
An Investigation into Automatic
Dynamic Memory Management

Strategies using Compacting
Collection

Daniel John Frampton

A subthesis submitted in partial fulfillment of the degree of

Bachelor of Software Engineering at
The Department of Computer Science

Australian National University

November 2003

c
�

Daniel John Frampton

Typeset in Palatino by TEX and LATEX 2ε.

Except where otherwise indicated, this thesis is my own original work.

Daniel John Frampton
14 November 2003

To my parents.

Acknowledgements

I would like to take this opportunity to thank some of the people that helped me
through this process. In doing this I am sure to forget a few people, but I will do my
best.

Firstly I would like to thank Steve, for providing me with the opportunity to do
this project. With a special ability to make things sound easy, he was able to trick me
into diving head first into some sticky situations. These experiences, although at times
frustrating, were also the most interesting and rewarding.

I would also like to thank Luke, who also endured a similar project concurrent
to my own. Being able to talk about many of the issues with someone in the same
situation made the path a lot clearer. Assistance in setting up and supporting toki, the
server that was purchased for this project was appreciated. The whiteboard-action and
red-pen-action sessions were invaluable tools.

This project would not have been possible without the good work by the Jikes
RVM team. Special thanks go to Perry and Dave for helpful feedback during the
project.

I would also like to thank Richard Jones, not only for the excellent reference [Jones
1996] that he has gifted the garbage collection world, but also for the bibliography [Jones
] he keeps that made the process of keeping a consistent bibliography so much easier.

I can not thank my parents enough, and I credit them with teaching me how to
think, a skill that has been invaluable to me throughout my life.

I would also like to thank Jo, for helping to keep many of the other aspects of my
life moving during the last couple of months.

Lastly, I would like to thank the people that took the time to read and provide
feedback on my work, who were (in no particular order), my parents, Jo, Luke, Ruth,
and Steve.

vii

Abstract

Modern object oriented languages such as Java and C# have been gaining widespread
industry support in recent times. Such languages rely on a runtime infrastructure that
provides automatic dynamic memory management services. The performance of such
services is a crucial component of overall system performance.

This thesis discusses work undertaken in relation to automatic memory management
using the Java Memory Management Toolkit (JMTk) running on the Jikes Research
Virtual Machine (Jikes RVM). The primary goal of this work was to develop an auto-
matic memory management strategy employing a compacting collector to run on this
platform.

Compacting collectors are an important class of collectors used in several production
runtimes, including Microsoft’s Common Language Runtime and IBM’s Java Runtime
Environment. The development of a strategy using compaction makes an important
contribution to JMTk, and provides a platform where side-by-side comparisons be-
tween compacting collectors and other important classes of collector can be made.

A compacting collector differs from the collectors that currently exist in JMTk in sev-
eral important ways. Prior to this work, JMTk and Jikes RVM did not have an imple-
mentation of a compacting collector, nor the structure to fully support one.

This work has achieved its primary goal in providing an implementation of a com-
pacting collector. It describes how both JMTk and Jikes RVM were modified to sup-
port such collectors. Although substantial, this project should be considered but a
first step into the investigation of this class of collectors. It is anticipated that through
broadening the set of operations supported by JMTk and Jikes RVM that this work
will also allow new classes of collectors to be implemented and compared.

The cost of performing a compacting collection was shown to be very significant given
the current implementation. The use of compaction in a generational collector demon-
strated increased performance, bringing it in-line with other generational collectors in
JMTk.

This work shows that there are benefits in reducing memory fragmentation through
the use of compacting collectors. When discounting the cost of the collection, the
implemented compacting collectors come close to matching or outperforming other
collection strategies. The difficulty now lies in attempting to reduce the cost of com-
pacting collection.

ix

x

Contents

Acknowledgements vii

Abstract ix

1 Introduction 1
1.1 Contribution . 2
1.2 Structure . 2

2 Automatic Dynamic Memory Management 3
2.1 Object Representations . 5
2.2 Wasted Memory and Memory Fragmentation 5
2.3 Locality . 6
2.4 Allocation Techniques . 7

2.4.1 Bump Pointers . 7
2.4.2 Free Lists . 7

2.5 Garbage Collection Techniques . 8
2.5.1 Barriers . 9
2.5.2 Reference Counting . 9
2.5.3 Tracing Collection . 11
2.5.4 Copying Collection . 12
2.5.5 Compacting Collection . 14
2.5.6 Tradeoffs . 15
2.5.7 Generational Collection . 16

2.6 Summary . 17

3 Research Platform 19
3.1 Jikes RVM . 19

3.1.1 Jikes RVM Compilation . 19
3.1.2 Object Representation . 20

3.1.2.1 Address Based Hashing 21
3.2 Java Memory Management Toolkit (JMTk) 21

3.2.1 The Plan . 22
3.2.2 Allocation and Collection Policies 22
3.2.3 Utilities . 23
3.2.4 VM – MM Interface . 23
3.2.5 Memory Allocation . 23

3.2.5.1 Bump Pointer . 24

xi

xii Contents

3.2.5.2 Segregated Free List . 24
3.2.5.3 Treadmill . 25

3.2.6 Example Memory Management Strategies 25
3.2.6.1 Mark Sweep . 26
3.2.6.2 Semi Space . 27

3.3 Summary . 27

4 A Sliding Compacting Collector 29
4.1 The Concept . 29
4.2 The Basic Algorithm . 29
4.3 Implementation Issues . 30

4.3.1 Object Representation . 30
4.3.2 Forwarding Pointers . 31
4.3.3 Immortal Type Information . 31
4.3.4 Dynamic Linking . 31
4.3.5 Address Based Hashing . 32
4.3.6 Segregation of Scalars and Arrays 32
4.3.7 Accessing Objects During a Collection 33
4.3.8 Two-Phase Collection . 34
4.3.9 Finalizable Objects . 34
4.3.10 Reference Types . 35
4.3.11 Multiple Allocators For a Space and Kernel Thread 35

4.4 The Algorithm . 35
4.4.1 Object Header . 36
4.4.2 Allocation Policy . 36

4.4.2.1 Chunks . 36
4.4.2.2 Regions . 37
4.4.2.3 Extending and Creating Regions 38

4.4.3 Collection Policy . 38
4.4.3.1 Pre Copy GC Instances 40
4.4.3.2 Mark Live Objects . 41
4.4.3.3 Calculate Forwarding Pointers 42
4.4.3.4 Update References . 42
4.4.3.5 Move Objects . 42
4.4.3.6 Restore Status Words . 44

4.4.4 Complete Memory Management Strategy 44
4.5 Summary . 45

5 A Free List Compacting Collector 47
5.1 Motivation . 47
5.2 The Algorithm . 47

5.2.1 Sweep vs. Compact . 48
5.2.2 Heap Iteration . 48
5.2.3 Rebuilding Free Lists . 48

Contents xiii

5.2.4 Sweeping Free Lists . 50
5.3 Summary . 50

6 A Generational Compacting Collector 53
6.1 Motivation . 53
6.2 Two-Phase Collection . 53
6.3 The Algorithm . 53
6.4 Complete Memory Management Strategy 54
6.5 Summary . 54

7 Performance Evaluation 57
7.1 Benchmarking Methodology . 57

7.1.1 Experimental Platform . 57
7.1.2 Benchmarks . 58
7.1.3 Configurations . 58
7.1.4 Heap Sizes . 60
7.1.5 Collection of Metrics . 61
7.1.6 Missing Results . 62

7.2 Non-Zero Status Words . 62
7.3 Phase Timings . 64
7.4 Flipped Object Model . 65
7.5 Constant Size Header . 66
7.6 Free List: Compact vs Sweep . 67
7.7 Limited Physical Memory . 68
7.8 Performance Bakeoff . 69
7.9 Generational . 72
7.10 Summary . 72

8 Conclusion 73
8.1 Summary . 73
8.2 Further Work . 74

8.2.1 Performance Tuning . 74
8.2.2 N Generational Collector . 75
8.2.3 Alternate Compacting Algorithms 75
8.2.4 Generational Sliding Compaction 75
8.2.5 Compact vs. Sweep Heuristic . 75
8.2.6 Limited Memory Testing . 75

8.3 Conclusion . 76

A Complete Results 77
A.1 Non-Zero Status Words . 78
A.2 Phase Timings . 80
A.3 Flipped Object Model . 82
A.4 Constant Size Header . 84
A.5 Free List: Compact vs Sweep . 89

xiv Contents

A.6 Limited Physical Memory . 96
A.7 Performance Bakeoff . 98
A.8 Generational . 105

Glossary 109

Bibliography 111

List of Figures

2.1 A dangling pointer is created as a result of freeing a live object. 4
2.2 Several modules referencing a single data structure. 4
2.3 Internal and external memory fragmentation within a free list. 6
2.4 A Bump Pointer . 7
2.5 A set of reference counted objects. 10
2.6 Cyclic Garbage. 10
2.7 A set of objects after a mark phase. 12
2.8 A set of objects before a copying collection. 12
2.9 The same objects during the collection. 13
2.10 A set of objects after a copying collection. 14
2.11 A set of object collected by sliding compaction. 15

3.1 Jikes RVM Object Model . 20
3.2 Address Based Hashing. 21
3.3 Interface between the virtual machine and memory manager 24
3.4 An empty full block within a segregated free list. 25
3.5 A block within a segregated free list. 25
3.6 JMTk Mark Sweep Plan . 26
3.7 JMTk Semi Space Plan . 27

4.1 Object header layout for the compacting collector. 36
4.2 A region. 38
4.3 A chain of regions. 38
4.4 JMTk Sliding Mark Compact Plan . 44

5.1 Final block for a size class after compaction. 50
5.2 Final block for a size class with rebuilt free list. 50

6.1 JMTk Generational Mark Compact Plan 55

7.1 Percentage of live objects with non-zero status words for 213 javac. . . . 63
7.2 Phase timings for compacting collectors running 202 jess. 64
7.3 Total time for the original vs. flipped object models. 65
7.4 Total time when segregating arrays and scalars vs. wasting header space. 66
7.5 Mutator time for compacting every n GCs (104MB heap). 67
7.6 GC time for compacting every n GCs (104MB heap). 68
7.7 Total time for full-heap collectors across heap sizes. 69

xv

xvi List of Figures

7.8 GC counts for full-heap collectors across heap sizes for 202 jess. 69
7.9 Total time for full-heap collectors (41MB heap). 70
7.10 Mutator time for full-heap collectors (41MB heap). 71
7.11 Total time for full-heap collectors (104MB heap). 71
7.12 GC time for generational collectors across heap sizes for 202 jess. 72

