
The Design and Construction of
High Performance
Garbage Collectors

Robin Garner

May 2012

A thesis submitted for the degree of
Doctor of Philosophy at

The Australian National University

c© Robin Garner

Typeset in Palatino by TEX and LATEX 2ε.

Except where otherwise indicated, this thesis is my own original work.

Robin Garner
13 July 2011

Abstract

Garbage collection is a performance-critical component of modern language imple-
mentations. The performance of a garbage collector depends in part on major al-
gorithmic decisions, but also significantly on implementation details and techniques
which are often incidental in the literature.

In this dissertation I look in detail at the performance characteristics of garbage
collection on modern architectures. My thesis is that a thorough understanding of
the characteristics of the heap to be collected, coupled with measured performance of
various design alternatives on a range of modern architectures provides insights that
can be used to improve the performance of any garbage collection algorithm.

The key contributions of this work are: 1) A new analysis technique (replay collec-
tion) for measuring the performance of garbage collection algorithms; 2) a novel tech-
nique for applying software prefetch to non-moving garbage collectors that achieves
significant performance gains; and 3) a comprehensive analysis of object scanning
techniques, cataloguing and comparing the performance of the known methods, and
leading to a new technique that optimizes performance without significant cost to the
runtime environment.

These contributions are applicable to a wide range of garbage collectors, and can
provide significant measurable speedups to a design point where each implementer
in the past has had to trust intuition or their own benchmarking. The methodologies
and implementation techniques contributed in this dissertation have the potential to
make a significant improvement to the performance of every garbage collector.

v

vi

Contents

Abstract v

1 Introduction 1
1.1 Problem Statement . 1
1.2 Scope and Contributions . 3

1.2.1 Workload Evaluation . 3
1.2.2 Software Prefetch for Garbage Collection 3
1.2.3 Object Scanning Techniques . 3

1.3 Thesis Outline . 4

2 Background 5
2.1 Garbage Collection . 5

2.1.1 Terminology . 7
2.1.2 Memory allocation . 8

2.1.2.1 Free-list allocators . 8
2.1.2.2 Monotonic allocators . 9
2.1.2.3 Multi-threaded allocators 9

2.1.3 Canonical garbage collection algorithms 10
2.1.3.1 Mark-sweep . 10
2.1.3.2 Reference counting . 11
2.1.3.3 Evacuating . 12
2.1.3.4 Compacting . 13
2.1.3.5 Mark-region . 14
2.1.3.6 Generational . 14

2.1.4 Object Scanning . 15
2.2 Infrastructure . 16

2.2.1 Jikes RVM . 16
2.2.1.1 Low-level Programming 17
2.2.1.2 Replay Compilation . 17

2.2.2 MMTk . 18
2.2.2.1 The MMTk Free-list Allocator 18
2.2.2.2 Credibility of MMTk As An Experimental Platform . . . 19

2.3 Evaluation Methodology . 19
2.3.1 Benchmarks . 20

2.3.1.1 The SPEC Benchmarks 20
2.3.1.2 The DaCapo Benchmarks 21

2.3.2 Evaluation Methodology . 21

vii

viii Contents

2.4 Summary . 22

3 Garbage Collector Performance 23
3.1 Introduction . 23
3.2 The Replay Tracing Framework . 24
3.3 Results . 25

3.3.1 The Composition of the Tracing Loop 25
3.3.1.1 Replay Scenarios . 25
3.3.1.2 Tracing Costs . 28

Framework Overhead . 28
Experiments . 28

3.3.1.3 Results . 29
3.3.2 Mark State Implementations . 31
3.3.3 Heap Traversal Order . 33

3.3.3.1 Experiments . 33
3.3.3.2 Results . 35

Depth-first versus breadth-first 35
FIFO buffer . 36
Work Packet . 36
Scan Direction . 36
Edge Enqueuing . 37

3.3.3.3 Conclusion . 39
3.4 Summary . 39

4 Effective Software Prefetch 41
4.1 Introduction . 41
4.2 Related work . 42
4.3 Key Mark-Sweep Design Choices . 44

4.3.1 Allocation . 44
4.3.2 Mark state . 44
4.3.3 Sweep . 44

4.3.3.1 Block marks . 45
4.3.3.2 Cyclic mark state . 45

4.3.4 Work queue . 46
4.4 Software Prefetching . 46

4.4.1 Prefetching For GC Tracing . 47
4.5 Edge Order Traversal . 47
4.6 Performance Results . 48
4.7 Robustness: Experiences With Other Code Bases 52
4.8 Summary . 52

5 Object Scanning 53
5.1 Introduction . 54
5.2 Related Work . 55

Contents ix

5.3 Analysis of Scanning Patterns . 56
5.3.1 Analysis Methodology . 57
5.3.2 Encoding and Counting Patterns 57
5.3.3 Benchmarks . 60
5.3.4 Reference Pattern Distributions . 60
5.3.5 Reference Field Count Distributions 63

5.4 Design Alternatives . 63
5.4.1 The Jikes RVM Scanning Mechanism 63
5.4.2 Inlining Common Cases . 64
5.4.3 Compiled vs. Interpreted Evaluation 65
5.4.4 Encoding and Packing of Metadata 65
5.4.5 Indirection to Metadata . 66
5.4.6 Object Layout Optimizations . 66

5.5 Methodology . 67
5.5.1 Hardware Platforms . 68
5.5.2 Configurations . 68

5.6 Results . 69
5.6.1 Inlining Common Cases . 70
5.6.2 Compiled vs. Interpreted Evaluation 70
5.6.3 Encoding and Packing of Metadata 71
5.6.4 Indirection to Metadata . 71
5.6.5 Object Layout Optimizations . 72
5.6.6 Conclusion . 72

5.7 Summary . 75

6 Conclusion 79
6.1 Future Work . 79

6.1.1 Prefetch . 80
6.1.2 Scanning . 80

Bibliography 81

x Contents

List of Figures

1.1 Architectural dependence on GC performance 2

2.1 Mark-Sweep Garbage Collection . 11

3.1 The Standard Tracing Loop . 26
3.2 Replay Scenarios . 27
3.3 Replay Scenario for Evaluating Mark-state Implementations 32
3.4 The Edge-Enqueuing Tracing Loop . 35
3.5 Effects of traversal order: major design choices 36
3.6 Effects of a FIFO buffer . 36
3.7 Effects of partial breadth-first (work packet) traversal order 37
3.8 Reversing the order of scanning of fields 37
3.9 Edge enqueuing. 37
3.10 Edge enqueuing with a FIFO buffer . 38
3.11 Edge enqueuing. Effects of partial breadth-first order 38

4.1 The FIFO-Buffered Prefetch Queue [Cher et al., 2004]. 43
4.2 Comparing the Standard and Edge Enqueuing Tracing Loops 48
4.3 Normalized GC time vs. prefetch distance 49
4.4 Normalized total time vs. prefetch distance 50
4.5 Relative total execution time as a function of heap size 51

5.1 Cumulative frequency distribution curves for reference layout patterns . . 59
5.2 Cumulative frequency distribution curves for reference field counts . . . 62
5.3 Objects and Per-Class Metadata Structure in Jikes RVM. 64
5.4 The default scanning loop in Jikes RVM. 64
5.5 Unoptimized and optimized versions of scanning code. 65
5.6 Inlining common cases . 70
5.7 Specialization . 70
5.8 Header encodings . 71
5.9 Levels of indirection . 72
5.10 Object layout optimizations . 73
5.11 Six well-performing designs . 74
5.12 Six well-performing designs—per-benchmark, Core i5 and Core 2 pro-

cessors . 76
5.13 Six well-performing designs—per-benchmark, Phenom and Atom pro-

cessors . 77

xi

xii LIST OF FIGURES

List of Tables

2.1 Comparative GC performance, MMTk (Jikes RVM) vs. Boehm (GCJ).
GC Throughput in MB/s . 19

3.1 Tracing loop time as a percentage of total GC time. 24
3.2 Hardware Platforms used for the Replay Tracing Loop Costs Experiments 28
3.3 Elapsed Time for Various Scenarios for Two Design Points, Normalized

to the Synchronized Mark Scenario. 29
3.4 Costs for Two Designs, Showing Time, Retired Instructions, L1 & L2

Misses, Normalized to Each Mark Scenario. 30
3.5 Elapsed Time for Various Scenarios for Four Design Points, Normalized

to the Synchronized Mark Scenario. 32
3.6 Cost of The Mark Mechanism Alone for Four Design Points, Each Nor-

malized to Cost of Entire Mark Scenario. 33
3.7 Hardware platforms used for heap traversal order experiments. 35

4.1 Hardware Platforms for prefetch experiments 49

5.1 Detailed reference layout pattern distributions for ‘references first’ object
layout . 58

5.2 Detailed reference field count distributions 61
5.3 Hardware platforms for scanning experiments. 68
5.4 Object scanning configurations evaluated 68
5.5 Header encoding: Percentage of objects covered by the schemes evalu-

ated. 69

xiii

xiv LIST OF TABLES

Chapter 1

Introduction

This thesis addresses the problem of designing high performance implementations of
garbage collection algorithms on modern hardware.

1.1 Problem Statement

Garbage collection is an increasingly important feature of modern programming lan-
guages. Since its inception in LISP [McCarthy, 1960], there has been a huge volume of
research into garbage collection. Most of this research has focused on the algorithm
used, rather than the details of its implementation.

The performance characteristics of garbage collectors depend strongly on proces-
sor architecture, particularly on the speed ratio between Register/ALU operations
and memory operations at the various levels of cache. For example, see Figure 1.1, re-
produced from Blackburn et al. [2004a], which shows the performance of six garbage
collectors on three architectures across a range of heap sizes. The data point of in-
terest is the point where the curves for MS (Mark-Sweep) and SS (Semi-Space) inter-
sect. Mark-sweep is a high throughput collector with poor mutator locality, while
semi-space is a low throughput collector with excellent mutator locality. In a large
heap, the garbage collector runs less frequently, and mutator performance dominates
overall performance. As the heap size decreases the garbage collector performance
comes to dominate. On architectures where locality is more important, the crossover
point will occur at a smaller heap size, and the semi-space collector will outperform
mark-sweep over a larger range of heap sizes. On an architecture where locality was
unimportant (e.g. on historical machines with a flat memory hierarchy) mark-sweep
would perform better than semi-space across all heap sizes. This architectural depen-
dence means that the measurement and analysis that informs garbage collector design
decisions is as important as overall performance, if not more so—because while a par-
ticular design may be superseded by advances in technology, the analysis techniques
that led to the design are likely to still be relevant.

Another important factor in garbage collector performance is the workload, i.e. the
composition of the heap in its target applications. For research in the field, this effec-
tively means the benchmarks used to evaluate the work. Garbage collector implemen-
tations that look carefully at the heap composition can be more effectively optimized

1

2 Introduction

 1

 1.5

 2

 2.5

 3

 1 2 3 4 5 6

 6

 8

 10

 12

 14

20 40 60 80 100

N
or

m
al

iz
ed

 T
im

e

T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

SemiSpace
MarkSweep

RefCount
GenCopy

GenMS
GenRC

(a) Pentium 4, 2.6GHz, 8KB L1, 256KB L2

 1

 1.5

 2

 2.5

 3

 1 2 3 4 5 6

 6

 8

 10

 12

 14

20 40 60 80 100

N
or

m
al

iz
ed

 T
im

e

T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

SemiSpace
MarkSweep

RefCount
GenCopy

GenMS
GenRC

(b) AMD Athlon 2600+, 1.9GHz, 64KB L1, 512KB L2

 1

 1.5

 2

 2.5

 3

 1 2 3 4 5 6

 6

 8

 10

 12

 14

20 40 60 80 100

N
or

m
al

iz
ed

 T
im

e

T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

SemiSpace
MarkSweep

RefCount
GenCopy

GenMS
GenRC

(c) Power PC 970, 1.6GHz, 32KB L1, 512KB L2

Figure 1.1: Architectural dependence on GC performance. Total running
time on three architectures, geometric mean of the Spec JVM
98 benchmarks. Reproduced from Blackburn et al. [2004a].

§1.2 Scope and Contributions 3

to make the frequent case fast, and achieve speedups that would not otherwise be
possible.

1.2 Scope and Contributions

The aim of my research has been to identify ways in which the performance of garbage
collection can be improved, and to measure and quantify the improvement. To do this,
I have used the Jikes RVM Java virtual machine, because this is a high-performance,
freely available implementation of one of the most relevant modern programming
languages. While the specific quantitative results may change, the methodologies and
results should be applicable to other Java implementations, and to other programming
languages.

1.2.1 Workload Evaluation

One of my key contentions is that the design of high performance garbage collectors
must be driven by a thorough empirical understanding of the workload and the per-
formance of the system being implemented. During the course of my PhD I have been
deeply engaged in the development of the DaCapo benchmark suite [Blackburn et al.,
2006, 2008].

This dissertation introduces the technique of replay collection as a methodology for
evaluating the performance of a garbage collector. This technique is used to exam-
ine several aspects of the performance of a collector, and results from this evaluation
inform the implementation techniques presented in later chapters.

1.2.2 Software Prefetch for Garbage Collection

Several authors have applied software prefetch to garbage collection, and have achiev-
ed modest speedups at best. We show how a little-used algorithm for heap traversal,
coupled with buffered prefetch and a new object metadata implementation combine
to yield significant, consistent speedups on a large class of garbage collectors on a
wide range of benchmarks and hardware platforms.

1.2.3 Object Scanning Techniques

We comprehensively investigate the second most significant component of the garbage
collection loop, reference field identification or object scanning. The evaluation and
comparison of all published object scanning methods is a significant contribution to
the garbage collection literature. We also contribute a new technique—using a small
field in the object header to encode frequent object patterns—which coupled with
scanning method specialization gives significant, consistent speedups over standard
approaches.

4 Introduction

1.3 Thesis Outline

The body of this thesis is structured around the three contributions outlined above.
Chapter 2 provides an overview of garbage collection with particular focus on the

techniques discussed in this thesis. It also provides background on the benchmarks
used for memory management research, and particularly the DaCapo benchmarks
project. Further, this chapter describes Jikes RVM and MMTk, and outlines briefly the
evaluation techniques used in this research.

Chapters 3–5 comprise the main body of the thesis. They cover the three major
research contributions outlined in Section 1.2.

Finally, Chapter 6 concludes the thesis, summarizing how my contributions have
addressed the problem of designing and implementing high performance garbage
collectors, and identifying future research directions.

Chapter 2

Background

It will take more time:
If you touch it, it will break...
Software is wily.

Rose [2008]

This chapter provides the background material necessary to place the research
contributions in context, and to describe the specific research infrastructure used in
the remainder of the thesis.

Section 2.1 begins with a brief introduction to the field of garbage collection, with
emphasis on the specific techniques that form the basis of this thesis. Section 2.2 de-
scribes Jikes RVM, the research Java virtual machine in which this work was imple-
mented, and MMTk, the memory manager used in Jikes RVM. Section 2.3 describes
the benchmarks and experimental methodology used to evaluate the designs pre-
sented in later chapters.

2.1 Garbage Collection

Automatic memory management, or garbage collection, has been a feature of many
programming languages since early versions of LISP [McCarthy, 1960], and is now in
widespread use due to the popularity of languages such as Java, C#, Python and Perl.
This section provides a brief overview of garbage collection terminology, algorithms,
and mechanisms. For a more complete discussion of the fundamentals of garbage
collection see Jones and Lins [1996]; Jones et al. [2011]; Wilson [1992].

The purpose of garbage collection is to reclaim memory that is no longer needed
by the program, and to recycle it for later use. Garbage collection algorithms can be
classified in terms of several attributes, including:

• How they identify live data, either by tracing (following pointers from a fixed
root set) or using reference counts.

• Whether they run concurrently with the program, or as ‘stop the world’ collec-
tors that stop program execution to perform collection.

5

6 Background

• Whether they move objects in the heap (copying collectors), or not.

• Whether they require accurate type information from the compiler (precise col-
lectors) or can run with limited or no information (conservative and ambiguous
roots collectors).

• Whether at every invocation they collect the whole heap, part of the heap (as in
generational collectors) or spread the work evenly throughout program execu-
tion time (incremental collectors).

The time complexity of garbage collection algorithms is almost always linear in some
aspect of program behaviour or heap size, and efficiency is gained by decreasing
the constant factors in the complexity equation. Some collectors require intervention
when values are stored or read from pointer fields, and have overhead proportional
to the pointer mutation rate.

There are some drawbacks to automatic memory management. Manual memory
management potentially uses less memory, since objects can be freed as soon as they
are no longer used, rather than waiting until many objects are ready to be reclaimed,
as most garbage collectors do. In practice automatic memory management introduces
a space-time tradeoff, where a larger heap allows for less frequent garbage collection
and consequently better performance. Manual memory management is, however, not
without its own space overheads. In a complex system it can often be very difficult to
determine when an object is no longer in use.

One system for manual memory management that helps the programmer track
objects that are in use is talloc [Tridgell, 2004], which solves the problem by adding
an additional 32-byte header (60 bytes in a 64-bit system) to objects, over and above
the header used by the underlying ‘malloc’ allocator, and reclaims unused objects
in a tree structure. Allocating memory in talloc requires specifying a parent talloc
context, and when a talloc object is freed, all the objects allocated within its context are
also freed. Using talloc correctly requires that all functions that allocate memory be
replaced with their talloc equivalents, and that code that allocates memory that lives
beyond its enclosing context needs to export it to the external context. In exchange
for this additional complexity, talloc provides considerable debugging assistance in
tracking down memory leaks and use-after-free errors.

Hertz and Berger [2005] explore the tradeoff between automatic and manual mem-
ory management in an artificial setting, using a memory trace from a previous run of
the benchmark to determine when objects become unreachable and inserting explicit
calls to free objects at the moment they become unreachable. This analysis, while
interesting in itself, ignores the enormous programming effort and overhead (as in
talloc above) required to track the ownership of objects and determine when they are
no longer used. The most frequently cited study is Rovner [1985], who found that
Mesa programmers spent 40% of their time implementing memory management pro-
cedures and finding errors related to explicit storage management.

Another often cited problem with garbage collected systems is a lack of determin-
istic finalization. Finalization is a feature of memory management systems that allows

§2.1 Garbage Collection 7

a programmer to provide code that the system undertakes to execute after an object
is found to be unreachable but before it is reclaimed. In an explicit memory manage-
ment system, finalizers are executed at the moment the programmer frees the object,
while in a garbage collected system this only occurs sometime after the last reference
to the object is removed. In some memory managers the finalizer may only be called
when the program exits, since memory is generally only freed in response to resource
exhaustion. In my opinion this claimed drawback is rather specious, since while the
finalization feature (and its slightly more usable weak reference feature) have limita-
tions, there is nothing stopping the programmer from executing finalization code at
the point they determine that the object is about to become unreachable. The advan-
tage that garbage collection supported finalization adds is that a finalizer will even-
tually be run, even when an object becomes unreachable without the programmer
noticing and arranging for manual finalization.

As with finalization, another potential drawback of garbage collection is that it can
provide the programmer with a false sense of security, leaving them the illusion that
memory management is purely a runtime-system issue. In practice, garbage collected
systems can have memory leaks if the programmer maintains references to memory
that is no longer in use. This can sometimes be subtle, such as when the compiler’s
liveness analysis is less than perfect—a variable that is no longer in scope may main-
tain a pointer to a large data structure. These memory leaks are easily fixed by ex-
plicitly breaking the link to the data structure at the point the programmer no longer
needs it, and the garbage collector still frees the programmer from leaks due to gen-
uinely unreachable memory.

2.1.1 Terminology

The area of memory used to allocate dynamic data structures is known as the heap, and
blocks of memory allocated on the heap are generally referred to as objects, whether
the language is object-oriented or not. The process of reclaiming unused memory is
known as garbage collection, a term coined by McCarthy [1960]. Following Dijkstra
et al. [1976], from the point of view of the garbage collector, the term mutator refers
to the application, being the part of the system that mutates the heap. Most garbage
collection algorithms interrupt the execution of the mutator for varying amounts of
time, and the term pause time is used to refer to the length of time that the garbage col-
lector interrupts the main program. Collectors that must stop the mutator to perform
collection work are known as stop the world collectors, as compared to concurrent or on-
the-fly collectors. Of particular interest to real-time systems is the maximum pause time,
because when this can be reduced (or preferably bounded) the system will be more
responsive. The term GC time is used to denote the time when the garbage collector is
running.

A garbage collector that always checks the liveness of all objects in the heap is
known as a full heap collector, as compared to a generational or incremental collector.

Some garbage collectors require interaction with the running mutator. These in-
teractions are known generically as barriers. The most common form of barrier is a

8 Background

write barrier, which is invoked whenever the mutator writes to a field in an object in
the heap. Less commonly used are read barriers, invoked on a read of a field, and stack
barriers invoked on return from a method call. Barriers are typically only required on
reference fields, although some collectors require barriers on non-reference fields.

2.1.2 Memory allocation

Memory allocation is in itself an extensive field, and the standard reference is the sur-
vey paper by Wilson et al. [1995]. The key issues for memory allocation are locality,
speed of allocation and de-allocation, and avoidance of fragmentation. In an ideal sys-
tem with unbounded memory resources, allocation could be done by incrementing a
single pointer that indicates the highest address currently in use. This idea is referred
to as monotonic or bump pointer allocation, and is of practical use in several situations.

When discussing memory allocation, one of the key efficiency issues is fragmen-
tation, which refers to memory wasted by the allocator. There are two types of frag-
mentation: internal fragmentation occurs when the allocator returns a larger region of
memory than the user requested, resulting in part of the allocated cell being unused;
external fragmentation occurs when free memory is available in the spaces between al-
located regions, but which is too small to satisfy an allocation request.

2.1.2.1 Free-list allocators

In systems where all memory cells are the same size (such as LISP), a bitmap can be
used to indicate which cell of memory is free. Object allocation in this style of allocator
searches the bitmap for the first free bit, then returns the address of the corresponding
block. The most widely used allocation strategy in explicitly managed heaps is the
free-list allocator, which chains together free blocks of memory into a list. The design
space for free-list allocators is large, and involves complex trade-offs between space
and time efficiency.

At one end of the design spectrum for free-list allocators is an exact first fit algo-
rithm. Initially the allocator assigns the entire heap to a single large contiguous block,
and satisfies allocation requests by returning an initial segment of the unused mem-
ory. As the program returns objects to the memory manager, it chains them on a list, in
ascending order of size. When the allocator processes a new request, it scans the free
list, and returns the first block that is the same or greater size than the request. If the
block found is larger than the request, the allocator splits the block, and returns the
unused portion to the free list. This algorithm suffers badly from external fragmen-
tation [Robson, 1975], and coalescing of small unused chunks into larger fragments,
while expensive to implement, is necessary to make this practical.

At the other end of the spectrum is a segregated fits algorithm, that rounds up
memory requests to a series of thresholds. This class of algorithm has very good
allocation and de-allocation performance, but can suffer from internal fragmentation
if cell sizes are a poor match for application allocation request patterns. This approach
is typified by the Kingsley allocator [Wilson et al., 1995], an implementation of the

§2.1 Garbage Collection 9

buddy system [Knowlton, 1965], a power of 2 segregated fits allocator with extremely
fast performance, but which has a worst case internal fragmentation penalty of 50% of
available memory. The Kingsley allocator was the default implementation of malloc
in BSD Unix 4.2.

The best known free-list allocators, such as the Lea allocator used by GNU
libc [Lea, 1998], use a combination of strategies for different size objects. For small
objects, which are most frequent, Lea uses segregated free-lists at 8-byte increments.
For medium sized objects (64–128K bytes), a single free-list with approximate best-fit
is used, while for objects larger than 128KB, Lea uses the underlying operating sys-
tems virtual memory allocation functions.

One disadvantage of free-list allocators is that objects allocated contemporane-
ously are not guaranteed to be collocated in memory. That is, temporal locality does
not lead to spatial locality. Objects allocated close in time are frequently accessed to-
gether during execution, so free-list allocators lead to poor cache hit rates, and hence
poor mutator performance compared to monotonic allocators [Blackburn et al., 2004a].

2.1.2.2 Monotonic allocators

Much faster than a free-list allocator is a monotonic or bump-pointer allocator. The al-
locator acquires a region of unused memory, maintains a single pointer to the lowest
free address in the region, and after allocating an object, increments (‘bumps’) it by
the size of the object just allocated. When memory is exhausted, a garbage collection
mechanism (such as the semi-space collector described below in Section 2.1.3.3) is in-
voked, which frees a large contiguous region or regions so that allocation can resume.
In a practical collector, the bump-pointer will allocate regions at some chunk size, e.g.
32KB in MMTk. A larger chunk size minimizes chunk allocation overhead and multi-
threading overhead, while a smaller chunk size minimizes wasted space, especially
important in multi-threaded allocators. Bump-pointer allocation is significantly faster
than free-list allocation, and has better mutator performance [Blackburn et al., 2004a].

2.1.2.3 Multi-threaded allocators

Multi-threaded allocators raise several issues not relevant to single-threaded alloca-
tors [e.g. Alpern et al., 2000; Berger et al., 2000; Garthwaite and White, 1998]. First,
sharing a single free-list pointer or bump-pointer in a multi-threaded system incurs
significant synchronization overhead. Second, in the majority of applications, most
objects allocated by a thread are used only by that thread, so interleaving objects allo-
cated by different threads can lead to false sharing of cache lines and consequent poor
performance even when no objects are shared between threads.

Most multi-threaded systems use some version of private allocators, where each
thread allocates a moderate size chunk of memory from a global pool using synchro-
nization, and then allocates objects from that chunk without synchronization. Because
these chunks are typically much larger than a cache line, false sharing can only occur
where objects are actually shared by multiple threads. Synchronization overhead is

10 Background

greatly reduced provided that the thread-local chunks are sufficiently large, although
there is an evident space/time trade-off.

