments in
the write barrier, this is shown in figure 6.5(a). The db benchmark showed lower
maximum pause times when processing the increments in the write barrier, this is
shown in figure 6.5(b).

(a) 209 db (b) 202 jess

Figure 6.2: Total running time for different increment processing approaches.

(a) 209 db (b) 202 jess

Figure 6.3: Mutator time for different increment processing approaches.
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(a) 209 db (b) 202 jess

Figure 6.4: Garbage collection count for different increment processing approaches.

(a) 213 javac (Average pause times) (b) 209 db (Maximum pause times)

Figure 6.5: Pause times for different increment processing approaches.

6.2.3 Write Barrier

The results for the write barrier tests are shown in figure 6.6. While the cost of the
write barrier is smaller on the PPC architecture, it still represents approximately 10%
overhead. On the i686 architecture the write barrier costs around 20%. As expected
this extra overhead is displayed in longer mutator time, see figure 6.7.

One benchmark that produced an interesting result was jess, see figure 6.8. Instead
of the write barrier adding 10% overhead for the PPC architecture, as seen on all other
benchmarks, in jess the write barrier cost 20%. This result is mirrored on the i686
architecture where the added overhead is 50%, more than double the expected 20%
overhead.
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(a) i686 architecture (b) PPC architecture

Figure 6.6: Total running time for 209 db.

(a) i686 architecture (b) PPC architecture

Figure 6.7: Mutator running time for 209 db.

6.2.4 Roots, Decrement Buffers and Cycle Detection

The cost of the roots, decrements and cycle detection is shown in figure 6.9. These
results are not produced using the Jikes RVM 2.3.0 release. Instead a recent devel-
opment build was used. In this development build, increments are processed in the
write barrier instead of being buffered.

The cost of processing the roots is tiny compared with the cost of cycle detection
and processing decrements. In most benchmarks cycle detection is a major cost espe-
cially at small heap sizes. In jess, cycle detection is a major cost at all heap sizes.

As expected the cost of processing decrements is fairly constant across heap sizes.
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(a) i686 architecture (b) PPC architecture

Figure 6.8: Total running time for 202 jess.

(a) 202 jess (b) 213 javac

Figure 6.9: Breakdown of reference counter time costs.

6.3 Cycle Detectors

The results for cycle detection throughput are shown in figure 6.10. The concurrent
mark scan cycle detector seems to have the best throughput for collecting cycles. On
the javac benchmark it is able to outperform trial deletion by more than 25%. On the
other hand, the non-concurrent mark scan cycle detector performs poorly in through-
put.

The results for cycle detection latency are shown in figure 6.11. Both of the mark
scan cycle detectors perform poorly in pause times. Even so, the cycle detector work-
load causes the non-concurrent mark scan cycle detector and trial deletion to obtain
longer average pause times for the javac benchmark.

These results were run on the secondary i686 platform.
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(a) 213 javac (b) 202 jess

Figure 6.10: Total times for cycle detectors.

(a) 213 javac (b) 202 jess

Figure 6.11: Average pause times for cycle detectors.

6.4 Summary

In this chapter results for the reference counter cost analysis were presented. Results
from the comparison between trial deletion and the two new cycle detector imple-
mentations was also presented.

In the next chapter these results will be analysed in more detail and their implica-
tions discussed.
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Chapter 7

Discussion

The previous chapter presented results from the tests performed and comparisons of
approaches to reference counter implementation. Results from the two new cycle de-
tector implementations were also presented. In both cases a brief analysis was given.

This chapter looks at the results in more detail and discusses their implications.

7.1 Allocation

7.1.1 Locality

Surprisingly, the free-list outperforms the bump-pointer on some benchmarks. The
main reason for these results appears to be locality. This is because the free-list and
bump-pointer allocators order objects differently. The free-list groups similar sized
objects together, giving a locality win on some benchmarks.

The bump-pointer with a large object space performs especially well on the com-
press benchmark (a benchmark that allocates and uses many large objects). Again, the
benefit seems to arise from better locality; the large objects allocated by the compress
benchmark spread the working set when they are allocated into the same space. With
the free-list and bump-pointer with the large object space, the working set has better
locality leading to better performance.