A.1 Average percentage: Percentage of live objects that had non-zero status. 78
A.2 Worst case percentage: Percentage of live objects that had non-zero status. 79
A.3 Phase timings: Sliding Mark Compact . 80
A.4 Phase timings: Mark Compact Free List 81
A.5 Total time summary: Original Object Model vs. Flipped Object Model. . 82
A.6 Total time: Original Object Model vs. Flipped Object Model. 83
A.7 Total time: Segregation vs. increasing scalar header size. 84
A.8 Average GC time: Segregation vs. increasing scalar header size. 85
A.9 Mutator time: Segregation vs. increasing scalar header size. 86
A.10 GC time: Segregation vs. increasing scalar header size. 87
A.11 GC count: Segregation vs. increasing scalar header size. 88
A.12 Summary: Mark Compact Free List compacting every n GCs (41MB). . . 89
A.13 Summary: Mark Compact Free List compacting every n GCs (104MB). . 90
A.14 Total time: Mark Compact Free List compacting every n GCs. 91
A.15 Average GC time: Mark Compact Free List compacting every n GCs. . . 92
A.16 Mutator time: Mark Compact Free List compacting every n GCs. 93
A.17 GC time: Mark Compact Free List compacting every n GCs. 94
A.18 GC count: Mark Compact Free List compacting every n GCs. 95
A.19 Limited physical memory tests with 96MB physical memory. 96
A.20 Limited physical memory tests with 1GB physical memory. 97
A.21 Summary: Bakeoff of all non-generational collectors (41MB). 98
A.22 Summary: Bakeoff of all non-generational collectors (104MB). 99
A.23 Total time: Bakeoff of all non-generational collectors. 100
A.24 Average GC time: Bakeoff of all non-generational collectors. 101
A.25 Mutator time: Bakeoff of all non-generational collectors. 102
A.26 GC time: Bakeoff of all non-generational collectors. 103
A.27 GC count: Bakeoff of all non-generational collectors. 104
A.28 Total Time: Generational Mark Compact vs. Mark Sweep. 105
A.29 Average GC Time: Generational Mark Compact vs. Mark Sweep. 106
A.30 Mutator Time: Generational Mark Compact vs. Mark Sweep. 107
A.31 GC Time: Generational Mark Compact vs. Mark Sweep. 108

List of Tables

7.1 SPECjvm98 Benchmarks. 58

xvii

xviii List of Tables

List of Algorithms

4.1 Allocate an object. 37
4.2 Slow allocation path acquiring a new chunk. 39
4.3 Extend the current region. 40
4.4 Create a new region. 40
4.5 Steps in a sliding compacting collection. 41
4.6 Pre-Copying a GC Instance. 41
4.7 Initial trace for marking live objects. 42
4.8 Iterating through the heap. 43
4.9 Second trace to update references. 43

5.1 Steps in a free list compacting collection. 48
5.2 Iterating through the heap. 49
5.3 Sweep processing for each cell. 51

xix

xx List of Algorithms

Chapter 1

Introduction

Modern object oriented languages such as C# [ECMA 2002a] and Java [Joy et al. 2000]
are becoming increasingly important in industry. With many of the major players
getting right behind such languages, including Sun and IBM with Java and Microsoft
with .Net, it is very clear that they will continue to be important for some time to
come.

These modern languages require runtime systems, such as Microsoft’s Common
Language Infrastructure [ECMA 2002b] and Sun’s Hotspot Java Virtual Machine [Mi-
crosystems 2001], that take the responsibility of dynamic memory management away
from the programmer.

Although there are many factors that influence overall performance, the cost of
garbage collection has been found to be very significant [Blackburn et al. 2003].

Compacting collection is a technique utilised by several production virtual machines,
including Microsoft’s Common Language Infrastructure [Richter 2000a; Richter 2000b]
and IBM’s Java Garbage Collector [Borman 2002]. Although a preferred technique in
industry, compacting collectors have been notably absent from the popular memory
management research platform, JMTk.

The purpose of the project is to investigate this important class of collectors, in-
cluding both implementing one or more compacting collectors in the target platform,
and analysing collector performance under various situations.

Blackburn, Cheng, and McKinley [2003] includes a detailed performance compar-
ison of many full heap collectors including mark-sweep and copying collectors. A per-
formance comparison within a single virtual machine where all things are equal, in-
cluding many reusable components, provides a solid basis for practical performance
comparisons of various techniques. Understanding both the costs and benefits of com-
pacting collection is also a key motivation.

The addition of compacting collection techniques to this research platform will
allow detailed side-by-side comparison of these techniques against others. Addition-
ally, the work required to allow such collectors to function within JMTk and Jikes
RVM has the potential to allow entirely different classes of collectors to be introduced
to the platform by allowing new fundamental operations.

1

2 Introduction

1.1 Contribution

Several compacting algorithms are described in detail, including compacting collec-
tors using both bump pointer and free list allocation techniques. A generational compact-
ing collector is also described. Difficulties encountered during the implementation of
these collectors are listed, along with detailed explanations of how they were resolved.

An analysis of the costs and benefits of compacting collection, including comparisons
with other full-heap collectors is given. An optimal compaction frequency within a
hybrid mark-sweep/compact collector is also investigated.

1.2 Structure

Chapter 2 introduces the concept of automatic dynamic memory management, and serves
to introduce the reader to many of the techniques described in the literature.

The research platform is then described (chapter 3), and some of the aspects important
to this work are described in detail.

The following three chapters (4, 5 and 6) describe three compacting algorithms that
were implemented as part of this project.

Chapter 7 contains an evaluation of several aspects of the performance of the collec-
tors. Complete listings of results is included as appendix A.

Chapter 8 sums up the work completed and details further work that could build on
the findings of this project.

A glossary is provided at the end of the document.

Chapter 2

Automatic Dynamic Memory
Management

This chapter introduces dynamic memory management and then explains how and
why the process of managing dynamically allocated memory can be automated.

All programs require memory. Memory can be statically allocated, such as global data
structures whose size is known at compile time. Stack allocation, where the lifetime
of data is related to where it is positioned in the call stack is also common. Memory
can also be dynamically allocated by a program. When this occurs the lifetime of the
object is not clear.

The region of memory that memory is dynamically allocated from is referred to
as the heap. Traditionally, the process of allocating and deallocating memory from the
heap was performed explicitly as a part of the executing program. The most common
example of this is the pair of standard C functions: malloc and free.

The fact that the programmer has to keep track of all of the dynamically allocated
memory it is using is a source of major error in software systems. Two major errors
arise from incorrectly managed memory:

Memory Leaks, caused when memory is dynamically allocated but the programmer
forgets to deallocate the memory once it is no longer required. If repeated in
a long running program the amount of memory wasted or leaked memory can
become very significant.

Dangling Pointers, created when memory is deallocated while the program is still
using the data that used to be stored at that location. An example of what causes
a dangling pointer can be seen in figure 2. Bugs involving dangling pointers can
be difficult to resolve as:

� There may be new data allocated in the place of the old data.
� The program may not actively check that the data is valid when it reads

from that location, causing errors in completely different sections of the
program.

3

4 Automatic Dynamic Memory Management

A B C D E

OCCUPIED SPACE

F R EE SPACE

R e f e r e n c e t o
C

A B C D E

R e f e r e n c e t o
C

H e a p H e a p

Figure 2.1: A dangling pointer is created as a result of freeing a live object.

The manual management of dynamically allocated memory resources also hin-
ders the ability for software systems to be developed in modular manner [Jones 1996;
Wilson 1994]. Consider figure 2, which shows a shared data structure with several
modules accessing it. It is not possible for the modules themselves to know if the data
structure they are using is being used by other modules without some bookkeeping
at a global level.

Module 1 Module 2

S h a r ed
D a t a

??

Figure 2.2: Several modules referencing a single data structure.

Jones [1996] also highlights that it can be very difficult for the programmer to de-
termine the liveness of complex data structures. This can lead to inefficient memory
usage as the programmer may have no choice but to leave the object alive longer than
strictly necessary to ensure that no dangling pointers are made.

It is clear that requiring the programmer to manually manage this memory is un-
desirable. As the nature of the problem is common to a very large group of programs,
it would be beneficial to have this process performed automatically as a service to
the application. This automated process of firstly identifying unused dynamically al-
located memory as garbage, and then making this space available again is known as
garbage collection.

Although the concept of garbage collection is not new (papers date from 1960), it
is becoming of increasing importance in industry and continues to be an actively re-
searched area in computer science. Modern programming languages such as Java and
C#, which rely on automatic memory management to execute, are increasing in popu-

�
2.1 Object Representations 5

larity. The garbage collection mechanisms employed by a runtime system can have a
significant impact on overall runtime performance [Blackburn et al. 2003]. That said,
it is also clear from such research that no garbage collector is ideal for all situations.

Although many of the principles discussed in this chapter are relevant to garbage
collection in general, this section serves only to introduce the key garbage collection
concepts that are required in order to more fully understand the rest of the material.
There are specific papers and books dedicated to the area such as Wilson [1994] and
Jones [1996] that provide a more complete picture of garbage collection, and I would
recommend these to an interested reader.

2.1 Object Representations

The object representation, or the way an object is laid out in memory can have a signif-
icant impact on both what garbage collection techniques can be employed, and how
efficient these techniques can be. For example different garbage collection techniques
rely on some of the following:

Pointer field enumeration Given an object reference, is it possible to determine where
the pointer fields of that object are stored. These fields may point to other objects
and this relationship is important to nearly all collectors.

Storing data for objects A garbage collection technique may require the ability to
store information for each object. This type of information can include coun-
ters, several flags, or even pointer fields.

Moving to the next object A garbage collection technique may require the ability to
move from one object in the heap to an adjacent object.