2.1.3 Canonical garbage collection algorithms

This section describes the basic algorithms used to construct garbage collectors.
Dijkstra et al. [1976] introduced the tri-colour abstraction, which is useful in dis-

cussing and comparing garbage collection algorithms. The abstraction defines objects
in the heap to be one of three colours, traditionally white, grey and black. A classic
full-heap stop-the-world collector begins with all objects coloured white. The collec-
tor iterates through the root set, i.e. the set of references into the collected heap—static
program variables, stack-allocated local variables and registers, colouring all refer-
enced objects grey. The collector then iterates, choosing an object in the grey set and
colouring all of its white referents grey, then colouring the chosen object black. The
process terminates when the grey set is empty. This forms the transitive closure of
the root set over the heap, identifying all objects which are reachable from variables
in the program. At this point, any object still coloured white is unreachable and can
be reclaimed. Collectors differ largely in how these sets are represented, and what
happens when an object is moved from one set to another.

We use the term tracing to refer to this transitive closure process. A tracing collector
is one that determines liveness purely via a transitive closure process, as opposed to a
reference counting collector (see Section 2.1.3.2 below).

2.1.3.1 Mark-sweep

The first garbage collection algorithm was created as part of the LISP system [Mc-
Carthy, 1960], and is today known as mark-sweep. The mark-sweep algorithm asso-
ciates a single bit flag called the mark bit with each object, initially set to zero, corre-
sponding to white in the tricolour abstraction. The initial scan of the root set proceeds
by setting the referenced object’s mark bit to one and adding it to the work list. The
grey objects in the abstraction correspond to the contents of the work list. During the
closure phase (known in a mark-sweep collector as the mark phase), the collector iter-
ates until the work list becomes empty. In each iteration an object is removed from
the work list and the mark bits of each of the objects it refers to are checked. If the
mark bit is unset, the collector sets it and adds it to the work list. The black set in
the abstraction consists of those objects that have been marked, and processed by the
collector loop.

Once the mark phase is complete, the collector scans the heap sequentially, placing
every object whose mark bit is zero (the final white set) on a list of free memory cells,
and resetting the mark bit of every marked object to zero in preparation for the next
collection phase. When this sweep phase is complete, control returns to the program
and execution resumes.

Mark-sweep collection is relatively simple to implement, and has a low space over-
head, requiring only a single bit per object and the work queue. Implementations vary

§2.1 Garbage Collection 11

1 // Mark phase
2 for (object in root-set)
3 markBit(object).set()
4 work.add(object)
5

6 while (!work.isEmpty())
7 obj = work.remove()
8 for (child in referents(obj))
9 if (markBit(child).testAndSet())

10 work.add(child)
11

12 // Sweep phase
13 for (object in allObjects)
14 if (markBit(object).isSet())
15 markBit(object).clear()
16 else
17 free-list.add(object)

Figure 2.1: Mark-Sweep Garbage Collection

as to whether the mark bit is kept in the object header, or separately in a side array.
Mark-sweep as described above is relatively inefficient, taking time proportional to
the size of the whole heap regardless of the amount of live data. It also suffers from
a large pause time, although there are concurrent mark sweep algorithms that reduce
this. Naı̈ve mark-sweep collection requires a free-list memory organisation, and there-
fore incurs a higher allocation cost and worse locality than garbage collection schemes
that use monotonic allocation.

Hughes [1982] introduced the concept of lazy sweeping. Rather than sweep the
entire heap during the garbage collection, the mutator sweeps the heap incrementally,
generally a block at a time, where the definition of a block varies by implementation.
While this does not decrease the total cost of sweeping, it does significantly reduce
pause times. Boehm [2000] notes that lazy sweeping has a locality advantage, since
the sweep operation loads memory into cache that the allocator is just about to use.
When the cost of sweeping is delegated to the mutator, mark-sweep is the fastest full-
heap garbage collection mechanism available. This advantage is offset by slow downs
in the mutator. Since it requires a free-list allocator, mark-sweep suffers from poor
allocation performance and poor mutator locality, and the mutator is further slowed
down by the cost of lazy sweeping. We discuss performance aspects of lazy sweeping
implementations in detail in Chapter 4.

2.1.3.2 Reference counting

Reference counting was the second garbage collection algorithm published, also in
1960 for the LISP system [Collins, 1960]. A reference counting collector extends each
object header with a field that counts the number of pointers that refer to it. The mu-
tator adjusts the reference count whenever a reference field is modified, incrementing
the count of the new referent, and decrementing the count of the old. When the count

12 Background

drops to zero, the object is no longer required, and can be reclaimed. When an object
is freed, objects that it refers to also have their reference counts decremented transi-
tively. Implementing reference counting requires a write barrier to be inserted before
code that manipulates pointers, so that the counts can be adjusted and freed memory
reclaimed.

The main advantage of reference counting is that there is no delay between mem-
ory becoming free, and it being available for re-use. Applications using reference
counting can operate efficiently in heaps only slightly larger than the peak size that
the application requires. The pause times of reference counting collectors are also
proportional to the size of data structures that are freed, which are typically much
smaller than the whole heap. Lazy reference counting [Weizenbaum, 1963; Ritzau,
2003] eliminate these pauses by reclaiming freed data structures one object at a time
in the mutator, but at considerable cost in space [Boehm, 2004].

One disadvantage of reference counting is that pointer mutations are frequent
and the write barrier is expensive, especially in multi-threaded systems where syn-
chronization on the reference count field is required. Thus straightforward reference
counting implementations are generally among the slowest of memory management
schemes. Deferred reference counting [Deutsch and Bobrow, 1976] can significantly
reduce the overhead of standard reference counting. Collection is performed in dis-
tinct passes (as in other collection algorithms), and mutations to certain frequently
changed roots (such as registers, the stack etc.) are only counted during a collection
cycle. Coalescing [Levanoni and Petrank, 2001] reduces the reference counting over-
head of frequently mutated fields by recording only the initial and final state of pointer
fields mutated between two garbage collection phases. Ulterior Reference Count-
ing [Blackburn and McKinley, 2003] uses reference counting for the mature space of
a generational collector, observing that pointer mutations of mature objects are much
less frequent than younger objects, achieving a collector that combines the throughput
of a generational collector with the low pause times of a reference counting collector.

The most significant disadvantage of reference counting is that it cannot in itself
collect cyclic data structures, and alternative approaches such as trial deletion [Christo-
pher, 1984; Martı́nez et al., 1990; Lins, 1992; Bacon and Rajan, 2001; Bacon et al., 2001]
or mark-sweep collection (backup tracing [Deutsch and Bobrow, 1976]) must be em-
ployed. Trial deletion involves identifying candidate objects for the roots of cycles,
tentatively setting their reference count to zero, and seeing whether this would cause
the object to be collected. The cost of trial deletion can have a significant effect on
program run time [Quinane, 2003; Frampton, 2010], while using backup tracing to
some extent obviates the need for reference counting at all. Frampton et al. [2008]
and Frampton [2010] show how concurrent backup tracing can exploit the reference
counting barriers to reduce overheads.

2.1.3.3 Evacuating

Evacuating collectors are a subclass of copying collectors, initially proposed by
Hansen [1969] and Fenichel and Yochelson [1969], and first became practical with

§2.1 Garbage Collection 13

Cheney’s algorithm [Cheney, 1970]. Evacuating collection combines the advantage of
low mutator overhead due to bump-pointer allocation with a collector whose cost is
proportional to the amount of live data in the heap. Since most heap objects are short
lived, this can be considerably more efficient than naı̈ve mark-sweep collectors whose
performance is proportional to the total size of the heap.

The original copying collector is known today as semi-space, because it divides the
available heap space into two equal sized regions. Using a bump-pointer allocator,
objects are created in one half of memory, known as to-space. When all memory in
to-space is consumed, the unused half of memory is renamed to-space, and the old to-
space becomes from-space. Starting with the set of root pointers, from-space is traced
as in a mark-sweep collector, but instead of simply being marked, each live object is
copied to to-space. A bit is set in the old object (to mark it as having been copied),
and a forwarding pointer is written to it to indicate where the live copy of the object
is in to-space. When pointers are traced from live objects, either an object is still in
from-space—in which case the collector copies it and updates the pointer to point to
its new location, or it has already been copied—in which case the forwarding pointer
is used to update the pointer being traced.

Cheney’s algorithm uses the set of already-copied objects as a work queue to
eliminate the need for an explicit work queue data structure, thus making copying
a practical technique in LISP by bounding the space overhead required. In modern
object-oriented and functional languages—where the average object size is signifi-
cantly larger than a pointer—it is more common to use a separate data structure (e.g.
a stack) for the work queue.

The attraction of copying collectors is that in typical programs few allocated ob-
jects survive to be collected, and hence the overhead of copying objects is small com-
pared to the size of the heap. Copying collectors also permit the use of a bump-pointer
allocation scheme which provides good allocation performance. The principal advan-
tage of copying collectors, though, is that they compact the heap, improving locality
for the mutator.

One disadvantage of pure copying collectors is that time is often wasted copy-
ing long-lived data structures from one semi-space to the other and back. A second
disadvantage is that in order to allow for a worst-case collection where almost 100%
of objects survive, it requires a 100% space overhead. Copying is generally used in
modern generational collectors, where the ability to collect subsets of the heap inde-
pendently allows copying to be targeted at object populations with low survival rates,
where it performs best.

2.1.3.4 Compacting

Compacting is a subclass of copying collection that maintains the locality advantages
of semi-space, but with almost no space overhead. The simplest form is sliding com-
paction, originally implemented in LISP-2 as a four phase algorithm [Styger, 1967].
The collector first performs a transitive closure, setting a mark bit for each object as
in a mark-sweep collector. In the second pass, the collector calculates the future lo-

14 Background

cation of each object, and writes a forwarding pointer to each object. In the third, or
forwarding pass, the collector updates all pointers to reflect the addresses calculated
in the second pass. In the fourth and final phase, the collector copies objects to their
new locations. Copying is done in strict address order to ensure that no live data is
overwritten.

While optimized versions of compacting collectors exist, they are still generally
more expensive than the alternatives, and are rarely used as the primary collector in
a high-performance system. More commonly, compacting is either used as a backup
strategy for when space becomes tight [e.g. Sansom, 1991], or alongside a mark-sweep
or mark-region collector to compact memory when fragmentation is detected. They
do, however, have the advantage of excellent mutator locality because they preserve
allocation order, and have very low space overheads.

2.1.3.5 Mark-region

The fifth canonical family of garbage collectors is known as mark region. These col-
lectors allocate objects contiguously, and free it in small contiguous regions when all
objects in the region are unreachable. The most significant examples on this class
of collector are Immix [Blackburn and McKinley, 2008] and the original JRockit col-
lector1. Immix allocates 32KB blocks, and allocates contiguously within these blocks.
During collection, each live object is marked with a bit, as with mark-sweep collectors.
In addition, a second bit is set for each 128-byte line in which the object resides. After
collection, all blocks are placed in the queue for allocation. The allocator uses the per-
line mark bits to identify free space within the block, and allocates contiguously into
these regions.

Mark Region collectors combine excellent allocation performance and good collec-
tor performance, with very low space overheads and good mutator locality.

2.1.3.6 Generational

Two hypotheses were posed in the early 1980s regarding the lifetime of objects in a
typical program. The weak generational hypothesis [Ungar, 1984] proposes that ‘most
objects die young’, and is a generalisation of the strong generational hypothesis, that
object lifetime is proportional to age. Observation shows that the weak generational
hypothesis holds for many workloads, whereas in general the strong generational
hypothesis does not [Clinger and Hansen, 1997].

Generational collectors [Lieberman and Hewitt, 1983] divide the heap into regions
for objects of different ages, and perform more frequent collections on more recently
allocated objects, and less frequent collections on the oldest objects. The youngest
generation is generally known as the nursery, and a collection that collects only the
nursery is known as a minor collection. During a minor collection, pointers from older
generations into the nursery are used in addition to the standard root set when tracing

1The JRockit garbage collector was documented in a web page that is no longer available. Secondary
citations for it can be found in several papers, including [Hallberg, 2003; Blackburn and McKinley, 2008].

§2.1 Garbage Collection 15

the set of live objects. Although it is possible (but expensive) to calculate this set at
collection time, this set is generally maintained using a generational write barrier that
takes note of pointers from older generations to younger generations, keeping them
in a remembered set for use during minor collections. The space containing the oldest
objects in a generational collector is known as the mature space.

Different collection policies can be applied to each generation in a generational
collector. For example, Jikes RVM’s production configuration uses a generational col-
lector with an evacuating nursery and an Immix mature space. The default collec-
tor in the Sun (Oracle) hotspot virtual machine uses an evacuating nursery, a pair of
semi-spaces as the second generation, and a mark-sweep mature space. One signifi-
cant style of generational collector is the Appel-style collector [Appel, 1989]. This is a
two-generation collector, where the evacuating nursery is allowed to use 50% of the
available free space, shrinking as the mature space grows and then growing again af-
ter a full-heap collection. By making maximum use of the available space for nursery
collections, the throughput of the collector is maximised.

Generational collectors are very effective. The majority of collectors in practical
systems implemented today are a variety of generational collector.

2.1.4 Object Scanning

The transitive closure operation of a garbage collector requires locating the references
from the stacks and other structures outside the heap (the roots), and then finding
the referents of a heap object, an operation we refer to as scanning the object. Broadly
speaking there are two ways to locate references in each of these domains, as well as
a hybrid approach.

Conservative collectors such as the Boehm-Demers-Weiser (BDW) collector [Boehm
and Weiser, 1988] use heuristics to identify which words in the stack and other non-
heap areas could possibly be heap pointers. Using these values as roots, a conservative
collector traces the heap, regarding all words as potential pointers. The BDW collector
uses a segregated free-list with a large number of closely packed size classes, and can
therefore identify the boundaries of objects given a pointer into the heap. Because
a conservative collector is never sure which values are actually pointers rather than
(for example) character sequences or integers, the collector must never move objects,
and the BDW collector uses a mark-sweep algorithm. The principal concern of the
object scanning implementation in a conservative collector is in designing heuristics
that distinguish references from non-references.

The other end of the design spectrum is a precise collector, which uses informa-
tion generated by the compiler and runtime environment to identify reference fields
precisely. Garbage collection is only permitted to occur at specific safe points, and at
each such point the compiler generates a gc map of the stack frame to identify the live
heap references. The run-time system maintains a map of which global (static) fields
are heap references, and also metadata that identifies which fields within heap objects
contain references—in a Java virtual machine this metadata is generated by the class
loader. The principal concern of the object scanning implementation in a precise col-

16 Background

lector is in efficiently accessing and using the metadata that describes the layout of
each object.

In the design space between precise and conservative collectors are ambiguous roots
collectors, originally introduced by Bartlett [1988]. These collectors assume no type
knowledge of the stack, registers or global variables, but rely on the compiler for in-
formation about the layout of heap objects. The technique is suited to compilers that
use C as an intermediate language, and can thus control the contents of the heap,
while the contents of the stack etc. is under the control of the underlying C com-
piler. Bartlett’s mostly copying collector takes advantage of this by using copying
techniques for objects in the heap that are not pointed to by the (ambiguous) root set.

The other hybrid approach—precise roots and conservative object scanning—is
possible but uninteresting in real-world settings. The implementation effort to imple-
ment precise stack scanning is significantly greater than that of precise heap scanning,
so in systems where the former is in place it makes little sense to omit the latter.

2.2 Infrastructure

This section describes the infrastructure used to implement the techniques developed
in the later chapters of this thesis. This infrastructure is integral to this thesis, and
throughout the course of my PhD I made substantial contributions to the design,
maintenance and improvement of Jikes RVM and MMTk, the systems I now describe.

2.2.1 Jikes RVM

Jikes RVM [Alpern et al., 2000] is an open source high performance Java virtual ma-
chine (VM) written almost entirely in a slightly extended Java [Alpern et al., 1999],
and is the basis for all concrete implementations presented in this thesis.

Besides being written in Java, Jikes RVM is distinctive in that it uses a compile-only
strategy, and as such does not have a bytecode interpreter. Instead, a fast template-
driven baseline compiler produces machine code when the VM first encounters each
Java method. The adaptive compilation system then judiciously optimizes the most
frequently executed methods [Arnold et al., 2000]. Using a timer-based approach, it
schedules periodic interrupts. At each interrupt, the adaptive system records the cur-
rently executing method. Using a threshold, it then selects frequently executing meth-
ods to optimize. Finally, the optimizing compiler thread re-compiles these methods at
increasing levels of optimization.

In order to ‘tie the knot’ of meta-circularity, the virtual machine portion of Jikes
RVM is compiled ahead of time using its own compiler, saving the resulting machine
code in a boot image. The memory manager is part of this boot image, and therefore en-
joys the benefits of being compiled using the Jikes RVM optimizing compiler while not
incurring any compilation cost at runtime. The optimizing compiler options chosen
when building the Jikes RVM boot image have a significant effect on the performance
of the resulting virtual machine. We use a ‘FastAdaptive’ build, which compiles the
boot image with maximum optimization and disables assertions. In recent versions

§2.2 Infrastructure 17

of Jikes RVM, the boot image can be compiled using a profiled build, which runs the
unoptimized virtual machine briefly to generate edge counter information which is
then used by the compiler to build the final optimized build.

2.2.1.1 Low-level Programming

Frampton, Blackburn, Cheng, Garner, Grove, Moss, and Salishev [2009] describe in
detail the approach (known as vmmagic) used by Jikes RVM to break the Java lan-
guage’s abstractions and deal directly with the underlying hardware. This provides
several features essential to the implementation of a virtual machine, including un-
boxed types on which much of the work described in later chapters relies.

Unboxed types as implemented by vmmagic allow us to declare local variables
and object fields which are stored directly (like an int or long, and unlike an Object),
but which have methods. One such unboxed type is Address, which represents an ad-
dress in memory, and which has the size of the underlying hardware address. Meth-
ods of an Address include loadInt(), which loads a 32-bit integer at the represented
address. The compiler compiles this as an intrinsic, substituting an IR sequence that
(if not optimized away) eventually translates to a single instruction rather than a full
method call.

Using vmmagic gives us ‘abstraction without guilt’—the ability to write fast code
without sacrificing too much of the expressive power of the high-level language we
develop in.

2.2.1.2 Replay Compilation

One feature of Jikes RVM that we use extensively in this thesis is replay compilation
[Huang et al., 2004]. This allows us to use the benefits of adaptive optimization but
without the experimental ‘noise’ that is inherent in an adaptive timer-based optimiza-
tion process.

Replay compilation requires running an experiment in two different modes. Dur-
ing the first execution, each benchmark is run for a number of training iterations until
it has reached a stable state, and the adaptive recompilation system has compiled all
the ‘hot’ methods. On exit, the replay compilation system saves the list of optimized
methods, their levels of optimization and the profile information used by the optimiz-
ing compiler to compile the methods.

The second and subsequent executions are used to measure performance. During
these executions, the benchmark runs for two iterations. During the first iteration, the
compilation data recorded during the first execution is used to compile methods to
their final optimization level the first time they are invoked. By the end of the first
iteration of the benchmark, all methods have been optimized to the level they were
at the end of the final iteration of the first execution, and the replay system disables
the compiler and adaptive optimization systems. We time the second iteration of the
benchmark, which runs with the benefit of fully optimized code but without interrup-
tion by the compiler.

18 Background

When running several invocations of a benchmark to measure experimental error,
we use the same replay data. Ensuring that a benchmark is compiled the same way for
each invocation significantly reduces experimental error introduced by the adaptive
compilation system.

When comparing several different runtime system optimizations, we can also use
the same replay compilation data, ensuring that the mutator’s behaviour is common
across the optimizations being compared.

2.2.2 MMTk

MMTk is Jikes RVM’s memory management sub-system. It is a composable memory
management toolkit that implements a wide variety of collectors that reuse shared
components [Blackburn et al., 2004a].

MMTk collects together coherent sets of components into memory management
plans, and when a virtual machine invokes MMTk, it selects one of these plans to
manage its heap.

A plan in MMTk divides up virtual memory by policy, allowing different areas of
the heap to be managed in different ways. A typical plan may provide a large object
space managed using Baker’s Treadmill [Baker, 1992], an Appel-style copying nursery
[Appel, 1989] and a mark-sweep mature space.

The experimental work presented in this thesis uses MMTk’s MarkSweep plan, a
full-heap collector in which objects smaller than 8KB are managed by a mark-sweep
policy2.We do this for a number of reasons:

1. Some of the optimizations we implement only apply to non-copying collection.

2. MarkSweep has the fastest tracing rate of any of MMTk’s non-copying collec-
tors. This tends to display more prominently the results of any optimizations.

3. Mark-sweep is a well known algorithm with a long history. It is representative
of a much larger class of collectors.

Many of the contributions presented in this thesis have been integrated into MMTk.

2.2.2.1 The MMTk Free-list Allocator

The segregated free list allocator used by MMTk’s MarkSweep space maintains sep-
arate free lists for 40 different size classes. When a free list for a given size class is
empty, one to three 4KB-blocks of memory is allocated and split into cells of the free
list size. Block sizes are tuned to ensure that a maximum of 14% internal fragmenta-
tion occurs in any given size class, and total fragmentation is typically much less than
this.

At the block level, each active thread maintains one private block for each size-
class it has allocated since the previous garbage collection. At the start of each GC, all

2Objects larger than 8KB are managed by a specialized Large Object Space using Baker’s treadmill
[Baker, 1992], allocating space using 4KB pages.

§2.3 Evaluation Methodology 19

Platform Jikes RVM GCJ 4.0
AMD Athlon64 3500+ 266 194
Pentium-4 Prescott 265 214
Pentium-M Dothan 210 189
PowerPC 970 G5 218 291

Table 2.1: Comparative GC performance, MMTk (Jikes RVM) vs. Boehm
(GCJ). GC Throughput in MB/s

blocks are returned to the global pool and at the start of the next mutator cycle they
must acquire new blocks from the global pool. This helps to minimise the amount of
space tied up in per-thread blocks.

2.2.2.2 Credibility of MMTk As An Experimental Platform

In our prefetch paper [Garner et al., 2007] we compare the performance of the tuned
version of MMTk used in this paper with gcj using the standard Jikes RVM GC per-
formance benchmark, FixedLive. Gcj [GCJ] is an ahead-of-time Java compiler which
uses the Gnu Compiler Collection back-end and the Boehm conservative garbage col-
lector [Boehm and Weiser, 1988; Boehm, 2012]. The Boehm collector is highly tuned
for this environment, with a great deal of tuning in gcj aimed at reducing the root set to
the smallest memory regions containing pointers into the heap. The FixedLive bench-
mark starts by allocating a large binary tree which lives for the duration of the bench-
mark, and then allocates a large number of very short-lived objects, using heuristics
to identify and time five garbage collections. The results of this comparison are given
in Table 2.1, with the numbers representing a tracing rate in MB/s. This shows that
MMTk outperforms gcj by between 11% and 37% on the x86 platforms, but lags gcj
on the PPC by 33%. The tracing performance of gcj on the PPC is considerably faster
than on the x86 architectures, despite the fact that on most benchmarks the PPC 970 is
slower than the other machines we used. We believe that the prefetching in the BDW
collector is much more effective on the PPC, and that this allows it to outperform
MMTk with no prefetching.

This comparison uses the same baseline MMTk MarkSweep configuration that is
the basis of Chapter 4. We use gcj version 4.0.2, and compile using the ‘-O2’ flag.
The BDW collector is a conservative (ambiguous roots) collector, thus some of the
performance difference may be due to it being unable to take advantage of the fast
object scanning techniques used by MMTk. Our goal here, however, is simply to
assert that MMTk is a well tuned platform and a credible basis for experimentation,
relative to prior work.

2.3 Evaluation Methodology

When evaluating the performance of computer systems, researchers must perform
this evaluation in the context of a defined workload or benchmark. This section looks

20 Background

at the issues of benchmarking and evaluation of results as they pertain to the work
presented in the body of this thesis. Like the infrastructure I use, the benchmarks are
fundamental to this thesis. I was deeply involved in the DaCapo benchmark project,
as a lead author, and maintainer and developer of its evaluation framework.

2.3.1 Benchmarks

“The best choice of benchmarks to measure performance are real applica-
tions, such as a compiler. Attempts at running programs that are much
simpler than a real application have led to performance pitfalls. Examples
include

• kernels, which are small, key pieces of real applications;

• toy programs, which are 100-line programs from beginning program-
ming assignments, such as quicksort; and

• synthetic benchmarks, which are fake programs invented to try to
match the profile and behavior of real applications, such as Dhrys-
tone.

All three are discredited today, usually because the compiler writer and
architect can conspire to make the computer appear faster on these stand-
in programs than on real applications.”

Hennessy and Patterson [2006, p. 29]

Performance-oriented work on computer systems aims to improve the performance
of real-world applications. While some work is targeted at a specific application or
class of applications, other work targets a much wider domain. The difficulty when
evaluating research is that many applications are hard to run repeatedly in controlled
conditions. Many have long run-times, or require a complex hardware environment,
or are licensed proprietary code. The accepted practice is to use benchmarks, a care-
fully constructed or selected set of applications with defined workloads. Performance
results against a well designed suite of benchmarks will be indicative of performance
on the real-world programs that are the ultimate target of the research. Conversely, a
bad choice of benchmarks may lead to misleading or incorrect results.

The performance analysis in this work is performed using the SPECjvm98, SPEC-

jbb2000 and DaCapo benchmarks. This section describes these benchmarks in more
detail.

2.3.1.1 The SPEC Benchmarks

When evaluating Java virtual machines, industry and academia typically use the
SPEC Java benchmarks SPECjvm98 and SPECjbb2000 [SPEC, 1999, 2001]). The SPEC-

jvm98 suite contains benchmarks derived from real programs, although by 2006 the
benchmark suite was distinctly outdated. These have now been superseded by SPEC-

jvm2008 and SPECjbb2005 [SPEC, 2008, 2006], but for researchers these suites still have

§2.3 Evaluation Methodology 21

some significant drawbacks. The SPEC benchmarks are primarily targeted at produc-
ing a single number that can be used for comparisons between computer systems.
With the SPECjvm suites, the SPEC benchmark harness makes it possible to run and
measure individual benchmarks, however some modification to the suite is required
to (for example) time the nth iteration, or start and stop performance counters.