The results from the gc random alloc benchmark also support locality arguments.
This benchmark only allocates and does not perform any work on its allocated objects.
This makes it a better indication of allocation performance than other benchmarks. For
this benchmark, the fixed bump-pointer outperformed all other allocators.

7.1.2 Bump-Pointer Fix

The original bump-pointer had a defect where the heap would become fragmented.
When a new chunk of memory was acquired for allocation, the bump-pointer would
always be updated to the start of the new region. In the case where the new memory
region is contiguous with the old, the bump-pointer does not need to be moved, see
figure 7.1. The optimised bump-pointer has improved performance since the slow
allocation path needs to be executed less frequently.
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(a) Original bump-pointer (b) Optimised bump-pointer

Figure 7.1: Bump-pointer behaviour during allocation.

This defect is especially highlighted on the compress benchmark. As mentioned
above, the compress benchmark allocates large objects which cause the original bump-
pointer to waste a large amount of space and call the more expensive slow path more
frequently.

7.1.3 Summary of Allocation Findings

The bump-pointer is 8% faster than the segregated free-list in raw allocation. How-
ever, this difference in performance can be outweighed by locality benefits as seen in
the results.

The use of a large object space helps to prevent large objects from dispersing the
working set. This results in better performance due to a more concentrated working
set and thus better locality.

High levels of fragmentation are expensive in terms of locality costs since it dis-
perses the working set. However, fragmentation also causes added expense at alloca-
tion time as the allocation slow path must be called more frequently.

7.2 Processing Increments

Buffering the increments to be processed at collection time performs almost an identi-
cal quantity of work as processing increments in the write barrier. Neglecting locality
effects, the only difference in cost is that buffering the increments incurs the cost of
maintaining the buffer. Thus, processing increments in the write barrier performs bet-
ter in total time either because of a locality gain, avoiding the cost of maintaining the
increment buffer, or a combination of both factors.

Mutator time is reduced when processing the increments in the write barrier. This
is because updating the reference count of a single object is less expensive than main-
taining the increment buffer. However, when running the reference counter on a
multiprocessor platform the cost of updating the increment will increase due to the
required synchronisation overhead.

Also, as expected, the number of collections required when processing the incre-
ments in the write barrier decreased. As mentioned in chapter 6, this is because pro-
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cessing the increments in the write barrier requires less meta data. Having less meta-
data allows more decrements to accumulate before a collection is required, triggering
collections less often.

7.2.1 Pause Times

Pause times remain similar for both strategies. The javac and db benchmarks both
have slight deviations for average and maximum pause times respectively. While
there is not much change in pause times, they should be easier to control when pro-
cessing the increments in the write barrier.

As mentioned previously, reference counting must process all increments prior to
processing of decrements to avoid incorrectly dropping a reference count to zero. This
implies that when buffering the increments, the increment buffer must be emptied
before the decrement buffer is processed. If memory is exhausted and decrements
need to be processed to reclaim space, all the buffered increments need to be processed
first.

This constraint means that pause times are only bound by the limit on meta data
size. While it is possible to lower the size of the meta data, this causes more collections
to occur and is more expensive. Conversely, processing the increments in the write
barrier allows the decrements to be processed at any point in time, allowing strategies,
such as time caps, to be used more effectively.

7.2.2 Summary of Processing Increments Findings

Processing the increments in the write barrier appears to be a superior approach for
handling increments in a uni-processor setting. Total running time and mutator time
both decreased. In the best case, processing increments in the write barrier was faster
in total time and mutator time by 13% and 10% respectively.

Processing increments in the write barrier may lead to degraded performance in a
multi-processor setting, as synchronisation is required among processors.

Additionally, processing the increments in the write barrier allows for easier con-
trol of pause times by relaxing a constraint surrounding the period when decrements
can be processed.

7.3 Write Barrier Cost

Adding the write barrier to the semi-space collector increased total running time and
mutator time as expected. The number of collections and pause times did not change
when the write barrier was added, confirming that the addition of the write barrier
did not interfere with the collection process.

The cost of the reference counting write barrier is dependent on architecture. On
the PPC platform, the cost of the write barrier was 10%, whereas on the i686 platform
the cost of the write barrier was 20%.
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On both platforms, the tests where the write barrier was completely out-of-line
performed slightly better than partially inlining the write barrier.