Finding the first/last object A garbage collection technique may require the ability
to discover the first object in an area of memory. This capability, in combination
with the previous point, makes it possible to scan through the heap moving from
one object to the next.

Typically an object’s representation includes a header, which provides both what
the garbage collector requires, and whatever else the runtime needs for its own pur-
poses. The rest of the object representation stores the data associated with that object.

2.2 Wasted Memory and Memory Fragmentation

Memory fragmentation occurs when the arrangement of used and free memory within
the heap makes it difficult or impossible to allocate objects, even though enough mem-
ory would be available given a different arrangement. We take the example of a simple
free list in figure 2.3 that has had some data allocated and deallocated. It is clear that
the arrangement of the active and inactive data is suboptimal. This figure serves to
assist in describing internal and external fragmentation.

6 Automatic Dynamic Memory Management

Internal Fragmentation Occurs when more memory than is actually required is used
to hold an object. This can be seen in cell A in the figure. Although there are only
two bytes of data in the cell, the cell size is four bytes, and all of the memory is
used to store the two bytes.

External Fragmentation Occurs when the layout of the cells makes it more difficult to
service allocation requests, not because there is not enough memory, but because
no single contiguous block of memory is large enough to satisfy the request. For
example, although there are a total of eight bytes of free memory (excluding the
internal fragmentation), it would not even be possible to allocate an object that
is five bytes in size.

A B C D E
4 bytes 8 bytes 4 bytes 3 bytes 4 bytes

OBJECT DATAF R EE S P ACE
F r ee L i st

OCCU P I ED S P ACE

Figure 2.3: Internal and external memory fragmentation within a free list.

In addition to internal and external fragmentation, it is possible for memory to be
wasted in other ways. Consider the case where a memory management strategy re-
quires each object to have an additional 16 bytes in its header. This additional memory
is neither internal nor external fragmentation. If we compare this to a memory man-
agement strategy that requires no additional data in each object’s header but results
in higher fragmentation, it is not clear which technique actually uses memory more
efficiently as a whole.

In order to completely take into account this and other memory overheads and
costs involved for a memory management strategy, one simple measure that can be
used is to discover the minimum heap size that a set work load can run in for each of
the strategies.

2.3 Locality

The way objects are laid out in memory can have a significant affect on the overall
performance of a program [Zorn 1989]. There are several important ways that locality

�
2.4 Allocation Techniques 7

can affect programs, and intelligent allocation mechanisms designed to take advan-
tage of good locality. If an application is actively processing a group of objects and
they are all very close together in memory, the application is likely to perform better
than if these objects are spread out across the heap. Good locality exhibits high cache
hit ratios and low numbers of page faults.

Many factors affect locality, including both program behaviour and the memory
management strategy, and it is often the case that good locality is at least partially
due to good luck. However, there are several important observations that can assist
in optimising the memory management strategy to improve locality in the majority
of cases. These include: allocating objects of a similar size or age together, allocating
large objects together, and allocating objects that reference each other together.

2.4 Allocation Techniques

The following sections discuss the important classes of allocator. Specific allocators
included in JMTk, and additional allocators implemented as part of this project, are
discussed later in this document. This section serves only to introduce the reader to
basic allocation techniques.

2.4.1 Bump Pointers

The simplest form of allocator is a bump pointer. A bump pointer is essentially a
cursor that moves through memory to satisfy each allocation request. While allocation
using a bump pointer is very fast, this allocation technique relies on certain types of
collectors to be able to reclaim the space occupied by garbage. An example of a bump
pointer can be seen in figure 2.4.

A B

Cursor

ALLOCATED REGION F REE REGION

C D E

Figure 2.4: A Bump Pointer

2.4.2 Free Lists

A free list is essentially a chain of free cells that are available for objects to be allo-
cated into. Referring back to figure 2.3 one can see that the free list in that case is C,

8 Automatic Dynamic Memory Management

E . When a cell is allocated it is removed from the free list, and when it is deallocated
it is returned to the free list. Although an intuitively simple concept, there are many
variants on this basic idea, and large papers dedicated to discussing them, most no-
tably that by Wilson et al. [1995]. Good allocation policies have been shown to result
in near zero fragmentation under various real world program loads [Johnstone and
Wilson 1997].

There are many possible policies for free list allocators. The way cells are split
and merged can have a significant impact on memory fragmentation. While splitting
cells clearly reduces internal fragmentation, having many small cells all over the place
directly increases external fragmentation. Some allocators do not split and coalesce
blocks at all, while others place various restrictions on how this can be done. One
such approach is a buddy system [Wilson et al. 1995], which requires blocks are split
and coalesced according to grouping rules. See Wilson, Johnstone, Neely, and Boles
[1995] for a more complete discussion of splitting and coalescing techniques.

The way a cell is chosen is also important. For example, when trying to allocate
space for an object, do you return the first cell the object fits into – first-fit, or do you
search through the entire free list until you find the smallest possible cell that the
object can fit into – best-fit?

It is possible to manage multiple free lists for objects of different sizes or size
classes. Such an allocator is known as a segregated free list. If a free list is segregated by
size it becomes possible to always use a first fit policy, which can speed up allocation.
Comfort [1964] describes such an allocator.

When using a segregated free list, fragmentation can become more of a prob-
lem [Jones 1996; Wilson et al. 1995]. If a program allocates and then deallocates a
large number of objects for one size class, and then from that point on no longer al-
locates many objects of that size class, the empty free list for that size class will be
wasted memory. If the segregated free lists are built on top of a second level allocator
of basic blocks, when a block used by one size class becomes empty it can be returned
for use by all other size classes. This type of allocator is referred to as a two level
allocator [Jones 1996; Boehm and Weiser 1988].

Selection of size classes also has a significant impact on fragmentation. Very few
size classes results in poor fits and increased internal fragmentation. Too many size
classes results in increased external fragmentation, as each size class may have a par-
tially filled block.

2.5 Garbage Collection Techniques

We have seen how objects are allocated into the heap. This section discusses various
techniques for recovering memory after objects become garbage. Garbage collection
literature dates from around 1960 and the area is still actively researched.

Although many new and interesting memory management strategies are sug-
gested and implemented, the methods used for comparison between these techniques
is often lacking. The use of ‘soft’ targets, or a comparison involving very few al-

�
2.5 Garbage Collection Techniques 9

gorithms, heap sizes, or benchmarks are common. Comparisons between memory
management strategies running within different runtimes are also flawed, as the dif-
ferences between other aspects of the runtime such as differences in compilers may
be a more important factor in overall performance. Some comparisons are also purely
theoretical, which can ignore the potentially significant effects of locality.

Zorn [1989] and Blackburn et al. [2003] are notable exceptions and provide some
insight into how best to compare memory management strategies.

Any garbage collection mechanism is required to satisfy two basic principles closely
related to the two basic types of dynamic memory management mistakes discussed
at the start of this chapter. These basic principles are:

Safety No object will be deallocated until the executing program no longer holds a
reference to it.

Completeness All objects that the executing program no longer holds references to
will eventually be deallocated.

2.5.1 Barriers

Barriers are simply sections of code that are executed implicitly every time some oper-
ation occurs. For example a field write barrier is executed every time the executing pro-
gram attempts to write to a field protected by it. The ability to include write barriers
on reference fields is an essential component of many memory management strate-
gies. For example a write barrier makes it possible to maintain an accurate reference
count for each object. A write barrier also makes it possible for the memory man-
ager to keep track of all references into a particular region of memory, allowing more
incremental collection techniques. Zorn [1990] describes this subject in detail.

Write barriers come at a cost in both increased program size and execution time.
Blackburn and McKinley [2002] describes how the intelligent management of fast and
slow paths within write barriers, combined with a high level of control of how the
barrier is compiled, can assist in reducing the cost to negligible levels on some archi-
tectures.1

2.5.2 Reference Counting

Reference counting collectors2 work by counting how many references are pointing to
each object. An example of a set of objects with counted references is given in Figure
2.5. When there are zero references pointing to an object it can be safely deallocated.
The first paper to discuss reference counting is due to Collins [1960].

Reference counting is often used in real-time systems, as the deallocation of un-
referenced objects happens during execution of the program, making it unnecessary

1Performance is found to be as low as zero on PowerPC architectures but up to 10% on IA32
architectures.

2Some chose not to call simple reference counters collectors as there is no special phase for a garbage
collection, but instead this job is distributed throughout execution.

10 Automatic Dynamic Memory Management

for the runtime system to pause user code to calculate which objects should be deal-
located.

RC 0

A

RC 2

B

RC 1

C

Figure 2.5: A set of reference counted objects.

One major problem with reference counting is that it is fails to collect cyclic garbage [Mc-
Beth 1963]. Figure 2.6 shows a simple situation wherein which two objects hold refer-
ences to each other. Although these objects are garbage, they will never have a refer-
ence count of zero and so will never be collected. This problem often solved through
the use of an additional collector that is called occasionally to collect cycles [Bacon
et al. 2001; Levanoni and Petrank 2001].

RC 1

A

RC 1

B

Figure 2.6: Cyclic Garbage.

The runtime overhead of maintaining counts of all references is significant. Deutsch
and Bobrow [1976] introduced the idea of deferred reference counting, where mutations
to references on the stack and hardware registers are ignored except for at discrete
collections. This has the implication that objects with a reference count of zero can
only be collected at these discrete points in time.3 This can be achieved by either re-
membering objects with a reference count of zero (a zero count table) or by queueing
all decrements during runtime to be processed at these collections. As the vast major-
ity of reference mutations occur on the stack these approaches improve performance
considerably.

Levanoni and Petrank [2001] took this idea further and created a new deferred
reference counting algorithm. This algorithm is based on the observation that if a
reference field P that first pointed to object A, changes to B and finally C, then all the
collector has to do is decrement A’s reference count and increment C’s, ignoring the
intermediate reference to B. This concept of coalescing multiple pointer mutations into
a single mutation can dramatically reduce the work done by the collector.

3An uncounted reference on the stack might be referring to an object that has a reference count of
zero. Such an object must not be considered garbage.

�
2.5 Garbage Collection Techniques 11

2.5.3 Tracing Collection

In a runtime environment there is a set of objects that are explicitly live. Such objects
include those referenced from the stack and hardware registers, objects stored in static
fields, and objects that are referenced directly from within the runtime. This set of
objects is referred to as the set of roots. This set is essential for a very large group of
algorithms that define liveness as the property of being reachable from the roots.