SPECjbb has a more fundamental problem for memory management research. In
both the 2000 and 2005 versions, the benchmark runs for a fixed amount of time and
reports the number of transactions performed per unit of time. While a performance
improvement can be measured as it contributes to the overall throughput, it becomes
impossible to directly measure improvements in garbage collector time—the better
the garbage collector performs, the more work the benchmark performs, and hence
the more garbage collection it performs. For these reasons, when using SPECjbb we
use pseudojbb, a fixed-workload version.

In this thesis I use SPECjvm98 and SPECjbb2000, because at the time of performing
the experiments, Jikes RVM was unable to run SPECjvm2008 and SPECjbb2005 due to
limitations in its class libraries.

2.3.1.2 The DaCapo Benchmarks

The DaCapo benchmarks were designed and built by a large group of researchers,
in order to address some of the shortcomings in the available Java benchmark suites.
The first official release of the DaCapo benchmarks was made in October 2006, to
coincide with the publication of our OOPSLA paper [Blackburn et al., 2006]. The Da-
Capo benchmarks are substantially more complex and varied than the SPEC bench-
marks. The benchmarks were chosen with several goals in mind: relevance—all of
the benchmarks should be nontrivial, actively maintained, and used in real-world
settings; diversity—the benchmarks should cover a range of problem domains and
coding styles; and suitability for research—a controlled, tractable workload amenable
to analysis and experiments [Blackburn et al., 2008].

2.3.2 Evaluation Methodology

Evaluation methodology for memory management research in a virtual machine en-
vironment is a current topic of debate in the programming language research com-
munity. The evaluation methodology used in the subsequent chapters of this thesis
builds on the work in Blackburn et al. [2006, 2008].

The key features of our evaluation methodology are:

1. Wide selection of quality benchmarks. We evaluate on at least 17 benchmarks
from the SPECjvm98, DaCapo and SPECjbb2000 suites. Only where unavoidable,
we subset the benchmarks, and clearly identify where and why.

2. Control for non-determinism. We use replay compilation (Section 2.2.1.2) to
provide a deterministic compilation plan. We also run experiments on a dedi-
cated machine without any non-essential background tasks.

22 Background

3. Multiple hardware platforms. All of our results are produced on 4 or more
hardware platforms. This produces some results that are of interest because
they are hardware-specific, while protecting against the pitfall of generalising
from a single quirky platform.

Different portions of the thesis are evaluated on different sets of platforms. This
is an unavoidable consequence of having performed the experimental work for
the thesis over a period of six years. All the hardware platforms used were
operated in 32-bit mode, since Jikes RVM did not have a mature 64-bit compiler
implementation for the Intel architecture at the time.

4. Multiple iterations. Chapter 4 runs experiments with 5 iterations of each bench-
mark and takes the fastest of the 5 runs. Chapter 5 uses 6 iterations, takes the
mean of all iterations and shows a 90% confidence interval calculated using Stu-
dent’s t-distribution. Chapter 3 uses a mix of these two methods. Since the
results in Section 3.3.1 and Section 3.3.2 are used to support the contributions
in Chapter 4 they use the methodology of that chapter, while Section 3.3.3 was
performed later and uses the more recent methodology of Chapter 5.

Our own advice in Blackburn et al. [2006] is to use multiple virtual machines. It is
the nature of experimental software implementation to be extremely time consuming,
and implementing our experiments on a virtual machine other than Jikes RVM would
be prohibitive given the available time, so where applicable we explicitly identify
aspects that are specific to the virtual machine.

Garbage collector performance is in general a time/space trade-off, and it is usual
to present results using a range of heap sizes. The results presented here affect the
performance of basic garbage collection mechanisms, and are essentially independent
of heap size. For this reason most of our results are presented for a single heap size,
although we take care to verify this assumption for each optimization.

Georges et al. [2007] demonstrate the potential importance of reporting the mean
with a calculated confidence interval when evaluating Java performance on modern
virtual machines. As mentioned above, the work in Chapter 4 uses the minimum of a
set of results and calculates no confidence interval. While it would be straightforward
(if time consuming) to recalculate the results, the experiments in Chapter 5 do use
these calculations and find the experimental error to be extremely low. For this reason
we believe that the results in Chapter 4 would hold if we were to recalculate them.

2.4 Summary

This chapter gave an overview of garbage collection, and the benchmarks and in-
frastructure used in the experiments that follow. Subsequent chapters will introduce
novel evaluation and implementation techniques that allow us to understand the be-
haviour of benchmarks, and improve the performance of garbage collectors.

Chapter 3

Garbage Collector Performance

The previous chapter gave background information about garbage collection, the
benchmarks used to evaluate performance, and the infrastructure we use for our ex-
periments. This chapter presents a new technique—which we call replay tracing—for
analysing the performance of a garbage collector. We build on the performance results
and insight obtained using replay tracing in later chapters.

This chapter is based in part on work published in the paper “Effective Prefetch for
Mark-sweep Garbage Collection” [Garner, Blackburn, and Frampton, 2007]. The key
contribution of this work is the technique of replay tracing, and performance analyses
we present.

The chapter is structured as follows. Section 3.1 provides a brief introduction to
the problem of performance evaluation of the garbage collector tracing loop and de-
scribes the prior work in this area. Section 3.2 describes the replay tracing framework
in detail. Section 3.3.1 analyses the tracing loop using the replay tracing framework,
describing the experiments we use to determine the costs of the various parts of the
loop. Section 3.3.2 uses replay tracing to evaluate two possible implementations of
mark state, a side bitmap and header mark state. Section 3.3.3 looks at the perfor-
mance impact of heap traversal order, using replay tracing to ensure that implementa-
tion details of the queue structure are removed from the equation. Finally, Section 3.4
summarises the results and shows how they inform later chapters of the thesis.

3.1 Introduction

The tracing loop is the most performance-critical element of any garbage collector, and
in particular it is the portion that scales with the volume of live memory in the heap.
Table 3.1 shows the percentage of GC time spent tracing the heap on the machines
used in Section 3.3.3. We can see from this table that the tracing loop accounts for be-
tween 49% (compress on the AMD Phenom) and 96% (hsqldb on the Atom D510) of the
GC time. Previous work has used sample-based profiling [Boehm, 2000] and simula-
tion [Cher et al., 2004] to analyze the mechanism, each of which have shortcomings.
Simulation has the disadvantage of long running times, making it difficult to use large,
realistic benchmarks. Simulation also limits the available target architectures to those
supported by the simulation packages available, and is entirely dependent on the fi-

23

24 Garbage Collector Performance

atom core2 corei5 phenom
compress 59% 50% 56% 49%
jess 64% 57% 63% 57%
raytrace 68% 59% 67% 61%
db 68% 61% 65% 60%
javac 65% 59% 64% 58%
mpegaudio 62% 53% 59% 52%
mtrt 70% 63% 71% 65%
jack 61% 54% 60% 53%
pseudojbb 90% 90% 91% 89%
antlr 75% 70% 74% 69%
bloat 78% 75% 78% 75%
fop 82% 79% 83% 80%
hsqldb 96% 94% 95% 95%
jython 85% 82% 85% 82%
luindex 71% 67% 71% 67%
lusearch 71% 67% 71% 66%
pmd 85% 83% 86% 83%
xalan 81% 78% 82% 79%
Min 59% 50% 56% 49%
Max 96% 94% 95% 95%

Table 3.1: Tracing loop time as a percentage of total GC time.

delity of the simulation infrastructure with respect to real hardware. Sample-based
profiling limits analytical flexibility: in order to sample a collector, it must be a work-
ing real-world collector; this makes it time consuming to experiment with algorithmic
and implementation variations, and very hard to tease apart the contributions of var-
ious details of the implementation. Furthermore, sampling is inherently probabilistic
rather than exact.

Hicks et al. [1997] present what is probably the work closest to our approach. Their
system instruments a language runtime in order to take a snapshot of the heap, and
use a special garbage collector evaluation tool to replay a traversal of the heap. This
has the advantage of requiring even less of a runtime than our system. The disadvan-
tage of their system is that examining GC behaviour over the entire run of a bench-
mark requires taking a snapshot at each GC, producing extremely large trace files in
some cases. Our approach overcomes these limitations and is more light-weight, with
the basic replay tracing infrastructure requiring only a few hundred lines of code.

3.2 The Replay Tracing Framework

The solution presented here is called replay tracing. Our initial implementation uses a
modified mark-sweep garbage collector. The system works by modifying the garbage
collector so that at every collection, in addition to performing collection work, the col-
lector gathers a trace of visited objects and then replays and measures that trace multi-
ple times for analytical purposes. This approach allows experimentation with a great
many variations on the tracing loop, and by using timers and hardware performance
counters we can analyze the various costs in detail.

At each collection, we first trace the live objects in the heap, exactly as the un-
modified mark-sweep collector would, except that whenever an object is processed

§3.3 Results 25

(popped from the mark stack), we record a pointer to the object in a replay buffer. The
replay buffer gives us a record of the objects accessed during the trace, in exactly the
order in which they are accessed. We then use the replay buffer to execute multiple
replay scenarios. Each scenario performs different operations on every object in the
buffer. The objects are processed in exactly the same order for each scenario.

For example, a scenario which just performs a mark operation on each object al-
lows us to isolate the cost of marking and thus evaluate different marking strategies.
Likewise, a scenario could just touch each object, scan each object, or perform a com-
plete mark, scan and trace of each object. By carefully constructing scenarios and
measuring their costs, we can break down the contributions of the various elements
of the tracing loop and systematically explore alternatives.

In order to minimize distortion of results due to cache pollution, we flush the
cache between each use of the replay buffer by reading a large table sequentially. We
use a table at least 4 times the size of the last-level cache. We also need to take care
when setting mark bits—their state must be flipped after each phase in which they are
changed. We repeat all of this—creating the replay buffer, replaying scenarios, and
flushing the cache—each time a collection is triggered. We aggregate results across
collections so that at the end of the program we have measurements for each scenario
with respect to the entire GC workload of the program.

3.3 Results

We now use the framework to conduct three studies. In Section 3.3.1 we study the
costs of the tracing loop. In Section 3.3.2 we evaluate the performance of side versus
header metadata. In Section 3.3.3 we evaluate the impact of traversal order on the
performance of garbage collection.

3.3.1 The Composition of the Tracing Loop

Our first objective of replay tracing is to break down the cost of the transitive closure
operation, the tracing loop, into its component parts. Once we know which parts of the
loop are most expensive, we can target them for optimization.

3.3.1.1 Replay Scenarios

We now describe a number of example replay scenarios, including those we use in
our subsequent analysis.

Figure 3.1 shows pseudo-code for the standard mark-sweep tracing loop, from
which most of the scenarios in Figure 3.2 are derived. We have described the queue
operations that maintain the work list abstractly as add and remove. If a collector imple-
ments these operations as push and pop (LIFO–a stack), it will perform a depth-first
traversal of the heap graph, while tail-insert and pop (FIFO–a queue) will produce a
breadth-first traversal. The major components of the basic tracing loop in Figure 3.1
are: i) queuing costs (lines 4, 6, 7 & 13), ii) accessing the reference map for each object

26 Garbage Collector Performance

1 for p in root-set
2 obj = p.load()
3 mark(obj)
4 queue.add(obj)
5

6 while !queue.isEmpty()
7 obj = queue.remove()
8 gcmap = obj.getGcMap()
9 for p in gcmap.pointers()

10 child = p.load()
11 if child != null
12 if child.testAndMark()
13 queue.add(child)

Figure 3.1: The Standard Tracing Loop

(line 8), iii) enumerating reference fields (line 9), and iv) the test and mark of refer-
enced objects (line 12).

In order to evaluate the relative costs of these operations, we use the scenarios
shown in Figure 3.2. The harness cost scenario in Figure 3.2(a) measures the cost of
the replay buffer and thus the overhead of our framework. The queue cost scenario
in Figure 3.2(b) measures the approximate queue management cost of the standard
tracing loop, alternately inserting N items onto the queue and popping N − 1 items
(we use N = 10) so that the effects of growing and shrinking the queue across block
boundaries are measured. Once all items are inserted, the remaining items are popped
from the queue. For this scenario we use MMTk’s standard Deque data structure as a
stack, i.e. the same way MMTk uses it in Jikes RVM’s production collectors.

The object touch scenario (Figure 3.2(c)) measures the cost of accessing the first
word of each reachable object in the heap.1 The GC map, describing the location
of any reference fields within the object, is typically only found via touching (and
possibly dereferencing) the header of the object to be scanned. The scan scenario in
Figure 3.2(d) measures the cost of visiting each object in the heap, iterating its GC
map, and loading each reference field. Comparing the cost of this scenario with a
scenario that simply visits each heap object can tell us about the incremental cost of
the scan operation. The trace scenario in Figure 3.2(e) adds to the scan scenario a
dereference of every non-null child of the scanned object. Finally, the mark scenario
Figure 3.2(f) performs a mark on each non-null child of every object in the replay
buffer. The mark scenario thus performs all of the work of the standard tracing loop
except the final enqueuing operation; compare lines 9 to 13 in Figure 3.1 with lines 4
to 7 in Figure 3.2(f).

One might be tempted to assume that the change in workload of two scenarios
where the second scenario strictly adds work to the first one can be measured by
simple subtraction. This is true for wall clock time (at least in our observations), but

1In Jikes RVM, the object pointer actually points 4 bytes past the first field of a scalar object, and at
the first element of an array. It is this word that we access.

§3.3 Results 27

1 for item in buffer
2 item.load()

(a) Harness Cost Scenario

1 i=0
2 for item in buffer
3 queue.add(item.load())
4 if ++i == N
5 while --i > 0
6 queue.remove()
7 i = 0
8 while !queue.isEmpty()
9 queue.remove()

(b) Queue Cost Scenario

1 for item in buffer
2 item.load().load()

(c) Object Touch Scenario

1 for item in buffer
2 obj = item.load()
3 gcmap = obj.getGCMap()
4 for p in gcmap.pointers()
5 child = p.load()

(d) Scan Scenario

1 for item in buffer
2 obj = item.load()
3 gcmap = obj.getGCMap()
4 for p in gcmap.pointers()
5 child = p.load()
6 if (child != null)
7 child.load()

(e) Trace Scenario

1 for item in buffer
2 obj = item.load()
3 gcmap = obj.getGCMap()
4 for p in gcmap.pointers()
5 child = p.load()
6 if (child != null)
7 child.testAndMark()

(f) Mark Scenario

Figure 3.2: Replay Scenarios

not necessarily true for other measures such as cache misses. In fact, the object touch
scenario (Figure 3.2(c)) that visits the first word of each object in the heap actually
has a higher L2 miss rate than the scan scenario (Figure 3.2(d)), on some architectures,
even though the scan scenario does strictly more work (obj.getGCMap() involves at
least one load()). We suspect that the additional work in the scan scenario is allowing
a hardware prefetch mechanism time to take effect, eliminating some of the misses
seen by the first scenario.

This non-additivity illustrates one of the pitfalls of using microbenchmarks for
performance evaluation (since the replay scenarios can be seen as microbenchmarks),
and of relying on secondary measures of performance. These results are interesting
because of the directions they suggest for performance improvement, rather than the
absolute performance figures obtained. Any improvement we make based on these
figures is again tested in the context of the full loop, using wall-clock time as the
performance measure.

28 Garbage Collector Performance

Platform Clock DRAM L1 cache L2 cache
AMD Athlon 64 3500+ 2.2GHz 400MHz DDR2 64KB 64B 2-way 512KB 64B 16-way
Pentium-M Dothan 2.0GHz 533MHz DDR2 32KB 64B 4-way 2MB 128B 8-way

Table 3.2: Hardware Platforms used for the Replay Tracing Loop Costs
Experiments

3.3.1.2 Tracing Costs

We now use the replay tracing framework described in Section 3.2 to evaluate the
dominant costs of the mark-sweep tracing loop shown in Figure 3.1. We perform
our measurements using Jikes RVM and MMTk with DaCapo and SPEC benchmarks,
as described in Chapter 2, and the AMD and Pentium-M architectures shown in Ta-
ble 3.2.

Framework Overhead We begin by measuring the overhead of the replay tracing
harness. We compare the cost of the simple harness cost scenario shown in Figure 3.2a
against the cost of a full collection of the heap. We found that in terms of wall clock
time, the cost of the harness was less than 2% that of a full heap collection. Hardware
performance counters revealed negligible L1, L2 and DTLB misses, while the harness
accounted for 6% of the instructions executed.

Experiments To analyze the cost of the mark-sweep tracing loop, we use the
methodology described in at the beginning of the chapter, evaluating a series of in-
crementally more complex replay scenarios to build up a picture of total costs. The
replay scenarios we use are as follows:

enq-deq Enqueue/dequeue operations in the ratio 10:9, as reflected by the queue cost
scenario in Figure 3.2b. This identifies the cost of the queuing mechanism on
which the standard tracing loop is based. All of the subsequent scenarios do not
use a queue, because they are driven by the replay buffer, which captures and
replays an exact object visit order (see Section 3.2).

touch Load the first word of every object pointed to by the trace buffer, as reflected
by the touch scenario in Figure 3.2c. This identifies the cost of touching every
live object in the heap. In the standard tracing loop, the first step after obtain-
ing a new reference to work on is to fetch the GCmap for the object (line 7 of
Figure 3.1). In Jikes RVM (and many other Java virtual machines) this involves
fetching a per-class data structure pointed to by a word in the object’s header.
By loading the first word of each object, we access memory in a pattern very
similar to that of the first action in fetching a GC map. Note that this scenario
does not place any dependencies on the load, so the costs of the loads may be
understated by wall clock time. However, this scenario will help understand the
locality properties of a full heap trace.

§3.3 Results 29

Sync Unsync

Traverse 0.02 0.03
Enq-deq 0.10 0.10
Touch 0.15 0.15
Scan 0.40 0.40
Trace 0.59 0.59
Mark 1.00 0.84

(a) Pentium-M

Sync Unsync

Traverse 0.02 0.02
Enq-deq 0.11 0.11
Touch 0.14 0.14
Scan 0.46 0.46
Trace 0.63 0.63
Mark 1.00 0.89

(b) AMD Athlon64

Table 3.3: Elapsed Time for Various Scenarios for Two Design Points, Nor-
malized to the Synchronized Mark Scenario.

scan Scan every object in the trace buffer, loading the value of each of its pointer
fields, as shown in Figure 3.2d. This builds on the touch operation by using the
GC map to enumerate the pointer fields in the object and load the value of each
pointer.

trace Trace ‘through’ every object in the trace buffer, dereferencing each of its non-null
pointer fields, as shown in Figure 3.2e. This builds on the scan operation by ac-
cessing the word pointed to by each pointer field in the object, i.e. touching each
object referenced by the current object. This will perform one additional mem-
ory access per non-null pointer than the scan scenario. In an implementation
where mark bits are kept in the header of an object, this operation will access
memory in an analogous pattern to mark, but without writing the updated mark
state.

mark Perform testAndMark() on every non-null child of every object in the replay
buffer. If mark state is implemented in the header (see Section 4.3), this scenario
only differs from the trace scenario by using a testAndMark() on each object’s
header, rather than a load(). If mark state is implemented in a bitmap on the
side, this scenario will not touch the child object, and therefore is similar to the
scan scenario, differing only in that it touches the side bitmap associated with
the child. In either case, this scenario differs only from the full tracing loop in
that unmarked pointers are not enqueued for later tracing.

3.3.1.3 Results

We now present a detailed analysis of the tracing costs for two variations of the stan-
dard marking mechanism, where mark state is set with a simple store (unsync) or with
architecture-specific atomic update instructions (sync). Mark state for all these exper-
iments is in the header of the object. Table 3.3 shows elapsed times for each of the
scenarios for each variant, on the Pentium-M and AMD platforms from Table 3.2, with
all data normalized to the sync time on the respective platform. Recall that the mark
scenario only differs from the full tracing loop in that it does not enqueue the marked

30 Garbage Collector Performance

Sync Unsync

Time RI L1 L2 Time RI L1 L2

Traverse 0.02 0.06 0.00 0.00 0.03 0.06 0.00 0.00
Enq-deq 0.11 0.30 0.06 0.01 0.13 0.31 0.06 0.01

Touch 0.15 0.10 0.45 0.59 0.18 0.10 0.45 0.58
Scan 0.39 0.54 0.53 0.43 0.47 0.55 0.53 0.43

Trace 0.59 0.63 0.98 1.04 0.71 0.65 0.97 1.02
Mark 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(a) Pentium-M

Sync Unsync

Time RI L1 L2 Time RI L1 L2

Traverse 0.02 0.06 0.00 0.00 0.02 0.06 0.00 0.00
Enq-deq 0.11 0.30 0.06 0.01 0.12 0.31 0.06 0.01

Touch 0.14 0.10 0.51 0.54 0.15 0.10 0.51 0.54
Scan 0.46 0.54 0.58 0.56 0.51 0.55 0.58 0.56

Trace 0.63 0.63 0.99 1.01 0.71 0.65 0.99 1.01
Mark 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(b) AMD Athlon64

Table 3.4: Costs for Two Designs, Showing Time, Retired Instructions, L1
& L2 Misses, Normalized to Each Mark Scenario.

child (compare Figure 3.1 lines 7 to 11 and Figure 3.2(f) lines 3 to 7). The mark scenario
thus provides a reasonable baseline. Table 3.4 includes and expands upon this data by
providing retired instructions (RI), L1 cache misses, and L2 cache misses. In Table 3.4
the data is normalized against the mark scenario for each respective implementation
variant (i.e. each column is normalized to the bottom row).

A number of observations can be drawn from Tables 3.3 and 3.4:

1. Synchronization accounts for approximately 17% of the cost of tracing the heap
on a Pentium-M, and 11% on the AMD Athlon. This is evident when comparing
normalized mark times for sync and unsync columns in Table 3.3. Unsurpris-
ingly, this shows that designing data structures to avoid synchronization is a
worthwhile goal, given current hardware implementations.

2. The overhead of queue management (enq/deq) is at most 13% of the running
time of the tracing loop (Table 3.4).

3. Touch data in Table 3.4 shows that the initial visit of an object header accounts for
14–18% of time, but 45–60% of cache misses. This is perhaps accounted for by
a lack of any dependency on the load, and combination of compiler instruction
scheduling and out-of-order execution overlapping the initial fetch of an object
with the mark operation on the previous object. This result helps to illuminate
the limited success that other approaches have had with prefetch strategies that
target this aspect of the tracing loop—even halving these misses would not yield
a significant performance gain.

§3.3 Results 31

4. Comparing scan and touch L2 numbers in Table 3.4 shows that cache miss rates
are non-monotonic; scenarios that perform more work sometimes have lower
cache miss rates than simpler scenarios. Note that time and RI numbers remain
monotonic. We suspect that this is accounted for by hardware prefetching—in
particular the scan scenario performs a great many register/ALU operations in
between memory fetches, allowing time for prefetched cache lines to arrive.

3.3.2 Mark State Implementations

The collector’s mark phase depends on being able to store mark state for each ob-
ject. Mark state is typically stored either as a field within the header of each object,
or in a dense bitmap on the side. We refer to these two approaches as header and side
bitmap respectively. The side bitmap has a potential locality advantage because it is
far more tightly packed than mark bits embedded within headers of objects which are
dispersed throughout the heap. While we refer to the mark bitmap as though it were
a single contiguous data structure, in practice it is broken into chunks and distributed
through memory. MMTk keeps metadata for each 4MB region of memory at the start
of the region.

In a parallel collector, it is possible to lose updates in a race to set a bit unless the
bit can be set atomically. An alternative to side bitmaps is a bytemap, a byte-grained
data structure on the side. Bytemaps trade an 8× space overhead to avoid synchro-
nizing on each set operation, if we assume support for atomic byte-grained stores. An
unsynchronized test-and-mark operation on a bytemap or a header field risks mark-
ing and scanning an object twice. In a non-moving collector there is no correctness
issue—the worst possible consequence is that a small amount of work is duplicated
between collector threads. Assuming an 8-byte minimum object size, an address-
mapped bytemap would impose a 12.5% space overhead.

We include both a side bitmap and the header approach for comparison in this
section. We don’t evaluate a bytemap, since it has similar locality characteristics to
the bitmap, and we expect it to perform very similarly to the unsynchronized bitmap.

To evaluate this design choice, we repeat the experiments in Section 3.3.1.2, adding
a side bitmap as an additional dimension. Table 3.5 expands the results in Table 3.3 to
include this data.

One of the reasons why mark state is often stored in side bitmaps rather than in
object headers is the locality advantage of greatly increased density of the mark state
(Section 4.3 and [Boehm, 2000]). It seems intuitively likely that a denser data structure
will lead to lower cache misses than a scheme where mark bits are held in object
headers and distributed over the whole heap. However, comparing the numbers in
Table 3.5 shows that there is no significant performance difference. The overhead of
synchronization dominates, and when synchronization is not used, the difference is
only 1%, with one result in either direction on the two architectures examined.

To validate this result, we also measured the performance of a scenario that simply
performs the testAndMark() operation on each object in the replay buffer (Figure 3.3).
These results are shown in Table 3.6 and are normalized to the entire mark scenario. As

32 Garbage Collector Performance

Header Side

Sync Unsync Sync Unsync

Traverse 0.02 0.03 0.02 0.03
Enq-deq 0.10 0.10 0.10 0.10
Touch 0.15 0.15 0.15 0.15
Scan 0.40 0.40 0.39 0.40
Trace 0.59 0.59 0.58 0.59
Mark 1.00 0.84 0.98 0.83

(a) Pentium-M

Header Side

Sync Unsync Sync Unsync

Traverse 0.02 0.02 0.02 0.02
Enq-deq 0.11 0.11 0.11 0.11
Touch 0.14 0.14 0.14 0.14
Scan 0.46 0.46 0.46 0.45
Trace 0.63 0.63 0.64 0.63
Mark 1.00 0.89 1.00 0.88

(b) AMD Athlon64

Table 3.5: Elapsed Time for Various Scenarios for Four Design Points,
Normalized to the Synchronized Mark Scenario.

