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On the software side, managed languages and their workloads are ubiq-

uitous, executing on mobile, desktop, and server hardware. Managed lan-

guages boost the productivity of programmers by abstracting away the hard-

ware using virtual machine technology. On the hardware side, modern hard-

ware increasingly exploits parallelism to boost energy efficiency and perfor-

mance with homogeneous cores, heterogenous cores, graphics processing units

(GPUs), and vector instructions. Two major forms of parallelism are: task

parallelism on different cores and vector instructions for data parallelism. With

task parallelism, the hardware allows simultaneous execution of multiple in-

struction pipelines through multiple cores. With data parallelism, one core

can perform the same instruction on multiple pieces of data. Furthermore, we

expect hardware parallelism to continue to evolve and provide more hetero-

geneity. Existing programming language runtimes must continuously evolve so
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programmers and their workloads may efficiently utilize this evolving hardware

for better performance and energy efficiency. However, efficiently exploiting

hardware parallelism is at odds with programmer productivity, which seeks to

abstract hardware details.

My thesis is that managed language systems should and can abstract

hardware parallelism with modest to no burden on developers to achieve high

performance, energy efficiency, and portability on ever evolving parallel hard-

ware. In particular, this thesis explores how the runtime can optimize and

abstract heterogenous parallel hardware and how the compiler can exploit

data parallelism with new high-level languages abstractions with a minimal

burden on developers.

We explore solutions from multiple levels of abstraction for different

types of hardware parallelism. (1) For asymmetric multicore processors (AMP)

which have been recently introduced, we design and implement an applica-

tion scheduler in the Java virtual machine (JVM) that requires no changes

to existing Java applications. The scheduler uses feedback from dynamic

analyses that automatically identify critical threads and classifies application

parallelism. Our scheduler automatically accelerates critical threads, honors

thread priorities, considers core availability and thread sensitivity, and load

balances scalable parallel threads on big and small cores to improve the av-

erage performance by 20% and energy efficiency by 9% on frequency-scaled

AMP hardware for scalable, non-scalable, and sequential workloads over prior

research and existing schedulers. (2) To exploit vector instructions, we design

SIMD.js, a portable single instruction multiple data (SIMD) language exten-

sion for JavaScript (JS), and implement its compiler support that together

add fine-grain data parallelism to JS. Our design principles seek portability,

ix



scalable performance across various SIMD hardware implementations, perfor-

mance neutral without SIMD hardware, and compiler simplicity to ease vendor

adoption on multiple browsers. We introduce type speculation, compiler op-

timizations, and code generation that convert high-level JS SIMD operations

into minimal numbers of SIMD native instructions. Finally, to accomplish wide

adoption of our portable SIMD language extension, we explore, analyze, and

discuss the trade-offs of four different approaches that provide the functional-

ity of SIMD.js when vector instructions are not supported by the hardware.

SIMD.js delivers an average performance improvement of 3.3× on micro bench-

marks and key graphic algorithms on various hardware platforms, browsers,

and operating systems. These language extension and compiler technologies

are in the final approval process to be included in the JavaScript standards.

This thesis shows using virtual machine technologies protects program-

mers from the underlying details of hardware parallelism, achieves portability,

and improves performance and energy efficiency.
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Chapter 1

Introduction

This thesis explores how a programming language runtime can optimize

and abstract heterogenous parallel hardware and how compilers can exploit

data parallelism using new high-level languages abstractions with minimal

burden on developers.

1.1 Problem Statement

Hardware is constantly evolving. As we reach the limit of Moore’s law

and power consumption has taken center stage, modern hardware has turned

to parallelism as its primary solution. From mobile, desktop, to server devices,

all modern devices use parallelism to drive performance and energy efficiency.

Parallelism is where hardware computes multiple calculations simultaneously

in order to solve a problem faster.

Contemporary hardware delivers parallelism in three major forms: in-

struction, task, and data parallelism. Instruction-level parallelism executes

multiple instructions concurrently on a single processor. Task-level parallelism

executes applications on multiple processors simultaneously. Data-parallelism

uses vector instructions to execute the same calculation on multiple pieces of

data simultaneously. For the last two decades, commodity hardware has had

data parallel instruction sets available. Additionally, vendors are now intro-
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ducing asymmetric multicore processors (AMPs) as they combine big high-

performance cores and small energy-efficient cores to improve performance

and energy. These changes in hardware demand software to adapt to take ad-

vantage of its new features for performance and energy efficiency, but forcing

developers to constantly modify their applications to match evolving hardware

is both impractical and costly.

Software demands are also changing. Programmer productivity, cor-

rectness, security, and portability have popularized programming languages

with higher levels of abstractions over low-level compiled ahead-of-time lan-

guages. Managed languages abstract over hardware using virtual machines

(VMs). Despite the power and performance overheads introduced by VMs,

programmers choose high-level managed programming languages for the au-

tomatic memory management, portability across different hardware, lack of

unsafe pointers, and large availability of standard libraries. Because this evo-

lution occurred in concert with exponential increases in processor speed (the

golden era of Moore’s law), much of this cost was previously ignored.

Managed programming languages such as Java and C# have emerged

in the server side while JavaScript is the language of choice in the new soft-

ware landscape for web applications. Because these languages are portable

(architecture-independent), the parallelism in the language does not target

a particular hardware. Therefore, because hardware is evolving increasingly

towards parallelism, the software stack – applications, compilers, runtime sys-

tems, and operating systems – must introduce new or leverage existing ab-

stractions to exploit available hardware heterogeneity and parallelism for per-

formance and energy efficiency. To ensure adoption of such abstractions, they

must perform efficiently.
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The abstraction provided by managed languages VMs offers both an

opportunity and a challenge when addressing the constant evolution of hard-

ware and software. The opportunity is that virtual machines (VMs) abstract

over hardware complexity and profile, optimize, and schedule applications.

The challenge is that applications written in managed languages are complex

and messy which makes previous approaches unusable.

This thesis addresses the problem of matching the software abstractions

and messiness provided by managed programming languages to the constantly

evolving heterogeneity and parallelism that is in the hardware. Specifically, we

tackle the problem of efficiently scheduling server applications written in Java

onto asymmetric multicore processors, and allowing high-level web applications

written in JavaScript to exploit the data parallel instructions available in the

hardware.

1.2 Contribution

With with little or no work on the programmers side, we provide a VM

abstraction layer over various machine-specific parallelism and heterogeneity

details and add novel virtual machine technology that well exploits this paral-

lelism and heterogeneity. We exploit the existing parallel language constructs

in Java. We add new languages abstractions for data parallelism to JavaScript

that are easy for programmers to use. We introduce new static and dynamic

analyses, compile-time optimizations, and runtime optimizations that exploit

the parallelism offered by the hardware. We show that with these changes

managed languages can deliver significantly better performance and energy

efficiency with modest programmer effort and in some cases, no effort.

3



In this thesis, we explore two particular types of hardware parallelism:

asymmetric multicore and vector parallelism, both of which are already avail-

able today but not utilized by managed language applications. We leverage

the opportunity provided in the managed language abstraction and attack this

challenge in two ways. 1) For thread level parallelism on the server-side, we

identify messy parallel, but non-scalable managed applications as an impor-

tant and unaddressed workload. We introduce new analysis to match this

workload to the capabilities of heterogenous multicore hardware. 2) For data

level parallelism in the client-side, we design and implement a new high-level

vector language extension and show how to map it down to commonly avail-

able low level data parallel hardware. This thesis focuses on these two major

projects, which we overview in more detail below.

1.2.1 AMP scheduler

Asymmetric Multicore Processors (AMPs) combine big and small cores

to optimize performance and energy efficiency. Big cores are intended to opti-

mize latency, while small cores are intended to deliver efficient performance for

throughput on parallel workloads and workloads that are not non-latency sen-

sitive. Heterogeneous multicores are emerging because they offer substantial

potential performance improvements over homogeneous multicores given the

static and dynamic power constraints on current systems [21, 31, 33, 20, 42].

The challenge for AMP is to match the workload to the capabilities of the

heterogenous cores.

To exploit this hardware, one must consider sensitivity of each thread

to core selection, how to balance the load, and how to identify and schedule

the critical path. Applying these criteria effectively is challenging, especially

4



for the complex and messy workloads from managed languages. Expecting

programmers to take all of these variables into account is unrealistic. How-

ever, because managed languages virtual machines (VMs) provide a higher

level of abstraction, they already profile, optimize, and schedule applications.

We enhance these capabilities to make these AMP scheduling decisions auto-

matically, invisible to the developer.

Because extracting performance from AMPs is hardware specific and

further complicated by multiprogramming, application programmers should

not be required to manage this complexity. Existing scheduler solutions re-

quire programmer hints and/or new hardware [16, 26, 27, 48]. We present

the design and implementation of the WASH scheduler which improves over

prior approaches by removing the need for programmer involvement or the

introduction of new hardware. This approach is applicable to other managed

languages with builtin parallel programming constructs, such as C#.

Key technical contributions of this work are:

1. We identify and characterize the inherent messy parallelism in managed

languages workloads.

2. We demonstrate the power of information already available within a

managed language VM for scheduling threads on AMP hardware.

3. We present automatic, accurate, and low-overhead dynamic analysis

that: (a) classifies parallelism, (b) predicts core capabilities, (c) priori-

tizes threads holding contended locks, and (d) monitors thread progress.

4. In particular, we introduce the first fully automatic software mechanism

to identify threads that hold critical locks that cause bottlenecks in mul-

tithreaded software. We then show how to priortize the most critical

5



of these threads based on the time other threads wait on them. Thus,

we automatically prioritize multiple threads that hold multiple distinct

locks.

5. We exploit this information in the WASH scheduler to customize its opti-

mization strategy to the workload, significantly improving over previous

approaches.

1.2.2 SIMD.js

Fine-grain vector parallel instructions – Single-Instruction, Multiple-

Data (SIMD) have multiple processing units that simultaneously perform the

same operation on multiple data values. Although many instruction set ar-

chitectures have had SIMD instructions for a long time, high-level managed

programming languages only offered access to them through their native in-

terfaces. However, a native interface significantly limits the programmers pro-

ductivity and portability across hardware because of the need for specific code

for each architecture.

The JavaScript language specification does not include parallel con-

structs, such as parallel loops, threads, or locks, because the standards com-

mittee viewed the potential for concurrency errors from shared memory parallel

constructs to out weigh the performance advantages of these constructs. How-

ever, more and more JavaScript workloads are compute intensive and amenable

to parallelism, such as graphics workloads. We thus took a pragmatic choice to

addressing this problem that side steps the concurrency errors in shared mem-

ory constructs. We add high-level language abstractions together with new

compile-time optimizations to deliver a portable SIMD language extension for

JavaScript (JS). To use these instructions from JavaScript or other dynamic
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languages in the past, applications had to perform cross-language library calls,

which are inefficient. This thesis introduces novel language extensions and new

Just-in-Time (JIT) compiler optimizations that directly deliver the efficiency of

SIMD assembly instructions from the high-level JavaScript SIMD operations.

Applications that use these JavaScript SIMD language extensions achieve the

full portability benefits of JavaScript, whether or not the hardware supports

vector instructions, executing on any browser without the need for external

plugins. When the hardware has vector instructions, the applications achieve

vector performance. When the hardware lacks vector instructions, we explore

and analyze four different approaches for providing SIMD.js functionality. At

one end, we show how a simple library for SIMD.js adds correctness without

any changes to browsers. At the other end, we add scalarizing compiler sup-

port for SIMD.js and show that it delivers performance and energy efficiency

similar to the original scalar code, making SIMD.js performance neutral when

hardware does not contain vector instructions. The language, compiler spec-

ification, and runtime support in this thesis is in the last stages of becoming

part of the JavaScript language standard. This work thus has already had

significant industry impact.

Key technical contributions of this work are:

1. A language design justified on the basis of portability and performance.

2. Compiler type speculation without profiling in a dynamic language.

3. The first dynamic language with SIMD instructions that deliver their

performance and energy benefits to applications.

4. Support for performance and functionality of this language extension

when hardware support is not available.
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We use the VMs as an abstraction layer between the programmer and

the new forms of parallelism offered by the hardware while still providing

portability and improved performance and energy efficiency.

1.3 Thesis Outline

The body of this thesis is structured around the two key contribu-

tions outlined above, each one contains its own related work. The rest of this

document is organized as follows. Chapter 2 details our scheduling work for

asymmetric multicore processors. It presents the design and implementation

of an asymmetric multicore processor (AMP) application scheduled in the Java

Virtual Machine (JVM) that uses feedback from dynamic analyses to improve

the performance and energy efficiency of Java applications on a frequency-

scaled AMP. This work is accepted to appear at the International Symposium

on Code Generation and Optimization (CGO) 2016. Chapter 3 presents the

design for our portable SIMD language extension for JavaScript, SIMD.js, and

its compiler support. This language extension allows JavaScript applications

to exploit the already widely available hardware heterogeneity in the form of

vector instructions. This work is currently in final stages of approval [49] by

the TC39 ECMAScript standardization committee and has been published in

the proceedings of the 24th International Conference on Parallel Architectures

and Compilation Techniques (PACT 2015). Chapters 2, and 3 each covers

the related work and background material in detail. Finally, Chapter 4 con-

cludes the thesis, summarizing how the contributions presented in this thesis

abstract hardware parallelism with little or no burden on developers to achieve

high performance, energy efficiency, and portability on ever evolving parallel

hardware.
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Chapter 2

Efficient Scheduling of Asymmetric Multicore

Processors

2.1 Motivation

By combining big high-performance cores and small energy-efficient

cores, single-ISA Asymmetric Multicore Processors (AMPs) hold promise for

improving performance and energy efficiency significantly, while meeting power

and area constraints faced by architects [21, 31, 33, 20, 42]. Bigger cores

accelerate the critical latency-sensitive parts of the workload, whereas smaller

cores deliver throughput by efficiently executing parallel workloads. The first

device using Qualcomm’s 4 big and 4 little ARM processor was delivered in

November 2014 and more are announced for 2015 [42], showing this design is

gaining momentum in industry. Unfortunately, even when cores use the same

ISA, forcing each application to directly manage heterogeneity will greatly

inhibit portability across hardware configurations with various numbers and

types of cores, and across hardware generations. Adding to this complexity,

asymmetry may also be dynamic, due to core frequency and voltage scaling,

core defeaturing, simultaneous multithreading (SMT) resource contention, and

competing applications. Relying on application programmers to realize the

potential of AMPs seems unwise.
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2.2 Challenges

To achieve the performance and energy efficiency promises of AMP

is challenging because the runtime must reason about core sensitivity, which

thread’s efficiency benefits most from which core; priorities, executing non-

critical work on small cores and prioritizing the critical path to big cores;

and load balancing, effectively utilizing available hardware resources. Prior

work addresses some but not all of these challenges. For instance, prior work

accelerates the critical path on big cores [16, 26, 27, 48], but needs programmer

hints and/or new hardware. Other work manages core sensitivity and load

balancing with proportional fair scheduling [11, 12, 45, 46], but their evaluation

is limited to scalable applications and multiprogrammed settings with equal

numbers of threads and hardware contexts, an unrealistic assumption in the

multiprogrammed context. Many real-world parallel applications also violate

this assumption. For instance, the eclipse IDE manages logical asynchronous

tasks with more threads than cores. Even if the application matches its threads

to cores, runtimes for many languages add compiler and garbage collection

helper threads. We experimentally show that the prior work does not handle

such complex parallel workloads well.