A tracing garbage collection works by following the graph of references between
objects from the roots. Any object that is traced is considered live, and any object
that is not traced is considered garbage. Note that in order to allow tracing of cyclic
structures each live object must have its pointer fields examined exactly once; when
an already marked object is encountered pointer fields should not be examined. The
processing of the trace can be accomplished in several ways:

Recursion The simplest way of implementing a trace is to recursively call the same
routine for each pointer field encountered. This method is not suitable for large
sets of objects as the call stack can become very deep and causing a stack over-
flow.

Queuing Have a routine processing a marking queue; for each object we process we
push its pointers onto the queue to be processed instead of recursing. This tech-
nique requires additional space for storing the queue.

Pointer Reversal There is a space penalty involved with queuing objects for process-
ing as there needs to be a place in memory to store the queues. It is possi-
ble to use the pointer fields in the graph to store the information required to
trace [Schorr and Waite 1967; Knuth 1973]. This is an expensive operation and
temporarily corrupts the data stored in the heap.

An example of a tracing collector is the mark-sweep or mark-scan collector [Jones
1996; McCarthy 1960]. A mark-sweep collector works by first tracing through the
graph of objects and marking objects it encounters as live – the mark phase. It then
deallocates all objects that were not encountered during the trace – the sweep phase.

When marking objects it is necessary to store the information about which objects
are marked. The simplest approach is to include a mark bit in each object’s header. A
set of objects traced using a mark bit within each object is shown in figure 2.7. There
have been alternate techniques to marking objects to overcome some of the following
shortcomings in the use of a mark bit within each object:

� It is not always possible to include a mark bit within the object header as some
runtimes do not have bits available for such a purpose, and using an additional
word for such a bit can be especially wasteful for small objects.

� Marking objects through the entire heap will dirty many pages of memory, which
can incur a significant performance penalty when physical memory is scarce.

� Sweeping can be complicated as it can be difficult to locate unmarked objects.

12 Automatic Dynamic Memory Management

root
mark
b i t

Figure 2.7: A set of objects after a mark phase.

These problems can be alleviated through the use of a mark bitmap [Jones 1996]. A
mark bitmap is essentially a separate area of memory where mark bits are stored for
multiple objects. A bitmap can be used for the entire heap, or alternatively, several
smaller bitmaps can be used for different regions of memory. Zorn [1989] places the
additional cost of writing to a bitmap at around 12 instructions, as opposed to a single
instruction for writing to the header at a fixed offset.

Some collectors do not actively sweep the heap at the end of a collection, but
instead make the mutator sweep during allocation time, a technique known as lazy
sweeping [Jones 1996].

2.5.4 Copying Collection

Copying collection [Jones 1996] is a form of tracing collection in which live objects
are copied to a different region of memory during the trace. In general these differ-
ent regions of memory are labeled the from space – the area that contains the objects
being collected, and the to space – the area that objects are copied into. This process
is illustrated in figures 2.8, 2.9, and 2.10. A forwarding pointer needs to be stored in
each object so that other references to it are updated correctly and only a single copy
of each object is made. A simple copying collector is often referred to as a semi-space
collector [Cheney 1970].

root A B C D E F

Figure 2.8: A set of objects before a copying collection.

When performing a copying collection the order in which objects are visited be-
comes more significant due to locality effects [Jones 1996]. If a trace is conducted
using a depth-first search then objects that reference each other are placed close to

�
2.5 Garbage Collection Techniques 13

each other, while if a breadth-first search is conducted then objects that reference each
other can be spread broadly across the heap.

One of the most significant properties of a copying collection is that the cost of the
collection is relative to the set of live objects, not the size of the heap. This is due to the
fact that only live objects are processed, with garbage objects ignored. This property
is at the heart of many generational collection mechanisms which are discussed in
section 2.5.7.

FROM SPACE

T O SPACE

root A B C D E F

 A

c o p y

forwarding
p oint e r

(a) After object A has been traced and copied.
FROM SPACE

T O SPACE

root A B C D E F

 A

c o p y

 B

c o p y

(b) After objects A and B have been traced and copied.

Figure 2.9: The same objects during the collection.

Copying collection also allows the use of simpler bump pointer allocation mecha-
nisms, which can improve allocation performance, and essentially eliminate fragmen-
tation at each collection. However, copying collectors do not generally make efficient
use of memory as they require additional space be reserved for copying objects to – a
copy reserve. In the worst case, where all objects in the from space are alive, this copy
reserve is half the size of the heap. More incremental copying collectors such as Belt-
way [Blackburn et al. 2002] get around this problem by only collecting sections of the
heap at a time. Such methods do however require the use of write barriers.

Copying collectors also have a tendency to use pages of memory in an unusual
way [Jones 1996]. While the mechanisms within most operating systems discard pages
from physical memory to disk on an oldest-first basis, the copying collector requests
pages on an oldest-first basis. This makes it likely that when running with limited
physical memory that each time the allocator moves to a new page it will not be in

14 Automatic Dynamic Memory Management

root A B E D

Figure 2.10: A set of objects after a copying collection.

physical memory.
In addition to these requirements, copying collectors are also more demanding of

the host runtime [Jones 1996]. In mark-sweep and similar non-moving tracing col-
lectors, all that is required is that live objects are identified. However, in a copying
collection all references must be found and updated to the object’s new location cor-
rectly.

The cost of using a semi-space collector with large, long lived objects can be sig-
nificant as the objects are repeatedly copied at each collection. Baker [1992] describes
the treadmill, a collector similar in concept to a copying collector that performs the
copying virtually. Instead of managing a to and from space, it manages a pair of dou-
bly linked lists – from and to. Newly allocated objects are linked into the from doubly
linked list. During a collection live objects are unlinked from the from list and linked
into the to list. After a collection the from and to lists are flipped. Due to the additional
space wasted to store the linked list this technique is suited best to larger objects.

2.5.5 Compacting Collection

Compacting collectors aim to divide the heap into two contiguous areas: one area
containing only live object data, and the other containing only free space. Note that
this process does not involve compressing the data in any way.4 As there is a signifi-
cant cost involved in moving objects, it is beneficial to attempt to move objects in such
a way as to improve locality as much as possible. Generally speaking, compacting
algorithms either compact objects in an arbitrary order, in order of age, or by locality
of reference (such as in a copying collector).

There are three general approaches to compacting a set of objects of various sizes [Jones
1996]:

Forwarding address algorithms These algorithms use space within each object to store
a forwarding pointer that indicates where the object is to be copied to.

Table-based methods These methods use additional data structures, stored either in
a separate region of memory or within space taken up by garbage, to store in-
formation about where objects are to be relocated.

Threaded methods A chain of object references that point to an object is created, and

4Some prefer to use the term compactification to avoid any misunderstanding.

�
2.5 Garbage Collection Techniques 15

when the new location of the object is known this chain is followed and refer-
ences are updated. Jonkers [1979] describes such a collector.

Sliding compaction algorithms [Richter 2000a; Richter 2000b; Jones 1996] work by
essentially removing garbage objects and sliding live objects down in memory. One
such algorithm is the Lisp 2 algorithm [Jones 1996] which requires several passes over
the heap:

Mark Objects are marked through the use of a transitive closure as in mark-sweep
collection.

Calculate Forwarding Pointers Forwarding pointers are calculated for each object by
moving through the heap from low to high memory.

Update References Another iteration through the heap looks for all pointer fields and
updates them to the new locations stored in object forwarding pointers.

Move Objects A final iteration through the heap copies all objects to target locations.

The effect of a sliding compacting collection is shown in figure 2.11. Objects C and
F are identified as garbage, so objects D and E are slid down in memory to form a
single contiguous block: A � B � D � E .

root A B D E

root A B D E

root A B C D E F

Figure 2.11: A set of object collected by sliding compaction.

2.5.6 Tradeoffs

It is clear from the literature that there is no single best memory management strat-
egy [Blackburn et al. 2003]. Two important characteristics of garbage collection mech-
anisms are:

Throughput How much garbage can it collect? This factor will have the greatest
impact on the overall runtime of the program. In situations where responsive-
ness is not essential memory management systems are often tuned to maximise
throughput.

16 Automatic Dynamic Memory Management

Responsiveness In hard real-time applications or programs that require heavy inter-
action with the user it is not acceptable for execution to pause for long periods
while garbage collection takes place. In such situations throughput is often sac-
rificed to place guarantees on maximum pause times.

There is exciting new research [Blackburn and McKinley 2003] to try and develop
a collection algorithm with both high throughput and responsiveness, although this
algorithm can still be beaten in some situations.

Another classic tradeoff in memory management systems is a time-space tradeoff.
The most extreme example is a null collector that never tries to reclaim any space.
Such a collector, when given a large enough heap, can only be beaten in performance
through its ultimately poor locality properties. More reasonably, methods for mark-
ing such as pointer reversal can be avoided improving execution speed at the cost of
additional space for a marking queue.

2.5.7 Generational Collection

Generational collectors [Ungar 1984; Lieberman and Hewitt 1983] take advantage of
several trends identified in the lifetimes of and relationships between objects. Impor-
tant characteristics of object life cycles [Lieberman and Hewitt 1983; Blackburn et al.
2003] that can assist in optimising memory management strategies are:

� Most objects die young, and when objects do not die young they are likely to
live a long time.

� Most references are from new objects to old objects, not vice-versa.

� Large objects are likely to be long lived.

Generational collectors allocate new objects into a nursery. Then through use of
a write barrier (section 2.5.1) they watch for reference updates within old objects to
point to an object in the nursery. This set of objects becomes a pseudo root set to allow
a copying collection of the nursery into a mature space. As many objects die young the
cost of the copying collection is often quite low.

Some generational collectors include many generations [Blackburn et al. 2002;
Richter 2000a; Richter 2000b; Appel 1989], while others are limited to two (a nursery
and a mature space). All modern high performance virtual machines utilise genera-
tional collection in some form.