It is also important to note that the write barrier tests were performed with the
referencing counting write barrier from the Jikes RVM 2.3.0 release, as such both in-
crements and decrements were buffered1 by the write barrier. Using the latest version
of the reference counter, with increments processed in the write barrier, the costs could
differ.

The jess benchmark produced an unusual result on both architectures. The jess
benchmark produces the largest number of increments out of all the benchmarks in
the SPECJVM98 suite. In the future, this would make it an interesting benchmark to
test with the reference counter’s updated write barrier.

7.3.1 Summary of Write Barrier Findings

The write barrier is a significant cost incurred by reference counting. The cost of the
write barrier is highly dependent on the system architecture; the PPC architecture
costing half the percentage of time required by th i686 architecture, making it a better
candidate for reference counting.

7.4 Processing Decrements, Roots and Cycle Detection

Cycle detection is clearly a major problem for reference counting, especially at small
heap sizes. The javac benchmark in particular spends up to 90% of collection time
preforming cycle detection.

As expected, the time spent on decrements is fairly constant across heap sizes.
This is because the number of decrements is tied to mutator activity and not to heap
size.

Time spent on processing the roots decreases as heap size increases since there are
fewer collections, thus the roots are scanned less frequently.

The javac benchmark showed some unusual behaviour when cycle detection stopped,
the cost of processing roots increased and the cost of decrements decreased. These
results occur because a large number of objects remain in the purple buffers and are
unprocessed. This in turn means that some objects are retained and avoid being decre-
mented.

7.4.1 Summary of Roots, Decrements and Cycle Detection Findings

As demonstrated by the results, cycle detection is a key area of cost in the reference
counter. While other research [Levanoni and Petrank 2001] has been conducted to re-
duce the overhead of processing reference counter mutations, cycle detection remains
a problematic component of reference counting.

1In the semi-space test no meta-data was actually buffered by the write barrier, see section 4.3.2.
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7.5 Cycle Detection

The concurrent mark scan cycle detector has a much higher level of throughput than
trial deletion. This high level of throughput is most likely due to the fact that after
marking, the mark scan cycle detector only needs to traverse cyclic garbage once to
collect it. Trial deletion, on the other hand, must traverse any cyclic structures mul-
tiple times in order to collect them. In addition, mark scan cycle detection does not
retain cycles referenced by acyclic garbage, thus removing the chance that they will
be unnecessarily traversed multiple times.

The non-concurrent mark scan cycle detector performed quite poorly in through-
put when compared to the concurrent mark scan cycle detectors. This poor perfor-
mance seems to be associated with the cost of invoking the marking phase too fre-
quently. Since the marking operation can be quite expensive, the two mark scan cycle
detectors should be invoked less frequently, thus reducing the load on the marking
phase. This change should improve their performance.

The concurrent mark scan cycle detector also had the smallest average pause times
for the javac benchmark. This appears to be because the other two cycle detectors were
overwhelmed by their workload rather than the concurrent mark scan cycle detector
performing well.

On the jess benchmark, both mark scan cycle detectors had poor pause times when
compared to trial deletion. Responsiveness is obviously an area of improvement in
both the mark scan cycle detectors.

7.5.1 Incremental Scanning

One possible improvement for both of the mark scan cycle detectors is to perform
scanning of cycles incrementally. Performing incremental scanning could help to re-
duce pause times associated with cycle detection.

Unfortunately, as mentioned in chapter 5, cycles can only be collected after the en-
tire cyclic structure has been added to a kill queue. This implies that while incremental
scanning of the cyclic structures can be performed after a complete mark occurs, no
cycles can safely be collected until scanning is finished.

7.5.2 Summary of Cycle Detection Findings

A new algorithm for cycle detection has been presented. Two implementations of that
algorithm have been compared against the original trial deletion implementation.

The concurrent mark scan cycle detector performed well in throughput. On the
javac benchmark it outperformed trial deletion by more than 25%. Conversely, the
non-concurrent mark scan cycle detector performed poorly in throughput in compar-
ison to its semi-concurrent counterpart. This poor performance was attributed to poor
heuristics for triggering the marking phase of cycle detection.