2.3 Related Work and Quantitative Analysis

Table 2.1 qualitatively compares our approach to prior work with re-

spect to algorithmic features and target workload. As far as we are aware,

our approach is the only one to automatically identify bottlenecks in software

and to comprehensively optimize critical path, core sensitivity, priorities and

load balancing. Next, we overview how related work addresses these individual

concerns and then present a quantitative analysis that motivates our approach.
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Critical path Amdahl’s law motivates accelerating the critical path by

scheduling it on the fastest core [16, 26, 27, 48]. However, no prior work

automatically identifies and prioritizes the critical path in software as we do.

For instance, Joao et al.[27] use programmer hints and hardware to priorize

threads that hold locks. Du Bois et al. [16] identify and accelerate critical

thread(s) by measuring its useful work and the number of waiting threads with

new hardware, but do not integrate into a scheduler. Our software approach

automatically optimizes more complex workloads.

Priorities Scheduling low priority tasks, such as VM helper threads, OS

background tasks, and I/O tasks, on small cores improves energy efficiency [10,

37], but these systems do not schedule the application threads on AMP cores.

No prior AMP scheduler integrates priorities with application scheduling, as

we do here.

Core sensitivity Prior work chooses the appropriate cores for competing

threads using a cost benefit analysis based on speedup, i.e., how quickly each

thread retires instructions on a fast core relative to a slow core [7, 11, 12, 30,

45, 46]. Systems model and measure speedup. Direct measurement executes

threads on each core type and uses IPC to choose among competing threads [7,

12, 30]. To avoid migrating only for profiling and to detect phase changes,

systems train predictive models offline with features such as ILP, pipeline-

stalls, cache misses, and miss latencies collected from performance counters [11,

12, 45, 46]. At execution time, the models prioritize threads to big cores based

on their relative speedup [11]. We combine profiling and a predictive model.
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Load balancing Static schedulers do not migrate threads after choosing a

core [30, 45], while dynamic schedulers adapt to thread behaviors [7, 12, 46]

and load imbalance [33]. Li et al. schedule threads on fast cores first and ensure

load is proportional to core capabilities and consider migration overhead, but

do not consider core sensitivity nor complex workloads [33]. Saez et al. [46]

and Craeynest et al. [12] both perform proportional fair scheduling (PFS) on

scalable applications. The OS scheduler load balances by migrating threads

between core types based on progress and core capabilities. They simplify the

problem by assuming threads never exceed the number of cores: |threads| ≤

|cores| (pg. 20 [46]). Craeynest et al. compare to a scheduler that binds threads

to cores, a poor baseline.

Quantitative Analysis We first explore the performance of PFS, the best

software only approach [12, 46] and compare it to the default round-robin

Linux (Oblivious) scheduler, which seeks to keep all cores busy, and avoids

thread migration [38, 34], and to Cao et al. [10] (bindVM), which simply binds

VM helper threads to small cores. We execute 14 DaCapo Java benchmarks [8].

(Section 2.9 describes methodology in detail.) Figure 2.2 shows the perfor-

mance on AMP configurations organized by workload type: sequential (ST),

scalable, non-scalable. Note that (a) no one approach dominates on every

workload; (b) bindVM performs best on sequential and non-scalable; (c) Obliv-

ious and PFS perform essentially the same on scalable workloads, because in

these workloads, threads out-number cores, and thus both reduce to round-

robin scheduling across all cores. Since Oblivious and bindVM dominate PFS,

we use them as our baseline throughout the paper. While bindVM is best here

on non-scalable workloads, we will show that WASH is better.
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Algorithmic Features Workload
core load critical requires limited to non-

Approach sensitivity balancing path priorities hints |threads| ≤ |cores| sequential scalable scalable

Becchi and Crowley [7] ! no no !
Kumar et al. [30] ! no yes !
Shelepov et al. [47] ! no yes !
Craeynest et al. [11] ! yes yes !
Craeynest et al. [12] ! ! no yes ! ! !
Saez et al. [46] ! ! no yes ! !
Du Bois et al. [16] ! yes yes !
Suleman et al. [48] ! yes yes ! !
Joao et al. [26] ! yes yes ! !
Joao et al. [27] ! ! yes yes ! ! !
Li et al. [33] ! no no ! ! !
Cao et al. [10] limited ! no no ! ! !

VM + WASH " " " " no no " " "

Table 2.1: Qualitative comparison of related work to the WASH AMP-aware runtime.
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2.4 Overview of a Managed Language AMP Runtime

This chapter introduces an AMP aware runtime that includes: (1) a

model that predicts thread sensitivity on frequency-scaled cores and same-

ISA cores with different microarchitectures; (2) dynamic analysis that com-

putes and assesses expected thread progress using the model and performance

counter data; (3) dynamic parallelism analysis that determines scalability

based on work, progress, resource contention, and time waiting on contended

locks; (4) a priori tagging of helper threads as low priority; and (5) a new

Workload Aware Scheduler for Heterogeneous systems (WASH). WASH first

classifies application behavior as single threaded, non-scalable multi-threaded,

and scalable multi-threaded and then customizes its scheduling decisions ac-

cordingly. For instance, it proportionally fair schedules scalable applications

and accelerates the critical path in non-scalable applications.

A key contribution of our work is a new dynamic analysis that auto-

matically identifies bottleneck threads that hold contended locks and prioritizes

them by the cumulative time other threads wait on them. This analysis finds

and accelerates the critical path, improving messy non-scalable workloads.

For efficiency, we piggyback it on the VM’s biased locking [6, 3]. Our VM

profiling periodically monitors thread progress, thread core sensitivity, and

communicates scheduling decisions to the OS with thread affinity settings.

Evaluation We implement our AMP runtime in a high performance Java

VM for desktops and servers. Its mature compiler, runtime, and benchmarking

ecosystems make it a better evaluation platform than immature mobile sys-

tems. We evaluate benchmarks from active open source projects on an AMD

Phenom II x86 with core-independent frequency scaling (DVFS) configured as
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an AMP. Prior work establishes this methodology [10, 46], which dramatically

increases experiments compared to simulation, which is slow and less accu-

rate. This methodology understates the benefits of AMP on energy efficiency

since DVFS is less effective than different microarchitectures are at delivering

performance at low power. We compare to (a) the default round-robin Linux

scheduler [38, 34], (b) Cao et al. [10], which simply binds VM helper threads

to small cores, and (c) proportional fair scheduling (PFS) [46, 12], the closest

related work.

WASH improves energy and performance over these schedulers in var-

ious AMP configurations: 9% average energy and 20% performance, and up

to 27% as hardware asymmetry increases. Although, simply binding helper

threads to small cores works well for sequential workloads, and round-robin

and PFS [46, 12] work well for scalable workloads, no prior work performs well

on all workloads. In particular, we improve over PFS and the others because

WASH efficiently identifies and prioritizes bottleneck threads that hold locks

in messy non-scalable workloads. These results understate the benefits on an

AMPs with an optimized microarchitecture.

Our VM scheduler is just as effective in a multiprogrammed workload

consisting of a complex multithreaded adversary scheduled by the OS. Our

VM approach adjusts even when the OS is applying an independent schedul-

ing algorithm. A sensitivity analysis of our core model shows that we need a

good predictor, but not a perfect one. In summary,

1. We demonstrate the power of information available within the VM for

scheduling threads on AMP hardware.
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2. We present automatic, accurate, and low-overhead VM dynamic analysis

that: (a) classifies parallelism, (b) predicts core capabilities, (c) priori-

tizes threads holding contended locks, and (d) monitors thread progress.

3. We exploit this information in the WASH scheduler to customize its

optimization strategy to the workload, significantly improving over other

approaches.

4. We will open source our system upon publication.

2.5 Workload Analysis

This section analyzes the strengths and weakness of two simple sched-

ulers to motivate our approach. Each scheduler is very effective for some, but

not all, workloads. We first explore scalability on small numbers of homo-

geneous cores by configuring a 6-core Phenom II to execute with 1, 3, and

6 cores at two speeds: big (B: 2.8 GHz) and small (S: 0.8 GHz) and execute

14 DaCapo Java benchmarks [8] with Jikes RVM and Linux kernel (3.8.0).

Section 2.9 describes our methodology.

Workload characteristics Figure 2.1(a) shows workload execute time on

a big homogeneous multicore configuration and Figure 2.1(b) shows a small

homogeneous multicore configuration, both normalized to one big core. Lower

is better. We normalize to the default Linux scheduler (Oblivious). Linux

schedules threads round robin on each core, seeks to keep all cores busy, and

avoids thread migration [38, 34]. It is oblivious to core capabilities, but this

deficit is not exposed on these homogeneous hardware configurations.

Based on these results, we classify four of nine multithreaded bench-

marks (lusearch, sunflow, spjbb and xalan) as scalable because they improve both
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(a) Time on one, three and six 2.8 GHz big cores.
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(b) Time on one, three and six 0.8 GHz small cores.

Figure 2.1: Linux OS scheduler (Oblivious) on homogenous configurations, nor-
malized to one big core. We classify benchmarks as single threaded (ST),
non-scalable multithreaded (MT), and scalable MT. Lower is better.
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from 1 to 3 cores, and from 3 to 6 cores. Five other multithreaded benchmarks

respond well to additional cores, but do not improve consistently. For instance,

avrora performs worse on 3 big cores than on 1, and eclipse performs the same

on 3 and 6 cores. pjbb2005 does not scale in its default configuration. We

increased the size of its workload to produce a scalable variant (spjbb). The

original pjbb2005 is labeled nspjbb. The number of application threads and

these results yield our single threaded (ST), non-scalable multithreaded (Non-

scalable MT), and scalable multithreaded (scalable MT) classifications.

Note single threaded applications in Figure 2.1 improve slightly as a

function of core count. Because managed runtimes include VM helper threads,

such as garbage collection, compilation, profiling, and scheduling, the VM

process itself is multithreaded. Note just observing speedup as a function

of cores in the OS cannot differentiate single-threaded from multithreaded

applications in managed workloads. For example, fop and hsqldb have similar

responses to the number of cores, but fop is single threaded and hsqldb is

multithreaded.

AMP scheduling insights We next measure AMP performance of Oblivi-

ous and the VM-aware scheduler from Cao et al. [10] (bindVM)—it schedules

VM services on small cores and application threads on big cores. Cao et al.

show that bindVM improves over Oblivious on one big and five small (1B5S)

and Figure 2.2 confirms this result. Regardless of the hardware configuration

(1B5S, 2B4S, or 3B3S), bindVM performs best for single-threaded benchmarks

because VM threads are non-critical and execute concurrently with the appli-

cation thread. For performance, the application threads should always have

priority over VM threads on big cores.
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Figure 2.2: Quantitive time comparison of Proportional Fair Scheduling
(PFS) [46, 12], Linux (Oblivious), and bindVM [10] on AMP configurations nor-
malized to 1B5S Oblivious. Lower is better. No approach dominates.

On the other hand, Oblivious performs best on scalable applications and

much better than bindVM on 1B5S because bindVM restricts the application to

the one big core, leaving small cores underutilized. On this Phenom II, one big

core and five small cores has 41.6% more instruction execution capacity than

six small cores. Ideally, a scalable parallel program will see this improvement

on 1B5S. For scalable benchmarks, exchanging one small core for a big core

boosts performance by 33%, short of the ideal 41.6%. PFS also performs well

on scalable applications, but it performs worse than bindVM on both ST and

non-scalable MT because it does not prioritize application threads over VM

helper threads, nor does it analyze threads that hold locks.

For non-scalable multithreaded workloads, bindVM performs best on

1B5S, but improvements on 2B4S and 3B3S are limited. Intuitively, with only

one big core, binding the VM threads gives application threads more access

to the big core. With more big cores, round robin does a better job of load

balancing on big cores. Each scheduler performs well for some workloads, but
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no scheduler is best on all workloads.

2.6 Dynamic Workload and Bottleneck Analysis

This section describes a new dynamic analysis that automatically clas-

sifies application parallelism and prioritizes bottleneck threads that hold locks.

It is straightforward for the VM to count application threads separately from

those it creates for GC, compilation, profiling, and other VM services. We

further analyze multithreaded applications to classify them as scalable or non-

scalable, exploiting the Java Language Specification and lock implementation.

To priortize bottlenecks among the threads that hold locks, we modify

the VM to compute the ratio between the time each thread contends (waits)

for another thread to release a lock and the total execution time of the thread

thus far. When this ratio is high and the thread is responsible for a threshold

of execution time as a function of the total available hardware resources (e.g.,

1% with 2 cores, 0.5% with 4 cores, and so on), we categorize the benchmark

as non-scalable. We set this threshold based on the number of cores and

threads. The highest priority bottleneck thread is the lock-holding thread

that is delaying the most work.

To priortize among threads that hold locks, the VM piggybacks on the

lock implementation and thread scheduler. When a thread tries to acquire a

lock and fails, the VM scheduler puts the thread on a wait queue, a heavy-

weight operation. We time how long the thread sits on the wait queue using

the RDTSC instruction, which incurs an overhead of around 50 cycles each

call. At each scheduling quanta, the VM computes the waiting time for each

thread waiting on a lock, then sums them, and then priortizes the thread(s)

with the longest waiting time to big cores. The VM implements biased lock-
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ing, which lowers locking overheads by ‘biasing’ each lock to an owner thread,

making the common case of taking an owned lock very cheap, at the expense of

more overhead in the less common case where an unowned lock is taken [6, 44].

Many lock implementations are similar. We place our instrumentation on this

less frequent code path of a contended lock, resulting in negligible overhead.

Our critical thread analysis is more general than prior work because it

automatically identifies bottlenecks in multithreaded applications with many

ready threads and low priority VM threads, versus requiring new hardware [11]

or developer annotations [26, 27]). Our analysis may be adopted in any system

that uses biased locking or a similar optimization. Modern JVMs such as Jikes

RVM and HotSpot already implement it. Although by default Windows OS

and Linux do not implement biased locking, it is in principle possible. For

example, Android implements biased locking in its Bionic implementation of

the pthread library [6, 15, 3].