In contrast with small objects, many large objects that are allocated do not die
young. Certain other groups of objects such as objects of a particular class, or ob-
jects allocated from a particular point in the program can also have abnormally long
lifetimes. In a generational collector such objects are often allocated directly into the
mature space rather than the nursery. This technique is referred to as object pretenuring.

�
2.6 Summary 17

2.6 Summary

The two basic allocation techniques were introduced. It is clear that there is a trade-
off between the speed at which an object is allocated and the ability for the memory
manager to reuse the allocated region.

We saw that a bump pointer is the fastest allocator, but it is not possible to reclaim
any memory without a moving collection5. Many types of free lists exist and trade off
speed and memory fragmentation behaviour.

Basic garbage collection techniques, including mark-sweep and copying collec-
tion, were introduced. Compacting collectors, that aim to locate all live data together,
were also introduced. Finally, generational collectors, that take advantage of charac-
teristics in object lifetimes, were discussed.

It is clear that there are many possible variations on these techniques, but in gen-
eral most collectors can be described in this basic terminology.

5Although it is possible to build a free list from the dead objects within the region, it is generally more
efficient to use a high performance free list as there is more control of future allocation.

18 Automatic Dynamic Memory Management

Chapter 3

Research Platform

This section introduces the research platform that was used for this project. Detailed
discussion of aspects of the research platform that were important to the project is
included where appropriate.

3.1 Jikes RVM

Jikes RVM, formerly known as Jalapeño [Alpern et al. 1999; Alpern et al. 2000], is a
high-performance Java Virtual Machine. One of its major strengths is an aggressive
optimisation system, discussed in section 3.1.1. Jikes RVM is an open source project
led by a research team at the IBM T.J. Watson Research Centre. Although originally
only targeting the PowerPC architecture, the project has more recently [Alpern et al.
2002] added support for the Intel/IA32 architecture.

Jikes RVM is written predominantly in Java. It requires a host Java virtual machine
to build a boot image, which is then bootstrapped by a small C program. Jikes RVM
is self hosting – in fact it is the only self hosting VM written in Java. Most VMs are
written in C/C++, and any others that are written in Java require a host runtime to
execute.

Jikes RVM includes its own collectors and allocators, but they have more recently
been replaced by default with JMTk collectors.

3.1.1 Jikes RVM Compilation

The strength of a virtual machine’s compilation system is a significant factor in deter-
mining overall runtime performance. Jikes RVM has multiple levels of compilation,
from the baseline compiler to a highly complex optimising compiler. While the op-
timising compiler can produce code that runs much faster, there is a significant cost
required to compile the code. In situations where compiled code is run frequently the
benefit from using optimised code can outweigh the cost, while in situations where
compiled code is run very few times it generally will not.

An adaptive optimisation system recognises this fact and attempts to, at runtime,
only spend time using the optimising compiler for selected parts of the program.
Arnold et al. [2000] and Burke et al. [1999] describe in more detail the Jikes RVM
compilation system.

19

20 Research Platform

It is important to note that the adaptive optimisation system makes the behaviour
of the runtime non-deterministic. This has implications for debugging memory man-
agement and can make this process much more complex. It can also mean that bench-
marks can show different performance between runs.

3.1.2 Object Representation

The Jikes RVM object model has been aggressively optimised [Bacon et al. 2002]. Fig-
ure 3.1 shows the layout of both scalars and arrays in memory.

HeaderS i z e A rray D at a

HeaderS c al ar F i el ds
O b j ec t

R ef eren c es

Figure 3.1: Jikes RVM Object Model

This object model has the following properties:

Simple Null Pointer Checks All access to scalars will be at small negative offsets
from the object reference. All access to arrays will first need to do a bounds
check and read the size of the array, which is also always at a small negative off-
set. When the object reference is a null pointer, subtracting small negative values
from the reference will result in an address in the highest pages of memory. It is
possible to protect these pages using hardware traps.1 So null pointer checks do
not need to be performed explicitly.

Fast Array Access The address of any element in an array is simply the element index
times the size of each element plus the object reference. There is no need to add
an additional value to compensate for any offset from the object header.

Header Offsets Unchanged Between Scalars and Arrays Header information stored
in an object is required and accessed independent of whether an object is an
array or a scalar (for example a mark bit). All header offsets are the same for
both arrays and scalars in this model.

The object header includes the following information:

TIB Pointer A type information block pointer is a reference to the data structure that
provides access to essential information regarding the type of the object. This is
important for calling methods, finding fields, calculating the size of the objects,
etc.

1On Linux it is also possible to protect the lowest few pages in memory, which makes it possible to
have this benefit without laying scalars backward.

�
3.2 Java Memory Management Toolkit (JMTk) 21

Status Word The contents of the status word depends on the variant of the object
model being used. It always includes locking bits to implement thin locks [Ba-
con et al. 1998] to provide synchronisation for Java objects. It can also contain
the object’s hash code when address based hashing (section 3.1.2.1) is disabled.
There are also several (2-8) available bits that are not used and made available to
the memory manager to use as, for example, marking bits.

3.1.2.1 Address Based Hashing

According to the Java Language Specification [Joy et al. 2000], it shall be possible
get a hash code for any object. The requirements for this hash code are that for any
given object the hash code remains the same throughout the life of the application.
It is desirable for the hash code values to be distributed such that as few objects as
possible share the same hash code as this can increase performance.

Hash Code
[hashed + moved] HeaderS i z e A r r ay D at a

HeaderS c al ar F i el ds
O b j ec t

R ef er en c es

Hash Code
[hashed + moved]

Figure 3.2: Address Based Hashing.

When the Jikes RVM runs using Address Based Hashing it simply uses the objects
address as the basis for the hash code. Naturally this solution does not work simply
with moving collectors, and was solved through the use of the following states:

Unhashed The object has not yet been hashed.

Hashed The object has had its hash code read. The hash code is returned based on
the address of the object.

Hashed and Moved When a Hashed object is moved the old hash code is stored as an
additional word adjacent to the object. This requires an additional four bytes
per hashed and moved object, as shown in figure 3.2.

3.2 Java Memory Management Toolkit (JMTk)

Although there are a wide of automatic memory management strategies that a man-
aged runtime can employ, there remain many similarities at various levels. Similar-
ities exist from the way objects references are traced through the heap, to the im-
plementation of various queues and allocation policies, and the basic management
of mapped/unmapped virtual memory resources. The Java Memory Management
Toolkit (JMTk) aims to implement these building blocks and provide a toolkit with
which various memory management strategies can be implemented.

22 Research Platform

Along with the toolkit comes a basic abstraction around which the different strate-
gies can be implemented. Naturally this abstraction makes some assumptions about
the memory management strategies, but within these bounds the toolkit aims to de-
liver a large degree of flexibility with as little complexity as possible. With mark-
sweep, copying, and reference counting collectors, and free-list, treadmill and bump
pointer object allocators, JMTk supports a large percentage of memory management
strategies.

3.2.1 The Plan

A plan describes a complete strategy for memory management. The plan manages:

� object allocation requests;

� GC requests;

� queries at GC safe points to determine and trigger a GC if required; and

� the execution of write barriers (optional).

All plans divide the available memory into several spaces. The plan then selects
allocation and collection policies for these different spaces. This allows enormous
flexibility in the implementation of memory management strategies.

For each plan there is an accompanying header, defining the requirements of the
plan in terms of object header information such as mark bits and forwarding pointers.

There is a large degree of similarity between different plans, and for this rea-
son there is an inheritance hierarchy. Currently JMTk only supports stop-the-world
garbage collection, meaning that while a collection is taking place, the execution of
other code is paused. This group is an important and large group of collectors. By de-
fault, spaces are defined for boot space, immortal object space, and meta data space.

All stop-the-world collectors also share a main collection processing loop, and the
logic responsible for the computation of the root set.

JMTk also includes a stop-the-world plan designed to be the base plan for all gen-
erational collectors. It defines the regions for a nursery and a mature space, and pro-
vides the basic mechanisms to support generational collection. This includes allocat-
ing objects into the nursery, copying them into the mature space, and determining
appropriate times to trigger both nursery and full-heap collections.

3.2.2 Allocation and Collection Policies

Policies describe the allocation and collection mechanisms for different styles of mem-
ory management. Policies are divided into two parts:

Space Policy This level of policy has a one-to-one relationship with each space de-
fined in the plan. The space level policy describes how collections are performed
across objects in that region of memory.

�
3.2 Java Memory Management Toolkit (JMTk) 23

Local Policy Local policy is concerned primarily with allocation. For each kernel
thread to allocate into a space a local allocator object is required. In some sit-
uations (e.g. semi space) a single allocator can work against multiple spaces,
although only one at any given time.

JMTk includes implementations of mark-sweep, copying, reference counting, and
treadmill allocation and collection policies.

3.2.3 Utilities

JMTk includes many utility or helper classes to perform basic operations. There are
two motivations for these classes. Firstly, it reduces the time required to implement
new plans and policies in JMTk. Secondly, as two strategies share as much code as
possible, the results gained in a comparison of different strategies are more likely to
change based on the actual differences between the strategies, rather than implemen-
tation differences.

The primary components included are:

Deques An efficient double ended queue implementation is provided. All queues are
only synchronised at the page level, to ensure that the majority of queue oper-
ations are unsynchronised and fast. Default implementations of single, double
and triple value queues are provided, but the base functionality can be easily
extended.

Memory Management Basic functionality to manage the use of memory at the page
level. This includes ensuring memory is mapped and that the total amount of
memory used is accounted for.

Object Allocators Basic object allocators are implemented, including a segregated
free list and a simple bump pointer allocator.

Space Allocators Simple allocators are implemented to allow fast allocation of coarse
grain chunks of data for use by the object allocators and queues.

3.2.4 VM – MM Interface

The final component of JMTk is the interface with the virtual machine. The imple-
mentation of this interface is for a specific virtual machine, and at the time of writing
only one implementation exists.

The interface can be split into two components, one for the interface that the mem-
ory manager provides to the host virtual machine, and one for the interface that the
virtual machine must provide to JMTk. This information is shown in Figure 3.3.