1 for item in buffer
2 obj = item.load()
3 obj.testAndMark()

Figure 3.3: Replay Scenario for Evaluating Mark-state Implementations

expected, this shows significant differences between the header and the side bitmap
implementation, and as expected, both L1 and L2 cache miss rates decrease markedly
with a side bitmap.

This result seems to confirm the intuition that a side bitmap provides a real locality
advantage, but it contradicts the results in Table 3.5. We suspect that the discrepancy
can be accounted for by the cache-displacing properties of the remainder of the tracing
loop. The basis for the locality argument is that when marking an object, the required
cache line will already be in cache with some probability which increases greatly as
the metadata is densely packed into cache lines (spatial locality is greatly amplified
by the dense bitmap). This argument depends on subsequent marks to the same line
being relatively near to each other temporally, which is somewhat true when the mark
is considered in isolation. However, when the mark is examined in the context of the
entire tracing loop, subsequent marks to the same cache line will on average be much
further apart in terms of memory accesses due to the significant memory activity of
the remainder of the tracing loop (particularly due to the scan). This analysis suggests
that any locality advantage due to dense metadata is almost entirely lost due to Am-

§3.3 Results 33

Header Side
Sync Unsync Sync Unsync

Time 0.47 0.35 0.37 0.25
L1 Misses 0.50 0.50 0.36 0.36
L2 Misses 0.53 0.58 0.29 0.32

RI 0.27 0.25 0.29 0.27

(a) Pentium-M

Header Side
Sync Unsync Sync Unsync

Time 0.46 0.27 0.38 0.22
L1 Misses 0.52 0.53 0.40 0.40
L2 Misses 0.54 0.54 0.41 0.41

RI 0.27 0.25 0.28 0.26

(b) AMD Athlon64

Table 3.6: Cost of The Mark Mechanism Alone for Four Design Points,
Each Normalized to Cost of Entire Mark Scenario.

dahl’s law and the predominance of memory activity in the scan portion of the trace
loop, explaining the results in Table 3.5.

3.3.3 Heap Traversal Order

Another implementation decision that can have significant impact on the performance
of a garbage collector is the choice of data structure for the work list, and the heap
traversal order this induces. While it is ‘common knowledge’ among implementers
that depth-first search outperforms breadth-first search, replay tracing gives us a plat-
form for isolating the performance effect of traversal order independent of the queue
structure used. We also look beyond this, to perform a thorough analysis of several
other traversal orders that have not been studied in the literature. Research into par-
allel garbage collection algorithms in particular focus around work list designs that
fairly share the collection work among the available collection threads, but we know
of no work that evaluates the resulting performance in isolation.

3.3.3.1 Experiments

In these experiments, the scenario (in terms of the replay tracing framework) is the
same, the full mark scenario from Section 3.3.1. The only difference between the data
points presented below is the order in which objects are loaded into (and therefore
replayed from) the replay buffer.

The data structures studied in this section are:

Sorted As a limit study, we include results for heap traversals in ascending address
order, by sorting the replay buffer. This doesn’t correspond to any realistic work-
list data structure, but provides an interesting edge case. All graphs are nor-
malised to this.

34 Garbage Collector Performance

Stack A stack is the traditional data structure for the work list, and using it results
in a depth-first traversal of the heap graph. This has been shown [Wilson et al.,
1991] to produce good mutator locality when used with a copying collector, so
it is reasonable to expect the same will follow for collector locality.

Queue A first-in first-out queue leads to a breadth-first traversal, with poor mutator
locality when used in a copying collector.

Work Packet Ossia et al. [2002] describe a data structure in which each collector
thread works with two packets of pointers, one as input to the traversal and
one as output. When a thread exhausts its input packet, a new input packet is
acquired from a global pool, and full output packets are flushed to the global
pool. This technique maximizes the potential for work sharing among collector
threads but also leads to a more breadth-first traversal order.

If the global pool is managed as a stack, this becomes a hybrid of the two tech-
niques above, locally breadth-first, but globally depth first. We refer to this in
the results as work packet. The traversal order changes as the size of the packets
change, and we study the effect of the packet size on GC time. Hallberg [2003]
indicates that the JRockit virtual machine uses this type of data structure, with a
packet size of 493 items.

Buffered stack The prefetch work of Cher et al. [2004] relies on introducing a small
FIFO buffer between the collector and the mark stack. Pointers popped from the
top of the stack are inserted at the tail of the FIFO buffer, and the oldest entry in
the buffer is processed. New pointers obtained from scanning the current object
are pushed directly onto the stack.

This data structure is described in detail in Chapter 4 where our prefetch solu-
tion is described, but for now we analyse the locality effects of the ordering this
produces. We look at the performance across a range of buffer sizes—a small
buffer should be almost identical to a depth-first traversal, and as the buffer
becomes larger we expect the order to start to resemble breadth-first.

Orthogonal to the actual traversal order, we also look at these configurations in an
edge enqueuing collector. Edge enqueuing is discussed in detail in Section 4.5, but we
introduce it briefly here so as to co-locate our performance results. Edge enqueuing
differs from the standard (node enqueuing) in that when an object is scanned, its non-
null pointer fields are pushed onto the work list instead of being marked and condi-
tionally scanned. When an object is popped from the queue, it is marked, and only
scanned if it wasn’t already marked. Figure 3.4 shows the resulting loop structure.

Another issue in the traversal order of the heap (which is touched on later in Chap-
ter 5) is the order of scanning of fields within an object. The ’natural’ order is the order
in which the reference fields are declared in an object’s class and superclasses.

§3.3 Results 35

1 for p in root-set
2 queue.add(p)
3

4 while !queue.isEmpty()
5 obj = queue.remove()
6 if obj.testAndMark() // Test mark-bit first
7 gcmap = obj.getGcMap()
8 for p in gcmap.pointers()
9 child = p.load()

10 if child != null
11 queue.add(child) // Enqueue without testing mark-bit

Figure 3.4: The Edge-Enqueuing Tracing Loop

3.3.3.2 Results

This section shows results of our experiments exploring traversal order. We measure
total elapsed time for the heap traversal across all GCs in the third iteration of each
benchmark, and repeat each measurement six times in order to obtain a sufficiently
small confidence interval. We take the arithmetic mean of these six iterations and di-
vide by the mean elapsed time for the ’sorted’ traversal order to produce a normalised
elapsed time ratio for each benchmark and traversal order. We summarise this to a
single figure for the traversal order on a machine architecture by taking the geometric
mean of the per-benchmark normalised figures.

Platform Clock DRAM L1 D L1 I LLC
Core i7 920 2.6GHz 4GB 32KB 32KB 8MB
AMD Phenom II X6 1055T 2.8GHz 4GB 64KB 64KB 6MB
Core i5 670 3.4GHz 4GB 64KB 64KB 4MB
Core 2 Duo E7600 3.1GHz 4GB 32KB 32KB 3MB
Atom D510 1.8GHz 4GB 32KB 32KB 1MB

Table 3.7: Hardware platforms used for heap traversal order experiments.

We perform these experiments on the five architectures listed in Table 3.7. This
differs from the platforms used for the above experiments, because these experiments
were performed at a later time and the machines used in the above experiments were
no longer available.

Depth-first versus breadth-first Figure 3.5 shows the results of a comparison be-
tween a Stack, a Queue and a Work Packet structure with mid-size packets of 128
entries. As expected, a stack performs much better than a queue, showing that the lo-
cality effects of a depth-first search order apply to the collector as well as the mutator.
In fact the stack performs surprisingly well compared to the address-order (sorted)
traversal to which the graph is normalised. Also of interest is how poorly a breadth-
first search performs, taking over 50% longer than depth-first search on all architec-

36 Garbage Collector Performance

tures. Unsurprisingly the work packet ordering performs somewhere between the
two.

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

corei7 phenom corei5 core2 atomd510

N
o
rm

a
liz

e
d
 R

e
p
la

y
 G

C
 t
im

e Stack
Work Pkt 128
Queue

Figure 3.5: Effects of traversal order: major design choices

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

corei7 phenom corei5 core2 atomd510

N
o
rm

a
liz

e
d
 R

e
p
la

y
 G

C
 t
im

e Stack
Buffer 1
Buffer 2
Buffer 4
Buffer 8
Buffer 16
Buffer 32
Queue

Figure 3.6: Effects of a FIFO buffer

FIFO buffer Figure 3.6 shows the impact of adding a Cher et al. style FIFO buffer
to an otherwise depth-first traversal, for varying buffer sizes. The data series ‘buffer
n’ shows the impact of a buffer of size n, varying from 1 element to 32 elements. For
comparison, we also include the data point for breadth-first search.

The impact of the FIFO buffer is surprisingly severe. A 32 element FIFO buffer
slows down this scenario by almost 30% over a depth-first search, and on the Core
i7 is almost as significant as a breadth-first search. Using this data structure without
prefetch is clearly not helpful.

Work Packet Figure 3.7 shows the effect of different size packets in the work packet
queue’s partial breadth-first order. Perhaps unsurprisingly given the results in Fig-
ure 3.6, even an 8-entry work packet has a large impact on replay time. Interestingly
the size of the packet seems to have little consistent effect. As with the FIFO buffer,
the slowdown is never quite as pronounced as a full breadth-first ordering.

Scan Direction Figure 3.8 compares scanning through each object’s fields either for-
wards or backwards. The impact (given a depth first traversal) is significant. This

§3.3 Results 37

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

corei7 phenom corei5 core2 atomd510

N
o
rm

a
liz

e
d
 R

e
p
la

y
 G

C
 t
im

e Stack
Work Pkt 8
Work Pkt 32
Work Pkt 128
Work Pkt 512
Queue

Figure 3.7: Effects of partial breadth-first (work packet) traversal order

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

corei7 phenom corei5 core2 atomd510

N
o
rm

a
liz

e
d
 R

e
p

la
y
 G

C
 t

im
e Stack

Stack (Rev)
Queue
Queue (Rev)

Figure 3.8: Reversing the order of scanning of fields

tallies with Gu et al. [2006], who noticed consistent slowdowns when scanning ob-
jects in reverse order. Interestingly when used in a breadth-first search, the order of
scanning within the object makes little difference—evidently it is difficult to make a
bad traversal order worse.

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

corei7 phenom corei5 core2 atomd510

N
o

rm
a
liz

e
d
 R

e
p
la

y
 G

C
 t
im

e Sorted (Edge)
Sorted (Node)
Stack (Edge)
Stack (Node)
Queue (Edge)
Queue (Node)

Figure 3.9: Edge enqueuing.

Edge Enqueuing Figure 3.9 shows results for the main traversal orders in an edge-
enqueuing collector, normalised like the graphs above to the performance of a node-
order sorted traversal. As expected, the best-case performance of edge enqueuing,
when the heap is traversed in address order, is much better than node-enqueuing. The

38 Garbage Collector Performance

difference is least pronounced on the Core i7 processor, where a significant percentage
of the benchmarks fit completely in its 8MB L3 cache, and increases as we move to
the right across the graph, and the last-level cache size decreases. This confirms that
main-memory latency effects are responsible for the difference in performance.

Under a stack discipline, the improvement disappears, and performance of the
edge-enqueued collector is slightly slower that of the node enqueued collector. This
is reasonable since edge-enqueuing performs testAndMark on the same number of
objects, scans the same number of objects, but enqueues more objects than node-
enqueuing. In the replay tracing harness, where enqueuing is a no-op, this is the
expected result.

Under a queue discipline, edge enqueuing performs significantly better than its
node-order counterpart, a difference that increases as cache size drops. One plausi-
ble explanation is that while breadth-first traversal causes poor cache-miss behaviour
on the initial fetch of an object’s header, the additional heap references in the node-
enqueuing loop’s kernel add a second source of cache misses to objects that have been
evicted from cache by the poor traversal order. The edge-enqueued loop only suffers
the initial cache miss.

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

corei7 phenom corei5 core2 atomd510

N
o
rm

a
liz

e
d
 R

e
p
la

y
 G

C
 t
im

e Stack (Edge)
Buffer 1 (Edge)
Buffer 2 (Edge)
Buffer 4 (Edge)
Buffer 8 (Edge)
Buffer 16 (Edge)
Buffer 32 (Edge)
Queue (Edge)

Figure 3.10: Edge enqueuing with a FIFO buffer

Figure 3.10 shows that a FIFO buffer has a similarly detrimental effect as on the
node-enqueued traversal. Interestingly though, particularly on the ‘Core’ processors,
the buffer leads to worse performance than a breadth-first search.

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

corei7 phenom corei5 core2 atomd510

N
o
rm

a
liz

e
d
 R

e
p
la

y
 G

C
 t
im

e Stack (Edge)
Work Pkt 8 (Edge)
Work Pkt 32 (Edge)
Work Pkt 128 (Edge)
Work Pkt 512 (Edge)
Queue (Edge)

Figure 3.11: Edge enqueuing. Effects of partial breadth-first order

§3.4 Summary 39

Results for the locally breadth-first (work packet) order are shown in Figure 3.11.
In an edge enqueueing collector, this ordering performs similarly to its node-enqueued
counterpart. The only significant difference is that because of the better performance
of breadth-first with edge enqueuing, breadth-first performs better than any of the
locally breadth-first orderings.

3.3.3.3 Conclusion

Heap traversal order has a significant effect on the performance of a garbage collector,
and interestingly the depth-first ordering resulting from using a stack for a work list
is very close to optimal. While the magnitude of the difference we demonstrate using
replay tracing is larger than that which would be experienced in a practical system,
these results demonstrate that traversal order must be a first order consideration in
the design of the tracing loop.

3.4 Summary

This chapter presented a new approach to analysing the performance of a garbage
collector. We used this technique to a) identify the costs of various components of
the main loop of the Garbage Collector, b) evaluate two implementations of object
mark state, and c) look at the impact of heap traversal order on the garbage collector,
independent of the performance of the data structure used for the work list. This
information is valuable when targeting optimizations of the garbage collector, and is
critical in motivating the work in the remainder of this thesis.

Chapter 4 uses the analysis from Section 3.3.1 to design a software prefetch strat-
egy that provides consistent speedups across a wide range of benchmarks. Following
that, Chapter 5 looks at the scanning mechanism, the next most expensive component
of the tracing loop.

40 Garbage Collector Performance

Chapter 4

Effective Software Prefetch

The previous chapter presents an analysis of the costs of the mark operation in a mark-
sweep garbage collector. In this chapter we build on insights gained from this analy-
sis. We show how edge order traversal of the heap improves locality and allows us to
speed up the mark loop through software prefetch. In order to take best advantage of
the locality gains from the edge-order traversal, we also present a new implementa-
tion technique for object mark state that stores this metadata in object headers without
sacrificing speed in the sweep operation.

This chapter is based on work published in the paper “Effective Prefetch for Mark-
sweep Garbage Collection” [Garner, Blackburn, and Frampton, 2007]. The key contri-
bution of this work is the cyclic mark-state design described in Section 4.3, and the
combination of edge-order heap traversal with buffered prefetch. The mark-state de-
sign was contributed to the Jikes RVM codebase in 2006, and remains the basis for its
MarkSweep collector.

4.1 Introduction

Many garbage collection algorithms perform a transitive closure over the heap iden-
tifying live objects without moving the objects. The best known of these is the mark-
sweep collector, but mark-compact, Immix and others all have similar closure opera-
tions. The performance of this closure operation is dominated by cache miss time, be-
cause from a locality perspective it is a random walk across the entire heap. This ren-
ders caches in modern processors essentially ineffective, and similarly defeats hard-
ware prefetch mechanisms which are built to identify and predict regular patterns of
memory accesses. Previous attempts to apply software prefetch to this problem have
produced little or no speedup.

In modern computer systems, access latencies—the time between issuing a mem-
ory access instruction and the arrival of the data in the CPU—increase significantly
through the cache hierarchy. Level 1 cache has a typical latency of 1–4 clock cycles,
whereas main memory can have a latency of over 100 cycles.

Broadly, there are two main techniques that can be used to improve memory be-
havior of software. The first is to minimise memory accesses by combining spatial
and temporal locality of data operations, that is to keep data that is accessed closely

41

42 Effective Software Prefetch

in time closely in space. This can be done by rearranging data structures (e.g. column-
major versus row-major array layouts), or by changing data representation to be more
spatially efficient (e.g. a bit-map versus a byte-map). The improvement is achieved by
making more efficient use of finite resources such as caches, TLBs etc.

The second technique is prefetch, which attempts to mitigate main-memory access
latency by requesting data in advance of actually using it, moving it into cache so
that it is available quickly when the program actually requires it. Prefetch can be
implemented in either hardware or software.

Hardware prefetch units observe the access patterns of the running program and
attempt to predict future accesses with no intervention by the programmer or runtime.
This is very successful for applications such as scientific computations involving vec-
tor or matrix algebra, but are not amenable to the irregular patterns of pointer chasing,
such as those that dominate a garbage collection trace.

Software prefetch requires additional instructions to be inserted into the program
so that access patterns that hardware prefetch cannot predict can be exploited. The po-
tential benefits of this approach are limited by the ability to predict accurately which
memory will be required in the near future.

4.2 Related work

The basic mark-sweep algorithm has been continuously refined since its initial intro-
duction in 1960 [McCarthy, 1960]. Our work builds directly upon prior work on lazy
sweeping [Hughes, 1982; Boehm, 2000] and prefetching [Boehm, 2000; Cher et al.,
2004].

Boehm [2000] evaluates lazy sweeping in the context of the Boehm-Demers-Weiser
(BDW) collector. Instead of sweeping the whole heap immediately after each mark
phase, the GC only sweeps completely free (unmarked) blocks of memory, and the re-
mainder are lazily swept on demand by the allocator. This approach is effective when
mark bits are maintained on the side, allowing free blocks to be cheaply identified.
Boehm saw up to 17% net performance win from lazy sweeping.

In the same paper, Boehm is the first to apply software prefetching to garbage col-
lection. He introduces a prefetch strategy called prefetch on gray, where an object is
prefetched upon insertion into the mark stack. This strategy is somewhat effective
in a heap implementation using a mark bitmap on the side. Boehm saw speedups
of up to 17% in synthetic GC-dominated benchmarks and 8% on a real application
(ghostscript). However, when mark bit metadata is embedded in the object header,
objects are guaranteed to be in cache when they are pushed on the mark stack, obvi-
ating the need for a prefetch. Prefetch on gray has two key limitations. Many items
are prefetched too soon, and by the time the depth-first search pops the stack back to
the item, it has been evicted from cache by the intervening memory activity. Secondly,
many items are prefetched too late, because the last object pointed to by any given
object is accessed immediately after it is pushed on the stack and prefetched, allow-

§4.2 Related work 43

ing no time for the prefetch to take effect. Boehm measures costs using profiling, and
reports results for a small number of C benchmarks.

1 void add(Address item) {
2 stack.push(item)
3 }
4

5 Address remove() {
6 Address pf = stack.pop()
7 pf.prefetch()
8 fifo.insert(pf) // FIFO buffer allows
9 return fifo.pop() // prefetch time

10 }

Figure 4.1: The FIFO-Buffered Prefetch Queue [Cher et al., 2004].

Cher et al. [2004] build on Boehm’s investigation, using simulation to measure
costs and explore the effects of prefetching in the BDW collector. They find that when
evaluated across a broad range of benchmarks, Boehm’s prefetch on gray strategy
attains only limited speedups under simulation, and no noticeable speedups on con-
temporary hardware. Cher et al. introduce the buffered prefetch strategy that we also
adopt (see Figure 4.1). Buffered prefetching observes that the LIFO discipline used
in the mark stack when performing depth-first search is unsuitable for prefetching
because the pattern of future accesses in a LIFO structure is hard to predict. They re-
cover predictability by placing a small FIFO prefetch buffer between the mark stack
and the tracing process. When the tracing loop pops the next entry from the mark
stack (line 6), a prefetch is issued on its referent (line 7) and the entry is inserted at the
tail of the prefetch FIFO (line 8). The entry at the head of the prefetch FIFO is then
selected for scanning (line 9). The depth of the FIFO defines the prefetch distance.

Cher et al. validate their simulated results using a PowerPC 970 (G5), almost iden-
tical to the PowerPC system on which we obtain our results. They obtain significant
speedups on benchmarks from the jolden suite, but less impressive results for the
SPECjvm98 suite, with their best result being 8% on 202 jess, and 2% on 213 javac.
All of these results were achieved in very space-constrained heaps; about 1.125× the
minimum heap size, sufficiently small that GC time is a large fraction of total time,
thereby amplifying the effect of any GC improvements. In Section 4.4 we show that
by combining Cher et al.’s approach with edge ordered enqueuing, we see consistent,
sizable performance improvements across a large number of benchmarks.

Groningen [2004] uses a similar prefetch buffer to Cher et al. to speed up mark-
sweep collection for the functional language Clean. They evaluate on several ma-
chines including an AMD Opteron of comparable speed to our Athlon 64, and achieve
an increase in throughput of up to 40%. The differences in language and benchmarks
make this result difficult to compare to Cher et al. or our work.

Hallberg [2003] applies prefetch to the JRockit virtual machine, and evaluates her
implementation on an Itanium processor using SPECjbb2000. JRockit uses a ’work
packet’ work queue, that we show in Section 3.3.3.2 to be significantly slower than

44 Effective Software Prefetch

a stack. It is difficult to evaluate this work against ours, because of the difference in
hardware platforms and the queue discipline.

4.3 Key Mark-Sweep Design Choices

Although the basic mark-sweep algorithm is well documented and well understood,
there are several design choices that have the potential to significantly affect perfor-
mance [Wilson et al., 1995; Jones and Lins, 1996; Boehm, 2000]. These include: a) the
allocation mechanism and free-list structure, b) the mechanism for storing mark state,
c) the technique used to sweep the heap, and d) the structure of the collector’s work
queue.

4.3.1 Allocation

We use MMTk’s standard allocation mechanism and free-list structure for all mark-
sweep configurations we evaluate in this thesis. The free list is structured as a two
level segregated fit free-list structure [Wilson et al., 1995]. The allocator divides memory
into coarse grain blocks of which there are several distinct sizes ranging from 4K to 32K
bytes. When required, the allocator assigns individual blocks to a single object size class
and divides them into N equal sized cells. The allocator always satisfies requests with
the first entry on the free list for the smallest size class that is large enough. This
approach reduces worst case fragmentation while ensuring a fast simple allocation
path because any request is always satisfied by the head of the free-list, and the choice
of free list is generally statically determined by the compiler.

4.3.2 Mark state

As discussed in Section 3.3.2, the collector’s mark phase depends on being able to store
mark state for each object. We examined the performance of each of these options, and
discovered that while the side bitmap appears to have a locality advantage, in a real
collector these advantages disappear due to the cache flushing effects of the collector.
We look at both of these design choices when evaluating our prefetch optimizations.

An important optimization for header state is to change the sense of the mark bit at
each garbage collection, which avoids having to reset all mark bits after every collec-
tion. Side bitmaps can be trivially and cheaply zeroed in bulk, thereby avoiding this
issue.

4.3.3 Sweep

A classic mark-sweep collector will sweep the entire heap at the end of each collection,
identifying unmarked memory and returning it to free lists. The sweep comprises
two components: examining each block’s metadata to identify marked objects, and
populating the free lists with any freed memory. Scanning a side bitmap will easily
reveal blocks which are entirely free, allowing them to be freed up entirely, therefore

§4.3 Key Mark-Sweep Design Choices 45

avoiding the construction of a free list in these blocks. Sweeping the entire heap at
each collection is known as eager sweeping.

Boehm [2000] noted significant advantages to lazy sweeping. A lazy sweeper
sweeps blocks only when they are required by the allocator. This has two signifi-
cant advantages. First, it saves sweeping work for many blocks which are unchanged
from collection to collection. Second, free list construction occurs immediately prior
to use of the cells, which has measurable temporal locality benefits. Blocks which
are entirely free can be identified by examining a side bitmap at the end of a collec-
tion. Lazy sweeping is therefore normally used with a side bitmap. Our design effort
was focused on combining the performance gains of lazy sweeping with the locality
benefits of header metadata we exploit in Section 4.5.

4.3.3.1 Block marks

In the process of teasing apart the various design choices for mark-sweep collectors,
we wanted to explore lazy sweeping with header mark bits. As we show in Section 4.6
this combined approach is quite effective, although to our knowledge has not been ex-
plored before. In order to free unused blocks eagerly while lazily sweeping partially
used blocks, we developed hybrid marking, which uses mark bits in object headers and
a single byte of side metadata for each block. Each block’s side metadata is set when-
ever an object within the block is marked. Any block with an unmarked metadata
byte is completely free, and may be eagerly reclaimed at collection time. This way we
are able to combine header metadata with lazy sweeping.

In performance terms, the per-block mark state makes an insignificant contribu-
tion to the mark phase, because it is an unconditional write operation. Multiple marks
for the same block may be absorbed in the on-chip write buffer, and no pipeline stalls
will occur as long as there is capacity in the write buffer. The space overhead of the
block marks is also insignificant, requiring one byte per 4KB block.1

4.3.3.2 Cyclic mark state

Recall that one of the two advantages of lazy sweeping is that unmarked objects only
lazily make their way onto free lists. When a side bitmap is used, this delay is of no
consequence beyond the obvious saving of work. Recall however that header mark
state changes sense at each collection. Therefore an object with header mark state will
not be recognized as unmarked if it is swept an even number of collections since it
was last marked. This situation can never lead to a live object being collected since
every live object is visited at every collection, but it can lead to floating garbage. Of
course this situation does not arise with a side bitmap since the side bitmap can be
reset cheaply, and therefore all unused objects are guaranteed to be unmarked.