Both mark scan cycle detectors performed poorly in pause times. The concurrent
mark scan cycle detector still managed to obtain better pause times than the other two
cycle detector implementations on the javac benchmark.



52 Discussion

Incremental scanning is one strategy to help reduce the length of pause times in
both mark scan cycle detectors.

7.6 Summary

This chapter has explored the results presented in chapter 6 in more detail. The impli-
cations of the results have also been discussed.

The bump-pointer has faster allocation than the free-list. It is cheaper to process
increments in the write barrier on a uni-processor platform. The write barrier is de-
pendent on the architecture of the platform on which it is running. Cycle detection is
a major cost in reference counting.

The two new mark scan cycle detectors were compared against trial deletion. The
semi-concurrent cycle detection has better throughput than trial deletion. Both new
cycle detectors have poor pause times.



Chapter 8

Conclusion

8.1 Summary

Software engineering princples, such as modularity and re-usability, are driving forces
behind the increasing shift towards object-oriented languages. Managed runtimes are
also becoming increasingly attractive due to their improving compilation systems,
such as the adaptive optimisation system in Jikes RVM, and advanced features, such
as built in security. Given that previous studies have shown that managed runtimes
can spend a third of their total execution time collecting garbage, dynamic automatic
memory management is an important area of research. Further, it is currently a strong
area of interest for both the research and industry groups.

While research in the area of automatic dynamic memory management dates back
to 1960, adequate comparisons between garbage collection techniques and implemen-
tations are lacking.

Deferred reference counting is an example of an algorithm for which approaches
to implmentation have yet to be compared or their costs quantified. Quantifying
the costs of the reference counter’s components and comparing implementation tech-
niques was the first aim of this thesis. Tests for determining these values were de-
scribed in chapter 4 and the results of these tests were presented in chapter 6.

The second aim of this thesis was to improve the performance of the reference
counter where possible. The comparison between approaches for processing incre-
ments has lead to a marginal improvement in performance in a uni-processor plat-
form. The cycle detection algorithm developed in chapter 5 is another step towards
improving performance. While the two new cycle detector implementations perform
poorly in pause times, there is room for improvement. Further, the performance of
the semi-concurrent cycle detector has a significantly superior throughput when com-
pared to the original trial deletion cycle detector.

8.2 Future Work

Processing Increments. The benefits of processing the increments in the write bar-
rier have been explored. While this approach is clearly less expensive in a uni-processor
setting, it is recommended that research is undertaken to compare the costs in a multi-
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processor setting.

Reference Counter Implementation. While approaches to processing increments
have been examined, approaches for implementing retain events have not. Further-
more the benefits of indicating acyclic objects to trial deletion have not been quan-
tified. Research could be conducted to determine the costs and trade-offs involved
in the three implementations of retain events and the benefits of flagging objects as
acyclic.

Mark Scan Cycle Detection. The two new cycle detector implementations clearly
require performance tuning. Triggering the marking phase less frequently should
help to improve performance. Implementing incremental scanning may also help to
reduce pause times.

8.3 Conclusion

The major work for this thesis has been completed in two areas. Firstly, key costs in-
volved in reference counting garbage collection, including the write barrier, the cost of
allocation, increment and decrement processing and cycle detection have been quan-
tified. Secondly, having found cycle detection to be a key area of cost, a new algorithm
for detecting and collecting cylces has been developed. Using this new algorithm al-
lowed two new cycle detector implementations to be contributed to JMTk.

This work contributes to an evaluation of components of the reference counter
where previous research has only looked at the performance of the reference counter
as a whole. Additionally, different approaches to reference counting implementation,
such as the approach used for cycle detection, have been compared. Again, this ap-
proach is a departure from previous work undertaken in this area.



Appendix A

Conventions

Throughout the document, figure A.1 will describe shapes used in figures unless in-
dicated otherwise.

Figure A.1: A legend for figures in this document.
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Appendix B

Complete Results

The complete results for the testing described in chapter 6 is listed below. An overview
of the benchmarking approach along with the hardware and software used for each
test is provided in chapter 6. This chapter also highlights the representative and dis-
tinguishing results.

For an overview of the behaviour of the benchmarks see [Standard Performance Eval-
uation Corporation 2003].