3.2.5 Memory Allocation

One of the greatest strengths of JMTk is the way it tracks the usage of memory. JMTk
includes classes that are responsible for acquiring new regions of virtual memory

24 Research Platform

Virtual Machine
e.g. Jikes RVM

Mem o ry Manag er
e.g. JMT k

a l l o c a t io n r eq u est s,
n o t if ic a t io n o f r ef er en c e t y p es,

n o t if ic a t io n o f f in a l isa b l e o b j ec t s,
w r it e b a r r ier s,

c o l l ec t io n r eq u est s,
p a r a m et er s,

et c .

q u er y t h e G C m a p ,
m em o r y a c c ess,
a c c ess t o st d er r / st d o u t ,
a c c ess t o o b j ec t m o d el in f o r m a t io n ,
et c .

I nterf ace L ay er
e.g. Jikes RVM < - > JMT k

Figure 3.3: Interface between the virtual machine and memory manager

space: VMResources. JMTk also includes classes designed to count the amount of
memory currently in use within each memory space. These counters are essential for
determining when GCs should be triggered.

JMTk includes implementations of classes designed to provide synchronised ac-
cess to virtual memory address spaces for both bump pointer allocators (MonotoneVM-
Resource) and free lists (FreeListVMResource). All memory allocation at this level is
done in pages.

3.2.5.1 Bump Pointer

JMTk includes an implementation of a bump pointer. The bump pointer acquires
memory within the memory space in chunks 32KB in size. Objects are allocated into
the chunk and when it is exhausted a new chunk is requested. If the new chunk
is contiguous2 then allocation continues and is allowed to flow into the new chunk,
otherwise the cursor is updated to the start of the new chunk.

This bump pointer is used to allocate objects under copying collection, into im-
mortal spaces, and nurseries within generation collectors.

3.2.5.2 Segregated Free List

JMTk includes an implementation of a segregated free list. See section 2.4.2 for a more
complete description of free lists in general. The segregated free list implementation
includes 40 size classes,3 optimised for close fits for objects of the most common sizes,
with a worst case internal fragmentation of 1

8 .4

Synchronised allocation of memory occurs at the block level. Blocks are large grain
units of memory that come in seven size classes on a logarithmic scale from 512 bytes

2Before this work this check was not made and allocation was always recommenced at the start of the
next chunk. A simple fix was suggested and is now part of JMTk.

3The segregated free list also supports a second mode using only 28 size classes. As this is not used
by any of the collectors studied this mode of operation is not discussed.

4These measurements were taken from comments within the code.

�
3.2 Java Memory Management Toolkit (JMTk) 25

to 32KB. Each size class is linked to a single block size, with blocks split and coalesced
according to a buddy system. Blocks are doubly linked, and free lists are stored within
each block. The block header, as that shown in figure 3.4, includes next block, previous
block, and free list pointers. The block header also stores a counter of the number of
cells in use, and can be extended to store additional information for a specific allocator,
such as a mark bitmap.

PR
EV

IO
US

BL
OC

K

NE
XT

BL
OC

K

FR
EE

LI
ST

Figure 3.4: An empty full block within a segregated free list.

A block showing a free list after some allocation and collection has taken place is
given in figure 3.5. Once all cells within a block are freed, the block can be returned
and can be used by other size classes. The ability to reuse blocks within other size
classes dramatically reduces total fragmentation [Jones 1996; Wilson et al. 1995].

PR
EV

IO
US

BL
OC

K

NE
XT

BL
OC

K

FR
EE

LI
ST

Figure 3.5: A block within a segregated free list.

3.2.5.3 Treadmill

JMTk includes an implementation of Baker’s treadmill [Baker 1992] as a large object
allocator. All allocation requests are rounded to page granularity. A more complete
description of a treadmill can be found in section 2.5.4. The implementation within
JMTk uses three words for each object to maintain the doubly linked lists – an object
can only be in one list at a given time.

3.2.6 Example Memory Management Strategies

How these components all fit together is best demonstrated through some examples.
The following sections describe two fundamental memory management strategies
that together utilise most of the features of JMTk. The amount of code specific to a
single strategy is minimal, in essence it is the glue that connects the different compo-
nents of JMTk together in a useful fashion.

26 Research Platform

The rapid experimentation that is then possible makes it simple to try new ideas
and implement new algorithms [Blackburn et al. 2003]. The two strategies that have
been selected for discussion are Mark Sweep and Semi Space. Together these two
collectors utilise many of the key components of JMTk.

All plans define a common base set of spaces:

Boot Space During the process of building the Jikes RVM boot image all objects are
allocated into this space. This space is never collected and is essentially immor-
tal. Objects are allocated into the boot space using a bump pointer.

Immortal Space Objects that are known to never become garbage, including some
objects allocated by the memory manager and virtual machine are allocated into
the immortal space. The immortal space is never collected and placing objects
within it reduces the amount of work performed by the collector. Objects are
allocated into the immortal space using a bump pointer.

Meta Space Meta data that is created and managed by the memory manager is allo-
cated into the meta data space. This space is where things such as queues are
allocated to. Pages are allocated directly to consumers of meta data.

3.2.6.1 Mark Sweep

The mark-sweep plan (shown in figure 3.6) adds a mark sweep and a large object
space to the existing spaces. The large object space is required as the segregated free
list that is used to allocate objects into the mark sweep space has a maximum size class
smaller than the actual limit of object sizes.

Boot Space
2 5 6 M B

I m m or tal Space
3 2 M B

M etaD ata Space
3 2 M B

V i r tu al M em or y

L ar g e O b j ect Space
3 0 % of P l an Space

Bu m p P oi n ter
A l l ocator

Bu m p P oi n ter
A l l ocator

R aw P ag e
A l l ocator

A l l ocati on P ol i cy

C ol l ecti on P ol i cy

I m m or tal Space

M ar k Sw eep Space
7 0 % of P l an Space

T r ead m i l l
A l l ocator

T r ead m i l l Space M ar k Sw eepSpace

M ar k Sw eep
A l l ocator

Seg r eg ated
F r ee L i s t

L ar g e O b j ect
A l l ocator

A l l ocator

Figure 3.6: JMTk Mark Sweep Plan

�
3.3 Summary 27

3.2.6.2 Semi Space

The semi space plan (shown in figure 3.7) adds a low semi space, a high semi space
and a large object space to the existing spaces. Although not required the large object
space is included to avoid repeatedly copying large objects between the low and high
semi spaces.

At each collection the low and high semi spaces alternate between being the to
and from spaces for under a copying collection. New objects are allocated into the
from space and live objects are copied into the to space during a collection. A single
bump pointer allocator is used to allocate objects into the current from space.

Collections are triggered when the heap is nearly half full as the worst case where
all objects are live needs to be considered.

Boot Space
2 5 6 M B

I m m or tal Space
3 2 M B

M etaD ata Space
3 2 M B

V i r tu al M em or y

L ar g e O b j ect Space
~ 1 3 % of P l an Space

Bu m p P oi n ter
A l l ocator

Bu m p P oi n ter
A l l ocator

R aw P ag e
A l l ocator

A l l ocati on P ol i cy

C ol l ecti on P ol i cy

I m m or tal Space

L ow Sem i Space
~ 4 3 . 5 % of P l an Space

T r ead m i l l
A l l ocator

T r ead m i l l Space C opy Space

Bu m p P oi n ter
A l l ocator

L ar g e O b j ect
A l l ocator

A l l ocator

H i g h Sem i Space
~ 4 3 . 5 % of P l an Space

Figure 3.7: JMTk Semi Space Plan

3.3 Summary

This chapter introduced the implementation and experimentation platform. This in-
cluded JMTk, a platform designed to allow rapid experimentation with memory man-
agement strategies while still providing high performance. This platform includes
implementations of many reusable components. It is however lacking the important
class of compacting collectors.

28 Research Platform

Chapter 4

A Sliding Compacting Collector

This chapter describes the compacting collector that was implemented during the
project. I start by describing the collector at a high level, and then go on to discuss
the various issues that arose during the development of this collector. A detailed de-
scription of the implementation including discussion of allocation policy, collection
policy, and a complete strategy using these policies.

4.1 The Concept

The concept of a sliding compacting collector is very simple. Essentially the idea is to
remove all dead objects from the heap, and then slide all objects together so the heap
is divided into two areas. One area with a contiguous group of live objects, and the
other area containing only free memory.

The algorithm itself is not complex, but it is deceptively difficult to implement in
comparison to other collectors. Jones [1996] agrees that there is an additional level of
support required by the runtime and compiler in order to support moving collectors
over non-moving collectors. In this situation the collector not only has to identify
garbage correctly, but it must update all pointers to live objects correctly.

4.2 The Basic Algorithm

Now that it is clear what the objective of the collector is, we move on to an algorithm
that achieves this objective. While there are many compacting algorithms the follow-
ing were the criteria used to select the algorithm:

� Objects could be of variable sizes. Some compacting algorithms only work with
objects of a single size, and although they can be extended by segregating different sized
objects, it was decided that such an arrangement would be too different to currently
implemented algorithms to make a very useful comparison.

� As little space as possible should be required in the object’s header for GC infor-
mation. If it is possible to use the same size object header for comparison between the
collector and currently implemented collectors the results would be more valuable.

29

30 A Sliding Compacting Collector

� The emphasis for this project is on achieving a good result after a collection, not
on making the collection perform well. The project does not allow sufficient time
to both implement and performance tune such a collector. As it is possible to compare
execution ignoring the cost of collection, if we focus on the end result rather than the
collector then we are likely to have some more valuable comparisons.

The algorithm that best achieved these goals was a variant of the Lisp 2 Collec-
tor [Jones 1996]. Although this algorithm requires a forwarding pointer and this ap-
pears against the selection criteria, the reason this cost can be avoided is discussed
later in section 4.3.2. The collector has four phases:

1. Mark. A trace from the roots is made and all live objects are marked.

2. Calculate forwarding pointers. Objects are processed one by one in heap order. The
algorithm maintains two pointers, one pointing to the current object, and one pointing
to the current location in memory the next live object will be copied to.

3. Update forwarding pointers. A second trace from the roots is made and references are
updated to where the objects will be after being relocated.1

4. Relocate. Objects are processed one by one in the order they are in the heap and copied
to the target address stored in the forwarding pointer.