Floating garbage may become a problem when the allocation behaviour of a pro-
gram varies over time. In a segregated free list allocator, blocks remain allocated to a

1As mentioned above, blocks vary in size. For simplicity (and to speed up the calculation of the
metadata addresses) we reserve metadata for each 4KB chunk.

46 Effective Software Prefetch

given size class until there are no live objects in the block, in which case it is returned
to the pool of free blocks and can be re-used for a different size class. When a garbage
collection is triggered, it is likely that there are unswept blocks in some size classes
due to a relatively low demand for objects of that size class in the previous mutator
phase. Eventually the mutator may again demand significant numbers of objects in
these size classes, and blocks that have not been swept for one or more GC cycles will
come to be swept.

We compared two basic solutions to the problem of floating garbage when lazy
sweeping. One approach is to simply sweep the unswept portion of the heap at the
beginning of each collection cycle. This approach will still see the locality advantages
of lazy sweeping and successfully eliminate floating garbage, but loses the advantage
of avoiding redundant sweeping and in practice it performs badly. Our second ap-
proach uses multiple bits to record mark state within each object header and stores
the mark state as the collection number modulo the largest number that can be stored
in the header bit field. With a bit field size of n, we reduce the worst case amount of
floating data by a factor of 2−n. Note that data will only float in the case that it is fi-
nally swept by the mutator exactly N× 2n collections since it was last marked without
that block being swept in any of the previous 2n−1 collections. In practice we find that
only 4 bits of cyclic mark state are required before the performance gains of additional
bits become insignificant.2

4.3.4 Work queue

Section 3.2 described the basic tracing loop (Figure 3.1), and pointed out that the col-
lector’s work queue could be maintained in either LIFO or FIFO disciplines, leading
to depth-first or bread-first traversals of the heap respectively. In a copying collector
the traversal order affects the relative position of objects after collection, and therefore
impacts application locality [Huang et al., 2004; Wilson et al., 1991]. In such collec-
tors, depth first orders are generally accepted as more efficient [Huang et al., 2004;
Wilson et al., 1991]. In Section 3.3.3 we show that traversal order is also significant for
collection speed, so we use a LIFO (stack) for the experiments in this chapter.

4.4 Software Prefetching

The results presented in Section 3.3.1 can now be seen in context. The initial access
of an object when it is fetched from the work queue, and the subsequent scanning
accounts for approximately 40% of the scan time. The subsequent references to the
referents of the scanned object account for another 40% of the time. In order to max-
imise its effectiveness software prefetch needs to address both sources of cache misses.

These results demonstrate that poor locality is the principal bottleneck in the per-
formance of the tracing loop. Because of the significant miss penalties imposed by

2This is the default implementation in MMTk since Jikes RVM release 2.5.

§4.5 Edge Order Traversal 47

modern architectures, it is clear that improving the cache behavior of the trace will be
fruitful in terms of improving overall trace performance.

Successful software prefetch depends on two factors. Firstly, we need to accurately
predict memory accesses, because prefetching memory that we subsequently do not
access increases cache pressure and damages performance. Secondly we need to judge
the correct prefetch distance, that is the time between issuing the prefetch and accessing
the prefetched memory. If our prefetch distance is too small, the processor may stall
waiting for data to arrive in cache. If it is too large, the data may be evicted from cache
before we access it, resulting in a second load from main memory and causing even
more memory traffic.

4.4.1 Prefetching For GC Tracing

Previous work [Boehm, 2000; Cher et al., 2004] has focused on the potential for
prefetching objects from the marking stack with a tracing loop similar to the one in
Figure 3.1. Ignoring memory accesses directly associated with the queuing mecha-
nism (which we have shown in Section 3.3.1 to be insignificant), the two sources of
memory access are a) marking each object (line 11), and b) scanning each marked object
(lines 7, 8 and 9). The first requires the object’s mark metadata, which may be in the
object’s header, or held on the side. The second requires accessing the object’s GCmap
(normally in the object’s header or accessed via indirection from the object’s header),
and scanning each of the pointers within the object. The performance of the scanning
mechanism is the subject of Chapter 5.

We take as a starting point the prefetch buffer used by Cher et al.

4.5 Edge Order Traversal

The standard tracing loop is depicted in Figure 4.2a and is designed to minimise the
number of objects that need to be enqueued and dequeued from the marking stack.
Other alternative tracing loops are possible [Jones and Lins, 1996] but not generally
used due to the additional stack operations they entail. However, as the analysis in
the previous section has shown, queuing operations are not the bottleneck to improving
performance. We observe that it is possible to remove one of the memory access points
in the loop by enqueuing all non-null objects during the trace rather than inspecting
these objects and filtering out marked objects. Figure 4.2b gives pseudo-code for this
approach, which we call edge enqueuing, because the referents of all non-null edges
in the graph are placed on the stack. We refer to the traditional technique as node
enqueuing (since each node in the graph is enqueued only once). Comparing Fig-
ures 4.2a and (b), the only difference between the two loops is that the mark operation
(line 13) of Figure 4.2a) is hoisted to line 8 in Figure 4.2b.

By hoisting the mark operation, edge enqueuing weakens the guard on line 14 of
Figures 4.2a and (b), so that children are eagerly enqueued, and the conditional mark
operation is only performed later, immediately before the child is scanned. This in-
creases the number of queue operations from the number of nodes in the live object

48 Effective Software Prefetch

1 for p in root-set
2 obj = p.load()
3 mark(obj)
4 queue.add(obj)
5

6 while !queue.isEmpty()
7 obj = queue.remove()
8

9 gcmap = obj.getGcMap()
10 for p in gcmap.pointers()
11 child = p.load()
12 if child != null
13 if child.testAndMark()
14 queue.add(child)

(a) The Standard Tracing Loop

1 for p in root-set
2

3

4 queue.add(p)
5

6 while !queue.isEmpty()
7 obj = queue.remove()
8 if obj.testAndMark() // hoist from 13
9 gcmap = obj.getGcMap()

10 for p in gcmap.pointers()
11 child = p.load()
12 if child != null // weaker guard
13

14 queue.add(child)

(b) The Edge-Enqueuing Tracing Loop

Figure 4.2: Comparing the Standard and Edge Enqueuing Tracing Loops

graph to the number of edges in the live object graph, but does not affect the number
of objects which are marked or scanned. As we have already shown, queuing oper-
ations form a negligible part of the cost of tracing. The benefit of edge enqueuing is
that the mark (line 8 of Figure 4.2b), scan (lines 9–11) and trace (lines 13 and 14) for
a given object now occur contemporaneously, providing a far more predictable ac-
cess pattern, which is more amenable to prefetching. The additional mark stack space
requirements of edge enqueuing are also reasonable. We found that the SPEC and
DaCapo benchmarks have on average 40% more edges than nodes, leading to about
40% more queue operations.

The contemporaneous mark, scan and trace mean that edge enqueuing has better
temporal locality than node enqueuing. This addresses the first of our identified tech-
niques for improving locality, and also provides a better environment for prefetching,
since all accesses to each object occur together when that object is removed from the
queue (in line 7). If the mark state is kept in the object header rather than a side data
structure, we also achieve better spatial locality, and for the majority of objects all op-
erations will take place on one or two cache lines. We implemented the FIFO-buffered
mark queue (Figure 4.1 [Cher et al., 2004]) in our infrastructure to explore the effect of
node and edge enqueuing on prefetching. We control the prefetch distance by chang-
ing the size of the FIFO buffer.

4.6 Performance Results

We now evaluate the effectiveness of software prefetching in the tracing loop under
both edge and node enqueuing models. Given their effect on locality, we compare with
both header and side bitmap implementations of mark state, yielding four configura-
tions.

§4.6 Performance Results 49

Platform Clock DRAM L1 cache L2 cache
AMD Athlon 64 3500+ 2.2GHz 400MHz DDR2 64KB 64B 2-way 512KB 64B 16-way
Pentium-4 Prescott 3.0GHz 533MHz DDR2 16KB 64B 8-way 1MB 64B 16-way
Pentium-M Dothan 2.0GHz 533MHz DDR2 32KB 64B 4-way 2MB 128B 8-way
PowerPC 970 G5 1.6GHz 333MHz DDR 32KB 128B 2-way 512KB 128B 8-way

Table 4.1: Hardware Platforms for prefetch experiments

0 2 4 6 8 10 12 14 16
Prefetch Distance

0.7

0.8

0.9

1

1.1

R
el

at
iv

e
G

C
 T

im
e

EdgeHdr
NodeHdr
EdgeSide
NodeSide

(a) PPC 970
0 2 4 6 8 10 12 14 16

Prefetch Distance

0.7

0.8

0.9

1

1.1

R
el

at
iv

e
G

C
 T

im
e

EdgeHdr
NodeHdr
EdgeSide
NodeSide

(b) Athlon 64

0 2 4 6 8 10 12 14 16
Prefetch Distance

0.7

0.8

0.9

1

1.1

R
el

at
iv

e
G

C
 T

im
e

EdgeHdr
NodeHdr
EdgeSide
NodeSide

(c) Pentium-M
0 2 4 6 8 10 12 14 16

Prefetch Distance

0.7

0.8

0.9

1

1.1

R
el

at
iv

e
G

C
 T

im
e

EdgeHdr
NodeHdr
EdgeSide
NodeSide

(d) Pentium 4
Figure 4.3: Normalized GC Time vs. Prefetch Distance, as Geometric

Mean of 17 benchmarks. Four Combinations of Edge and
Node Enqueuing and Side and Header Metadata Are Shown.

We evaluate performance on 4 architectures, details of which are provided in Ta-
ble 4.1.

A side bitmap incurs the overhead of a synchronized update to ensure correctness
for parallel collection (which we measured in Section 3.3.2). Since the synchronization
does not change the overriding memory access patterns, the synchronization over-
head should be independent of the presence of prefetch, and cause only a minor shift
with respect to the prefetch distance due to the additional cycles required during pro-
cessing. Our intuition is that the byte-map approach—while avoiding a synchronized
operation on mark—would have worse locality properties than that of a dense bitmap
by consuming eight times more cache lines.

For this loop, it is natural to measure prefetch distance in terms of loop itera-
tions, and hence numbers of elements in the prefetch buffer. Figures 4.3 and 4.4 show
garbage collection and total time respectively, as we vary the prefetch distance from
0 to 16 for each of the four configurations (EdgeHdr, NodeHdr, EdgeSide, NodeSide), mea-

50 Effective Software Prefetch

0 2 4 6 8 10 12 14 16
Prefetch Distance

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

R
el

at
iv

e
E

xe
cu

tio
n

T
im

e

EdgeHdr
NodeHdr
EdgeSide
NodeSide

(a) PPC 970
0 2 4 6 8 10 12 14 16

Prefetch Distance

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

R
el

at
iv

e
E

xe
cu

tio
n

T
im

e

EdgeHdr
NodeHdr
EdgeSide
NodeSide

(b) Athlon 64

0 2 4 6 8 10 12 14 16
Prefetch Distance

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

R
el

at
iv

e
E

xe
cu

tio
n

T
im

e

EdgeHdr
NodeHdr
EdgeSide
NodeSide

(c) Pentium-M
0 2 4 6 8 10 12 14 16

Prefetch Distance

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

R
el

at
iv

e
E

xe
cu

tio
n

T
im

e

EdgeHdr
NodeHdr
EdgeSide
NodeSide

(d) Pentium 4
Figure 4.4: Normalized Total Time vs. Prefetch Distance, as Geometric

Mean of 17 benchmarks. Four Combinations of Edge and
Node Enqueuing and Side and Header Metadata Are Shown.
Measured In a Generous Heap (3 ×Minimum).

sured on our four modern architectures. Each graph shows the geometric mean of
performance for the full set of 17 benchmarks drawn from DaCapo and SPEC. Results
are normalized to the time for NodeSide with no prefetch. NodeSide is the configuration
which most closely follows prior work [Boehm, 2000; Cher et al., 2004]. We gathered
results for different heap sizes, but found that the effect of prefetch was independent
of heap size. We report here the results for a fairly generous heap; three times the min-
imum heap size for each benchmark. We performed identical experiments on 2× and
4× heaps, and found the GC-time results were almost indistinguishable, although the
overall impact of this GC-time optimization on total time obviously increases since
time spent in GC goes up in smaller heaps. For completeness, Figure 4.5 shows total
time as a function of heap size. In order to maintain a consistent number of collections
across the different configurations and fairly assess the effect of prefetch, we did not
allow the header meta-data configurations to make use of the minor space saving due
to avoiding the side bitmap.

The results in Figure 4.3 show a clear win for EdgeHdr (edge order enqueuing with
mark state in the header), which out performs all other configurations on all four ar-
chitectures. The impact of prefetching ranges from modest to poor for node order
enqueuing. This poor result for node enqueuing is consistent with prior work which
saw only modest improvements with prefetching [Cher et al., 2004; Boehm, 2000].
The difference in effectiveness of the prefetch operations across the architectures is

§4.6 Performance Results 51

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0.5 1 1.5 2 2.5 3 3.5 4 4.5

 40

 60

 80

 100

 120

N
or

m
al

iz
ed

 T
im

e

T
im

e
(s

ec
)

Heap size relative to minimum heap size

Node/Side (Original)
Edge/Hdr/Prefetch

(a) PPC 970

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0.5 1 1.5 2 2.5 3 3.5 4 4.5

 15

 20

 25

 30

 35

 40

 45

N
or

m
al

iz
ed

 T
im

e

T
im

e
(s

ec
)

Heap size relative to minimum heap size

Node/Side (Original)
Edge/Hdr/Prefetch

(b) Athlon 64

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0.5 1 1.5 2 2.5 3 3.5 4 4.5

 15

 20

 25

 30

 35

 40

 45

 50

N
or

m
al

iz
ed

 T
im

e

T
im

e
(s

ec
)

Heap size relative to minimum heap size

Node/Side (Original)
Edge/Hdr/Prefetch

(c) Pentium-M

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0.5 1 1.5 2 2.5 3 3.5 4 4.5

 15

 20

 25

 30

 35

 40

 45

 50

N
or

m
al

iz
ed

 T
im

e

T
im

e
(s

ec
)

Heap size relative to minimum heap size

Node/Side (Original)
Edge/Hdr/Prefetch

(d) Pentium 4

Figure 4.5: Relative Total Execution Time As a Function of Heap Size,
Comparing Node Order and Side Mark Against Prefetching
With Edge Order and Header Mark. Geometric Mean of 17
benchmarks.

significant, with GC-time performance improvements ranging from 30% on the Pow-
erPC 970, to around 20% on the Athlon 64. Notable degradations occur for a number
of configurations on the Pentium-M. We also see that prefetch distances greater than
eight provide little advantage, with longer prefetch distances degrading performance
slightly on the Athlon 64.

In order to perform a direct comparison with Cher et al., we followed their ap-
proach and measured the speedup in total time in a very space-constrained heap,
1.125× the minimum heap (left-most data in graphs in Figure 4.5). In this situation, we
obtain total running time speedups of 18%, 15%, 11% and 16% on the PowerPC 970,
Pentium-M, AMD and Pentium 4 respectively. This compares very favorably with
Cher et al.’s result of 6% speedup on the PowerPC 970 (achieved with arguably more
amenable benchmarks), and is consistent with our results which show that edge en-
queuing is essential to effective software prefetch.

52 Effective Software Prefetch

4.7 Robustness: Experiences With Other Code Bases

Since submitting this work for publication in 2006, we ported the work to a substan-
tially different version of the Jikes RVM code base. Our efforts to reproduce our orig-
inal results were frustrating, but ultimately illuminating. Our experience may be rel-
evant to anyone wishing to implement prefetching in their own garbage collector.

First, poor code quality in the compiled code for the tracing loop can dominate any
prefetching advantage. Through painstaking detective work we established that the
absence of a number of aggressive optimizations resulting in the addition of an extra
register spill reduced the tracing loop performance sufficiently that the prefetching
advantage was negligible or zero. This was an unintended artifact of changes in the
underlying Jikes RVM code base.

Second, the prefetch optimization only improves the tracing loop. In a garbage
collector where the tracing loop does not dominate performance, the usefulness of
this optimization will be correspondingly diminished. The way Jikes RVM collects its
‘boot image’ was changed from tracing (which utilizes the prefetch) to an explicit enu-
meration of pointer fields (which does not). We found that in small benchmarks where
the Jikes RVM boot image formed a large fraction of the workload, the effectiveness
of the prefetch optimization was significantly diminished.

Finally, we found that on some architectures the FIFO structure placed in front
of the mark stack Cher et al. [2004] gave a performance advantage even without the
prefetch. This is evident in Figure 4.3(c) where performance improves at x=1, and we
saw similar behavior on an Intel Core 2 Duo. This is particularly surprising given
the traversal order results in Section 3.3.3. Our best guess is that the FIFO structure
enabled more aggressive hardware speculation through more predictable access pat-
terns, just as the FIFO facilitates software prefetch.

4.8 Summary

This chapter presented a new approach to software prefetch for garbage collection
that achieves significant, consistent speedups across a wide range of benchmarks and
architectures. We also introduce a new mark state implementation that allows fast
lazy sweeping with header mark state. By combining header mark-state information
with edge enqueuing, we change the locality of the tracing loop making it amenable
to buffered prefetch. The combination of all 3 is necessary to achieve this result.

The design of this approach was based on insights gained into the performance
characteristics of the tracing loop using the replay tracing framework presented in
Chapter 3. The next chapter looks at the second most costly factor identified by our
analysis, that of the object scanning operation.

Chapter 5

Object Scanning

Perhaps the most important and pervasive principle of computer design
is to focus on the common case: in making a design trade-off, favor the
frequent case over the infrequent case. This principle applies when de-
termining how to spend resources, since the impact of the improvement
is higher if the occurrence is frequent.

Hennessy and Patterson [2006, p. 38]

Chapter 3 analysed the performance of the garbage collection tracing loop, and
found as expected that two components dominated the cost of the loop. The first of
these, the mark operation was analysed in Chapter 4, and we identified a way to use
software prefetch to speed up this operation. This chapter looks at the second of the
two major costs, scanning the object to find its pointer fields.

This chapter is based on work published in the paper ‘A Comprehensive Survey
of Object Scanning Techniques’ [Garner, Blackburn, and Frampton, 2011]. The pa-
per makes several contributions to the literature: a clear enumeration of the design
space of object scanning techniques; a direct comparison of the performance of the
most interesting points in this space, over several architectures and a large number
of benchmarks; and a new design, using bits in the object header, that performs well
on most benchmarks and is comparatively simple to implement. The best performing
design from this study is now the default object scanning mechanism of Jikes RVM.

This chapter is structured as follows. Section 5.1 expands on the problem domain,
outlines our analysis methodology and introduces the results. Section 5.2 surveys
what little literature there is on this topic. Section 5.3 looks at the object demograph-
ics of the benchmarks we evaluate, providing statistical information we use to create
some optimizations. Section 5.4 looks at the design space for scanning techniques,
and informs our choice of configurations to evaluate. Section 5.5 details the perfor-
mance evaluation methodology used to produce the performance results presented in
Section 5.6.

53

54 Object Scanning

5.1 Introduction

Enumerating object reference fields is key to all precise garbage collectors. For trac-
ing collectors, liveness is established via a transitive closure from some set of roots.
This requires the collector to identify and then follow all reference fields within every
reachable object. For reference counting collectors, once an object’s reference count
falls to zero, each of its referents must be identified and have its reference count decre-
mented. The process of reference field identification is known as object scanning. In
order to be precise in the absence of hardware support, object scanning requires as-
sistance from the language runtime. Otherwise, tracing must conservatively assume
all fields are references [Boehm and Weiser, 1988; Boehm, 1993; Jones and Lins, 1996].
This chapter quantitatively explores the design tradeoffs for object scanning in precise
garbage collectors.

Object scanning is performance-critical since it constitutes the backbone of the trac-
ing mechanism, and therefore may be executed millions of times for each garbage col-
lection. The extensive literature on garbage collection records a variety of object scan-
ning mechanisms, but despite its performance-critical role, to our knowledge there
has been no prior study quantitatively evaluating the various approaches. As we
show here, a detailed understanding of these tradeoffs informs the design of the best
performing object scanning mechanisms.

The mechanism for scanning an object typically involves parsing metadata that is
explicitly or implicitly associated with the object. The means of parsing and the form
of the metadata can vary widely from one implementation to another. We identify
four major dimensions in the design space: i) compiled versus interpreted evaluation
of metadata, ii) encoding and packing of metadata, iii) levels of indirection between
each object and its metadata, and iv) variations in object layout.

To inform our study of design tradeoffs, we first perform a detailed analysis of
heap composition and object structure as seen by the garbage collector. We conduct
our study within Jikes RVM [Alpern et al., 2000], a high performance research JVM
with a well tuned garbage collection infrastructure [Blackburn et al., 2004b]. First,
to characterize the workload seen by any scanning mechanism, we execute eighteen
benchmarks from the DaCapo [Blackburn et al., 2006] and SPEC [SPEC, 2001, 1999]
suites, and at regular intervals examine the heap and establish the distribution of ob-
ject layouts among traced objects. We were not surprised to find that a relatively small
number of object layout patterns account for the vast majority of scanned objects. We
include in this study the extent to which packing of reference fields within objects
changes the distribution of layout patterns.

Guided by this information, we conduct a performance analysis of various object
scanning implementation alternatives. We evaluate each alternative on four architec-
tures against the DaCapo and SPEC suites. We observe substantial variation in perfor-
mance among architectures but find that some mechanisms yield consistent, signifi-
cant advantages, averaging 16% or more relative to a well tuned baseline. Specifically,
we find that metadata encoding offers consistent modest advantages, object field re-
ordering gives little measurable advantage (but improves the effectiveness of other

§5.2 Related Work 55

optimizations), and that specialized compiled scanning code for common cases sig-
nificantly outperforms interpretation of metadata. The most effective scheme uses a
small amount of metadata encoded cheaply into the object header to encode the most
common object patterns.

We also implement and evaluate the bidirectional object layout used by SableVM
[Gagnon and Hendren, 2001] and find that it performs well compared to orthodox
object layout schemes. The Sable object model combined with specialization of object
scanning code outperforms the alternatives in almost all benchmarks. There is how-
ever a small but consistent overhead in mutator time for this object model, giving it an
advantage in overall time when the heap is small, and a slight disadvantage in large
heaps.

This study is the first in-depth evaluation of object scanning techniques and the
tradeoffs they are exposed to. As far as we know, our findings are the first to pro-
vide a quantitative foundation for the design and implementation of tracing, the
performance-critical mechanism at the heart of all modern garbage collection imple-
mentations.

5.2 Related Work

Sansom [1991] appears to have been the first to propose compiling specialized code for
scanning objects (see Section 5.4.3), although he did not perform a performance anal-
ysis of the benefits of this technique. Jones and Lins [1996], authors of the standard
text on garbage collection, make reference to Sansom’s work and subsequent work,
but do not directly discuss the question of design options for scanning mechanisms.
Grove and Cheng did a proof-of-concept implementation of scanning specialization
for Jikes RVM and concluded that it was a profitable idea, but did not publish this
work or incorporate it into the main code base [Grove and Cheng, 2005]. David Grove
kindly provided us with their implementation, which we forward-ported and used as
the basis for our implementation of specialization. This implementation has been the
default scanning mechanism in Jikes RVM since 2007.

Gagnon carefully examined the question of object layout and garbage collection
efficiency in his PhD thesis [Gagnon, 2002]. He proposed the bidirectional object lay-
out, where reference and non-reference fields are laid out on opposite sides of the
object header. SableVM implements this object layout [Gagnon and Hendren, 2001].
This design has two significant properties: a) it maintains separation of reference and
non-reference fields in spite of accretion of fields due to inheritance, and b) object
scanning logic is trivial since reference fields are always contiguous. Since SableVM
did not have an optimizing compiler, it was hard for Gagnon to perform a detailed
performance evaluation of this design. More recently Gu, Verbrugge, and Gagnon
[2006] set out to compare the performance of this layout in Jikes RVM but concluded
that it was difficult to accurately evaluate such design choices in the context of a com-
plex, non-deterministic JVM. Dayong Gu generously made available to us his port
to Jikes RVM of the SableVM bidirectional object model, which we forward-ported,

56 Object Scanning

tuned, and used in our evaluation of the bidirectional object model reported here. We
use replay compilation to remove the non-determinism of the adaptive optimization
system and found significant, repeatable results across four architectures.

5.3 Analysis of Scanning Patterns

To ground our study of scanning mechanisms, we begin with a comprehensive anal-
ysis of the distribution of object layout patterns, as seen at garbage collection (GC)
time for a large suite of benchmarks. Since scanning consists of identifying and then
acting on the reference fields of objects transitively in the heap, understanding the
distribution of the patterns in which reference fields occur is important to the design
decisions.

We use the term reference to describe a language-level reference to an object. The
live object graph is defined as the set of objects that are transitively referenced from
some set of roots. By contrast, we use the term pointer as an implementation-level
address (‘void *’) which may or may not point to an object. In practice a language
may implement references as pointers but object liveness is nonetheless defined in
terms of references, which in general is a subset of the pointers. We define the reference
pattern of an object to be the number and location of reference fields within the object.
All objects of a given class have the same reference pattern, and two classes may have
the same pattern even though they differ in such aspects as size (in bytes), number of
fields, or inheritance depth.

Because the policy for the layout of references within an object will affect the dis-
tribution of reference patterns, we consider two key object layout regimes; declaration
order, and references first. These alternatives are straightforward design choices and
were described in Etienne Gagnon’s PhD work as ‘naive’ and ‘traditional’ layouts re-
spectively [Gagnon, 2002]. In the first case object fields appear within the object in
the order in which they are statically declared (with minor adjustments to ensure ef-
ficient packing in the face of alignment requirements). This is the approach used by
Jikes RVM. In the second case, references are packed together before non-reference
fields, at each level of the inheritance tree for each class. Note that for efficiency rea-
sons, language implementations generally require that field offsets are fixed across an
inheritance hierarchy, allowing the same code to access fields of a class and all of its
subclasses. So in practice, the field layout for any subclass may only be additive with
respect to its super class. Thus the ‘references first’ layout will typically result in alter-
nating regions of references and non-references corresponding to levels of inheritance
for the given type. Gagnon’s bidirectional object layout [Gagnon, 2002] avoids this
problem by growing the object layout in two directions, with references on one side
and non-references on the other. Thus references will always be packed on one side
of the object header regardless of inheritance.