Figure 2.3 shows the results for representative threads from the mul-

tithreaded benchmarks executing on the 1B5S configuration. Threads in the

scalable benchmarks all have low locking ratios and those in the non-scalable

benchmarks all have high ratios. A low locking ratio is necessary but not suf-

ficient. Scalable benchmarks typically employ homogeneous threads (or sets

of threads) that perform about the same amount and type of work. When

we examine the execution time of each thread in these benchmarks, their pre-

dicted sensitivity, and retired instructions, we observe that for spjbb, sunflow,

xalan, and lusearch threads are homogeneous. Our dynamic analysis inexpen-

sively observes the progress of threads, scaled by their core assignment, and

determines whether they are homogeneous or not.
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Figure 2.3: Fraction of time spent waiting on locks / cycles, per thread in mul-
tithreaded benchmarks. Left benchmarks (purple) are scalable, right (pink)
are not. Low ratios are highly predictive of scalability.
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Performance counters
Intel AMD

A: INSTRUCTIONS RETIRED X: RETIRED INSTRUCTIONS
B: UNHALTED REFERENCE CYCLES Y: RETIRED UOPS
C: UNHALTED CORE CYCLES Z: CPU CLK UNHALTED
D: UOPS RETIRED:STALL CYCLES W: REQUESTS TO L2:ALL
E: L1D ALL REF:ANY
F: L2 RQSTS:REFERENCES
G: UOPS RETIRED:ACTIVE CYCLES

linear prediction model
(-608B+609C+D+17E+27F-14G)/A 1.49+(1.87Y-1.08Z+27.08W)/X

Figure 2.4: PCA selects best performance counters to predict core sensitivity
of threads with linear regression.
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Figure 2.5: Accurate prediction of thread core sensitivity. Y-axis is predicted.
X-axis is actual speedup.

2.7 Speedup and Progress Prediction

To effectively schedule AMPs, the system must consider thread sensi-

tivity to core features. When multiple threads compete for big cores, ideally

the scheduler will execute the threads on big cores that benefit the most. For

example, memory bound threads will not benefit much from a higher instruc-

tion issue rate. Our methodology for modeling the core sensitivity of a thread

is similar to Saez et al. [46] and Craeynest et al. [12].

Offline, we create a predictive model that we use at run time. The

model takes as input performance counters while the thread is executing and

predicts slow down and speedup on different core types, as appropriate. We

23



use linear regression and Principal Component Analysis (PCA) to learn the

most significant performance monitoring events and their weights. Since each

processor may use only a limited number of performance counters, PCA anal-

ysis selects the most predictive ones.

Predicting speedup from little to big when the microarchitectures differ

is often not possible. For example, with a single issue little core and a multiway

issue big core, if the single issue core is always stalled, it is easy to predict that

the thread will not benefit from more issue slots. However, if the single issue

core is operating at its peak issue rate, no performance counter on it will reveal

how much potential speedup will come from multi-issue. With a frequency-

scaled AMPs, our model can and does predict both speedups and slow downs

because the microarchitecture does not change.

We explore the generality of our methodology and models using the

frequency-scaled Phenom II and a hypothetical big/little design composed of

an Intel Atom and i7. We execute and measure all of the threads with the

comprehensive set of the performance monitoring events, including the energy

performance counter on Sandy Bridge. We only train on threads that con-

tribute more than 1% of total execution time, to produce a model on threads

that perform significant amounts of application and VM work. We use PCA

to compute a weight for each component (performance event) on a big core to

learn the relative performance on a small core. Based on the weights, we in-

crementally eliminate performance events with the same weights (redundancy)

and those with low weights (not predictive), to derive the N most predictive

events, where N is the number of simultaneously available hardware perfor-

mance counters. We set N to the maximum that the architecture will report

at once, four on the AMD Phenom II and seven on the Intel Sandy Bridge.
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This analysis results in the performance events and linear models listed in

Figure 2.4.

Figures 2.5(a) and 2.5(b) show the results of the learned models for pre-

dicting relative performance between the Intel processors and the frequency-

scaled AMD Phenom II. These resulting model predicts for each application

thread running on a big core its performance on a small core (and vice versa for

frequency scaling) from a model trained on all the other applications threads,

using leave-one-out validation. When executing benchmarks, we use the model

trained on the other benchmarks in all experiments. These results show that

linear regression and PCA have good predictive power.

Progress monitoring Our dynamic analysis monitors thread criticality and

progress. It uses the retired instructions performance counter and scales it by

the executing core capacity. Like some adaptive optimization systems [5],

we predict that a thread will execute for the same fraction of time in the

future as it has in the past. To correct for different core speeds, we normalize

retired instructions based on the speedup prediction we calculate from the

performance events. This normalization gives threads executing on small cores

an opportunity to out-rank threads that execute on the big cores. Our model

predicts fast-to-slow well for the i7 and Atom (Figure 2.5(a)). Our model

predicts both slow-to-fast and fast-to-slow with frequency scaled AMD cores

(Figure 2.5(b)). Thread criticality is decided based on predicted gain if it stays

on or migrates to a big core. We present a sensitivity analysis to the accuracy

of the model in Section 2.10.4

25



2.8 The WASH Scheduling Algorithm

This section describes how we use core sensitivity, thread criticality,

and workload to schedule threads when application and runtime threads ex-

hibit varying degrees of heterogeneity and parallelism. We implement the

WASH algorithm by setting thread affinities with the standard POSIX inter-

face, which directs the OS to bind thread execution to one or more nominated

cores. The VM assesses thread progress periodically (a 40 ms quantum) by

sampling per-thread performance counter data and adjusts core affinity as

needed. We require no changes to the OS. Because the VM monitors the

threads and adjusts the schedule accordingly, even when the OS shares VM-

scheduled cores with other competing complex multiprogrammed workloads

(see Section 2.10.6), the VM scheduler adapts to OS scheduling choices.

2.8.1 Overview

The scheduler starts with a default policy that assigns application

threads to big cores and VM threads to small cores when they are created,

following prior work [10]. For long-lived application threads, the starting point

is immaterial. For very short lived application threads that do not last a full

time quantum, this fallback policy accelerates them. All subsequent schedul-

ing decisions are made periodically based on dynamic information. Every time

quantum, WASH assesses thread sensitivity, criticality, and progress and then

adjusts the affinity between threads and cores accordingly.

We add to the VM the parallelism classification and the core sensitivity

models described in Sections 2.6 and 2.7. The core sensitivity model takes as

input performance counters for each thread and predicts how much the big

core benefits the thread. The dynamic parallelism classifier uses a threshold
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for the waiting time. It examines the number of threads and dynamic waiting

time to classify applications as single threaded or multithreaded scalable or

multithreaded non-scalable.

The VM stores a log of the execution history for each thread using

performance counters and uses it: (1) to detect resource contention among

application threads by comparing expected progress of each thread on its as-

signed core with its actual progress; and (2) to ensure that application threads

have equal access to the big cores when there exist more ready application

threads than big cores.
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Algorithm 1 WASH

1: function WASH(TA,TV ,CB,CS ,t)
2: TA: Set of application threads
3: TV : Set of VM services threads, where TA ∩ TV = ∅
4: CB: Set of big cores, where CB ∩ CS = ∅
5: CS : Set of small cores, where CB ∩ CS = ∅
6: t: Thread to schedule, where t ∈ TA ∪ TV
7: if |TA| ≤ |CB| then
8: if t ∈ TA then
9: Set Affinity of t to CB

10: return
11: else
12: Set Affinity of t to CB ∪ CS

13: return
14: else
15: if t ∈ TA then
16: if ∀τ ∈ TA(Lock%(τ) < LockThresh) then
17: Set Affinity of t to CB ∪ CS

18: return
19: else
20: TActive ← {τ ∈ TA : IsActive(τ)}
21: TContd ← {τ ∈ TA : Lock%(τ) > LockThresh}
22: if ExecRank(t, TActive) < riThresh|CB| or
23: LockRank(t, TContd) < rlThresh|CB| then
24: Set Affinity of t to CB

25: return
26: else
27: Set Affinity of t to CB ∪ CS

28: return
29: else
30: Set Affinity of t to CS

31: return

Algorithm 1 shows the pseudo-code for the WASH scheduling algo-

rithm. WASH makes three main decisions. (1) When the number of applica-

tion threads is less than or equal to the number of big cores, WASH schedules

them on the big cores (lines 7-9). (2) WASH classifies a workload as scalable
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when no thread is a bottleneck and then ensures that all threads have equal ac-

cess to the big cores (lines 16-18). This strategy often follows the default round

robin OS scheduler, but is robust to changes in the OS scheduler and when

other applications compete for resources (line 20-28). (3) For non-scalable

workloads, the algorithm identifies application threads whose instruction re-

tirement rates on big cores match the rate at which the big cores can retire

instructions. WASH uses historical thread execution time to determine if com-

peting applications (scheduled by the OS) are limiting the execution rate of

any of the big cores (line 22). WASH also uses the accrued lock waiting time

to prioritize the bottleneck threads on which other threads wait the most (line

23). WASH priortizes a thread to the big cores in both cases. VM service

threads are scheduled to the small cores, unless the number of application

threads is less than the number of big cores (line 29). The next 3 subsections

discuss each case in more detail.

2.8.2 Single-Threaded and Low Parallelism

When the application creates a thread, WASH’s fallback policy sets

the thread’s affinity to big cores. At each time quantum, WASH assesses the

thread schedule. When WASH dynamically detects one application thread

or the number of application threads |TA| is less than or equal to the number

of big cores |CB|, then WASH sets the affinity for the application threads to

|TA| of the big cores (line 7). WASH also sets the affinity for the VM threads

such that they may execute on the remaining big cores or on the small cores.

It sets the affinity of VM threads to all cores (line 12), which translates to

the relative complement of |CB ∪CS| with respect to |TA| big cores being used

by TA. If there are no available big cores, WASH sets the affinity for all VM

29



threads to execute on the small cores, following Cao et al. [10]. Single-threaded

applications are the most common example of this scenario.

2.8.3 Scalable multithreaded

When the VM detects a scalable |TA| >|CB| and homogenous workload,

then the analysis in Section 2.5 shows that Linux’s default CFS scheduler does

an excellent job of scheduling application threads. We use our efficient lock

contention analysis to establish scalability (line 16). We empirically estab-

lished a threshold of 0.5 contention level (time spent contended / time execut-

ing) beyond which a thread is classified as contended (see Figure 2.3). WASH

monitors the execution schedule from the OS scheduler and ensures that all

of the homogeneous application threads make similar progress. If any thread

falls behind, for example, by spending a lot of time on a small core or because

the OS has other competing threads to schedule, WASH boosts its priority

and binds it to a big core. It thus reprioritizes the threads based on their

expected progress. Below we describe this process in more detail.

2.8.4 Non-scalable multithreaded WASH

The most challenging case is how to prioritize non-scalable application

threads when the number of threads outstrips the number of cores and all

threads compete for both big and small cores. Our algorithm is based on two

main considerations: a) how critical the thread is to the overall progress of

the application (lock information), and b) the relative capacity of big cores

compared to small cores to retire instructions for each thread.

We rank threads based on their relative capacity to retire instructions,

seeking to accelerate threads that dominate in terms of productive work (line
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22). For each active thread (non-blocked for the last two scheduling quan-

tum), we compute ExecRank : a rank based on the running total of retired

instructions, corrected for core capability. If a thread runs on a big core, we

accumulate its retired instructions from the dynamic performance counter.

When the thread runs on a small core, we increase its retired instructions by

multipling it by predicted speedup from executing on the big core. Thus we

assess importance on a level playing field — judging each thread’s progress as if

it had access to large cores. Then, we compose this amount with the predicted

speedup for all threads. Notice that threads that will benefit little from the

big core will naturally have lower importance (regardless of which core they

are running on in any particular time quantum), and that conversely threads

that will benefit greatly from the big core will have their importance inflated

accordingly. We call this rank computation adjusted priority and compute it

for all active threads. We rank all active threads based on this adjusted prior-

ity. We also compute a LockRank, which prioritizes bottlenecks based on the

amount of time other threads have been waiting for it.

We next select a set of the highest execution-ranked threads to execute

on the big cores. We do not size the set according to the fraction of cores that

are big (B/(B+S)), but instead size the thread set according to the big cores’

relative capacity to retire instructions (BRI/(BRI + SRI)). For example, in a

system with one big core and five small cores, where the big core can retire

instructions at five times the rate of each of the small cores, the size of the set

would be BRI/(BRI + SRI) = 0.5. In that case, we will assign to the big cores

the top N most important threads such that the adjusted retired instructions

rate of those N threads is 0.5 of the total in this example (line 22-23). We also

select a set of the highest lock-ranked threads to execute on the big cores. We
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size this set according to the fraction of cores that are big (B/(B + S)).

The effect of this algorithm is twofold. First, overall progress is max-

imized by placing on the big cores the threads that are both critical to the

application and that will benefit from the speedup. Second, we avoid over

or under subscribing the big cores by scheduling according to the capacity of

those cores to retire instructions. VM helper threads actually benefit from

the big core in some cases [10] (see Section 2.10.5), but WASH ensures applica-

tion threads get priority over them. Furthermore, WASH explicitly focuses on

non-scalable parallelism. By detecting contention and modeling total thread

progress (regardless of core assignment), our model corrects itself when threads

compete for big cores yet cannot get them.

Summary The WASH VM application scheduler customizes its strategy to

the workload, applying targeted heuristics (Algorithm 1), accelerating the crit-

ical path, prioritizing application threads over low-priority helper threads to

fast cores, and proportionally scheduling parallelism among cores with differ-

ent capabilities and effectiveness based on the thread progress.

2.9 Methodology

We report hardware power and performance measures, leveraging

prior tools and methodology [10, 17, 8].

Hardware configuration methodology We measure and report perfor-

mance, power, and energy on the AMD Phenom II because it supports in-

dependently clocking each core with DVFS. Prior work establishes this

methodology for evaluating AMP hardware [10, 46]. Concurrently with our
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i7 Atom Phenom II

Processor Core i7-2600 AtomD510 X6 1055T
Architecture Sandy Bridge Bonnell Thuban
Technology 32 nm 45 nm 45 nm
CMP & SMT 4C2T 2C2T 6C1T
LLC 8MB 1MB 6MB
Frequency 3.4 GHz 1.66GHz 2.8GHz & 0.8GHz
Transistor No 995M 176M 904M
TDP 95W 13W 125W
DRAM Model DDR3-1333 DDR2-800 DDR3-1333

Table 2.2: Experimental processors.

work, Qualcomm announced AMP Snapdragon hardware with 4 big and 4

little cores, but it was not available when we started our work and it uses the

ARM ISA, whereas our tools target x86. Since DFVS is not as energy efficient

as designing cores with different power and performance characteristics, this

methodology understates the energy efficiency improvements. Compared to

simulation, there are no accuracy questions, but we explore fewer hardware

configurations. However, we measure an existing system orders of magnitude

faster than simulation and consequently explore more software configurations.

Table 2.2 lists characteristics of the experimental machines. We only

use the Sandy Bridge and Atom to show the core prediction model generalizes

(see Section 2.6)—this AMP architecture does not exist. We use Cao et al.’s

Hall effect sensor methodology to measure power and energy on the Phenom

II [10]. Section 2.10.4 analyzes WASH’s sensitivity to model accuracy, show-

ing good prediction is important. All the performance, power, and energy

results in this section use the Phenom II.
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Operating System We perform all the experiments using Ubuntu 12.04

with the recent default 3.8.0 Linux kernel. The default Linux CFS scheduler

is oblivious to different core capabilities, seeks to keep all cores busy and

balanced based on the task numbers on each core, and tries not to migrate

threads between cores [38, 34].