4.3 Implementation Issues

4.3.1 Object Representation

A discussed in section 3.1.2, Jikes RVM lays out scalars from high to low memory.
As this is the opposite way to arrays, it is impossible to use one simple algorithm to
walk the heap for both arrays and scalars. Even if arrays and scalars are allocated
to different sections of memory, it would be necessary to write one routine to iterate
through arrays from low to high memory, and one routine to iterate through scalars
from high to low memory.

This fact, coupled with the fact that the reason scalars were laid out backwards was
a historical one,2 justified making the necessary changes to the object representation
to lay scalars out forward in memory.

This change involved significant debugging effort, as much of the code in seem-
ingly unrelated areas made assumptions about the object model. In order to make the
runtime work with objects laid forward in memory it was necessary to update several
parts of the runtime, including some Java code that was used to generate C header
files.

1The Lisp 2 Algorithm actually updated the references as it scanned the heap. As JMTk supports
multiple spaces some of which do not use this algorithm this was selected as a simple way to ensure any
reference into the mark compact space was updated correctly.

2The original implementation was for PowerPC AIX, but when running on Linux/Intel it is possible
to lay scalars out either forwards or backwards and still get null pointer checks from hardware traps.

�
4.3 Implementation Issues 31

4.3.2 Forwarding Pointers

The algorithm requires that for each live object a forwarding pointer is stored, indi-
cating where the object is going to be relocated. It was considered desirable to avoid
including an additional word in each object’s header in order to store the forwarding
pointer. Given an average object size of 32 bytes [Bacon et al. 2002], this would equate
to a 4

32 or 1
8 space overhead.

Copying collectors in JMTk use the status word to store the forwarding pointer.
This is possible as the status word has already been safely copied to the new object.
This is not the case in a compacting collector, as the status word can not be copied
until the final phase of the collection after pointers have been calculated.

The observation that the status word is usually zero was made (see section 7.2).
This made it much cheaper to use the status word but save non-zero values elsewhere
to be restored after updating forwarding pointers.

4.3.3 Immortal Type Information

The runtime holds information about types that allow it to (among other things):

� Find where in an object references to other object’s are stored.

� Find out the total size of the object instance, including all fields and header in-
formation.

The ability to perform these operations is essential during a garbage collection.
In Jikes RVM this type information is allocated into the managed heap, even though
there are always references retained to these object meaning they will never be col-
lected.

The fact that these objects are stored in the managed heap does not cause problems
for copying collectors as the old instance of the object is always available until the end
of the collection. It does cause a problem for a compacting collector though as it will
temporarily corrupt these data structures by pointing to where the type information
will be, rather than where it is.

As type information is essentially immortal anyway, a decision was made to al-
ter the code to allocate type information into an uncollected region of memory. This
required not only making the types involved immortal, but creating new methods to
allocate immortal reference offset arrays3.

4.3.4 Dynamic Linking

The Java language supports complex inheritance and interface relationships between
classes. For example, given a parent and a child class, it is possible to change and

3Such arrays indicate for an object where reference fields are located in relation to the object reference.
Such an array is stored in Jikes RVM as an array of integers, and it was not desirable to have all integer
arrays allocated into immortal space.

32 A Sliding Compacting Collector

recompile the parent class without touching the child class. The reason for this is
because all of these relationships are dynamically determined at runtime.

An important part of information that is dynamically determined at runtime are
field offsets. For performance reasons it is desirable to store a field of any object (and
all child classes) at the same offset for the header. This means that any access to that
field from any compiled code that accessed that field does not need to access any type
information data structures.

Rather than dynamically linking all of the information of all of the types that are
loaded, Jikes RVM only dynamically links fields as they are accessed. A table filled
with these offsets is stored and initialised to a value indicating that the field or method
needs to be dynamically linked. The first time such a value is encountered the field
offset is resolved and stored.

This value needs to be neither a valid field or method4 offset; with the original Jikes
RVM object model the chosen value was zero. Once scalars were laid out forward in
memory, zero became a valid field offset. For this reason a new offset was chosen:
minus one.

Because of the fact all memory is initialised to zero automatically in Java, the con-
stant was being ignored in several places. The locations in the code that this was
occurring were discovered and a patch was made and is now part of Jikes RVM.

4.3.5 Address Based Hashing

The implementation of address based hashing in Jikes RVM is described in section
3.1.2.1. The problem with address based hashing is that it makes the object header size
variable. This complicates the process of iterating through the heap. It is therefore not
possible to calculate the reference to object B given a reference to object A as there is
no way to know if B is hashed and moved or not until a reference is obtained.

This problem can be resolved through the use of a dynamic hash offset. As with
address based hashing this means that when a hashed object is moved an additional
word is allocated to store the hash code, but it is allocated at the end of the object after
all of the object’s fields – this offset is different for objects of different sizes. This makes
the operation of reading the hash code more expensive but allows a fixed size header.

After refinement of the algorithms was made it was found unnecessary to use the
dynamic hash offset code as there were enough remaining bits to store a 10 bit hash
code in the object header. This is given the two word object model, which is required
anyway for the use of the status word as a forwarding pointer.

4.3.6 Segregation of Scalars and Arrays

Arrays and scalars have different sized headers. This stems from the fact that an ar-
ray header has to store the length of the array in addition to the other information.

4The resolution of methods follows a similar and related procedure, but was not affected by the
changes in the object model and so is not discussed here.

�
4.3 Implementation Issues 33

Although it would have be possible to make the array’s length field at a variable lo-
cation as was done with dynamic hash offsets, the following observations were made
leading to the decision not to do this:

� The number of arrays is much more significant than the number of hashed ob-
jects,

� Each and every access to an array requires accessing the length as all operations
on arrays are bounds checked.

The problem was solved by allocating arrays and scalars separately. Two different
approaches were tried:

1. Allocating scalars and arrays into different regions of virtual memory (different
JMTk spaces).

2. Allocating scalars and arrays into the same region of virtual memory using dif-
ferent allocators (different JMTk locals). This type of operation is already sup-
ported in JMTk as part of the requirement to support parallel operation.

Initially it might appear that there is a performance penalty in allocating arrays
and scalars separately. This is however not the case. The reason for this is that each
object type has its allocation routine compiled separately. As a given object type or
array is always either a scalar or an array, the optimising compiler can optimise out
the branching logic. A comparison between extending the header size in scalars to
match arrays versus segregating arrays and scalars is given later in this document in
section 7.5.

4.3.7 Accessing Objects During a Collection

Some objects need to be accessible to the runtime during a garbage collection. As Jikes
RVM runs itself, mutations to internal data structures can occur during a collection.
This can be thought of as partially concurrent collection as both mutation and collection
operations are occurring concurrently – any objects in use by the runtime that are not
immortal will reside in the managed heap. Some of these objects, specifically those
tied up with the scheduling mechanism need to be accessible during a collection or
the runtime may crash.

The problem of updating references to these objects was always something that a
copying collector was required to do. However, in a copying collector even though
the new version of the object had been created, the old instance remains accessible at
the original reference until the very last step of the collection when the memory is
cleared. In a compacting collector this is not the case, as the collector corrupts sections
of the heap as it relocates objects.

The types of the objects that come under this category are not all special types, but
normal types referred to from a special location. For this reason it is not possible to
identify these types at allocation time and allocate them in a different area of memory
that is not compacted.

34 A Sliding Compacting Collector

The solution to this problem was to copy such objects into a safe area of memory
that is not part of the compacting space during the mark phase. For these sensitive
objects the initial phase essentially collects as a copying collector, and ensures that
these objects will be accessible throughout the collection.

4.3.8 Two-Phase Collection

The algorithm requires multiple phases, one for the initial marking phase, and a sec-
ond to update references to point to the new locations of objects. Prior to this work,
no collectors in JMTk required more than a single phase. All collectors could be ab-
stracted to perform work in the following steps:

Prepare Prepare for the GC at both the global level (per space or virtual memory
address region), and at the local level (per processor).

Trace Trace through the objects from the roots, passing each reference in turn to the
collector, and then continue to process queues that the collector is pushing ref-
erences onto.

Release Finish up after a GC both at the local and global level.

While this processing loop supports a very wide variety of collectors, it does not
assist a collector to perform a second trace from the roots. A major part of the con-
tribution to JMTk from this project was to develop a neat abstraction for a two-phase
collector. This abstraction allows initial prepare-trace-release processing, followed by
a second (optional) prepare-trace-release. This allows a collector to collect in a single
trace if the algorithm supports it (such a collector is described later in this document
in chapter 5).

4.3.9 Finalizable Objects

A finalizable object is one that has some code that it expects the runtime to execute
when it has been identified as garbage. JMTk and Jikes RVM include support for
finalizable objects.

The problem with this implementation is that there is no place finalization can be
executed with the desired effect. If finalization is run after the mark phase then the
references in the finalization queues will not be updated to point to the new object
locations. Alternately it can not be run after forwarding pointers have been calcu-
lated as it would be impossible for the finalization routines to resurrect any objects as
required.

The solution was to run the current finalization processing after the mark phase
to resurrect objects are required, and to then update the references to the finalization
queues after forwarding pointers have been calculated but before any objects are re-
located.

�
4.4 The Algorithm 35

4.3.10 Reference Types

Java includes has support for weak, strong and phantom references, that each have spec-
ified rules governing when objects referred to by them are considered live. JMTk and
Jikes RVM include support all three reference types. Reference processing suffered
from the same problems as finalizable objects in that the processing needs to be split
into two parts: one executed after the live set has been identified to resurrect objects
as appropriate, and one after forwarding pointers had been calculated to update ref-
erences on the relevant queues.

Due to time constraints, the poor state of the reference processing code, and the
limited use of reference types by the benchmarks that were to be used for evaluating
the collector, it was decided that reference types would not be supported under the
initial implementation of the compacting collector.

The removal of reference types involved altering the code to make all reference
types strong references (i.e. any reference type would keep the referent alive so long
as the reference type was also alive). These changes were applied to all collectors to
ensure as fair a comparison as possible.

4.3.11 Multiple Allocators For a Space and Kernel Thread

There is a difference between the header size of scalar objects and arrays because
of an arrays size header field. To allow scanning the heap it is necessary to either
segregate the allocation of scalars and arrays or waste header space on scalars to make
all headers the same size.