B.1 Allocation Costs

Figure B.1: Allocation performance across benchmarks.
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B.2 Processing Increments

201 compress 202 jess

205 raytrace 209 db

213 javac 222 mpegaudio

227 mtrt 228 jack

Figure B.2: Processing increments in write barrier vs. buffering till collection - total time.
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201 compress 202 jess

205 raytrace 209 db

213 javac 222 mpegaudio

227 mtrt 228 jack

Figure B.3: Processing increments in write barrier vs. buffering till collection - mutator time.
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201 compress 202 jess

205 raytrace 209 db

213 javac 222 mpegaudio

227 mtrt 228 jack

Figure B.4: Processing increments in write barrier vs. buffering till collection - collection
count.
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201 compress 202 jess

205 raytrace 209 db

213 javac 222 mpegaudio

227 mtrt 228 jack

Figure B.5: Processing increments in write barrier vs. buffering till collection - average pause
times.
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201 compress 202 jess

205 raytrace 209 db

213 javac 222 mpegaudio

227 mtrt 228 jack

Figure B.6: Processing increments in write barrier vs. buffering till collection - maximum
pause times.
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B.3 Semi-Space with Write Barrier

B.3.1 Intel i686 Architecture

201 compress 202 jess

205 raytrace 209 db

213 javac 222 mpegaudio

227 mtrt 228 jack

Figure B.7: i686 write barrier test - total time.
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201 compress 202 jess

205 raytrace 209 db

213 javac 222 mpegaudio

227 mtrt 228 jack

Figure B.8: i686 write barrier test - mutator time.
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201 compress 202 jess

205 raytrace 209 db

213 javac 222 mpegaudio

227 mtrt 228 jack

Figure B.9: i686 write barrier test - collection count.
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B.3.2 Motorala PPC Architecture

201 compress 202 jess

205 raytrace 209 db

213 javac 222 mpegaudio

227 mtrt 228 jack

Figure B.10: PPC write barrier test - total time.
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201 compress 202 jess

205 raytrace 209 db

213 javac 222 mpegaudio

227 mtrt 228 jack

Figure B.11: PPC write barrier test - mutator time.
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201 compress 202 jess

205 raytrace 209 db

213 javac 222 mpegaudio

227 mtrt 228 jack

Figure B.12: PPC write barrier test - collection count.
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B.4 Roots, Decrements and Cycle Detection

201 compress 202 jess

205 raytrace 209 db

213 javac 222 mpegaudio

227 mtrt 228 jack

Figure B.13: Breakdown of reference counter time costs.
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B.5 Cycle Detection

201 compress 202 jess

205 raytrace 209 db

213 javac 222 mpegaudio

227 mtrt 228 jack

Figure B.14: Cycle detection - total time.
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201 compress 202 jess

205 raytrace 209 db

213 javac 222 mpegaudio

227 mtrt 228 jack

Figure B.15: Cycle detection - mutator time.
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201 compress 202 jess

205 raytrace 209 db

213 javac 222 mpegaudio

227 mtrt 228 jack

Figure B.16: Cycle detection - collection count.
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201 compress 202 jess

205 raytrace 209 db

213 javac 222 mpegaudio

227 mtrt 228 jack

Figure B.17: Cycle detection - average pause times.
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201 compress 202 jess

205 raytrace 209 db

213 javac 222 mpegaudio

227 mtrt 228 jack

Figure B.18: Cycle detection - maximum pause times.



Glossary

Allocation - The process of allocating memory to the program.

Allocation Slow Path - The allocation code that aquires memory at the page level
and requires synchronisation.

Collection - The process of reclaiming unused memory from the program.

Garbage - An object that is no longer needed by the system. It has no references from
live objects but may reference live objects.

Locality - How much distance is between related objects.

Meta Data - Data used by the collector to perform the garbage collection.

Mutator - Any thread running in the program.

Nursery - The area that “young” objects reside in.

Object Cycle - Two or more objects that reference each other.

Reference Count - The number of references to an object.

Roots - Entry points for the graph of live objects.

Stuck Reference Count - A reference count that has over-flowed and requires special
checking to reset.

Write Barrier - A piece of code that is executed at every non-deferred pointer muta-
tion.
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