Workload We use thirteen Java benchmarks taken from DaCapo: bloat,

eclipse, fop, chart, jython and hsqldb (DaCapo-2006); avrora, luindex, lusearch,

pmd, sunflow, and xalan (DaCapo-9.12); and from SPEC, pjbb2005 [8]. These

are all the DaCapo 2009 benchmarks that executed on the base VM; the oth-

ers depend on class libraries that are not supported by the GNU classpath

which Jikes RVM is dependent upon. These benchmarks are non-trivial real-

world open source Java programs under active development [8]. Finding that

pjbb2005 does not scale well, we increased its parallelism by increasing trans-

actions from 10,000 to 100,000, yielding spjbb, which scales on our six core

machine. We use the workload classification from Section 2.5 to organize our

analysis and results.

Virtual machine configuration We add our analysis and scheduler to

Jikes RVM [2, 50]. The VM scheduler executes periodically. We choose a

40 ms time quantum following prior work [11], which shows no discernible

migration overhead on shared-LLC AMP processors with 25 ms. All measure-

ments follow Blackburn et al.’s best practices for Java performance analysis

with the following modifications of note [8]. We measure first iteration, since

we explore scheduling JIT threads. We use concurrent Mark-Sweep collection,

and collect every 8 MB of allocation for avrora, fop and luindex, which have the
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highest rates of allocation, and 128 MB for the others. We configure the num-

ber of collection threads to be the same as available cores. We use default JIT

settings in Jikes RVM, which intermixes compilation with execution. Jikes

RVM does not interpret: a baseline compiler JITs code upon first execution

and then the compiler optimizes at higher levels when its cost model predicts

the optimized code will amortize compilation costs [5].

Measurement Methodology We execute each configuration 20 or more

times, reporting first iteration results, which mix compilation and execution.

We omit confidence intervals from graphs. For the WASH scheduling algo-

rithm, the largest 95% confidence interval for time measurements with 20

invocations is 5.22% and the average is 1.7%. For bindVM, the 95% confidence

interval for time measurements with 20 invocations is 1.64% and the average is

0.72%. Oblivious has the largest 95% confidence interval; with 20 invocations,

it is 15% and the average is 5.4%. Thus, we run the benchmarks with Obliv-

ious for 60 invocations, lowering average error to 3.7%. The 95% confidence

intervals are a good indicator of performance predictability of the algorithms.

Comparisons We compare WASH to two baselines: the default OS sched-

uler (Oblivious) with no VM direction and bindVM [10], which simply binds VM

helper threads to the small cores using the OS set affinity interface. We use

the unmodified bindVM implementation from the Jikes VM repository. These

schedulers are the only ones that handle general workloads automatically, e.g.,

messy non-scalable MT workloads with a mix of application and VM threads.

Furthermore, they require no programmer intervention to identify bottleneck

locks and/or no new hardware. Section 2.10.5 shows that an approximation
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of the closest prior work [46, 12] performs much worse than WASH, Linux,

and bindVM because it does not consider thread priorities (VM versus applica-

tion threads) nor prioritize threads that create bottlenecks by holding locks,

contributions of our work.

2.10 Results

Figure 2.6 summarizes the performance, power, and energy results on

three AMD hardware configurations: 1B5S (1 Big core and 5 Small cores),

2B4S and 3B3S. We weigh each benchmark group (single threaded, scalable,

and non-scalable) equally. We normalize to Oblivious, lower is better.

Figure 2.6 shows that WASH improves performance and energy on all

three hardware configurations on average. Oblivious has the worst average time

on all of the configurations. Even though it has the lowest power cost, up to

16% less power than WASH, it still consumes the most energy. Oblivious treats

all the cores the same and evenly distributed threads, with the result that the

big core may be underutilized and critical threads may execute unnecessarily

on a small core.
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Figure 2.6: Geomean time, power and energy with Oblivious, bindVM, and
WASH on all three hardware configs.

WASH attains its performance improvement by using more power than

Oblivious, but at less additional power than bindVM. The bindVM scheduler has

lower average time compared to Oblivious, but it has the worst energy and

power cost in all hardware settings, especially on 2B4S. bindVM uses up to

18% more energy than WASH. The bindVM scheduler overloads big cores with

work that can be more efficiently performed by small cores, leading to higher

power and underutilization of small cores.

WASH and bindVM are especially effective compared to Oblivious on

1B5S, where the importance of correct scheduling decisions is most exposed.

On 1B5S, WASH reduces the geomean time by 27% compared to Oblivious, and

by about 5% comparing to bindVM. For energy, WASH saves more than 14%

compared to bindVM and Oblivious. WASH consistently improves over bindVM

on power. In the following subsections, we structure detailed analysis based

on workload categories.
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2.10.1 Single-Threaded Benchmarks
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Figure 2.7: Single-threaded benchmarks. Normalized geomean time, power
and energy for different benchmark groups. Lower is better.

Figure 2.7 shows that for single-threaded benchmarks, WASH performs

very well in terms of total time and energy on all hardware settings, while

Oblivious performs poorly. WASH consumes the least energy on all hardware

settings. Compared to Oblivious scheduling, WASH reduces execution time by

as much as 44%. WASH lowers energy by 19% but increases power by as

much as 39% compared to Oblivious. Figures 2.13 show results for individual

benchmarks in the 1B5S hardware scenario. Oblivious performs poorly because

it is unaware of the heterogeneity among the cores, so with high probability

in the 1B5S case, it schedules the application thread onto a small core. In

this scenario, both WASH and bindVM will schedule the application thread

to the big core and GC threads to the small cores. When the number of

big cores increases, as in Figure 2.16 and Figure 2.19, then there is a smaller

distinction between the two policies because the VM threads may be scheduled

on big as well as small cores. In steady state the other VM threads do not
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contribute greatly to total time, as long as they do not interfere with the

application thread. Note that power consumption is higher for bindVM and

WASH than for Oblivious. When the application thread migrates to the small

cores, it consumes less power compared to bindVM and WASH, but the loss in

performance more than outweighs the decrease in power. Thus total energy is

reduced by WASH. In the single-threaded scenario, WASH occasionally adds

some overhead over bindVM for its analysis, but in general,WASH and bindVM

perform very similar to each other on all AMP configurations.

2.10.2 Scalable Multithreaded Benchmarks

0.4	  

0.6	  

0.8	  

1	  

1.2	  

1.4	  

1.6	  

Time	   Power	   Energy	  

/	  
1B

5S
	  O
bl
iv
io
us
	  

1B5S	  Oblivious	   1B5S	  bindVM	   1B5S	  WASH	  
2B4S	  Oblivious	   2B4S	  bindVM	   2B4S	  WASH	  
3B3S	  Oblivious	   3B3S	  bindVM	   3B3S	  WASH	  

Figure 2.8: Scalable multithreaded. Normalized geomean time, power and
energy for different benchmark groups. Lower is better.

Figure 2.8 shows that for scalable multithreaded benchmarks, WASH

and Oblivious perform very well in both execution time and energy on all hard-

ware configurations, while bindVM performs poorly. Compared to WASH and

Oblivious scheduling, bindVM increases time by as much as 36%, increases energy

by as much as 50%, and power by as much as 15%. By using the contention in-

formation we gather online, WASH detects scalable benchmarks. Since WASH
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correctly identifies the workload, WASH and Oblivious generate similar results,

although WASH sometimes adds overhead due to its dynamic workload and

lock analysis. The reason bindVM performs poorly is that it simply binds all ap-

plication threads to the big cores, leaving the small cores under-utilized. Scal-

able benchmarks with homogeneous threads benefit from round-robin schedul-

ing policies as long as the scheduler migrates threads among the fast and slow

cores frequently enough. Even though Oblivious does not reason explicitly

about the relative core speeds, these benchmarks all have more threads than

cores and thus Oblivious works well because it migrates threads among all the

cores frequently enough. However, WASH reasons explicitly about relative

core speeds using historical execution data to migrate threads fairly between

slow and fast cores. Figures 2.13, 2.16, and 2.19 show that as the number of

large cores increases, the difference between bindVM and Oblivious reduces.

2.10.3 Non-scalable Multithreaded Benchmarks
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Figure 2.9: Non-scalable multithreaded. Normalized geomean time, power and
energy for different benchmark groups. Lower is better.
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Figure 2.9 shows that WASH on average performs best and neither

Oblivious or bindVM is consistently second best in the more complex setting of

non-scalable multithreaded benchmarks. For example, eclipse has about 20

threads and hsqldb has about 80. They each have high degrees of contention.

In eclipse, the Javaindexing thread consumes 56% of all of the threads’ cycles

while the three Worker threads consume just 1%. In avrora. threads spend

around 60-70% of their cycles waiting on contended locks, while pmd threads

spend around 40-60% of their cycles waiting on locks. These messy workloads

make scheduling challenging.

For eclipse and hsqldb, Figures 2.13, 2.16, and 2.19 show that the results

for WASH and bindVM are similar with respect to time, power, and energy

in almost all hardware settings. The reason is that even though eclipse has

about 20 and hsqldb has 80 threads, in both cases only one or two of them

are dominant. In eclipse, the threads Javaindexing and Main are responsible

for more than 80% of the application’s cycles. In hsqldb, Main is responsible

for 65% of the cycles. WASH will correctly place the dominant threads on

big cores, since they have higher priority. Most other threads are very short

lived, shorter than our 40 ms scheduling quantum. Since before the profile is

gathered, WASH binds application threads to big cores, the short-lived threads

will just stay on big cores. Since bindVM will put all application threads on

big cores too and these benchmarks mostly use just one application thread,

the results for the two policies are similar.
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Figure 2.10: WASH with best (default) model, second best model, and a bad
model (inverse weights) on 1B5S.

On the other hand, avrora, nspjbb, and pmd are more complex. They

benefit from WASH’s ability to priortize among the application threads and

choose to execute some threads on the slow cores, because they do not require

a fast core. Particularly, for 1B5S, compared to WASH, bindVM time is lower;

however, because of WASH makes better use of the small cores for some ap-

plication threads, it delivers performance with much less power. Since bindVM

does not reason about core sensitivity, it does not make a performance/power

trade-off. WASH makes better use of small cores, improving energy efficiency

for avrora, nspjbb, and pmd.

2.10.4 Sensitivity to speedup model

Figure 2.10 shows the sensitivity of WASH to its speedup model with

a) the default best model from Section 2.7, b) a model using the next best

42



4 different hardware performance counters from the same training set, and

c) a model with the additive inverse weights of the default one. WASH only

degrades by 2-3% when we change the model to slightly worse one. However,

a bad model for the speedup prediction, degrades performance by 9%.

2.10.5 Thread & Bottleneck Prioritization

For completeness, this section compares directly to our implementation

of the Proportional Fair Scheduling algorithm proposed in prior work [46, 12].

We simply remove the features that are unique to WASH: a priori knowl-

edge to preferentially schedule application threads to big cores and automat-

ically prioritizing among contended locks. The resulting scheduler performs

proportional fair scheduling for homogeneous workloads on AMP and prior-

itizes threads based on core sensitivity. Figure 2.11 shows that as expected,

these schedulers (red) perform well on scalable benchmarks, consistent with

prior results [46, 12] that test on workloads with total |threads| = |cores| and

with parallelism that, for the most part, is homogeneous and scalable. How-

ever, the prior work performs poorly on sequential and non-scalable parallel

benchmarks. The orange bars show just disabling prioritization of application

over VM threads, revealing that this feature is critical to good performance

for single-threaded and non-scalable workloads. We find that the JIT thread

benefits from big cores more than most application threads, so core sensitiv-

ity scheduling alone will mistakenly schedule it on the big core even though

it is often not critical to application performance (as revealed in the single-

threaded results). WASH correctly deprioritizes JIT threads to small cores.

Highly concurrent messy workloads, such as avrora and eclipse, suffer greatly

when the scheduler does not prioritize contended locks. Avrora uses threads
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as an abstraction to model high degrees of concurrency for architectural sim-

ulation. Eclipse is a widely used Integrated Development Environment (IDE)

with many threads that communicate asynchronously. Both are important ex-

amples of concurrency not explored, and consequently not addressed, by the

prior work. WASH’s comprehensive approach correctly prioritizes bottleneck

threads in these programs, handling more general and challenging settings.
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Figure 2.11: WASH (green) out-performs our implementation of PFS [46, 12]
(red) which lacks lock analysis and VM vs application priority on 1B5S.

2.10.6 Multiprogrammed workloads

This section presents an experiment with multiprogrammed workload

in the system, of which our VM is unaware. We use eclipse as the OS scheduled

workload across all cores and WASH scheduling on each of our benchmarks.

Eclipse has twenty threads with diverse needs and is demanding both compu-

tationally and in terms of memory consumption.
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Figure 2.12: Performance with eclipse adversary on 1B5S.

Figure 2.12 shows the performance of WASH and bindVM compared to

Oblivious in the presence of the eclipse adversary. Although bindVM’s overall

performance is largely unchanged compared to execution with no adversary,

it degrades on both nspjbb and spjbb. WASH performs very well in the face

of the adversary, with average performance 27% better than Oblivious and a

number of benchmarks performing twice as well as Oblivious. WASH’s worst

case result (nspjbb) is only 7% worse than Oblivious.

Summary The results show that WASH improves performance and energy

on average over all workloads, each component of its algorithm is necessary and

effective, and it is robust to the introduction of a non-trivial adversary. WASH

utilizes both small and big cores as appropriate to improve performance at

higher power compared to Oblivious, which under-utilizes the big cores and over-
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utilizes little cores because it does not reason about them. On the other hand,

WASH, uses its workload and core sensitivity analysis to improve performance

and lower power compared to bindVM which under utilizes the little cores for

the scalable and non-scalable multithreaded benchmarks.
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Figure 2.13: Running time on 1B5S
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Figure 2.14: Energy on 1B5S
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Figure 2.15: Power on 1B5S
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Figure 2.16: Running time on 2B4S
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Figure 2.17: Energy on 2B4S
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Figure 2.18: Power on 2B4S
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Figure 2.19: Running time on 3B3S
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Figure 2.20: Energy on 3B3S
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Figure 2.21: Power on 3B3S
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2.11 Conclusion

A promising approach to improving performance and energy in power

constrained devices is heterogeneity. The more transparent hardware com-

plexity is to applications, the more applications are likely to benefit from

it. Furthermore, a layer of abstraction that protects developers from this

complexity will enhance portability and innovation over generations of hetero-

geneous hardware. This chapter shows how to modify a VM to monitor

bottlenecks, AMP sensitivity, and progress to deliver transparent, portable

performance, and energy efficiency to managed applications on AMP. In par-

ticular, we introduce new fully automatic dynamic analyses that identify and

monitor scalable parallelism, non-scalable parallelism, bottleneck threads, and

thread progress. Our dynamic software analysis automatically identifies and

prioritizes bottleneck threads that hold locks, whereas prior work requires de-

veloper annotations on locks and/or new hardware. This analysis is useful for

performance debugging as well. We show that this system delivers substan-

tial improvements in performance and energy efficiency on frequency-scaled

processors over prior software approaches. These results likely understate the

potential advantages from more highly optimized commercial AMP systems

that vendors are beginning to deliver.
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Chapter 3

Vector Parallelism in JavaScript

This chapter presents the design and implementation of SIMD language

extensions and compiler support for JavaScript:

1. a language design justified on the basis of portability and performance;

2. compiler type speculation without profiling in a dynamic language; and

3. the first dynamic language with SIMD instructions that deliver their

performance and energy benefits.