A minor variant on the ‘references first’ scheme involves alternating the packing of
reference fields first or last in an attempt to maximize the opportunity for contiguous
groups of reference fields, and could in principle lead to further speedups. In prac-

§5.3 Analysis of Scanning Patterns 57

tice we found that such schemes perform almost identically to the ‘references first’
scheme, and in the interests of space we omit any further discussion.

5.3.1 Analysis Methodology

In order to conduct our analysis of scanning patterns, we instrument Jikes RVM to
identify and then record the reference pattern for each object that it scans at collection
time. At the end of the execution of each benchmark, the collector prints a histogram
indicating the frequency with which each reference pattern was seen by the scanning
mechanism throughout the execution of the benchmark. We hold the collection work-
load constant by setting a fixed heap of 2× the minimum heap size for each bench-
mark. This is a moderate heap size and is same size as we use in our performance
study in Section 5.6. We chose 2× as representative of a ‘reasonable’ heap, although
our analysis is largely insensitive to heap size. If the heap were made significantly
tighter, very short lived objects may be slightly more prominent, and of course if the
heap were made considerably larger collections would happen less frequently or not
at all, making our analysis more difficult.

5.3.2 Encoding and Counting Patterns

We study the frequency distribution of reference layout patterns in objects. Since
the number of different possible reference layouts is enormous, to make the study
tractable, we consider a fixed set of 216 + 4 layouts. We exhaustively consider all 216

layouts possible for non-array reference patterns of up to 16 words in length. We
bound the set by grouping together all non-array reference patterns of 17-32 words in
length, and all non-array reference patterns greater than 32 words in length. In prac-
tice, such patterns comprise just 0.58% and 0.10% of all objects respectively. Because
all other patterns are counted precisely, our study is precise with respect to 99.32% of
all objects for the benchmarks we study. The relative size of the pattern groups is as
follows: a) objects with no references (29.60%), b) arrays of references (6.17%, 35.77%
cumulatively), c) the 216 reference layout patterns that can potentially arise in objects
with up to 16 words in length (63.55%, 99.32% cumulatively), d) non-array objects
with references that are 17–32 words in length (0.58%, 99.90% cumulatively), and e)
non-array objects with references that are larger than 32 words in length (0.10%, 100%
cumulatively).

Our instrumentation works as follows. We modify Jikes RVM to encode each non-
array object’s reference pattern as a 32 bit vector in the per-class metadata. Each bit
maps to a word in the object and identifies whether that word is a reference or not.
For example, an object which contained (only) two references, in its first and third
words, would be encoded as 0...0101 (0x5). An object with references (only) in the
first, third and sixth fields would be encoded as 0...0100101 (0x25). We create a
histogram with 216 + 4 bins (to account for each of our fixed set of reference layouts)
and initialize the bins to zero at the start of execution. When each object is scanned
during each garbage collection, we determine its pattern either as one of the four spe-

58 Object Scanning

rank

referen
ce

p
a

ttern

mean

cumulative mean

jess

compress

raytrace

db

javac

mpegaudio

mtrt

jack

antlr

bloat

fop

hsqldb

jython

lusearch

luindex

pmd

xalan

jbb2000

1
n

o
referen

ces
3

3
.0

2
3

3
.0

2
3

0
.2

8
3

3
.0

1
4

4
.0

9
3

7
.4

4
3

1
.4

1
3

3
.9

4
4

6
.3

6
3

2
.3

6
3

0
.0

1
2

7
.8

8
2

6
.6

7
3

9
.1

6
2

7
.4

2
3

1
.3

4
2

9
.9

6
1

8
.8

5
3

2
.7

0
4

1
.5

4
2

0
0

0
0
0
0

0
0
0
0

0
0
0
1

1
8

.1
9

5
1

.2
1

2
1

.6
5

2
0

.3
2

1
5

.9
3

3
3

.1
0

1
9

.0
5

1
9

.1
4

1
5

.0
1

2
0

.1
5

1
8

.8
5

1
8

.6
2

1
1

.9
9

1
.5

3
1

2
.7

9
2

0
.7

2
1

9
.2

4
1

6
.9

7
1

5
.2

7
2

7
.0

5
3

0
0

0
0
0
0

0
0
0
0

0
1
1
1

1
6

.9
9

6
8

.2
0

2
0

.1
7

2
2

.4
2

1
1

.6
0

1
1

.7
2

2
1

.6
3

2
2

.0
5

9
.3

0
2

0
.9

2
2

1
.4

1
2

1
.7

2
1

7
.1

3
1

.9
4

1
9

.9
7

2
0

.4
0

2
1

.5
9

1
7

.9
8

1
9

.8
9

4
.0

0
4

0
0

0
0
0
0

0
0
1
1

1
1
1
1

1
0

.9
5

7
9

.1
5

1
3

.5
4

1
7

.9
6

8
.7

8
9

.3
1

1
2

.1
3

1
6

.3
6

7
.0

0
1

4
.6

9
1

3
.0

4
1

3
.0

0
7

.4
1

1
.0

3
5

.8
5

1
3

.4
1

1
3

.7
4

1
8

.6
7

8
.6

3
2

.5
3

5
0
0

0
0
0
0

0
0
0
0

0
0
1
1

7
.1

4
8

6
.2

9
4

.1
6

3
.0

7
6

.9
6

1
.6

0
7

.7
0

3
.7

4
7

.6
3

4
.0

9
7

.8
6

7
.1

9
1

0
.1

6
1

9
.0

0
1

2
.9

2
7

.8
9

6
.5

7
6

.4
1

1
0

.5
5

1
.0

0
6

refarray
5

.5
5

9
1

.8
4

5
.8

6
0

.7
0

9
.2

8
2

.9
6

1
.6

8
1

.2
1

1
0

.9
0

2
.3

6
2

.2
1

2
.8

2
9

.6
4

1
8

.4
2

6
.2

8
1

.8
3

2
.1

7
1

3
.9

7
3

.9
2

3
.7

6
7

0
0

0
0
0
0

0
0
1
1

1
1
0
1

1
.0

3
9

2
.8

8
1

8
.2

2
0

.4
1

8
0
0

0
0
0
0

0
1
1
1

0
1
1
1

0
.9

2
9

3
.8

0
0

.7
8

0
.3

7
0

.2
5

0
.2

2
0

.9
7

0
.6

6
0

.2
1

0
.5

7
1

.3
1

1
.1

9
1

.3
5

0
.1

7
3

.1
3

1
.0

2
1

.1
1

1
.2

7
1

.8
2

0
.1

8
9

0
0

0
0
0
0

0
0
0
1

1
0
1
1

0
.8

0
9

4
.5

9
0

.8
9

0
.8

2
0

.4
0

0
.4

4
0

.7
9

0
.8

0
0

.3
2

0
.9

0
1

.2
1

0
.8

5
1

.1
3

0
.1

2
2

.5
8

0
.6

3
0

.8
8

0
.5

9
0

.8
6

0
.1

5
1

0
0
0

0
1
1
1

1
0
0
1

1
1
1
1

0
.7

3
9

5
.3

2
0

.7
2

0
.3

3
0

.2
3

0
.2

0
0

.9
1

0
.5

4
0

.1
9

0
.5

2
0

.9
9

0
.9

1
1

.0
3

0
.1

2
2

.2
3

0
.7

6
0

.8
5

0
.9

4
1

.4
2

0
.1

7
1

1
0
0

0
0
0
0

0
0
0
1

1
1
0
1

0
.6

6
9

5
.9

8
0

.0
2

1
1

.9
3

1
2
0
0

0
0
0
0

0
0
0
0

1
1
1
1

0
.6

4
9

6
.6

3
0

.2
8

0
.1

7
1

.0
4

0
.1

2
0

.2
9

0
.2

4
1

.2
1

1
.0

4
0

.3
1

0
.9

6
0

.9
3

0
.0

4
1

.9
8

0
.3

7
0

.4
4

1
.1

3
0

.9
8

0
.0

4
1

3
0
0

0
0
0
0

0
0
0
0

0
0
1
0

0
.4

7
9

7
.1

0
0

.1
6

0
.0

1
2

.5
1

0
.0

1
0

.0
1

0
.5

2
0

.0
1

0
.1

4
3

.5
0

0
.5

7
0

.0
6

0
.3

7
0

.2
6

0
.4

0
1

4
0
0

0
0
0
1

0
1
1
0

0
0
0
1

0
.4

0
9

7
.5

0
0

.0
1

0
.0

1
0

.5
0

0
.1

1
0

.9
6

0
.5

4
1

.8
1

1
.9

8
0

.0
1

0
.8

5
0

.2
8

0
.1

2
1

5
0
0

0
0
0
0

0
0
0
1

1
1
1
1

0
.4

0
9

7
.9

0
0

.3
1

0
.2

1
0

.1
3

0
.0

9
0

.6
2

0
.3

8
0

.1
0

0
.7

2
0

.4
8

0
.4

5
0

.6
0

0
.0

9
0

.7
7

0
.3

8
0

.4
6

0
.4

3
0

.8
1

0
.1

0
1

6
0
0

0
0
0
0

0
0
1
1

0
1
1
1

0
.3

6
9

8
.2

6
0

.3
0

0
.1

9
0

.1
1

0
.0

8
0

.6
0

0
.3

5
0

.0
9

0
.3

2
0

.5
2

0
.4

6
0

.6
6

0
.0

9
0

.8
7

0
.3

6
0

.4
2

0
.4

0
0

.6
4

0
.1

0
1

7
0
0

0
1
1
1

1
1
0
0

0
0
1
1

0
.3

0
9

8
.5

6
0

.3
9

0
.1

4
0

.1
2

0
.0

9
0

.4
7

0
.2

3
0

.0
9

0
.2

9
0

.4
7

0
.4

0
0

.4
7

0
.0

3
0

.9
0

0
.1

8
0

.2
4

0
.3

8
0

.4
7

0
.0

6
1

8
0
0

0
0
0
0

1
1
1
1

1
1
0
1

0
.2

2
9

8
.7

8
4

.0
0

1
9

>
3

1
b

its
0

.1
4

9
8

.9
2

0
.1

5
0

.0
6

0
.0

4
0

.0
4

0
.1

4
0

.1
0

0
.0

3
0

.1
0

0
.1

6
0

.1
3

0
.2

0
0

.0
2

0
.6

2
0

.1
6

0
.1

7
0

.1
5

0
.2

5
0

.0
2

2
0
0
0

0
0
0
0

0
0
0
0

1
1
0
1

0
.1

3
9

9
.0

6
0

.3
9

0
.0

1
2

.0
0

2
1
0
0

0
0
0
0

0
0
0
0

0
1
1
0

0
.1

2
9

9
.1

8
0

.0
2

0
.0

8
0

.0
1

0
.0

2
0

.7
6

0
.0

3
0

.0
1

0
.0

6
0

.1
1

0
.5

0
0

.0
1

0
.1

8
0

.0
5

0
.1

5
0

.0
3

0
.0

7
2

2
>

1
6

b
its

0
.1

1
9

9
.2

9
0

.0
3

1
.7

7
0

.0
2

0
.1

4
2

3
0
1

0
0
0
0

0
0
1
1

1
1
1
1

0
.0

7
9

9
.3

6
1

.3
1

2
4
0
0

0
0
0
1

1
1
1
1

1
1
1
1

0
.0

6
9

9
.4

2
0

.0
1

0
.0

1
0

.0
1

0
.0

1
0

.0
1

0
.0

1
0

.0
1

0
.0

1
0

.0
3

0
.0

1
0

.7
9

0
.0

7
0

.0
2

0
.0

5
0

.0
1

0
.0

1
2

5
0
0

0
0
0
0

1
0
0
1

1
1
1
1

0
.0

6
9

9
.4

7
0

.0
2

0
.0

1
0

.0
1

0
.0

1
0

.0
1

0
.0

5
0

.0
1

0
.0

2
0

.0
9

0
.0

9
0

.1
0

0
.0

2
0

.0
5

0
.0

9
0

.0
9

0
.1

5
0

.1
9

2
6
0
0

1
1
1
0

0
1
1
0

1
1
1
1

0
.0

5
9

9
.5

3
0

.4
3

0
.5

2
2

7
1
1

1
1
1
1

0
0
0
0

1
1
1
1

0
.0

4
9

9
.5

7
0

.7
8

2
8
0
0

0
0
0
0

0
1
0
0

0
0
1
1

0
.0

3
9

9
.6

0
0

.1
2

0
.4

0
2

9
0
0

1
1
1
0

1
1
0
0

0
0
1
1

0
.0

3
9

9
.6

3
0

.0
2

0
.0

1
0

.0
2

0
.1

0
0

.0
5

0
.0

2
0

.0
3

0
.0

4
0

.0
2

0
.0

1
0

.0
4

0
.0

3
0

.0
3

0
.0

2
0

.0
7

0
.0

1
3

0
0
0

0
0
0
0

1
1
0
1

1
1
1
1

0
.0

3
9

9
.6

5
0

.5
0

3
1
0
1

1
1
0
0

0
0
0
1

1
1
1
1

0
.0

2
9

9
.6

8
0

.4
4

3
2
0
0

0
0
0
0

0
0
0
0

0
1
0
1

0
.0

2
9

9
.7

0
0

.1
0

0
.1

6
0

.0
7

0
.0

8

Table
5.1:D

etailed
reference

layout
pattern

distributions
for

‘references
first’

object
layout

(all
num

bers
expressed

as
percentages).

§5.3 Analysis of Scanning Patterns 59

 0

 20

 40

 60

 80

 100

 4 8 12 16 20 24 28 32

rank

References First

Declaration Order

(a) ‘References first’ and ‘declaration order’. Mean of all
benchmarks.

 0

 20

 40

 60

 80

 100

 4 8 12 16 20 24 28 32

rank

(b) ‘References first’ per-benchmark distributions, global
rank. Mean in Black.

 0

 20

 40

 60

 80

 100

 4 8 12 16 20 24 28 32

rank

(c) ‘References first’ per-benchmark distributions, per-
benchmark rank. Mean in Black.

Figure 5.1: Cumulative frequency distribution curves for reference layout
patterns. Each graph plots cumulative percentage of all objects
(y-axis) covered by the N most common patterns (x-axis).

60 Object Scanning

cial cases, or by using the low 16 bits of the object’s encoding. We then increment the
appropriate bin in the histogram. At the end of execution we print out the histogram.

We also inform our study of the Sable object layout by counting the number of
reference fields in each object.

5.3.3 Benchmarks

We use the the DaCapo (version 2006-10-MR2) and SPECjvm98 benchmark suites, and
jbb2000 in all of the measurements taken in this chapter. We did not use DaCapo eclipse

because its use of classloaders is incompatible with Jikes RVM’s replay mechanism.
We did not use chart because of problems on 64-bit Ubuntu with the Java libraries that
(only) chart depends on.

5.3.4 Reference Pattern Distributions

Table 5.1 and Figure 5.1 summarize the results of our study of scanning pattern distri-
bution.

Figure 5.1a shows a cumulative frequency plot of scanning patterns. In this graph,
the y-axis represents the percentage of all scanned objects covered by the number of
patterns on the x-axis. The patterns are ordered from most to least coverage, so from
left to right each additional pattern has a diminishing impact on the total coverage.
The two curves in Figure 5.1a each plot the mean of all eighteen DaCapo and SPEC
benchmarks. We show curves for both ‘references first’ and ‘declaration order’ object
layouts.

Table 5.1 shows the 32 ‘reference first’ patterns which, when averaged over all
eighteen benchmarks, have the highest coverage of object scans. The first column
gives the rank importance, the second column shows a binary representation of the
reference pattern (or identifies the special case), the third column states the percentage
of scanned objects covered by the pattern (the mean of the per-benchmark percent-
ages) and the fourth column gives the cumulative value of column three. Columns
one and four correspond to the x and y axes of Figure 5.1a. The remaining columns
give the percentage coverage for the pattern on each benchmark.

Figure 5.1a shows that by packing references together as much as possible, ‘refer-
ences first’ requires significantly fewer patterns to cover a given number of objects. We
find that of the large space of possible reference patterns, remarkably few are needed
to cover the vast majority of scanned objects. Specifically, 6 (11) patterns cover 90%
of scanned objects, 10 (16) patterns cover 95%, and 20 (30) patterns cover 99% for
‘references first’ and ‘declaration order’ object layouts respectively.

Figure 5.1b and columns five onward of Table 5.1 show the frequency distribution
for each of the eighteen benchmarks using the ‘references first’ object layout. In Fig-
ure 5.1c, the cumulative total is separately calculated for each benchmark with respect
to that benchmark’s ordering of pattern importance. On the other hand, Table 5.1 and
Figure 5.1b present the data using a single global ordering of patterns. Here we see
that on a benchmark-by-benchmark basis, the situation is accentuated further, with

§5.3 Analysis of Scanning Patterns 61

rank

pointercount

mean

cumulativemean

jess

compress

raytrace

db

javac

mpegaudio

mtrt

jack

antlr

bloat

fop

hsqldb

jython

lusearch

luindex

pmd

xalan

jbb2000

1
0

3
3

.0
2

3
3

.0
2

3
0

.3
1

3
3

.0
1

4
4

.0
9

3
7

.4
4

3
1

.4
1

3
3

.9
4

4
6

.3
6

3
2

.3
5

2
9

.9
6

2
7

.8
8

2
6

.6
5

3
9

.1
6

2
7

.4
2

3
1

.3
7

2
9

.9
7

1
8

.8
3

3
2

.6
5

4
1

.5
4

2
1

1
8

.6
8

5
1

.7
0

2
1

.7
9

2
0

.3
4

1
5

.9
4

3
5

.6
1

1
9

.0
6

1
9

.1
5

1
5

.0
1

2
0

.7
0

1
8

.9
4

1
8

.8
1

1
5

.5
7

1
.5

3
1

3
.4

4
2

0
.7

9
1

9
.5

9
1

7
.2

7
1

5
.7

0
2

7
.0

5
3

3
1

7
.1

7
6

8
.8

7
2

0
.1

8
2

2
.4

3
1

1
.6

0
1

1
.7

2
2

2
.0

2
2

2
.0

5
9

.3
0

2
0

.9
1

2
1

.3
7

2
1

.8
1

1
7

.1
0

1
.9

4
1

9
.9

7
2

0
.5

1
2

2
.1

6
1

8
.0

6
1

9
.9

1
6

.0
1

4
6

1
1

.9
7

8
0

.8
5

1
4

.3
7

1
8

.3
4

9
.0

7
9

.5
4

1
3

.2
1

1
7

.1
1

7
.2

4
1

5
.2

9
1

4
.4

7
1

4
.4

1
8

.8
7

1
.2

2
9

.0
6

1
4

.5
3

1
4

.9
0

2
0

.0
9

1
0

.7
4

3
.0

8
5

2
7

.3
1

8
8

.1
6

4
.3

1
3

.1
8

6
.9

9
1

.6
4

8
.6

4
3

.8
1

7
.6

5
4

.2
4

7
.9

0
7

.8
5

1
0

.2
5

1
9

.0
0

1
3

.1
0

8
.0

2
6

.8
5

6
.4

4
1

0
.6

7
1

.0
9

6
re

fa
rr

ay
5

.5
6

9
3

.7
2

5
.8

3
0

.7
0

9
.2

8
2

.9
6

1
.6

8
1

.2
1

1
0

.9
0

2
.3

8
2

.3
0

2
.8

2
9

.6
7

1
8

.4
2

6
.2

7
1

.8
3

2
.1

5
1

3
.9

5
3

.9
1

3
.7

7
7

4
2

.5
0

9
6

.2
2

1
.2

3
1

.0
0

1
.9

5
0

.5
6

1
.1

9
1

.0
4

2
.4

8
1

.9
7

2
.0

7
3

.6
2

4
.0

4
0

.1
6

4
.5

6
1

.0
1

2
.1

4
1

.7
2

2
.1

1
1

2
.2

5
8

5
1

.8
4

9
8

.0
6

0
.6

2
0

.4
1

0
.2

5
0

.1
8

1
.2

2
0

.7
4

0
.2

0
1

.2
1

1
.0

4
1

.1
9

1
.4

9
1

8
.3

9
1

.6
4

0
.7

5
0

.8
8

0
.8

3
1

.4
8

0
.6

1
9

9
0

.8
7

9
8

.9
3

0
.7

4
0

.3
4

0
.6

7
0

.2
0

0
.9

2
0

.5
6

0
.7

1
0

.5
3

1
.0

2
0

.9
2

1
.9

6
0

.1
3

2
.3

0
0

.7
8

0
.8

9
0

.9
5

1
.4

5
0

.5
2

1
0

7
0

.6
7

9
9

.5
9

0
.4

5
0

.1
6

0
.1

3
0

.1
0

0
.4

8
0

.2
5

0
.1

0
0

.3
1

0
.7

2
0

.4
6

0
.4

7
0

.0
3

1
.5

1
0

.2
1

0
.2

6
1

.7
0

0
.5

7
4

.0
6

1
1

3
2

0
.1

4
9

9
.7

3
0

.1
5

0
.0

6
0

.0
4

0
.0

4
0

.1
4

0
.1

0
0

.0
3

0
.0

9
0

.1
6

0
.1

3
0

.2
0

0
.0

2
0

.6
2

0
.1

6
0

.1
6

0
.1

5
0

.2
1

0
.0

1
1

2
1

2
0

.1
0

9
9

.8
3

1
.6

0
0

.0
2

0
.1

1
1

3
1

0
0

.0
4

9
9

.8
7

0
.7

8
1

4
8

0
.0

4
9

9
.9

1
0

.0
2

0
.0

5
0

.4
4

0
.0

7
0

.0
9

1
5

1
5

0
.0

2
9

9
.9

3
0

.3
3

0
.0

2
0

.0
4

0
.0

6

Ta
bl

e
5.

2:
D

et
ai

le
d

re
fe

re
nc

e
fie

ld
co

un
td

is
tr

ib
ut

io
ns

(a
ll

nu
m

be
rs

ex
pr

es
se

d
as

pe
rc

en
ta

ge
s)

.

62 Object Scanning

 0

 20

 40

 60

 80

 100

 1 3 5 7 9 11 13 15

rank

(a) Reference fields per object. Mean of all benchmarks.

 0

 20

 40

 60

 80

 100

 1 3 5 7 9 11 13 15

rank

(b) Reference fields per object, per-benchmark distribu-
tions, global rank. Mean in black.

 0

 20

 40

 60

 80

 100

 1 3 5 7 9 11 13 15

rank

(c) Reference fields per object, per-benchmark distribu-
tions, per-benchmark rank. Mean in black.

Figure 5.2: Cumulative frequency distribution curves for reference field
counts. Each graph plots cumulative percentage of all objects
(y-axis) covered by the N most common reference field counts
(x-axis).

§5.4 Design Alternatives 63

very few patterns required to cover most scanning cases. The left-most curve at the
80th percentile is for db, and the two left most at the 95th percentile are for compress and
hsqldb. db requires just 4, 6, and 8 patterns to cover 90%, 95% and 99% of all scanned
objects respectively. Only four benchmarks fall significantly below the mean, namely
fop, jython, pmd and xalan. The most prominent outlier is fop, which requires 9, 14, and
21 patterns to cover 90%, 95% and 99% of scanned objects. Thus even at worst, very
few patterns are required to cover the vast bulk of scanned objects.

The data in Figure 5.1 and Table 5.1 show that a few special cases and a small num-
ber of patterns cover the vast majority of objects scanned, and furthermore that these
common patterns are very simple. This suggests that object scanning mechanisms
which can optimize for these few scenarios may be very effective.

5.3.5 Reference Field Count Distributions

The bidirectional Sable object layout depends only on the number of reference fields
in an object, because the pattern of references and non-references is fixed. Table 5.2
and Figure 5.2 show the frequency distribution of number of reference fields among
our benchmarks. This data shows that the vast majority of objects in all benchmarks
have a small number of reference fields. 93% or more of objects in all benchmarks
have 6 or fewer reference fields or are reference arrays, and 99% of all objects have
12 or fewer reference fields. There are, however, some outliers: the xalan benchmark
has some scalar objects with 46 reference fields. Figure 5.2b highlights the variation in
frequency between benchmarks even in the most common patterns.

These figures demonstrate that optimizations that focus on objects with a small
number of reference fields have significant potential, especially in the bi-directional
object model where reference fields are contiguous.

5.4 Design Alternatives

We now discuss the primary design dimensions for object scanning. We begin our
discussion with a description of the object scanning mechanism in Jikes RVM (as at
version 3.1.0).

5.4.1 The Jikes RVM Scanning Mechanism

Figure 5.3 shows three user objects, A, B, and C, and Jikes RVM metadata associated
with object A (metadata for B and C is omitted for clarity). If A and C were of the same
type, they would both have pointers to the same metadata. Each object has a two-
word header, one of which is a pointer to a TIB (type information block) for the object’s
class. The TIB incorporates a dispatch table, a pointer to a type (class) object and some
other per-type metadata. The type object points to an array of offsets, indicating the
location of reference fields within each instance of the type (class). Thus to scan A,
the garbage collector must follow three indirections to reach the offsets array for A,

64 Object Scanning

Lock wordA

TIB

int

float

Lock wordB

TIB

Lock wordC

TIB

TIB

· · ·

Type

· · ·

Offsets

length = 2

0

12

Per-Class Metadata

Figure 5.3: Objects and Per-Class Metadata Structure in Jikes RVM.