The result is the first high level language design and implementation

that delivers direct access to SIMD performance in an architecture-independent

manner.

3.1 Motivation

Increasingly more computing is performed in web browsers. Since

JavaScript is the dominant web language, sophisticated and demanding ap-

plications, such as games, multimedia, finance, and cryptography, are increas-

ingly implemented in JavaScript. Many of these applications benefit from

hardware parallelism, both at a coarse and fine grain. Because of the complex-

ities and potential for concurrency errors in coarse grain (task level) parallel
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programing, JavaScript has limited its parallelism to asynchronous activities

that do not communicate through shared memory [51]. However, fine-grain

vector parallel instructions — Single-Instruction, Multiple-Data (SIMD) — do

not manifest these correctness issues and yet they still offer significant perfor-

mance advantages by exploiting parallelism.

SIMD instructions are now standard on modern ARM and x86 hard-

ware from mobile to servers because they are both high performance and en-

ergy efficient. Intel announced that all future machines will contain SIMD

instructions. SIMD standards include the SSE4 x86 SIMD and the NEON

ARM SIMD, and are already widely implemented in modern x86 processors

such as Intel Sandybridge, Intel IvyBridge, and AMD K10, and in ARM pro-

cessors such as the popular ARM Cortex-A8 and Cortex-A9. Both standards

implement 128 bits and x86 processors now include larger widths in the AVX

instruction set. However, ARM NEON’s largest width is 128 bits, with no

apparent plans to grow. These instruction set architectures include vector

parallelism because it is very effective at improving performance and energy

efficiency in many application domains, for example, image, audio, and video

processing, perceptual computing, physics engines, fluid dynamics, render-

ing, finance, and cryptography. Such applications also increasingly dominate

client-side and server-side web applications. Exploiting vector parallelism in

JavaScript should therefore improve performance and energy efficiency on mo-

bile, desktop, and server, as well as hybrid HTML5 mobile JavaScript appli-

cations.
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3.2 Related Work

Westinghouse was the first to investigate vector parallelism in the early

1960s, envisioning a co-processor for mathematics, but cancelled the effort.

The principal investigator, Daniel Slotnick, then left and joined University of

Illinois, where he lead the design of the ILLIAC IV, the first supercomputer

and vector machine [9]. In 1972, it was 13 times faster than any other machine

at 250 MFLOPS and cost $31 million to build. CRAY Research went on to

build commercial vector machines [13] and researchers at Illinois, CRAY, IBM,

and Rice University pioneered compiler technologies that correctly transformed

scalar programs into vector form to exploit vector parallelism.

Today, Intel, AMD, and ARM processors for servers, desktop, and mo-

bile offer coarse-grain multicore and fine-grain vector parallelism with Single

Instruction Multiple Data (SIMD) instructions. For instance, Intel introduced

MMX instructions in 1997, the original SSE (Streaming SIMD Extensions)

instructions in 1999, and its latest extension, SSE4, in 2007 [23, 24]. All of

the latest AMD and Intel machines implement SSE4.2. ARM implements

vector parallelism with its NEON SIMD instructions, which are optional in

Cortex-A9 processors, but standard in all Cortex-A8 processors.

The biggest difference between vector instruction sets in x86 and ARM

is vector length. The AVX-512 instruction set in Intel processors defines vec-

tor lengths up to 512 bits. However, NEON defines vector lengths from 64-bit

up to 128-bit. To be compatible with both x86 and ARM vector architec-

tures and thus attain vector-performance portability, we choose one fixed-size

128-bit vector length, since it is the largest size that both platforms support.

Choosing a larger or variable size than all platforms support is problematic

when executing on machines that only implement a shorter vector size because
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some long SIMD instructions can only be correctly implemented with scalar

instructions on shorter vector machines. See our discussion below for addi-

tional details. By choosing the largest size all platforms support, we avoid

exposing developers to unpleasant and hard to debug performance degrada-

tions on vector hardware. We choose a fixed size that all architectures support

to deliver performance portability on all vector hardware.

Future compiler analysis could generate code for wider vector instruc-

tions to further improve performance, although the dynamically typed JavaScript

setting makes this task more challenging than, for example, in Fortran com-

pilers. We avoided a design choice that would require significant compiler sup-

port because of the diversity in JavaScript compiler targets, from embedded

devices to servers. Our choice of a fixed-size vector simplifies the program-

ming interface, compiler implementation, and guarantees vector performance

on vector hardware. Supporting larger vector sizes could be done in a library

with machine-specific hooks to attain machine-specific benefits on streaming

SIMD operations, but applications would suffer machine-specific performance

degradations for non-streaming operations, such as shuffle, because the com-

piler must generate scalar code when an architecture supports only the smaller

vector sizes.

Both SSE4 and NEON define a plethora of SIMD instructions, many

more than we currently propose to include in JavaScript. We choose a subset

for simplicity, selecting operations based on an examination of demanding

JavaScript applications, such as games. Most of our proposed JavaScript SIMD

operations map directly to a hardware SIMD instruction. We include a few

operations, such as swizzle and shuffle, that are not directly implemented

in both architectures, but are important for the JavaScript applications we
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studied. For these operations, the compiler generates two or three SIMD

instructions, rather than just one. The current set is easily extended.

Intel and ARM provide header files which define SIMD intrinsics for

use in C/C++ programs (xmmintrin.h and arm neon.h, respectively).

These intrinsics directly map to each SIMD instruction in the hardware, thus

there are currently over 400 intrinsic functions [24, 4]. These platform-specific

intrinsics result in architecture-dependent code, thus using either one directly

in JavaScript is not desirable nor an option for portable JavaScript code.

Managed languages, such as Java and C#, historically only provide

access to SIMD instructions through their native interfaces, JNI (Java Native

Interface) and C library in the case of Java and C# respectively, which use

the SIMD intrinsics. However, recently Microsoft and the C# Mono project

announced a preliminary API for SIMD programming for .NET [36, 39]. This

API is currently only limited to streaming operations (e.g., arithmetic) and

it introduces hardware-dependent size vectors. In C#, the application can

query the hardware to learn the maximum vector length. This API results in

hardware-dependent types embedded in the application which will not allow

its expansion to non-streaming operations (e.g., shuffle) in a portable fashion.

The lack of non-streaming operations will limit performance in very common

algorithms (e.g., matrix operations) and is thus not in line with our perfor-

mance goals for JavaScript.

Until now, dynamic scripting languages, such as PHP, Python, Ruby,

and JavaScript, have not included SIMD support in their language specifi-

cation. We analyzed the application space and chose the operations based

on their popularity in the applications and their portability across the SSE3,

SSE4.2, AVX, and NEON SIMD instruction sets. We observed a few addi-
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tional SIMD patterns that we standardize as methods, which the JIT compiler

translates into multiple SIMD instructions.

3.3 Our Contribution

Design This chapter presents the design, implementation, and evaluation

of SIMD language extensions for JavaScript. We have two design goals for

these extensions. (1) Portable vector performance on vector hardware. (2) A

compiler implementation that does not require automatic vectorization tech-

nology to attain vector performance. The first goal helps developers improve

the performance of their applications without unpleasant and unexplainable

performance surprises on different vector hardware. The second goal simplifies

the job of realizing vector performance in existing and new JavaScript Virtual

Machines (VMs) and compilers. Adding dependence testing and loop transfor-

mation vectorizing technology is possible, but our design and implementation

do not require it to deliver vector performance.

This chapter defines SIMD language extensions and new compiler sup-

port for JavaScript. The language extensions consist of fixed-size immutable

vectors and vector operators, which correspond to hardware instructions and

vector sizes common to ARM and x86. The largest size common to both is

128 bits. Although an API with variable or larger sizes (e.g., Intel’s AVX

512-bit vectors) may seem appealing, correctly generating code that targets

shorter vector instructions from longer ones violates our vector performance

portability design goal. For example, correctly shortening non-streaming vec-

tor instructions, such as shuffle/swizzle, requires generating scalar code that

reads all values out and then stores them back, resulting in scalar performance

instead of vector performance on vector hardware.
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We define new SIMD JavaScript data types (e.g., Int32x4, Float32x4),

constructors, lane accessors, operators (arithmetic, bitwise operations, com-

parisons, and swizzle/shuffle), and typed array accessors and mutators for

these types. To ease the compiler implementation, most of these SIMD op-

erations correspond directly to SIMD instructions common to the SSE4 and

NEON extensions. We choose a subset that improve a wide selection of so-

phisticated JavaScript applications, but this set could be expanded in the

future. This JavaScript language specification was developed in collaboration

with Google for the Dart programming language, reported in a workshop pa-

per [35]. The Dart and JavaScript SIMD language specifications are similar in

spirit. The language extensions we present are in the final stages of approval

by the ECMAScript standardization committee (Ecma TC39) [49].

Type Speculation We introduce type speculation, a modest twist on type

inference and specialization for implementing these SIMD language extensions.

For every method containing SIMD operations, the Virtual Machine’s Just-in-

Time (JIT) compiler immediately produces SIMD instructions for those oper-

ations. The JIT compiler speculates that every high-level SIMD instruction

operates on the specified SIMD type. It translates the code into an inter-

mediate form, optimizes it, and generates SIMD assembly. In most cases, it

produces optimal code with one or two SIMD assembly instructions for each

high-level SIMD JavaScript instruction. The code includes guards that check

for non-conforming types that reverts to unoptimized code when needed. In

contrast, modern JIT compilers for dynamic languages typically perform some

mix of type inference, which uses static analysis to prove type values and elim-

inate any dynamic checks, and type feedback, which observes common types
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over multiple executions of a method and then optimizes for these cases, gen-

erating guards for non-conforming types [1, 28]. Our JIT compilers instead

will use the assumed types of the high-level SIMD instructions as hints and

generate code accordingly.

Implementation We implement and evaluate this compiler support in two

JavaScript Virtual Machines (V8 and SpiderMonkey) and generate JIT-optimized

SIMD instructions for x86 and ARM. Initially, V8 uses a simple JIT compiler

(full codegen) to directly emit executable code [19], whereas SpiderMonkey

uses an interpreter [41, 18]. Both will detect hot sections and later JIT com-

pilation stages will perform additional optimizations. We add JIT type spec-

ulation and SIMD optimizations to both Virtual Machines (VMs). Our JIT

compiler implementations include type speculation, SIMD method inlining,

SIMD type unboxing, and SIMD code generation to directly invoke the SIMD

assembly instructions. When the target architecture does not contain SIMD

instructions or the dynamic type changes from the SIMD class to some other

type, SpiderMonkey currently falls back on interpretation and V8 generates

deoptimized (boxed) code.

Benchmarks For any new language features, we must create benchmarks

for evaluation. We create microbenchmarks by extracting ten kernels from

common application domains. These kernels are hot code in these algorithms

that benefit from vector parallelism. In addition, we report results for one

application, skinning, a key graphics algorithm that associates the skin over

the skeleton of characters from a very popular game engine. We measure the

benchmarks on five different Intel CPUs (ranging from an Atom to an i7), and
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four operating systems (Windows, Unix, OS X, Android). The results show

that SIMD instructions improve performance by a factor of 3.4× on average

and improve energy by 2.9× on average. SIMD achieves super-linear speed

ups in some benchmarks because the vector versions of the code eliminate

intermediate operations, values, and copies. On the skinning graphics kernel,

we obtain a speedup of 1.8×.

Artifact The implementations described in this chapter are in Mozilla Fire-

fox Nightly builds and in submission to Chromium as of December 2015. This

work shows that V8 and SpiderMonkey can support SIMD language exten-

sions without performing sophisticated dependence testing or other parallelism

analysis or transformations, i.e., they do not require automatic vectorization

compiler technology. However, our choice does not preclude such sophisti-

cated compiler support, or preprocessor/developer-side vectorization support

in tools such as Emscripten [40], or higher level software abstractions that

target larger or variable size vectors, as applicable, to further improve perfor-

mance. By adding portable SIMD language features to JavaScript, developers

can exploit vector parallelism to make demanding applications accessible from

the browser. We expect that these substantial performance and energy bene-

fits will inspire a next generation of JIT compiler technology to further exploit

vector parallelism.

Contributions This chapter presents the design and implementation of

SIMD language extensions and compiler support for JavaScript. No other

high level language has provided direct access to SIMD performance in an

architecture-independent manner. The contributions of this chapter are as

follows:
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1. a language design justified on the basis of portability and performance;

2. compiler type speculation without profiling in a dynamic language; and

3. the first dynamic language with SIMD instructions that deliver their

performance and energy benefits.

3.4 Design Rationale

Our design is based on fixed-width 128-bit vectors. A number of consid-

erations influenced this decision, including the programmer and the compiler

writer.

A fixed vector width offers simplicity in the form of consistent perfor-

mance and consistent semantics across vector architectures. For example, the

number of times a loop iterates is not affected by a change in the underlying

hardware. A variable-width vector or a vector width larger than the hard-

ware supports places significant requirements on the JIT compiler. Given the

variety of JavaScript JIT VMs and the diverse platforms they target, requir-

ing support for variable-width vectors was considered unviable. Additionally,

variable width vectors cannot efficiently implement some important algorithms

(e.g., matrix multiplication, matrix inversion, vector transform). On the other

hand, developers are free to add more aggressive JIT compiler functionality

that exploits wider vectors if the hardware provides them. Another consid-

eration is that JavaScript is heavily used as a compiler target. For example,

Emscripten compiles from C/C++ [25], and compatibility with mmintrin.h

offered by our fixed width vectors is a bonus.

Finally, given the decision to support fixed width vectors, we selected

128 bits because it is the widest vector supported by all major architectures
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today. Not all instructions can be decomposed to run on a narrower vector in-

struction. For example, non-streaming operations, such as the shuffle instruc-

tion, in general cannot utilize the SIMD hardware at all when the hardware

is narrower than the software. For this reason, we chose the largest com-

mon denominator. Furthermore, 128 bits is a good match to many important

algorithms, such as single-precision transformations over homogeneous coor-

dinates in computer graphics (XYZW) and algorithms that manipulate the

RGBA color space.

3.5 Language Specification

This section presents the SIMD data types, operations, and JavaScript

code samples. The SIMD language extensions give direct control to the pro-

grammer and require very simple compiler support, but still guarantees vector

performance when the hardware supports SIMD instructions. Consequently,

most of the JavaScript SIMD operations have a one-to-one mapping to com-

mon hardware SIMD instructions. This section includes code samples for the

most common data types. The full specification is available on line [49].

3.5.1 Data Types

We add the following new fixed-width 128-bit numeric value types to

JavaScript.

Float32x4 Vector with four 32-bit single-precision floats

Int32x4 Vector with four 32-bit signed integers

Int16x8 Vector with 8 16-bit signed integers

62



Int8x16 Vector with 16 8-bit signed integers

Uint32x4 Vector with 4 32-bit unsigned integers

Uint16x8 Vector with 8 16-bit unsigned integers

Uint8x16 Vector with 16 8-bit unsigned integers

Bool32x4 Vector with 4 boolean values

Bool16x8 Vector with 8 boolean values

Bool8x16 Vector with 16 boolean values

Figure 3.1 shows the simple SIMD type hierarchy. The SIMD types has four to

sixteen lanes, which correspond to degrees of SIMD parallelism. Each element

of a SIMD vector is a lane. Indices are required to access the lanes of vectors.

For instance, the following code declares and initializes a SIMD single-precision

float and assigns 3.0 to a.

var v1 = SIMD.Float32x4 (1.0, 2.0, 3.0, 4.0);
var a = SIMD.Float32x4.extractLane(v1,3);

3.5.2 Operations

Constructors The type defines the following constructors for all of the

SIMD types. The default constructor initializes each of the two or four lanes

to the specified values, the splat constructor creates a constant-initialized

SIMD vector, as follows.

var c = SIMD.Float32x4(1.1, 2.2, 3.3, 4.4);
// Float32x4(1.1, 2.2, 3.3, 4.4)

var b = SIMD.Float32x4.splat(5.0);
// Float32x4(5.0, 5.0, 5.0, 5.0)
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Figure 3.1: SIMD Type Hierarchy

Accessors and Mutators The proposed SIMD standard provides opera-

tions for accessing and mutating SIMD values, and for creating new SIMD

values from variations on existing values.

extractLane Access one of the lanes of a SIMD value.

replaceLane Create a new instance with the value change for the specified

lane.

select Create a new instance with selected lanes from two SIMD values.

swizzle Create a new instance from another SIMD value, shuffling lanes.

shuffle Create a new instance by selecting lane values from a specified mix of

lane values from the two input operands.

These operations are straightforward and below we show a few examples.

var a = SIMD.Float32x4(1.0, 2.0, 3.0, 4.0);
var b = a.x; // 1.0
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var c = SIMD.Float32x4.replaceLane(1, 5.0);
// Float32x4(5.0, 2.0, 3.0, 4.0)

var d = SIMD.Float32x4.swizzle(a, 3, 2, 1, 0);
// Float32x4(4.0, 3.0, 2.0, 1.0)

var f = SIMD.Float32x4(5.0, 6.0, 7.0, 8.0);
var g = SIMD.Float32x4.shuffle(a, f, 1, 0, 6, 7);
// Float32x4(2.0, 1.0, 7.0, 8.0)

Arithmetic The language extension supports the following thirteen arith-

metic operations over SIMD values: add, sub, mul, div, abs, max, min,

sqrt, reciprocalApproximation, reciprocalSqrtApproximation, neg,

clamp, scale, minNum, maxNum

We show a few examples below.

var a = SIMD.Float32x4(1.0, 2.0, 3.0, 4.0);
var b = SIMD.Float32x4(4.0, 8.0, 12.0, 16.0);
var c = SIMD.Float32x4.add(a,b);
// Float32x4(5.0, 10.0, 15.0, 20.0)

var e = SIMD.reciprocalSqrtApproximation(d);
// Float32x4(0.5, 0.5, 0.5, 0.5);

var f = SIMD.scale(a, 2);
// Float32x4(2.0, 4.0, 6.0, 8.0);

var lower = SIMD.Float32x4(-2.0, 5.0, 1.0, -4.0);
var upper = SIMD.Float32x4(-1.0, 10.0, 8.0, 4.0);
var g = SIMD.Float32x4.clamp(a, lower, upper);
// Float32x4(-1.0, 5.0, 3.0, 4.0)

Bitwise Operators The language supports the following four SIMD bitwise

operators: and, or, xor, not

Bit Shifts We define the following logical and arithmetic shift operations

and then show some examples: shiftLeftByScalar, shiftRightLogicalByScalar,
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shiftRightArithmeticByScalar

var a = SIMD.Int32x4(6, 8, 16, 1);
var b = SIMD.Int32x4.shiftLeftByScalar(a,1);
// Int32x4(12, 16, 32, 2)

var c = SIMD.Int32x4.shiftRightLogicalByScalar(a, 1);
// Int32x4(3, 4, 8, 0)

Comparison We define three SIMD comparison operators that yield SIMD

Boolean vectors, e.g., Bool32x4: equal, notEqual, greaterThan, lessThan,

lessThanOrEqual, greaterThanOrEqual

var a = SIMD.Float32x4(1.0, 2.0, 3.0, 4.0);
var b = SIMD.Float32x4(0.0, 3.0, 5.0, 2.0);
var gT = SIMD.Float32x4.greaterThan(a, b);
// Float32x4(0xF, 0x0, 0x0, 0xF);

Type Conversion We define type conversion from floating point to integer

and bit-wise conversion (i.e., producing an integer value from the floating point

bit representation): fromInt32x4, fromFloat32x4, fromInt32x4Bits, from-

Float32x4Bits

var a = SIMD.Float32x4(1.1, 2.2, 3.3, 4.4)
var b = SIMD.Int32x4.fromFloat32x4(a)
// Int32x4(1, 2, 3, 4)

var c = SIMD.Int32x4.fromFloat32x4Bits(a)
// Int32x4(1066192077, 1074580685, 1079194419, 1082969293)

Arrays We introduce load and store operations for JavaScript typed arrays

for each base SIMD data type that operates with the expected semantics. An

example is to pass in a Uint8Array regardless of SIMD type, which is useful

because it allows the compiler to eliminate the shift in going from the index
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to the pointer offset. The extracted SIMD type is determined by the type of

the load operation.

var a = new Float32Array(100);
for (var i = 0, l = a.length; ++i) {

a[i] = i;
}
for (var j = 0; j < a.length; j += 4) {

sum4 = SIMD.Float32x4.add(sum4,
SIMD.Float32x4.load(a, j));

}
var result = SIMD.Float32x4.extractLane(sum4, 0) +

SIMD.Float32x4.extractLane(sum4, 1) +
SIMD.Float32x4.extractLane(sum4, 2) +
SIMD.Float32x4.extractLane(sum4, 3);

Figure 3.2 depicts how summing in parallel reduces the number of sum in-

structions by a factor of the width of the SIMD vector, in this case four, plus

the instructions needed to sum the resulting vector. Given a sufficiently long

array and appropriate JIT compiler technology, the SIMD version reduces the

number of loads and stores by about 75%. This reduction in instructions has

the potential to improve performance significantly in many applications.

3.6 Compiler Implementations

We add compiler optimizations for SIMD instructions to Firefox’s Spi-

derMonkey VM [41, 18] and Chromium’s V8 VM [19]. We first briefly describe

both VM implementations and then describe our type speculation, followed

by unboxing, inlining, and code generation that produce SIMD assembly in-

structions.
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Figure 3.2: Visualization of averagef32x4 summing in parallel.

SpiderMonkey We modified the open-source SpiderMonkey VM, used by

the Mozilla Firefox browser. SpiderMonkey contains an interpreter that exe-

cutes unoptimized JavaScript bytecodes and a Baseline compiler that generates

machine code. The interpreter collects execution profiles and type informa-

tion [41]. Frequently executed JS functions, as determined by the profiles

collected by the interpreter, are compiled into executable instructions by the

Baseline compiler. The Baseline compiler mostly generates calls into the run-

time and relies on inline caches and hidden classes for operations such as

property access, function calls, array indexing operations, etc. The Baseline

compiler also inserts code to collect execution profiles for function invocations

and to collect type information. If a function is found to be hot, the second

compiler is invoked. This second compiler, called IonMonkey, is an SSA-based

optimizing compiler, which uses the type information collected from the inline

cache mechanism to inline the expected operations, thereby avoiding the call

overhead into the runtime. IonMonkey then emits fast native code translations

of JavaScript. We added SIMD support in the runtime. Instead of waiting

for the runtime to determine whether the method is hot, we perform type
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Figure 3.3: V8 Engine Architecture.
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speculation and optimizations for all methods that contain SIMD operations.

We modify the interpreter, the Baseline compiler code generator, and the Ion-

Monkey JIT compiler. We add inlining of SIMD operations to the IonMonkey

compiler. We modify the register allocator and bailout mechanism to support

128-bit values.

V8 We also modified the open-source V8 VM, used by the Google Chromium

browser. Figure 3.3 shows the V8 Engine Architecture. V8 does not interpret.

It translates the JavaScript AST (abstract syntax tree) into executable in-

structions and calls into the runtime when code is first executed, using the

Full Codegen compiler. Figure 3.4 shows an example of the non-optimized

code from this compiler. This compiler also inserts profiling and calls to

runtime support routines. When V8 detects a hot method, the Crankshaft

compiler translates into an SSA form. It uses the frequency and type pro-

file information to perform global optimizations across basic blocks such as

type specialization, inlining, global value numbering, code hoisting, and reg-

ister allocation. We modify the runtime to perform type speculation when it

detects methods with SIMD instructions, which invokes the SIMD compiler

support. We added SIMD support to both the Full Codegen compiler and the

Crankshaft compiler. For the Full Codegen compiler, the SIMD support is

provided via calls to runtime functions implemented in C++, as depicted in

Figure 3.4. We modified the Crankshaft compiler, adding support for inlining,

SIMD register allocation, and code generation which produces optimal SIMD

code sequence and vector performance in many cases.

Both compilers use frequency and type profiling to inline and then perform
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type specialization on other types, other optimizations, register allocation, and

finally generate code.

3.6.1 Type Speculation

Optimizing dynamic languages requires type specialization [32, 22],

which emits code for the common type. This code must include an initial

type tests and a branch to deoptimized generic code or jumps back to the

interpreter or deoptimized code when the types do not match [29]. Both opti-

mizing compilers perform similar forms of type specialization. In some cases,

the compiler can use type inference to prove that the type will never change

and can eliminate this fallback [1, 14]. For example, unboxing an object and

its fields generates code that operates directly on floats, integers, or doubles,

rather than generating code that looks up the type of every field on each ac-

cess, loads the value from the heap, operates on them, and then stores them

back into the heap. While a value is unboxed, the compiler assigns them to

registers and local variables, rather than emitting code that operates on them

in the heap, to improve performance.

The particular context of a SIMD library allows us to be more agressive

than typical type specialization. We speculate types based on a number of

simple assumptions. We consider it a design bug on the part of the programmer

to override methods of the SIMD API, and thus we produce code speculatively

for the common case of SIMD methods operating on SIMD types specified

by our language extension. If programs override the SIMD methods, type

guards that the compiler inserts in the program correctly detects this case,

but performance suffers significantly. Likewise, we speculate that SIMD API

arguments are of the correct type and optimize accordingly. If they are not,
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the compiler correctly detects this case, but performance will suffer.

These assumptions are predicated on the fact that the SIMD instruc-

tions have well established types and semantics, and that developers who use

the API are expected to write their code accordingly. Because we expect de-

velopers to use SIMD instructions in performance-sensitive settings, we have

the opportunity to aggressively optimize methods that contain them more ea-

gerly, rather than waiting for these methods to become hot. We expect the

net result to be a performance win in a dynamic optimization setting. Each of

these simple optimizations is a modest twist on conventional JIT optimization

of dynamic code that we tailor for the performance critical SIMD setting.

Inlining To achieve high performance with the proposed SIMD language ex-

tension, we modified the optimizing compilers to always replace method calls

to SIMD operations on SIMD types with inlined lower level instructions (IR

or machine-level) that operate on unboxed values. The compilers thus elimi-

nates the need for unboxing by keeping the values in registers. The compiler

identifies all the SIMD methods and inlines them. These methods are always

invoked on the same SIMD type and with the same parameters with the ap-

propriate SIMD or other type. Thus, inlining is performed when the system

observes the dynamic types of each SIMD method call and predicts they are

monomorphic.

Value Boxing and Unboxing Both baseline compilers will box SIMD ob-

jects, arguments, and return values like any regular JavaScript object. Both of

the JavaScript VM JIT compilers optimize by converting boxed types to un-

boxed values [32]. As discussed above, boxed values are allocated on the heap,
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Original JavaScript Code

sum = SIMD.float32x4.add(sum, SIMD.Float32x4.load(a, j));

V8 Full Codegen code (not optimized)

3DB5BCBE 222 ff3424 push [esp]
3DB5BCC1 225 89442404 mov [esp+0x4],eax
3DB5BCC5 229 ff75e8 push [ebp-0x18]
3DB5BCC8 232 ba02000000 mov edx,00000002
3DB5BCCD 237 8b7c2408 mov edi,[esp+0x8]
;; call .getAt()
3DB5BCD1 241 e84a24fcff call 3DB1E120
3DB5BCD6 246 8b75fc mov esi,[ebp-0x4]
3DB5BCD9 249 890424 mov [esp],eax
3DB5BCDC 252 ba04000000 mov edx,00000004
3DB5BCE1 257 8b7c240c mov edi,[esp+0xc]
;; call .add()
3DB5BCE5 261 e876fdffff call 3DB5BA60
3DB5BCEA 266 8b75fc mov esi,[ebp-0x4]
3DB5BCED 269 83c404 add esp,0x4
3DB5BCF0 272 8945ec mov [ebp-0x14],eax

V8 CrankShaft Code (optimized)

3DB5E306 358 0f101cc6 movups xmm3,[esi+eax*8]
3DB5E30A 362 0f58d3 addps xmm2,xmm3

Figure 3.4: Example V8 compiler generated code
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garbage collected, and must be loaded and stored to the heap on each use and

definition, respectively. To improve performance, the optimizing compilers put

unboxed values in registers, operate on them directly, and then stores modi-

fied values back to the heap as necessary for correctness and deoptimization

paths. We modified this mechanism in both compilers to operate over SIMD

methods.

Example Consider again the averagef32x4() method from Section 3.5.

In V8, the Full Codegen compiler generates the code in Figure 3.4, which is a

straight forward sequence of calls into the V8 runtime. The parameters reside

in heap objects. Note below that the parameters reside in heap objects and

pointers to those heap objects are passed on the stack. The two calls invoke

the .add() operator and the .getAt operator, respectively. The runtime has its

own established calling convention using registers. However, all user visible

values are passed on the stack.

The V8 Crankshaft compiler generates an SSA IR, directly represents

SIMD values in registers, and uses SIMD instructions directly instead of run-

time calls. The final code produced by the V8 Crankshaft optimizing compiler;

after inlining, unboxing, and register allocation is the optimal sequence of just

two instructions, as illustrated at the bottom of Figure 3.4. SpiderMonkey

generates the same code.

The code has just two instructions; one for fetching the value out of

the array and one for adding the two float32x4 values. The compiler puts sum

variable in the xmm2 register for the entire loop execution!
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3.7 Methodology

This section describes our hardware and software, measurements, and

workload configurations. All of our code, workloads, and performance mea-

surement methodologies are publicly available.

3.7.1 Virtual Machines and Measurements

We use the M37, branch 3.27.34.6, version of V8 and version JavaScript-

C34.0a1 of SpiderMonkey for these experiments.