1 void scan(Object object) {
2 TIB tib = getTIB(object);
3 RVMType type = tib.getObjectType();
4 int[] offsets = type.getReferenceOffsets();
5 if (offsets != null) {
6 Address base = objectAsAddress(object);
7 for (int i=0; i < offsets.length; i++) {
8 processEdge(object,base.plus(offsets[i]));
9 }

10 } else { /* scan reference array */ }
11 }

Figure 5.4: The default scanning loop in Jikes RVM.

which identifies the location of each reference field. Figure 5.4 shows pseudocode for
the default scanning code in Jikes RVM.

During tracing, Jikes RVM ‘interprets’ each object’s reference field layout by scan-
ning the offset array. The offset array contains an entry for each reference field in a
type, and encodes the offset (in bytes) to the given field from the object header. Jikes
RVM makes no special effort to optimize object layouts for improved object scanning
time.

5.4.2 Inlining Common Cases

One simple optimization is to hand-inline special case code for the most frequently
executed patterns. This trades additional branches and code size for rare cases against
faster execution of common cases. An example of this optimization when using offset
arrays for scanning is given in Figure 5.5. Similar optimizations are possible alongside
other design choices in scanning mechanism and object layout.

§5.4 Design Alternatives 65

1 int[] offsets = type.getOffsets();
2 for (int i=0; i < offsets.length; i++) {
3 trace(obj, obj.plus(offsets[i]));
4 }

(a) Unoptimized scanning loop (using offset arrays).

1 static final int[] OFFSETS_ZERO = new int[0];
2 static final int[] OFFSETS_1 = new int[]{0};
3 static final int[] OFFSETS_7 = new int[]{0,4,8};
4 ...
5 int[] offsets = type.getOffsets();
6 // Optimized code for the frequent case
7 if (offsets == OFFSETS_ZERO) {
8 // Do nothing
9 } else if (offsets == OFFSETS_1) {

10 trace(obj,obj.plus(0));
11 } else if (offsets == OFFSETS_7) {
12 trace(obj,obj.plus(0));
13 trace(obj,obj.plus(4));
14 trace(obj,obj.plus(8));
15 } else {
16 for (int i=0; i < offsets.length; i++) {
17 trace(obj, obj.plus(offsets[i]));
18 } ...

(b) Optimized loop with hand-inlined code for patterns 0, 1 and 7.

Figure 5.5: Unoptimized and optimized versions of scanning code.

5.4.3 Compiled vs. Interpreted Evaluation

Sansom [1991] realized that a compiler could statically generate specialized code for
scanning each type. This idea allows the garbage collector to use the standard dis-
patch method on each scanned object to execute code optimized for scanning that
particular type, rather than interpreting metadata attached to the object. Advantages
of this approach include a lower data cache footprint by removing the memory ac-
cesses to per-instance metadata, and avoiding branches associated with iteratively in-
terpreting the metadata. On the other hand, this approach incurs a dynamic dispatch
overhead and has a greater instruction cache footprint than interpreting. Variations on
this approach may include specialization by object layout pattern rather than object
type (removing redundancy and reducing instruction cache footprint), and limiting
compilation to a modest number of common patterns (falling back to interpretation in
all other cases).

5.4.4 Encoding and Packing of Metadata

The Jikes RVM mechanism uses a simple array of offsets to encode the location of
reference fields in each type. Alternative encodings could be used, including a bitmap
indicating which words are references. Hybrids are also possible, whereby a fixed size

66 Object Scanning

bitmap is used in common cases, with a fallback to an offset array for types unable
to fit in the bitmap. Packed representations may allow the metadata to be directly
encoded in the object header in many cases, thereby avoiding any indirection to the
metadata data structure for those objects whose metadata could fit in the header.

In any virtual machine implementation, space in the object header is generally at
a premium. Adding a word to the object header for GC metadata is an option, but the
performance cost due to increased heap pressure and decreased cache locality out-
weigh any possible gains. Jikes RVM makes eight bits available to MMTk, which uses
four of those bits for the mark state (see Chapter 4 for details). Our implementation
of the bi-directional object model uses an additional bit to identify the word as a non-
pointer in order to allow the object header to be found when scanning the object (as
per [Gagnon, 2002]), which leaves three bits for encoding metadata in our case.

There is an alternative approach (which we use in this study) that allows us to
obtain these metadata bits ‘for free’. We exploit the fact that the GC metadata is con-
stant across all objects of a given class. By selectively aligning the TIB (vtable) of each
class, we effectively encode metadata into the header field that stores the TIB pointer.
We achieve this quite simply: when allocating a TIB and encoding n bits of metadata,
we allocate a block of memory 2n words larger than the TIB itself. Then we choose
a start location within this chunk of memory that puts our metadata value into bits
w . . . w + n− 1, where w is the number of bits required to naturally align a pointer (i.e.
w = 2 in a 32-bit machine). This scheme also has the advantage that it doesn’t require
an additional initializing store to the object header when an object is allocated. On a
32-bit machine we incur a space cost of 32 bytes per loaded class, which is insignifi-
cant.

5.4.5 Indirection to Metadata

The diagram of the Jikes RVM object metadata (Figure 5.3) indicates the potential to
shorten the level of indirection from the object to its metadata. We look at the effects
of removing one of these levels of indirection by allocating an additional field in the
TIB for holding a pointer to the reference offsets array. We evaluate the cost of this
in Section 5.6. Schemes where metadata is encoded into the object header also benefit
from the absence of indirection, although we don’t directly study the effects of this.

5.4.6 Object Layout Optimizations

In addition to increasing opportunities for commonality among distinct types (Sec-
tion 5.3), object layout strategies can more directly impact object scanning perfor-
mance. The bidirectional object layout proposed by Gagnon [Gagnon, 2002] and used
in SableVM [Gagnon and Hendren, 2001] arranges every object so that reference fields
are packed on one side of the object header, while non-reference fields are packed on
the other. SableVM itself encodes the number of references into the object header, and
in this study we look at the effects of the object layout separately from the effect of the
header metadata optimization. As discussed in Section 5.3, an important property of

§5.5 Methodology 67

the bidirectional layout is that it maintains reference packing in the face of inheritance.
Unidirectional field packing may offer some benefits, but sub-types must strictly ap-
pend their declared fields, potentially interrupting any grouping of reference and non-
reference fields inherited from the parent class. Unidirectional field packing may be
profitable in hybrid schemes where common cases are handled differently. In these
scenarios, a field packing algorithm such as ‘references first’ will increase the cov-
erage of a given set of special cases (Section 5.3, Figure 5.1 and Table 5.1), thereby
improving the efficacy of the special cases.

The potential drawback of the bi-directional object model is that there is no longer
a fixed offset from the start of the memory region occupied by an object and its head-
er/object pointer. Lazy sweeping in particular can be adversely affected by this, and
we see this in the mutator time results in Figure 5.11c.

5.5 Methodology

The methodology used for our analysis work is described in Section 5.3.1. We extend
that here to describe the methodology used to evaluate the performance of the various
scanning mechanisms.

We implement each scanning mechanism in Jikes RVM. We isolate and measure
the time spent in the garbage collector’s scanning phase (transitive closure), thereby
excluding the time taken to establish roots etc, which is unaffected by the scanning
mechanism we evaluate here. On average, scanning takes up ∼80% of total garbage
collection time, and takes time proportional to the size of the heap. In Section 5.6.6
we also evaluate the effect on total time. We measure each of the DaCapo and SPEC
benchmarks, timing the second benchmark iteration in a 2× heap as described in Sec-
tion 5.3.1, and using replay compilation to avoid non-determinism due to adaptive
compilation. We use MMTk’s inbuilt timers which separately report total time spent
in each of the major GC phases, including scanning. We use Jikes RVM’s ‘FastAdap-
tive’ builds, which remove assertion checks and fully optimize all code for the virtual
machine (and hence the garbage collector), and incorporate execution profile data to
further optimize the code in the virtual machine. Experiments were performed 6 times
for each benchmark, with the average for each benchmark normalized to the perfor-
mance of the base configuration on that benchmark. We report the geometric mean of
this normalized value across all benchmarks. The graphs show error bars for a 90%
confidence interval using Student’s t-distribution.

We use as a baseline an optimized version of the original Jikes RVM implementa-
tion described in Section 5.4 (see Figure 5.3), and which we refer to in the remainder
of the paper as Off-3/Decl. This configuration has three levels of indirection from the
object to the offset array and uses the ‘declaration order’ object layout. Because this is
the configuration to which all others are normalized, it does not appear explicitly in
the graphs.

We use the MMTk mark-sweep collector for all results presented here. It has the
fastest scanning performance of any full-heap collector in Jikes RVM, and therefore

68 Object Scanning

Platform Clock DRAM L1 D L1 I LLC
Atom D510 1.8GHz 4GB 32KB 32KB 1MB
Core i5 670 3.4GHz 4GB 64KB 64KB 4MB
Core 2 Duo E7600 3.1GHz 4GB 32KB 32KB 3MB
AMD Phenom II X6 1055T 2.8GHz 4GB 64KB 64KB 6MB

Table 5.3: Hardware platforms for scanning experiments.

Primary
Name Metadata Indirections Hand-inlining Layout
Off-2/Decl Offset Array 2 N Decl
Off-3/Decla Offset Array 3 N Decl
Off-3/Ref Offset Array 3 N Ref
Off-3+Inl/Ref Offset Array 3 Y Ref
Off-3/Sable Offset Array 3 N Sable
Count-3/Sable 32-bit countb 3 Y Sable
Bmp-3/Decl 32-bit bitmap 3 Y Decl
Bmp-3/Ref 32-bit bitmap 3 Y Ref
Hdr[1R]/Ref 1-bit Header 1 Y Ref
Hdr[1Z]/Ref 1-bit Header 1 Y Ref
Hdr[2]/Ref 2-bit Header 1 Y Ref
Hdr[3]/Decl 3-bit Header 1 Y Decl
Hdr[3]/Ref 3-bit Header 1 Y Ref
Hdr[3]+Spec/Ref 3-bit Headerc 1 Y Ref
Hdr[3]/Sable 3-bit Header 1 Y Sable
Spec/Decl Specialization 2 N Decl
Spec/Ref Specialization 2 N Ref
Spec/Sable Specialization 2 N Sable

aBaseline configuration.
bOnly possible with the Sable object layout.
cFalls back to specialization, and then to Offset-3.

Table 5.4: Configurations evaluated.

the results of speeding up the scanning process are most visible. The optimizations
we present here apply to any precise garbage collector.

5.5.1 Hardware Platforms

We use four different hardware platforms in our analysis, described in detail in Ta-
ble 5.3. The systems were running Linux 2.6.32 kernels with Ubuntu 10.04.1 LTS. All
CPUs were operated in 64-bit mode, although Jikes RVM is a 32-bit application.

5.5.2 Configurations

For our performance results we evaluate 18 configurations combining features from
the design space outlined in Section 5.4. The specific configurations evaluated are
summarised in Table 5.4. The metadata representations we use are:

• An array of 32-bit offsets.

§5.6 Results 69

• A 32-bit count field (only applicable to the Sable object model).

• A 32-bit bitmap. Two special values indicate that the object is a reference array or
cannot be described in 32 bits. This is necessarily held outside the object header.

• A 3-bit field in the object header. We use this to encode the six most common
patterns in Table 5.1, interpreting results with a series of ‘if’ statements in the
scanning code. The seventh value indicates a fallback to the more general case.
When using the bi-directional object model we use this field to encode the five
most frequent reference field counts. The coverage of this scheme for both object
models is shown in Table 5.5.

• A 2-bit field in the object header, indicating whether the object is a reference
array, has zero references, a single reference in position 1, or the fallback case.
The coverage of this scheme for both object models is shown in Table 5.5.

• A 1-bit header field indicating whether the object is a reference array (‘1R’).

• A 1-bit header field indicating whether the object has no reference fields (‘1Z’).

Layout % Objects
Bits Scheme Patterns Min. Mean Max.

3
Ref-first 6 most common 79.9 91.8 97.5
Sable 5 most common 81.0 93.0 98.9

2
Ref-first 0, 1, refarray 46.5 56.8 73.5
Sable 0, 1, refarray 47.1 57.3 76.0

1
n/a 0 18.85 33.02 46.36
n/a refarray 0.70 5.55 18.42

Table 5.5: Header encoding: Percentage of objects covered by the schemes
evaluated.

In the declaration order and references first object layouts, our specialization im-
plementation compiles 66 specialized methods, covering all objects with reference
fields in the first six positions, with an additional method for reference arrays and
a fallback method for the fallback case. In the Sable object layout, we compile 18 spe-
cialized methods, covering objects with up to 16 reference fields plus reference arrays
and the fallback case.

5.6 Results

We now evaluate the performance of the design space described in Section 5.4. Since
our focus is on the scanning mechanism, and the designs we explore have little or
no impact outside of the scanning loop (which typically dominates garbage collec-
tion performance), unless otherwise stated, we present the relative performance of
the scanning loop alone. Since many of the design dimensions are independent, we
evaluate many combinations of the design choices in order to help understand which
combinations of choices are most profitable. In total we implemented and evaluated

70 Object Scanning

around twenty five which combine multiple optimizations. We only report results for
the most significant of these.

This section concludes with a summary of the best performing designs, and their
impact on scanning time and total execution time.

5.6.1 Inlining Common Cases

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

core2 corei5 phenom atom

N
o
rm

a
liz

e
d
 G

C
 S

c
a
n

 T
im

e Off-3/Ref
Off-3+Inl/Ref

Figure 5.6: The effect of inlining common cases. Geometric mean of 18
benchmarks.

The speedup gained by hand-inlining the most frequently executed patterns (as
described in Section 5.4.2) is illustrated in Figure 5.6, using Off-3/Ref and Off-3+Inl/Ref.
The Off-3+Inl/Ref configuration uses the technique illustrated in Figure 5.5 to avoid
interpreting the offset array for the most common object patterns. This shows that
inlining common cases delivers a clear performance advantage. We use this technique
in most of the configurations evaluated (the exceptions are identified in column four
of Table 5.4).

5.6.2 Compiled vs. Interpreted Evaluation

In Figure 5.7 we compare specialized scanning (Section 5.4.3) across the three object
layout schemes. Specialization performs well on average compared to the baseline

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

core2 corei5 phenom atom

N
o

rm
a
liz

e
d
 G

C
 S

c
a
n
 T

im
e Off-3/Ref

Spec/Ref
Count-3/Sable
Spec/Sable

Figure 5.7: The effect of specialization. Geometric mean of 18 bench-
marks.

§5.6 Results 71

Off-3/Decl configuration, but as we show in Section 5.6.6, not as well as three bits of
header metadata. The reason is clear: for the 90% of objects that can be encoded by
the 3-bit header field, scanning requires a load and then on average three conditional
branches to the specialized code for scanning that object. Specialization requires two
(dependent) loads and a jump, and on the Core i5 processor where an L1 cache hit
costs four cycles, it is not difficult to see how this can be more expensive than the
header metadata approach.

On the Atom processor, specialization offers less advantage, yielding a 7%
speedup compared to a 15–18% speedup on the other processors. The out-of-order
processors appear to be able to absorb more of the stall time caused by the indirect
jump than the in-order Atom.

5.6.3 Encoding and Packing of Metadata

We now explore the header metadata design space described in Section 5.4.4.

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

core2 corei5 phenom atom

N
o
rm

a
liz

e
d
 G

C
 S

c
a

n
 T

im
e Hdr[1R]/Ref

Hdr[1Z]/Ref
Hdr[2]/Ref
Hdr[3]/Ref

Figure 5.8: The effect of varying header encodings. Geometric mean of 18
benchmarks.

Figure 5.8 shows results for four configurations that use one, two, or three bits of
header metadata. In each case we use the ‘references first’ object layout, and when
optimizing special cases in the code we only optimize for the cases covered by the
metadata. The 1-bit header fields reduce performance on all architectures except the
Core 2. The 3-bit header field performs best, significantly outperforming the 2-bit
header field, as predicted by the coverage figures given in Table 5.5.

5.6.4 Indirection to Metadata

In Figure 5.9 we explore the impact of indirection to metadata. The Off-2/Decl config-
uration differs only from the base Off-3/Decl configuration by one level of indirection.
Since we can’t practically build an Off-1/Decl configuration without adding a word to
the object header, the graph also includes Hdr[3]/Decl which while not directly compa-
rable, only uses one indirection to its metadata before applying its specific optimiza-
tion.

The results show that shortening the path to the metadata achieves a modest 3–6%
speedup, with the largest gain on the in-order Atom processor. Since Hdr[3]/Decl is the

72 Object Scanning

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

core2 corei5 phenom atom

N
o
rm

a
liz

e
d
 G

C
 S

c
a
n

 T
im

e Off-3/Decl
Off-2/Decl
Hdr[3]/Decl

Figure 5.9: The effect of different levels of indirection. Geometric mean of
18 benchmarks.

result of removing one further level of indirection before applying the optimization
evaluated in Section 5.6.1, we can see that the majority of Hdr[3]/Decl’s speedup over
Off-3/Decl is due to the elimination of indirection versus hand-inlining.

5.6.5 Object Layout Optimizations

In this section we investigate the effect of changing the object layouts, both in the
context of the default scanning mechanism, as well as interactions with design choices
across the other dimensions. Figure 5.10 compares ten configurations, illustrating the
effect of object layout on four different schemes.

Figure 5.10(a) shows that except on the Core 2 (an anomaly that remains unex-
plained), the choice of ‘references first’ or Sable object layout has very little impact
on performance in the absence of any other optimizations. The slight improvement
in performance on the out-of-order processors might be explained by small locality
improvements.

The graphs in Figures 5.10(b), (c) and (d) show that where another optimization is
used, object layout has a significant impact on the effectiveness of the optimization.
In all these cases the ‘references first’ layout improves significantly over the ‘declara-
tion order’ object layout, while the Sable layout provides a small improvement over
‘references first’.

5.6.6 Conclusion

Figures 5.11a–(d) show the scan time and total time performance of six of the best
performing designs. The performance of some design choices is highly affected by
architecture. A bitmap performs poorly on the in-order Atom processor, as does spe-
cialized scanning. The combination Hdr[3]+Spec/Ref performs best on all architectures
(within the limits of experimental error). The 3-bit field in the object header is a uni-
versally beneficial optimization when coupled with an object model that enhances its
effectiveness. However, the per-benchmark results for these six designs shown in Fig-
ures 5.12–5.13 show that for benchmarks like hsqldb—where the object demographics

§5.6 Results 73

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

core2 corei5 phenom atom

N
o
rm

a
liz

e
d
 G

C
 S

c
a
n

 T
im

e Off-3/Decl
Off-3/Ref
Off-3/Sable

(a) Offset Array.

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

core2 corei5 phenom atom

N
o
rm

a
liz

e
d
 G

C
 S

c
a
n

 T
im

e Bmp-3/Decl
Bmp-3/Ref

(b) Bitmap.

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

core2 corei5 phenom atom

N
o
rm

a
liz

e
d
 G

C
 S

c
a

n
 T

im
e Hdr[3]/Decl

Hdr[3]/Ref
Hdr[3]/Sable

(c) Header Metadata.

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

core2 corei5 phenom atom

N
o

rm
a
liz

e
d
 G

C
 S

c
a
n

 T
im

e Spec/Decl
Spec/Ref
Spec/Sable

(d) Specialization.

Figure 5.10: The effect of various object layout optimizations. Geometric
mean of 18 benchmarks.

74 Object Scanning

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

core2 corei5 phenom atom

N
o
rm

a
liz

e
d
 G

C
 S

c
a
n

 T
im

e Bmp-3/Ref
Spec/Ref
Spec/Sable
Hdr[3]/Sable
Hdr[3]/Ref
Hdr[3]+Spec/Ref

(a) Scan time, geometric mean.

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 1.01

 1.02

core2 corei5 phenom atom

N
o
rm

a
liz

e
d

 T
im

e

Bmp-3/Ref
Spec/Ref
Spec/Sable
Hdr[3]/Sable
Hdr[3]/Ref
Hdr[3]+Spec/Ref

(b) Total time, geometric mean.

 0.98

 0.99

 1

 1.01

 1.02

 1.03

core2 corei5 phenom atom

N
o
rm

a
liz

e
d
 M

u
ta

to
r

T
im

e Bmp-3/Ref
Spec/Ref
Spec/Sable
Hdr[3]/Sable
Hdr[3]/Ref
Hdr[3]+Spec/Ref

(c) Mutator time, geometric mean.

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

core2 corei5 phenom atom

N
o
rm

a
liz

e
d
 G

C
 T

im
e

Bmp-3/Ref
Spec/Ref
Spec/Sable
Hdr[3]/Sable
Hdr[3]/Ref
Hdr[3]+Spec/Ref

(d) GC time, geometric mean.

Figure 5.11: Summary, showing four metrics for six well-performing de-
signs.

§5.7 Summary 75

are not a good match for the assumptions underlying the Hdr[3]/Decl configuration—
Spec/Ref has a measurable advantage due its more comprehensive coverage of object
patterns. Hdr[3]+Spec/Ref also performs well in this case because its less expensive
fallback provides a ‘soft landing’ for these edge cases.

Figure 5.11b shows the effect of optimizations on total time. While the magnitude
of the improvement is modest due to our choice of heap size, the Sable object model
is less effective than the others due to a slight increase in mutator time. Nonetheless,
these results show clearly that the choice of scanning design has a measurable effect
on total execution time.

The important features of a high performance scanning mechanism (at least on the
architectures we have benchmarked) are: a) the elimination of memory loads, both
through indirection to metadata and in the metadata itself (see the performance of
Bmp-3/Decl vs. Off-3/Decl); b) good choice of object layout, to facilitate the performance
of the optimizations used; and c) good coverage of reference patterns.

The Hdr[3]+Spec/Ref design combines the best effects of all the optimizations dis-
cussed here. The 3-bit header field eliminates loads for the majority of objects, while
64 specialized patterns as a fallback provide good performance for benchmarks like
hsqldb which are a poor match for the 3-bit field. This configuration achieves speedups
in scan time of over 25% on several benchmarks, at no cost to mutator performance.

5.7 Summary

Object scanning is the mechanism at the heart of tracing garbage collectors. A num-
ber of object scanning mechanisms have been described in the literature, but—despite
their performance-critical role—we are unaware of any prior work that provides a
comprehensive study of their performance. In this chapter we outline the design space
for object scanning mechanisms, and then use a comprehensive analysis of heap com-
position and object structure as seen by the garbage collector to inform key design de-
cisions. We implement a large number of object scanning mechanisms, and measure
their performance across a wide range of benchmarks. We include an implementation
and evaluation of the bidirectional object layout used by SableVM [Gagnon and Hen-
dren, 2001], and find that it performs well at collection time (although not significantly
better than the more orthodox ‘references first’ optimized layout) but comes at a small
but measurable cost to mutator performance. Our study shows that careful choice of
object scanning mechanism alone can improve average scanning performance against
a well tuned baseline by 21%, leading to a 16% reduction in GC time and an improve-
ment of 2.5% in total application time in a moderate sized heap.

This chapter concludes our study of the performance of the garbage collection
process. In Chapter 3 we analysed the performance of the garbage collector, and iden-
tified two major costs, marking and scanning. In Chapter 4 we looked at the first of
these, and in this chapter we looked at the second. The next chapter concludes the
thesis with a summary of the main results, and some directions for future work.

76 Object Scanning

 0
.7

 0
.7

5

 0
.8

 0
.8

5

 0
.9

 0
.9

5 1

_201_com
press

_202_jess _205_raytrace

_209_db _213_javac _222_m
pegaudio

_227_m
trt _228_jack antlr

bloat

fop

hsqldb
jython

lusearch
luindex
pm

d

xalan

pjbb2000 m
in

m
ax

m
ean

geom
ean

Normalized GC Scan Time

B
m

p
-3

/R
e

f
S

p
e

c
/R

e
f

S
p

e
c
/S

a
b

le
H

d
r[3

]/S
a

b
le

H
d

r[3
]/R

e
f

H
d

r[3
]+

S
p

e
c
/R

e
f

(a)C
ore

i5
scan

tim
e.

 0
.7

 0
.7

5

 0
.8

 0
.8

5

 0
.9

 0
.9

5 1

_201_com
press

_202_jess _205_raytrace

_209_db _213_javac _222_m
pegaudio

_227_m
trt _228_jack antlr

bloat

fop

hsqldb
jython

lusearch
luindex
pm

d

xalan

pjbb2000 m
in

m
ax

m
ean

geom
ean

Normalized GC Scan Time

B
m

p
-3

/R
e

f
S

p
e

c
/R

e
f

S
p

e
c
/S

a
b

le
H

d
r[3

]/S
a

b
le

H
d

r[3
]/R

e
f

H
d

r[3
]+

S
p

e
c
/R

e
f

(b)C
ore

2
scan

tim
e.

Figure
5.12:Per-benchm

ark
scan

tim
es

for
six

w
ell-perform

ing
designs.(C

ore
i5

and
C

ore
2)

§5.7 Summary 77

 0
.7

 0
.7

5

 0
.8

 0
.8

5

 0
.9

 0
.9

5 1

_2
01

_c
om

pr
es

s

_2
02

_j
es

s_2
05

_r
ay

tra
ce

_2
09

_d
b_2

13
_j
av

ac_2
22

_m
pe

ga
ud

io

_2
27

_m
trt_2

28
_j
ac

kan
tlr

bl
oa

t

fo
p

hs
ql
db

jy
th

on

lu
se

ar
ch

lu
in
de

x
pm

d

xa
la
n

pj
bb

20
00

m
in

m
ax

m
ea

n

ge
om

ea
n

Normalized GC Scan Time

B
m

p
-3

/R
e

f
S

p
e

c
/R

e
f

S
p

e
c
/S

a
b

le
H

d
r[

3
]/
S

a
b

le
H

d
r[

3
]/
R

e
f

H
d

r[
3

]+
S

p
e

c
/R

e
f

(a
)P

he
no

m
II

sc
an

ti
m

e.