3.7.2 Hardware Platforms

We measure the performance and energy of SIMD language extension

on multiple different architectures and operating system combinations. Ta-

ble 3.1 lists characteristics of our experimental platforms. We report results

on x86 hardware. Among the hardware systems we measure are an in-order

Atom processor, a recent 22 nm low-power dual-core Haswell processor (i5-

4200U) and a high-performance quad-core counterpart (i7-4770K).

Processor Architecture Frequency Operating System

i5-4200U Haswell 1.60 GHz Ubuntu Linux 12.04.4x64
i7-3720QM Sandy Bridge 2.60 GHz Mac OS X 10.9.4
i5-2520M Sandy Bridge 2.50 GHz Windows 7 64-bit
i7-4770K Haswell 3.50 GHz Ubuntu Linux 12.04.4
Atom Z2580 Cloverview 2.00 GHz Android 4.2.2

Table 3.1: Experimental platforms
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3.7.3 Benchmarks

To evaluate our language extensions, we developed a set of benchmarks

from various popular JavaScript application domains including 3D graphic

code, cryptography, arithmetic, higher order mathematical operations, and

visualization. Table 3.2 lists their names and the number of lines of code in

the original, the SIMD version, and the number of SIMD operations. For this

initial SIMD benchmark suite, we select benchmarks that reflect operations

typical of SIMD programming in other languages such as C++, and that are

sufficiently self-contained to allow JavaScript VM implementers to use them

as a guide for testing the correctness and performance of their system. These

benchmarks are now publicly available.

Although JavaScript only supports double-precision numeric types, we

take advantage of recent optimizations in JavaScript JIT compilers that opti-

mize the scalar code to use single-precision instructions when using variables

that are obtained from Float32x4Arrays. All of our scalar benchmarks perform

float32 operations (single precision). The scalar codes thus have the advantage

of single precision data sizes and optimizations, which makes the comparison

to their vector counterparts an apples-to-apples comparison, where the only

change is the addition of SIMD vector instructions.

3D graphics As noted in Section 3.4, float32x4 operations are particularly

useful for graphics code. Because most of the compute intensive work on

the CPU side (versus the GPU) involves computing projection and views of

matrices that feed into WebGL, we collected the most common 4x4 matrix

operations and a vertex transformation of a 4 element vector for four of our

benchmarks:
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MatrixMultiplication 4x4 Matrix Multiplication

Transpose4x4 4x4 Matrix Transpose

Matrix4x4Inverse 4x4 Matrix Inversion

VertexTransform 4 element vector transform

Cryptography While cryptography is not a common domain for SIMD, we

find that the hottest function in Rijnadel cipher should benefit from SIMD

instructions. We extracted this function into the following kernel.

ShiftRows Rotation of row values in 4x4 matrix

Higher Level Math Operations Mathematical operations such as trigono-

metric functions, logarithm, exponential, and power, typically involve compli-

cated use of SIMD instructions. We hand-coded a representative implemen-

tation of the sinx4() function. We believe such operations will become impor-

tant in emerging JavaScript applications that implement physics engines and

shading. For example, the AOBench shading (Ambient Occlusion benchmark)

benefits from 4-wide cosine and sine functions.

Sine Four element vector sine function.

Math, Mandelbrot, and more graphics In addition, we modified the

following JavaScript codes to use SIMD optimizations.

Average32x4 Basic math arithmetic (addition) on arrays of float32 items.

77



LOC SIMD
Benchmark Scalar SIMD calls

Transpose4x4 17 26 8
Matrix4x4Inverse 83 122 86
VertexTransform 26 12 13
MatrixMultiplication 54 41 45
ShiftRows 12 18 3
AverageFloat32x4 9 9 2
Sinex4† 14 5 1
Mandelbrot 25 36 13
Aobench 120 201 119
Skinning 77 90 66

Table 3.2: Benchmark characteristics. We measure the lines of code (LOC)
for the kernel of each benchmark in both scalar and SIMD variants. †In the
case of Sinex4, the table reports the LOC for the simple sine kernel, which
makes calls to the sine function in the Math libary and the equivalent SIMD
implementation respectively. The full first-principles implementation of SIMD
sine takes 113 LOC and makes 74 SIMD calls.

78



Mandelbrot Visualization of the calculation of the Mandelbrot set. It has a

static number of iterations per pixel.

AOBench Ambient Occlusion Renderer. Calculates how exposed each

point in a scene is to ambient lighting.

Skinning Graphics kernel from a game engine to attach a renderable skin

to an underlying articulated skeleton.

Developers are porting many other domains to JavaScript and they are likely

to benefit from SIMD operations, for example, physics engines; 2D graphics,

e.g., filters and rendering; computational fluid dynamics; audio and video

processing; and finance, e.g., Black-Scholes.

3.7.4 Measurement Methodology

We first measure each non-SIMD version of each benchmark and con-

figure the number of iterations such that it executes for about 1 second in

steady state. This step ensures the code is hot and the JIT compilers will be

invoked on it. We measure the SIMD and non-SIMD benchmark configura-

tions executing multiple iterations 10 times. We invoke each JavaScript VM

on the benchmark using their command line JavaScript shells. Our benchmark

harness wraps each benchmark, measuring the time and energy using perfor-

mance counters. This methodology results in statistically significant results

comparing SIMD to non-SIMD results.

Time We measure the execution time using the low overhead real time clock.

We perform twenty measurements, interleaving SIMD and scalar systems, and

report the mean.
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Energy We use the Running Average Limit Power (RAPL) Machine Specific

Registers (MSRs) [43] to obtain the energy measurements for the JavaScript

Virtual Machine running the benchmark. We perform event-based sampling

through CPU performance counters. We sample PACKAGE ENERGY STATUS

which is the energy consumed by the entire package, which for the single-die

packages we use, means the entire die. Two platforms, the Android Atom and

the Windows Sandy Bridge, do not support RAPL and thus we report energy

results only for the other three systems.

The performance measurement overheads are very low (less than 2%

for both time and energy). We execute both version of the benchmarks using

the above iteration counts.

3.8 Results

This section reports our evaluation of the impact of SIMD extensions

on time and energy.

3.8.1 Time

Figure 3.5 shows the speedup due to the SIMD extensions. The graphs

show scalar time divided by SIMD time, so any value higher than one reflects

a speedup due to SIMD. All benchmarks show substantial speedups and un-

surprisingly, the micro benchmarks (left five) see greater improvement than

the more complex kernels (right five).
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Figure 3.5: SIMD performance with V8 and SpiderMonkey (SM). Normalized
to scalar versions. Higher is better.

It may seem surprising that many of the benchmarks improve by more

than 4×, yet our SIMD vectors are only four-wide. Indeed, the matrix shift

rows benchmark improves by as much as 7× over the scalar version. This

super-linear speed up is due to the use of our SIMD operations in an optimized

manner that changes the algorithm. For example, the code below shows the

SIMD and nonSIMD implementations of the shift row hot methods. Note

how we eliminate the need to have temporary variables because we do the

shifting of the rows by using SIMD swizzle operations. Eliminating temporary

variables and intermediate operations deliver the super-linear speed ups. In

summary, the kernels improved by 2× to 9× due to the SIMD extension.
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// Typical implementation of the shiftRows function

function shiftRows(state, Nc) {
for (var r = 1; r < 4; ++r) {

var ri = r*Nc; // get the starting index of row ’r’

var c;
for (c = 0; c < Nc; ++c)

temp[c] = state[ri + ((c + r) % Nc)];
for (c = 0; c < Nc; ++c)

state[ri + c] = temp[c];
} }
// The SIMD optimized version of the shiftRows function

// Function special cased for 4 column setting (Nc==4)

// This is the value used for AES blocks

function simdShiftRows(state, Nc) {
if (Nc !== 4) {
shiftRows(state, Nc);

}
for (var r = 1; r < 4; ++r) {

var rx4 = SIMD.Int32x4.load(state, r << 2);
if (r == 1) {

SIMD.Int32x4.store(state, 4,
SIMD.Int32x4.swizzle(rx4, 1, 2, 3, 0));

} else if (r == 2) {
SIMD.Int32x4.store(state, 8,

SIMD.Int32x4.swizzle(rx4, 2, 3, 0, 1));
} else { // r == 3

SIMD.Int32x4.store(state, 12,
SIMD.Int32x4.swizzle(rx4, 3, 0, 1, 2));

} } }

Figure 3.6: Comparison of scalar vs. SIMD versions of ShiftRows function

Of course the impact of the SIMD instructions is dampened in the richer

workloads for which SIMD instructions are only one part of the instruction

mix. Nonetheless, it is encouraging to see that the skinning benchmark, which
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is based on an important real-world commercial JavaScript workload, enjoys

a 1.8× performance improvement due to the addition of SIMD instructions.

3.8.2 Energy

Figure 3.7 shows the energy improvement due to the SIMD extensions.

The graph shows scalar energy divided by SIMD energy using the hardware

performance counters. Any value higher than one reflects an energy improve-

ment due to SIMD. The results are consistent with those in Figure 3.5, with

the improvements dampened slightly. The dampening is a result of measure-

ment methodology. Whereas performance is measured on one CPU, package

energy is measured for the entire chip. The energy draw is affected both by

‘uncore’ demands such as the last level cache and memory controller, as well

other elements of the core such as L1 and L2 caches, the branch predictor,

etc., none of which are not be directly affected by the SIMD extensions.

83



0"

1"

2"

3"

4"

5"

6"

7"

M
at
rix
4x
4I
nv
er
se
"

M
at
rix
M
ul
7p

lic
a7

on
"

Sh
i=
Ro

w
s"

Ve
rt
ex
Tr
an
sf
or
m
"

Tr
an
sp
os
e4
x4
"

AO
Be

nc
h"

Av
er
ag
e3
2x
4"

M
an
de

lb
ro
t"

Si
ne

"

Sk
in
ni
ng
"

ge
om

ea
n"

Microbenchmarks" Kernels"

En
er
gy
'N
on

*S
IM

D'
/'
SI
M
D'

i5L4200U"Linux" "i7L3720QM"OS"X" i7L4770K"Linux"

Figure 3.7: SIMD energy on select platforms with V8. Normalized to the
scalar versions. Higher is better.

Nonetheless, the energy improvements are substantial. For the real-

world skinning workload the improvements are between 25% and 55%, which

is significant, particularly in the power-sensitive context of a mobile device.

3.9 Scalarlization

Programming language abstractions that introduce new features must

be able to execute on diverse hardware and software (browsers) without sacri-

ficing performance portability. The programming language extension that we

presented in this chapter for SIMD.JS guarantees performance when correctly

used on supported hardware. However, in order to have a complete solution –

one that is practical to standardize, we must analyze and optimize the use of

this abstraction in cases where the hardware does not support it. Ideally, when
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a programmer changes an application to exploit the performance benefits of

the SIMD hardware, the given application should perform at least as well as

the original version when executed on hardware that does not support SIMD.

In order to have browser and hardware portability (not yet perfor-

mance), a polyfill for SIMD.js, which implements the specification of this lan-

guage extension in JavaScript, is provided. In web development, a polyfill is a

piece of code which provides facilities that are not built into a particular web

browser. It implements technology that a developer expects the browser to

provide natively, providing a more uniform API landscape.

In this section, we explore the performance trade-offs by implement-

ing the following four different approaches to providing the functionality of

SIMD.js when vector instructions are not supported by the hardware – ordered

from the worst to the most performant: a) a polyfill approach using standard

JavaScript, b) a polyfill approach using the asm.js subset of JavaScript, c)

using the JIT compiler to perform scalar code generation from the SIMD.js

operations directly, and d) using an asm.js version of the SIMD.js functions

inlined in the JavaScript application directly (automated in a pre-pass).The

results expose the tradeoffs between compiler implementation effort, program-

mer involvement, and performance. We prototype these approaches in Spider-

monkey, the JavaScript engine in the Mozilla Firefox browser.

Figure 3.8 presents the performance results of the four different ap-

proaches we explore to provide SIMD.js functionality when vector instructions

are not supported by the hardware. The next four subsections go into more

detail for each. For each of the proposed approaches, we give examples, and

discuss the trade-offs between performance, implementation effort, and pro-

grammer involvement.
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Figure 3.8: Performance comparison when naively replacing vector instructions
for scalar instructions. Lower is better.

Each of the subsections below give examples that show how each ap-

proach would implement support for SIMD.js functionality when vector in-

structions are not supported by the hardware. The examples will refer to the

code below to show how the functionality of this sum function is provided:

var a = new Int32Array(1000);
function sum(n) {

var a_length = a.length;
var sum4 = SIMD.Int32x4.splat(0.0);
for (var j = 0; j < a_length; j += 4) {

sum4 = SIMD.Int32x4.add(sum4, SIMD.Int32x4.load(a, j));
}
return (SIMD.Int32x4.extractLane(sum4, 0) +

SIMD.Int32x4.extractLane(sum4, 1) +
SIMD.Int32x4.extractLane(sum4, 2) +
SIMD.Int32x4.extractLane(sum4, 3));

}
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This code implements a single function to add one thousand 32-bit

integers from an array and return the sum.

3.9.1 Polyfill in JavaScript

When a new feature is being added to the JavaScript language, some

browsers will implement it natively while others will not. For the browsers

that don’t support this functionality yet, developers must provide a library

that ensures the functionality of that feature (a polyfill). This is a common

approach in web development to provide functionality of new features that

are being added natively to the browser (e.g., JSON 2). Once features are

standardized and browsers support the latest version of the language, a polyfill

is no longer needed.

We introduce a new use for polyfills: in addition to providing cover for

a transient lapse in software support, the polyfill covers for a lack of hardware

support. A polyfill provides the functionality without needing to have multiple

versions of the JavaScript application depending on the hardware support for

vector instructions. Because the polyfill can be thought of as a library that

is developed by whoever is adding the new feature, this approach does not

burden the programmer with any changes other than to include the polyfill

in their application. Nonetheless, because the polyfill is written in JavaScript

itself, we expect it to perform poorly while still ensuring functionality.