 0
.7

 0
.7

5

 0
.8

 0
.8

5

 0
.9

 0
.9

5 1

_2
01

_c
om

pr
es

s

_2
02

_j
es

s_2
05

_r
ay

tra
ce

_2
09

_d
b_2

13
_j
av

ac_2
22

_m
pe

ga
ud

io

_2
27

_m
trt_2

28
_j
ac

kan
tlr

bl
oa

t

fo
p

hs
ql
db

jy
th

on

lu
se

ar
ch

lu
in
de

x
pm

d

xa
la
n

pj
bb

20
00

m
in

m
ax

m
ea

n

ge
om

ea
n

Normalized GC Scan Time

B
m

p
-3

/R
e

f
S

p
e

c
/R

e
f

S
p

e
c
/S

a
b

le
H

d
r[

3
]/
S

a
b

le
H

d
r[

3
]/
R

e
f

H
d

r[
3

]+
S

p
e

c
/R

e
f

(b
)A

to
m

D
51

0
sc

an
ti

m
e.

Fi
gu

re
5.

13
:P

er
-b

en
ch

m
ar

k
sc

an
ti

m
es

fo
r

si
x

w
el

l-
pe

rf
or

m
in

g
de

si
gn

s.
(P

he
no

m
an

d
A

to
m

pr
oc

es
so

rs
)

78 Object Scanning

Chapter 6

Conclusion

As managed runtimes for languages like Java and C# become more widely used, and
as the memory footprints of the applications they run become larger, the efficiency of
their garbage collectors becomes more important.

This thesis show that attention to the implementation details of a garbage collec-
tor can yield significant speedups. This in turn results in improved throughput, lower
response times and increased acceptance of the languages themselves, with the asso-
ciated software engineering benefits this brings.

The performance analysis technique of replay tracing allows garbage collector im-
plementers to explore performance tradeoffs in isolation without having to fully im-
plement and debug a complex change. We have used this technique to break down
the costs of the garbage collection loop in a way that leads directly to performance
optimizations. We have also used it to look at the performance impact of the garbage
collector’s traversal order of the heap, without interference from extraneous factors
such as queue implementation details.

The software prefetch technique in Chapter 4 builds on insights gained from the re-
play tracing study to show that significant speedups are possible. A new implemen-
tation allows mark state to be kept in the object header, while minimizing floating
garbage and using lazy sweeping. When we combine this with buffered prefetch and
edge enqueuing, we can achieve significant, consistent speedups.

The survey of object scanning techniques in Chapter 5 demonstrates that there are
significant speedups to be obtained from careful choice of object metadata representa-
tion. While considerable infrastructure is required to implement the fastest technique
we demonstrate, there are significant speedups to be had from some simple changes.

6.1 Future Work

As all the results presented here show, processor architecture has a significant effect
on garbage collector performance. Every time a new processor is released, new results
may emerge from our analyses.

79

80 Conclusion

6.1.1 Prefetch

While we have effectively applied software prefetch to non-copying collection, the
techniques we used to achieve this are not applicable to copying collectors. Indeed, it
may be that copying collection does not benefit from prefetch, but it would be good
to establish this definitively.

There are other garbage collectors and GC operations that might benefit from
prefetch. Remembered sets in a generational collector are processed in a sequential
manner, and it may be simple to speed this up using prefetch operations. Various op-
erations in a reference counting collector (e.g. applying increments and decrements in
a deferred reference counting collector) could benefit from prefetch.

6.1.2 Scanning

With respect to object scanning techniques, we have taken a purely static approach to
all optimizations we have considered. Our optimizations perform less well on work-
loads that diverge significantly from the mean to which they are tuned. Ideally our
implementation would dynamically adapt to the object demographics of the running
application.

Our foray into specialized methods only looked at object scanning. For copying
collectors (including nursery collections in generational collectors), specialization of
copy methods is another plausible option.

Encoding more bits into the object header may have the potential for further
speedups. 8 bits would encode a bitmap of over 99% of observed objects, but at a
cost of 1–2KB per class depending on architecture. A specialized allocator that could
reuse the unused spaces left after aligning the TIBs could make this both fast and
space-efficient.

Bibliography

ALPERN, B., ATTANASIO, C. R., COCCHI, A., LIEBER, D., SMITH, S., NGO, T., BAR-
TON, J. J., HUMMEL, S. F., SHEPERD, J. C., AND MERGEN, M., 1999. Implementing
Jalapeño in Java. In OOPSLA ’99: Proceedings of the 14th ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and applications, pages 314–324. ACM,
New York, NY, USA. ISBN 1-58113-238-7 (cited on page 16)

ALPERN, B., ATTANASIO, D., BARTON, J. J., BURKE, M. G., CHENG, P., CHOI, J.-
D., COCCHI, A., FINK, S. J., GROVE, D., HIND, M., HUMMEL, S. F., LIEBER, D.,
LITVINOV, V., MERGEN, M., NGO, T., RUSSELL, J. R., SARKAR, V., SERRANO, M. J.,
SHEPHERD, J., SMITH, S., SREEDHAR, V. C., SRINIVASAN, H., AND WHALEY, J.,
2000. The Jalapeño virtual machine. IBM System Journal, 39(1) (cited on pages 9, 16,
and 54)

APPEL, A. W., 1989. Simple Generational Garbage Collection and Fast Allocation.
Software–Practice and Experience, 19(2):171–183 (cited on pages 15 and 18)

ARNOLD, M., FINK, S. J., GROVE, D., HIND, M., AND SWEENEY, P., 2000. Adaptive
Optimization in the Jalapeño JVM. In ACM Conference on Object-Oriented Program-
ming Systems, Languages, and Applications, pages 47–65. Minneapolis, MN (cited on
page 16)

BACON, D. F., ATTANASIO, C. R., LEE, H. B., RAJAN, V. T., AND SMITH, S., 2001.
Java without the coffee breaks: a nonintrusive multiprocessor garbage collector. In
PLDI ’01: Proceedings of the ACM SIGPLAN 2001 conference on Programming language
design and implementation, pages 92–103. ACM, New York, NY, USA. ISBN 1-58113-
414-2 (cited on page 12)

BACON, D. F. AND RAJAN, V. T., 2001. Concurrent Cycle Collection in Reference
Counted Systems. In ECOOP ’01: Proceedings of the 15th European Conference on
Object-Oriented Programming, pages 207–235. Springer-Verlag, London, UK. ISBN
3-540-42206-4 (cited on page 12)

BAKER, H. G., 1992. The treadmill: real-time garbage collection without motion
sickness. SIGPLAN Not., 27(3):66–70. ISSN 0362-1340 (cited on page 18)

BARTLETT, J. F., 1988. Compacting Garbage Collection with Ambiguous Roots.
Technical Report WRL-88-2, DEC WRL (cited on page 16)

BERGER, E. D., MCKINLEY, K. S., BLUMOFE, R. D., AND WILSON, P. R., 2000.
Hoard: a scalable memory allocator for multithreaded applications. In Proceedings

81

82 Bibliography

of the ninth international conference on Architectural support for programming languages
and operating systems, ASPLOS-IX, pages 117–128. ACM, New York, NY, USA. ISBN
1-58113-317-0
URL http://doi.acm.org/10.1145/378993.379232 (cited on page 9)

BLACKBURN, S. M., CHENG, P., AND MCKINLEY, K. S., 2004a. Myths and realities:
the performance impact of garbage collection. In SIGMETRICS ’04/Performance ’04:
Proceedings of the joint international conference on Measurement and modeling of computer
systems, pages 25–36. ACM, New York, NY, USA. ISBN 1-58113-873-3 (cited on
pages 1, 2, 9, and 18)

BLACKBURN, S. M., CHENG, P., AND MCKINLEY, K. S., 2004b. Oil and Water? High
Performance Garbage Collection in Java with MMTk. In ICSE ’04: Proceedings of the
26th International Conference on Software Engineering, pages 137–146. IEEE Computer
Society, Washington, DC, USA. ISBN 0-7695-2163-0 (cited on page 54)

BLACKBURN, S. M., GARNER, R., HOFFMANN, C., KHANG, A. M., MCKIN-
LEY, K. S., BENTZUR, R., DIWAN, A., FEINBERG, D., FRAMPTON, D., GUYER,
S. Z., HIRZEL, M., HOSKING, A., JUMP, M., LEE, H., MOSS, J. E. B., MOSS, B.,
PHANSALKAR, A., STEFANOVIĆ, D., VANDRUNEN, T., VON DINCKLAGE, D., AND

WIEDERMANN, B., 2006. The DaCapo benchmarks: java benchmarking develop-
ment and analysis. In OOPSLA ’06: Proceedings of the 21st annual ACM SIGPLAN
conference on Object-oriented programming systems, languages, and applications, pages
169–190. ACM, New York, NY, USA. ISBN 1-59593-348-4 (cited on pages 3, 21, 22,
and 54)

BLACKBURN, S. M. AND MCKINLEY, K. S., 2003. Ulterior reference counting: fast
garbage collection without a long wait. In OOPSLA ’03: Proceedings of the 18th annual
ACM SIGPLAN conference on Object-oriented programing, systems, languages, and appli-
cations, pages 344–358. ACM, New York, NY, USA. ISBN 1-58113-712-5 (cited on
page 12)

BLACKBURN, S. M. AND MCKINLEY, K. S., 2008. Immix: a mark-region garbage
collector with space efficiency, fast collection, and mutator performance. In PLDI
’08: Proceedings of the 2008 ACM SIGPLAN conference on Programming language design
and implementation, pages 22–32. ACM, New York, NY, USA. ISBN 978-1-59593-860-2
(cited on page 14)

BLACKBURN, S. M., MCKINLEY, K. S., GARNER, R., HOFFMANN, C., KHANG,
A. M., BENTZUR, R., DIWAN, A., FEINBERG, D., FRAMPTON, D., GUYER, S. Z.,
HIRZEL, M., HOSKING, A., JUMP, M., LEE, H., MOSS, J. E. B., MOSS, B.,
PHANSALKAR, A., STEFANOVIĆ, D., VANDRUNEN, T., VON DINCKLAGE, D., AND

WIEDERMANN, B., 2008. Wake up and smell the coffee. In Communications of the
ACM, pages 83–89. ACM, New York, NY, USA (cited on pages 3 and 21)

BOEHM, H.-J., 1993. Space efficient conservative garbage collection. In PLDI ’93:
Proceedings of the ACM SIGPLAN 1993 conference on Programming language design

http://doi.acm.org/10.1145/378993.379232

Bibliography 83

and implementation, pages 197–206. ACM, New York, NY, USA. ISBN 0-89791-598-
4 (cited on page 54)

BOEHM, H.-J., 2000. Reducing Garbage Collector Cache Misses. In The 2000 Interna-
tional Symposium on Memory Management, pages 59–64
URL http://citeseer.ist.psu.edu/boehm00reducing.html (cited on pages 11, 23, 31, 42,
44, 45, 47, and 50)

BOEHM, H.-J., 2004. The space cost of lazy reference counting. In Proceedings of the
31st ACM SIGPLAN-SIGACT symposium on Principles of programming languages, POPL
’04, pages 210–219. ACM, New York, NY, USA. ISBN 1-58113-729-X
URL http://doi.acm.org/10.1145/964001.964019 (cited on page 12)

BOEHM, H.-J., 2012. A garbage collector for C and C++. Accessed May 2012
URL http://www.hpl.hp.com/personal/Hans Boehm/gc/ (cited on page 19)

BOEHM, H.-J. AND WEISER, M., 1988. Garbage collection in an uncooperative envi-
ronment. Softw. Pract. Exper., 18(9):807–820. ISSN 0038-0644 (cited on pages 15, 19,
and 54)

CHENEY, C. J., 1970. A nonrecursive list compacting algorithm. Commun. ACM,
13(11):677–678. ISSN 0001-0782 (cited on page 13)

CHER, C.-Y., HOSKING, A. L., AND VIJAYKUMAR, T. N., 2004. Software prefetching
for mark-sweep garbage collection: hardware analysis and software redesign. In
ASPLOS-XI: Proceedings of the 11th international conference on Architectural support for
programming languages and operating systems, pages 199–210. ACM Press, New York,
NY, USA. ISBN 1-58113-804-0 (cited on pages xi, 23, 34, 36, 42, 43, 47, 48, 50, 51,
and 52)

CHRISTOPHER, T. W., 1984. Reference Count Garbage Collection. SPE, 14(6):503–507
(cited on page 12)

CLINGER, W. D. AND HANSEN, L. T., 1997. Generational garbage collection and
the radioactive decay model. In Proceedings of the ACM SIGPLAN 1997 conference on
Programming language design and implementation, PLDI ’97, pages 97–108. ACM, New
York, NY, USA. ISBN 0-89791-907-6
URL http://doi.acm.org/10.1145/258915.258925 (cited on page 14)

COLLINS, G. E., 1960. A method for overlapping and erasure of lists. Commun.
ACM, 3(12):655–657. ISSN 0001-0782 (cited on page 11)

DEUTSCH, L. P. AND BOBROW, D. G., 1976. An efficient, incremental, automatic
garbage collector. Commun. ACM, 19(9):522–526. ISSN 0001-0782 (cited on page 12)

DIJKSTRA, E. W., LAMPORT, L., MARTIN, A. J., SCHOLTEN, C. S., AND STEFFENS,
E. F. M., 1976. On-The-Fly Garbage Collection: An Exercise in Cooperation. In
Lecture Notes in Computer Science, No. 46. Springer-Verlag, New York (cited on pages
7 and 10)

http://citeseer.ist.psu.edu/boehm00reducing.html
http://doi.acm.org/10.1145/964001.964019
http://www.hpl.hp.com/personal/Hans_Boehm/gc/
http://doi.acm.org/10.1145/258915.258925

84 Bibliography

FENICHEL, R. R. AND YOCHELSON, J. C., 1969. A LISP garbage-collector for virtual-
memory computer systems. Communications of the ACM, 12:611–612. ISSN 0001-0782
(cited on page 12)

FRAMPTON, D., 2010. Garbage Collection and the case for high-level low-level program-
ming. Ph.D. thesis, Department of Computer Science, Australian National Univer-
sity, Canberra, ACT (cited on page 12)

FRAMPTON, D., BLACKBURN, S. M., CHENG, P., GARNER, R. J., GROVE, D., MOSS,
J. E. B., AND SALISHEV, S. I., 2009. Demystifying magic: high-level low-level pro-
gramming. In VEE ’09: Proceedings of the 2009 ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments, pages 81–90. ACM, New York, NY, USA.
ISBN 978-1-60558-375-4 (cited on page 17)

FRAMPTON, D., BLACKBURN, S. M., QUINANE, L. N., AND ZIGMAN, J., 2008. Cycle
Tracing: Efficient Concurrent Cyclic Garbage. Will become a TR (cited on page 12)

GAGNON, E., 2002. A Portable Research Framework for the Execution of Java Bytecode.
Ph.D. thesis, McGill University, Montreal (cited on pages 55, 56, and 66)

GAGNON, E. AND HENDREN, L., 2001. SableVM: A Research Framework for the
Efficient Execution of Java Bytecode. In Proceedings of the 1st Java Virtual Machine
Research and Technology Symposium, April 23-24, Monterey, CA, USA, pages 27–40.
USENIX (cited on pages 55, 66, and 75)

GARNER, R., BLACKBURN, S. M., AND FRAMPTON, D., 2007. Effective prefetch
for mark-sweep garbage collection. In ISMM ’07: Proceedings of the 6th international
symposium on Memory management, pages 43–54. ACM, New York, NY, USA. ISBN
978-1-59593-893-0 (cited on pages 19, 23, and 41)

GARNER, R., BLACKBURN, S. M., AND FRAMPTON, D., 2011. A Comprehensive
Evaluation of Object Scanning Techniques. In ACM International Symposium on Mem-
ory Management (cited on page 53)

GARTHWAITE, A. AND WHITE, D., 1998. The GC Interface in the EVM. Technical
report, Sun Microsystems, Inc., Mountain View, CA, USA (cited on page 9)

GCJ, 2012. The GNU Compiler for the Java Programming Language. The Free Software
Foundation. Accessed May 2012
URL http://gcc.gnu.org/java/ (cited on page 19)

GEORGES, A., BUYTAERT, D., AND EECKHOUT, L., 2007. Statistically rigorous Java
performance evaluation. In ACM Conference on Object-Oriented Programming Systems,
Languages, and Applications, OOPSLA ’07, pages 57–76. ACM, New York, NY, USA.
ISBN 978-1-59593-786-5
URL http://doi.acm.org/10.1145/1297027.1297033 (cited on page 22)

http://gcc.gnu.org/java/
http://doi.acm.org/10.1145/1297027.1297033

Bibliography 85

GRONINGEN, J. V., 2004. Faster garbage collection using prefetching. In Proceed-
ings of Sixteenth International WOrkshop on Implementation and Application of Functional
Languages (IFL04, pages 142–152 (cited on page 43)

GROVE, D. AND CHENG, P., 2005. Private communication (cited on page 55)

GU, D., VERBRUGGE, C., AND GAGNON, E. M., 2006. Relative factors in perfor-
mance analysis of Java virtual machines. In VEE ’06: Proceedings of the Second Interna-
tional Conference on Virtual Execution Environments, pages 111–121. ACM Press, New
York, NY, USA. ISBN 1-59593-332-6 (cited on pages 37 and 55)

HALLBERG, J., 2003. Optimizing Memory Performance with a JVM: Prefetching in a
Mark-and-Sweep Garbage Collector. Master’s thesis, Royal Institute of Technology,
Kista, Sweden
URL http://web.it.kth.se/∼matsbror/exjobb/msc theses/josefinh thesis final.pdf (cited
on pages 14, 34, and 43)

HANSEN, W. J., 1969. Compact list representation: definition, garbage collection,
and system implementation. Communications of the ACM, 12(9):499–507 (cited on
page 12)

HENNESSY, J. L. AND PATTERSON, D. A., 2006. Computer Architecture, Fourth Edition:
A Quantitative Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.
ISBN 0123704901 (cited on pages 20 and 53)

HERTZ, M. AND BERGER, E. D., 2005. Quantifying the performance of garbage col-
lection vs. explicit memory management. In Proceedings of the 20th annual ACM SIG-
PLAN conference on Object-oriented programming, systems, languages, and applications,
OOPSLA ’05, pages 313–326. ACM, New York, NY, USA. ISBN 1-59593-031-0
URL http://doi.acm.org/10.1145/1094811.1094836 (cited on page 6)

HICKS, M. W., MOORE, J. T., AND NETTLES, S., 1997. The Measured Cost of Copy-
ing Garbage Collection Mechanisms. In ACM International Conference on Functional
Programming, pages 292–305 (cited on page 24)

HUANG, X., BLACKBURN, S. M., MCKINLEY, K. S., MOSS, J. E. B., WANG, Z., AND

CHENG, P., 2004. The Garbage Collection Advantage: Improving Mutator Locality.
In ACM Conference on Object-Oriented Programming Systems, Languages, and Applica-
tions. Vancouver, BC (cited on pages 17 and 46)

HUGHES, R. J. M., 1982. A semi-incremental garbage collection algorithm. Software
- Practice and Experience, 12:1081–1082 (cited on pages 11 and 42)

JONES, R. E., HOSKING, A. L., AND MOSS, J. E. B., 2011. The Garbage Collection
Handbook: The Art of Automatic Memory Management. Chapman and Hall/CRC. ISBN
978-1420082791 (cited on page 5)

JONES, R. E. AND LINS, R. D., 1996. Garbage Collection: Algorithms for Automatic
Dynamic Memory Management. Wiley (cited on pages 5, 44, 47, 54, and 55)

http://web.it.kth.se/~matsbror/exjobb/msc_theses/josefinh_thesis_final.pdf
http://doi.acm.org/10.1145/1094811.1094836

86 Bibliography

KNOWLTON, K. C., 1965. A fast storage allocator. Commun. ACM, 8:623–624. ISSN
0001-0782
URL http://doi.acm.org/10.1145/365628.365655 (cited on page 9)

LEA, D., 1998. A memory allocator
URL http://g.oswego.edu/dl/html/malloc.html (cited on page 9)

LEVANONI, Y. AND PETRANK, E., 2001. An on-the-fly reference counting garbage
collector for Java. In OOPSLA ’01: Proceedings of the 16th ACM SIGPLAN conference on
Object oriented programming, systems, languages, and applications, pages 367–380. ACM,
New York, NY, USA. ISBN 1-58113-335-9 (cited on page 12)

LIEBERMAN, H. AND HEWITT, C., 1983. A real-time garbage collector based on the
lifetimes of objects. Commun. ACM, 26(6):419–429. ISSN 0001-0782 (cited on page
14)

LINS, R. D., 1992. Cyclic reference counting with lazy mark-scan. Inf. Process. Lett.,
44(4):215–220. ISSN 0020-0190 (cited on page 12)

MARTÍNEZ, A. D., WACHENCHAUZER, R., AND LINS, R. D., 1990. Cyclic reference
counting with local mark-scan. Inf. Process. Lett., 34(1):31–35. ISSN 0020-0190 (cited
on page 12)

MCCARTHY, J., 1960. Recursive functions of symbolic expressions and their compu-
tation by machine, Part I. Commun. ACM, 3(4):184–195. ISSN 0001-0782 (cited on
pages 1, 5, 7, 10, and 42)

OSSIA, Y., BEN-YITZHAK, O., GOFT, I., KOLODNER, E. K., LEIKEHMAN, V., AND

OWSHANKO, A., 2002. A parallel, incremental and concurrent GC for servers. In
PLDI ’02: Proceedings of the ACM SIGPLAN 2002 Conference on Programming language
design and implementation, pages 129–140. ACM, New York, NY, USA. ISBN 1-58113-
463-0 (cited on page 34)

QUINANE, L., 2003. An Examination of Deferred Reference Counting and Cycle Detection.
Honours thesis, Australian National University
URL http://eprints.anu.edu.au/archive/00002710/ (cited on page 12)

RITZAU, T., 2003. Memory Efficient Hard Real-Time Garbage Collection. Ph.D. thesis,
Linkpings Universitet (cited on page 12)

ROBSON, J. M., 1975. Worst case fragmentation of first fit and best fit storage alloca-
tion strategies. The Computer Journal, 20(3):242–244
URL http://comjnl.oxfordjournals.org/content/20/3/242.abstract (cited on page 8)

ROSE, J., 2008. Three software proverbs
URL http://blogs.oracle.com/jrose/entry/three software proverbs (cited on page 5)

http://doi.acm.org/10.1145/365628.365655
http://g.oswego.edu/dl/html/malloc.html
http://eprints.anu.edu.au/archive/00002710/
http://comjnl.oxfordjournals.org/content/20/3/242.abstract
http://blogs.oracle.com/jrose/entry/three_software_proverbs

Bibliography 87

ROVNER, P., 1985. On adding garbage collection and runtime types to a strongly
typed, statically-checked, concurrent language. Technical Report Technical report
CSL-84-7, Xerox PARC, Palo Alto, CA (cited on page 6)

SANSOM, P., 1991. Dual-Mode Garbage Collection. In H. Glaser and P. H. Hartel,
editors, Proceedings of the Workshop on the Parallel Implementation of Functional Lan-
guages, pages 283–310. Department of Electronics and Computer Science, University
of Southampton, Southampton, UK
URL http://citeseer.ist.psu.edu/sansom91dualmode.html (cited on pages 14, 55,
and 65)

SPEC, 1999. SPECjvm98 Documentation. Standard Performance Evaluation Corpora-
tion, release 1.03 edition (cited on pages 20 and 54)

SPEC, 2001. SPECjbb2000 (Java Business Benchmark) Documentation. Standard Perfor-
mance Evaluation Corporation, release 1.01 edition (cited on pages 20 and 54)

SPEC, 2006. SPECjbb2005 (Java Business Benchmark) Documentation. Standard Perfor-
mance Evaluation Corporation, release 1.07 edition (cited on page 20)

SPEC, 2008. SPECjvm2008 Documentation. Standard Performance Evaluation Cor-
poration, release 1.01 edition (cited on page 20)

STYGER, P., 1967. LISP 2 garbage collector specifications. Technical Report Technical
Report TM-3417/500/00 1, System Development Cooperation (cited on page 13)

TRIDGELL, A., 2004. Using talloc in Samba4. Technical report, Samba Team
URL http://samba.org/ftp/unpacked/talloc/talloc guide.txt (cited on page 6)

UNGAR, D., 1984. Generation Scavenging: A non-disruptive high performance stor-
age reclamation algorithm. In SDE 1: Proceedings of the first ACM SIGSOFT/SIGPLAN
software engineering symposium on Practical software development environments, pages
157–167. ACM, New York, NY, USA. ISBN 0-89791-131-8 (cited on page 14)

WEIZENBAUM, J., 1963. Symmetric list processor. Commun. ACM, 6:524–536. ISSN
0001-0782
URL http://doi.acm.org/10.1145/367593.367617 (cited on page 12)

WILSON, P. R., 1992. Uniprocessor Garbage Collection Techniques. In IWMM ’92:
Proceedings of the International Workshop on Memory Management, pages 1–42. Springer-
Verlag, London, UK. ISBN 3-540-55940-X (cited on page 5)

WILSON, P. R., JOHNSTONE, M. S., NEELY, M., AND BOLES, D., 1995. Dynamic
Storage Allocation: A Survey and Critical Review. In IWMM ’95: Proceedings of the
International Workshop on Memory Management, pages 1–116. Springer-Verlag, Lon-
don, UK. ISBN 3-540-60368-9 (cited on pages 8 and 44)

http://citeseer.ist.psu.edu/sansom91dualmode.html
http://samba.org/ftp/unpacked/talloc/talloc_guide.txt
http://doi.acm.org/10.1145/367593.367617

88 Bibliography

WILSON, P. R., LAM, M. S., AND MOHER, T. G., 1991. Effective Static-Graph
Reorganization to Improve Locality in Garbage-Collected Systems. In ACM SIG-
PLAN Conference on Programming Languages Design and Implementation, pages 177–
191. Toronto, Canada (cited on pages 34 and 46)