Here we present a snippet of the simplified polyfill that supports the

functionality of the average function that we presented above. The JIT com-

piler would return undefined when an application checks its definition and the

compiler knows that the hardware doesn’t support vector instructions.
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var _i32x4 = new Int32Array(4);

if (typeof SIMD.Int32x4 === "undefined") {
SIMD.Int32x4 = function(x, y, z, w) {

if (!(this instanceof SIMD.Int32x4))
return new SIMD.Int32x4(x, y, z, w);

this.x_ = x;
this.y_ = y;
this.z_ = z;
this.w_ = w;

}}
if (typeof SIMD.Int32x4.splat === "undefined") {

SIMD.Int32x4.splat = function(s)
return SIMD.Int32x4(s, s, s, s);

}
if (typeof SIMD.Int32x4.extractLane === "undefined") {

SIMD.Int32x4.extractLane = function(t, i) {
switch(i) {

case 0: return t.x_;
case 1: return t.y_;
case 2: return t.z_;
case 3: return t.w_;

}}}
if (typeof SIMD.Int32x4.add === "undefined") {

SIMD.Int32x4.add = function(a, b) {
return SIMD.Int32x4(

SIMD.Int32x4.extractLane(a, 0) +
SIMD.Int32x4.extractLane(b, 0),

SIMD.Int32x4.extractLane(a, 1) +
SIMD.Int32x4.extractLane(b, 1),

SIMD.Int32x4.extractLane(a, 2) +
SIMD.Int32x4.extractLane(b, 2),

SIMD.Int32x4.extractLane(a, 3) +
SIMD.Int32x4.extractLane(b, 3));

}}

Figure 3.9: Snippet of polyfill support for SIMD.js
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The use of SIMD.js operations has typing information embedded as pre-

sented in Section 3.5. However, the polyfill must use base types in JavaScript

and thus implements all the SIMD functions using scalar JavaScript opera-

tions. Because of JavaScript’s weak typing for numbers (e.g., int32 vs float32),

the polyfill loses the typing information. Thus, Figure 3.8 shows that this ap-

proach performs very poorly. This heavy performance penalty is because of

the extra type checks that have to be performed at each basic block entry

point, the overhead of function calls, and the boxing/unboxing of arguments

and return values.

3.9.2 Polyfill in asm.js

The asm.js language consists of a strict JavaScript subset. The pri-

mary purpose of asm.js is a target into which code written in statically-typed

languages with manual memory management (such as C) is translated by a

source-to-source compiler such as Emscripten (based on LLVM) [40]. asm.js

performs better than regular JavaScript because it limits language features

to those amenable to ahead-of-time optimization (e.g., type consistency and

virtually no garbage collection). Generally, a preprocessor will generate asm.js

code (e.g., source-to-source compiler) because its specification makes it very

difficult to write and debug by hand. However, we expect to have better per-

formance numbers by using the asm.js subset to implement the polyfill that

provides the functionality of SIMD.js.

Here we present a snippet of the asm.js polyfill that supports the func-

tionality of the average function that we present above. For conciseness, we

only present the implementation of the constructor and extractLane functions

to understand the difference of asm.js and regular JavaScript.
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if (typeof SIMD.Int32x4 === "undefined") {
/**

* Construct a new instance of Int32x4 number.

* @param {integer} 32-bit value used for x lane.

* @param {integer} 32-bit value used for y lane.

* @param {integer} 32-bit value used for z lane.

* @param {integer} 32-bit value used for w lane.

* @constructor

*/

SIMD.Int32x4 = function(x, y, z, w) {
"use asm";
this.x_ = x | 0;
this.y_ = y | 0;
this.z_ = z | 0;
this.w_ = w | 0;

}
}
if (typeof SIMD.Int32x4.extractLane === "undefined") {

/**

* @param {Int32x4} t An instance of Int32x4.

* @param {integer} i Index in concatenation of t for lane i

* @return {integer} The value in lane i of t.

*/

SIMD.Int32x4.extractLane = function(t, i) {
"use asm";
i = i | 0;
switch(i) {

case 0: return t.x_ | 0;
case 1: return t.y_ | 0;
case 2: return t.z_ | 0 ;
case 3: return t.w_ | 0;

}
}

}

Figure 3.10: Snippet of asm.js polyfill support for SIMD.js
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In this case, the ahead-of-time compiler OdinMonkey – part of the

JavaScript engine in the Mozilla Firefox browser – will generate optimized

code that doesn’t include all the unnecessary type checks that the standard

JavaScript polyfill did. However, because of specification of asm.js, OdinMon-

key would not be able to compile the full SIMD.js module because there is a

dynamic check that the SIMD.js functions haven’t been patched. Figure 3.8

shows that this approach will also suffer in performance because of the over-

head of function calls as well as the boxing/unboxing of arguments and return

values. However, this version does combine better performance and portability

without compiler or hardware support for SIMD.js.

3.9.3 JIT code generation of scalar code

JIT code generation and optimization of scalar instructions from the

SIMD.js instructions has the opportunity to further improve performance, but

requires an implementation within each JavaScript runtime. Figure 3.11 shows

the different phases of IonMonkey, Firefox’s optimizing compiler. In the JIT

compiler, we can and do exploit the implementation that optimizes for vec-

tor hardware when we target a platform without vector hardware. We use

the suppport for inlining and unboxing of SIMD.js values to registers in the

JIT compiler. Therefore, the compiler generates optimized scalar code by

exploiting the type information in the SIMD.js instructions. Since the pre-

vious approaches do not modify the compiler, they do not exploit the type

information and therefore their performance suffers.
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Figure 3.11: Phases of optimizing compiler (IonMonkey) from the Firefox web
browser.

Original JavaScript Code

sum4 = SIMD.Int32x4.add(sum, SIMD.Int32x4.load(a, j));

Optimized Vector code

movq mm3,[esi+eax*8]
paddd mm2,mm3

Optimized Scalar code

movq mm3,[esi+eax*8]
add mm2,mm3
add eax,4
movq mm3,[esi+eax*8]
add mm2,mm3
add eax,4
movq mm3,[esi+eax*8]
add mm2,mm3
add eax,4
movq mm3,[esi+eax*8]
add mm2,mm3

Figure 3.12: Examples JIT generated scalar code
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Figure 3.8 shows that this approach performs even better than the

original scalar code for arithmetic and logical operations. However, in the case

of comparisons we see a performance degradation of 1.5X. This slowdown is due

to the JIT compiler having to maintain the abstraction that is expected from

the SIMD.js operations when SIMD hardware is available: When a comparison

operation is performed on two vectors, the result is another vector whose lanes

represent the results of the comparisons; the resulting vector is considered a

single value that can be unboxed into a single register to be used by a future

operation. Therefore, even though we can unroll the comparison operation

into four scalar versions, there is still an extra cost of putting the results into

a single variable that can be unboxed into a register.

3.9.4 asm.js code

This approach requires programmer involvement (or the use of a pre-

processor tool) at the time of the JavaScript application development. In this

case, the developer would manually inline a scalar version of the application

using the asm.js subset. As mentioned above, asm.js code is expected to be

generated by a pre-processor which can automatically generate this version

of the code. Therefore, the developer can develop a single version of the

application in a language that can be converted to LLVM (e.g., C/C++) and

then use Emscripten [40] to generate two versions of the JavaScript application

in asm.js – SIMD.js and scalar.

Figure 3.8 shows that this approach is the one that provides the best

performance compared to all of the solutions presented above and even the

original scalar code. This performance improvement comes at a cost of pro-

grammer involvement. For comparison operations, the main advantage of this
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approach compared to the JIT code generation of scalar code is the fact that

the return values from the SIMD operations can be kept in separate variables

(and after unboxing separate registers) because the programmer understands

the semantics of the application and can use those separate variables directly

afterwards. For non-streaming operations, this approach performs significantly

better because the shuffle and select operations can be replaced for simple no-

ops because the asm.js code just changes the name/order of the variables that

used in the subsequent scalar code.

3.9.5 Discussion

While SIMD.js takes the journey to standardization through the EC-

MAScript standardization committee, the existing specification of SIMD.js

hasn’t yet specified how SIMD.js will provide functionality when there is no

hardware support available. It is possible that the JavaScript standards could

leave this up to the browser vendor. We have shown four different ways to

provide SIMD.js functionality when there is no hardware support available.

The trade-offs between performance, implementation effort, and programmer

involvement are in the results. Currently, all applications written using the

SIMD.js language extension are shipping with the standard polyfill discussed

in Subsection 3.9.1 as a way to guarantee functionality when the support is

not available natively in the software or in the hardware. However, from the

results presented above, it is clear that this is far from the most performant

solution. Since SIMD.js is a language extension designed to exploit the vector

parallelism already available in the hardware to obtain better performance, it

would then follow that any developer that cares to use SIMD.js are likely to

care about performance on hardware that doesn’t support vector instructions.
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Because SIMD.js targets performance-sensitive developers, it makes

sense that programmer effort will be traded in favor of performance. We

now explore how great the programmer effort is likely to be. This is depen-

dent on the development path taken by the application that uses the SIMD.js

language extension. Section 3.4 describes SIMD.js as a compile target from

C/C++ as part of the design rationale. We expect that a significant majority

of the applications that use the SIMD.js language extension will come through

Emscripten which uses JavaScript as a compile target. In this scenario, the

programmer involvement is minimal as Emscripten can be modified to gener-

ate two versions of the JavaScript application from the C/C++ code: 1) One

that uses the SIMD.js extension when vector code is found in the native ver-

sion and 2) One that generates regular asm.js code by hot patching the native

vector code. Once both versions of the JavaScript code are generated, the

web application (HTML) could pick between the two implementations that

are automatically generated by Emscripten depending on whether hardware

support is available. This means that the programmer involvement for this

development path is limited to the time of generating the web application and

it is thus an acceptable solution. Unfortunately, this is not the case when a de-

veloper uses SIMD.js directly as part of his JavaScript application. To obtain

similar performance, the developer would need to: a) Use asm.js to develop

the part of the application that uses SIMD.js and b) Write a scalar version of

that part using asm.js as well. Developing in asm.js is not an easy task and

takes away a lot of the productivity of JavaScript as a language, making this

approach an unfeasible solution.

Because of the availability of multiple browsers that implement the

JavaScript standard, the implementation effort for producing scalar code from
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SIMD.js operations plays a role in deciding which approach is used when we

lack the hardware support. This trade-off between performance, compiler

implementation effort, and programmer involvement will have to be decided

based on whether SIMD.js will be expected to be used mostly/solely as a

compiler target from other languages that already have vector representation

or whether it is expected that JavaScript developers will use it to optimize their

existing applications. Stage four of standardization through the ECMAScript

committee requests developer feedback to understand whether any changes

will need to be made to the specification before it is final. We expect to see

more applications that use SIMD.js after this step and hope to have a clear

choice for scalarlization based on the development paths of these applications.

3.10 Future Work Discussion

Our design goal of portability is intended to be consistent with the

existing JavaScript language specification. However, this constraint precludes

platform-specific optimizations which are not currently accessible from JS that

would benefit performance and energy efficiency.

First, the opportunity to use wider vector lengths, such as the AVX

512 vector instruction set that Intel is already shipping, will deliver additional

performance improvements, particularly on the server side. Stream processors

(in the form of an API) can and will be built in software on top of the current

SIMD.js specification to utilize this hardware.

Second, a large number of hardware operations are currently not sup-

ported, including platform-specific ones. One approach may be to provide

an extended API for SIMD.js that accesses platform-specific instructions and

optimizations. This API would sit on top of and complement the base API

96



described in this chapter. The extension API could offer opportunities for

performance tuning, specialized code sequences, and support porting of code

from other platforms. One can classify the remaining SIMD operations in two

groups: those that are portable but have semantic differences (SIMD.Relaxed)

and those that are only available on some platforms (SIMD.Universe). Func-

tions in SIMD.Relaxed would mimic functions in the base API with corre-

sponding names, and provide weaker portability with greater potential for

performance (e.g., with unspecified results if NaN were to appear in any part

of the computation, treating zero as interchangeable with negative zero, and

unspecified results if an overflow occurs). Functions in the SIMD.Universe

namespace could adhere to well defined semantics but their availability would

result in various code paths depending on the architecture. For example,

SIMD.isFast would need to check whether the JIT compiler can generate a

fast code sequence from each operation for the current hardware.

3.11 Conclusion

This chapter describes the design and implementation of a portable

SIMD language extension for JavaScript. This specification is in the final

stages of adoption by the JavaScript standards committee, and our imple-

mentations are available in the V8 and SpiderMonkey open-source JavaScript

VMs. The contributions of this chapter include a principled design philosophy,

a fixed-size SIMD vector language specification, a type-speculation optimiza-

tion, and performance and energy evaluations on critical kernels. We describe

the language extension, its implementation in two current JavaScript JIT com-

pilers, and evaluate the impact in both execution time and energy efficiency.

Programability, portability, ease of implementation, and popular use-cases all
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influenced our decision to choose a fixed-width 128-bit vector design. Our

evaluation demonstrates that the SIMD extensions deliver substantial improve-

ments in execution time and energy efficiency for vector workloads. Our design

and implementation choices do not preclude adding more SIMD operations in

the future, high-level JavaScript libraries to implement larger vector sizes, or

adding automatic vectorizing compiler support. Another potential avenue for

future work is agressive machine-specific JIT optimizations to utilize wider

vectors when available in the underling hardware. Our results indicate that

these avenues would likely be fruitful.
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Chapter 4

Conclusion

Software and hardware platforms have and will continue to keep evolv-

ing over time in order to satisfy ever increasing demands for productivity, per-

formance, and energy efficiency. On one hand, programmers choose managed

languages to boost productivity and increase agility of software development

by leveraging virtual machine services. On the other hand, hardware design

continues to evolve and introduce many types of parallelism as the principle

constraint on hardware shifts from transistor count to power. This shift is in-

troducing specialized hardware (e.g., FPGAs) as means for better performance

and energy efficiency for general computing. Changing the software for every

new version of the hardware is unfeasible and too expensive. Particularly, as

hardware vendors make different design decisions to provide better efficiency,

attaining portable performance is going to become even more difficult.

The increasingly prevalence of managed languages in mobile, client,

and server workloads makes virtual machine technologies an ideal abstraction

over hardware complexity because they already profile, optimize, and schedule

applications. However, they do so at a significant cost and do not yet target

all forms of parallelism.

This thesis seeks to allow managed programming languages to effi-

ciently exploit the underlying parallelism available in the hardware. Leverag-

ing virtual machine technology as an efficient abstraction limits the developers

exposure to the increasingly complex parallelism of evolving hardware.

99



We use the virtual machine abstraction layer to leverage two particular

forms of heterogenous parallelism available in the hardware today: task level

parallelism available in asymmetric multicore processors and data parallelism

available as instructions sets in the hardware. This thesis demonstrates novel

approaches to exploiting parallelism and heterogeneity in managed program-

ming languages in two distinct ways. 1) We present virtual machine technolo-

gies that analyze applications and matches them to the heterogenous paral-

lelism in asymmetric multicore processors to significantly improve performance

and energy efficiency of server Java applications. We identify non-scalable par-

allelism (i.e., messiness) of managed programming languages workloads as a

key problem in these workloads. In particular, we present the first fully au-

tomated software approach to identify, prioritize, and accelerate threads that

hold locks and are thus performance bottlenecks. 2) We present a language ex-

tension for JavaScript that allows web applications to exploit the data parallel

instruction sets available in the hardware in a portable manner. The impact

of this thesis is already being felt because the SIMD.js JavaScript language

extension is making it to the language standard.

In combination, these contributions demonstrate the opportunities and

tackle the challenges that arise from using the managed languages abstrac-

tions over the complex parallelism in the hardware. We deliver solutions to

efficiently exploit the evolving hardware with little or no burden to the applica-

tion developers by 1) designing and implementing a new language abstraction

for data parallelism for JavaScript that is easy for programmers to use and

2) introducing new static and dynamic analyses, compile-time optimizations,

and runtime optimizations that exploit the parallelism in asymmetric multi-

core processors.
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