The cost of wasting space in scalars was expected to be large, so it was considered
beneficial to segregate the allocation of scalar and array objects. As each kernel thread
can allocate both arrays and scalars, this led to the situation where a single kernel
thread had multiple allocators for a single space.

This caused some problems in JMTk where assumptions are made about having
a single allocator for any kernel thread/space combination. To resolve this issue the
concept of an allocator chooser was introduced. Essentially the allocator chooser is a
small allocator that simply looks at whether the request is for a scalar or an array and
redirects the request to the appropriate allocator. The sections of the code that relied
on this assumption were updated to use this allocator instead.

Results on the benefit of segregating arrays and scalars instead of wasting this
space are given in section 7.5.

4.4 The Algorithm

The previous sections gave an overview of the algorithm and some of the key imple-
mentation issues that were encountered. This section begins by describing allocation
and collection policies for the sliding mark compact collector. It then continues to
describe how such a policy can be integrated into a complete memory management
strategy within JMTk.

36 A Sliding Compacting Collector

4.4.1 Object Header

This collector uses the standard two-word Jikes RVM object header. Note that due
to the issues discussed in section 4.3.5, this collector does not currently work with
address based hashing on. The layout of the object header is shown in figure 4.1. The
status word is overwritten with a forwarding pointer as required.

Object
R ef er en ce

OBJECT HEADER OBJECT F I EL DS / ARRAY DATAARRAY S I Z E [o p t i o n a l]
Ty p e I n f o r m a t i o n P o i n t e rS t a t u s W o r d

Ha s h Co d eL o c k i n g Bi t s

Tr a c e Bi t M a r k Bi t

Figure 4.1: Object header layout for the compacting collector.

A class HEADER provides access to this information. It includes methods for
querying the status of the trace and mark bits – IS-MARKED and IS-TRACED), in addi-
tion to methods for updating them – SET-MARK-BIT, CLEAR-MARK-BIT, SET-TRACE-
BIT and CLEAR-TRACE-BIT. There are also methods GET-FORWARDING-POINTER

and SET-FORWARDING-POINTER to manipulate the objects forwarding pointer.

4.4.2 Allocation Policy

Because this is a compacting collector, it is possible to always allocate objects using a
bump pointer allocator. As this is the shortest and fastest allocation sequence it was
selected. It is not possible to use a generic bump pointer as the allocator needs to put
in some additional data to assist with scanning the heap.

As with the standard bump pointer this allocator needs to remember Cursor and
Limit pointers. In addition the allocator stores a Start pointer, which points to the
first region used by the allocator, and a Region pointer that points to the region that is
currently being used. When there is sufficient space in the current region to satisfy an
allocation request, the allocation fast path (Algorithm 4.1) is called.

4.4.2.1 Chunks

JMTk is designed to support parallel execution, so it is possible that multiple kernel
threads will be running at any given time. As a single shared memory address range is
in use by the space, access to new sections of memory need to be synchronised. Rather
than synchronising on every allocation, which would be very expensive, memory is
allocated to a kernel thread in larger chunks of memory from which it can then allocate
objects. When one chunk is used up another is requested.

This keeps synchronisation to a minimum while allowing the kernel threads to
share a single address space. The chunk size used was 32Kb, which is the same as for

�
4.4 The Algorithm 37

ALLOCATOR.ALLOCATE � bytes �
1 // Where the cursor is before and will be after allocation
2 oldCursor � cursor
3 newCursor � cursor � bytes
4
5 if newCursor � limit
6 then
7 // There is not enough space in the region
8 return ALLOCATE-SLOW � bytes �
9

10 // Update the allocator’s cursor
11 cursor � newCursor
12 return oldCursor

Algorithm 4.1: Allocate an object.

the JMTk bump pointer. The mechanism for the synchronised allocation of chunks
used is included as a part of JMTk.

4.4.2.2 Regions

Because of the way chunks may be allocated to different processors, the objects for a
single processor may not lie in a single contiguous region of memory. Because of this
some bookkeeping information needs to be stored to make it possible for the collector
to scan the heap. This information is stored by grouping the chunks allocated by each
kernel thread into regions.

A region is a contiguous region of memory consisting of one or more chunks.
Within each region three special pointer fields are reserved to store information for
the memory manager. The amount of space reserved and not available for object allo-
cation is at most 0.03%5 of the total region size. Figure 4.2 shows a region.

The reserved pointers are:

Region Limit This points to the limit of the region. This is used to allow recycling of
regions as the limit for the bump pointer can be read from it.

Last Object There is likely to be some amount of free space at the end of each region
that is not used. The last object pointer allows the collector to know where the
last object is and stop there. This pointer need not be a valid object reference,
but no valid object reference may exist within the region after this address.

Next Region This allows the memory manager to find the next region.

512 bytes out of a minimum region size of one chunk (32Kb).

38 A Sliding Compacting Collector

Region Data
Re

gio
n L

im
it P

oin
ter

La
st

Ob
jec

t P
oin

ter

Ne
xt

Re
gio

n P
oin

ter

Figure 4.2: A region.

When multiple regions exist for a single allocator, they are connected as a singly
linked chain as shown in Figure 4.3.

Current
R eg i o nS ta rt Curs o r L i m i t

Figure 4.3: A chain of regions.

4.4.2.3 Extending and Creating Regions

When there is insufficient memory available within the current region to service an
object allocation request, the ALLOCATE-SLOW() method is called (Algorithm 4.2).
This method will first check to see if the current region is the last on the region chain,
and if not it will simply recycle the next region in the chain and return.

Once all existing regions have been exhausted, the method will acquire a new
chunk of memory. If this is the first chunk of memory, or it is not contiguous with the
allocator’s current region, a new region will be created (Algorithm 4.4). If the newly
acquired chunk forms a contiguous area of memory with the allocator’s current region
it will extend the region to include the new block (Algorithm 4.3).

4.4.3 Collection Policy

This section describes in detail how the information stored in regions and the run-
time’s type information data structures can be used to perform a sliding compacting
collection.

�
4.4 The Algorithm 39

ALLOCATE-SLOW � bytes �
1 if region 	 next
 NIL

2 then // Allocate a new Chunk
3 C � ALLOCATE-CHUNK ���
4
5 if C
 NIL

6 then // We need to free up some more space.
7 TRIGGER-COLLECTION ���
8 C � ALLOCATE-CHUNK ���
9 if C
 NIL

10 then ERROR � “ OutOfMemory ” �
11
12 if � limit � addressSize ��
 C
13 then // If this is contiguous with the current region extend it
14 EXTEND-REGION � C �
15
16 else // Otherwise create a new region
17 CREATE-NEW-REGION � C �
18
19 else // Recycle an old region
20 region � region 	 next
21 limit � R 	 limit
22 cursor � C � 2 addressSize
23
24 // Allocate the object
25 return ALLOCATE � bytes �

Algorithm 4.2: Slow allocation path acquiring a new chunk.

The garbage collection proceeds as described in Algorithm 4.5. Note that although
these phases are called in the order listed, the order is only guaranteed by a correctly
written plan. Furthermore, all steps except for CALCULATE-FORWARDING-POINTERS

and MOVE-OBJECTS involve processing within other spaces which is interleaved with
processing within the mark compact space. This section describes in detail how the
processing specific to the space is carried out. More information on how this collection
policy can be integrated into a memory management strategy is described later.

It is important to note that some of the collection phases are processed based on
the space or virtual memory address range a object is in, while others are processed
based on the set of objects allocated by a single allocator. In all algorithms listed those
related to the space and allocator have been explicitly named as such.

40 A Sliding Compacting Collector

ALLOCATOR.EXTEND-REGION � C �
1 // Extend the limit of the region
2 region 	 limit � C � chunkSize � addressSize
3
4 // Allow the allocator to continue allocating into this region
5 limit � region 	 limit

Algorithm 4.3: Extend the current region.

ALLOCATOR.CREATE-NEW-REGION � C �
1 if f irst
 NIL

2 then // Set the allocators starting region
3 f irst � C
4 else // Update the old region
5 next � C
6 lastOb ject � cursor
7
8 // Set the limit of the new region
9 region 	 limit � C � chunkSize � addressSize

10
11 // Update the allocator to work within the new region
12 limit � region 	 limit
13 cursor � C � 2 addressSize

Algorithm 4.4: Create a new region.

4.4.3.1 Pre Copy GC Instances

Object instances used by the collector itself need to be available during the collection
to allow processing to continue. These objects are related to threads and the Jikes
RVM scheduler, although in general any runtime may place this requirement on its
memory management system. If these instances are moved at unsafe times during a
collection, it is possible and likely that the runtime will crash or behave unexpectedly.
The processing of GC instances is handled by the plan, and it will call PRE-COPY-GC-
INSTANCE (Algorithm 4.6) for each GC instance it discovers within the Mark Compact
space. This processing occurs at the space level.

The collector assumes that the plan provides a safe space, into which the GC in-
stances can be copied. The mark compact collector is the first collector within JMTk to
require such an area.

�
4.4 The Algorithm 41

MARK-COMPACT �)
1 Pre � Copy � GC � Instances ���
2 MARK ���
3 CALCULATE-FORWARDING-POINTERS ���
4 UPDATE-REFERENCES ���
5 MOVE-OBJECTS ���
6 RESTORE-STATUS ���

Algorithm 4.5: Steps in a sliding compacting collection.

SPACE.PRE-COPY-GC-INSTANCE � ob j �
1 if HEADER.SET-MARK-BIT � ob j �
2 then // We have marked the object
3 HEADER.SET-TRACE-BIT � ob j �
4 new � COPY-OBJECT � ob j � PLAN.SAFE-SPACE �
5 HEADER.SET-FORWARDING-POINTER � ob j � new �
6
7 else // The object has already been copied
8 new � HEADER.GET-FORWARDING-POINTER � ob j �
9

10 return new

Algorithm 4.6: Pre-Copying a GC Instance.

4.4.3.2 Mark Live Objects

Once all objects required to be fixed for the collection have been copied out of the
mark compact space, all live objects are marked. As with other collection policies in
JMTk, live objects are identified by finding the transitive closure of the graph of objects
from the set of roots. As each object is first encountered, it is placed onto a processing
queue. As objects are taken off the processing queue, their pointer fields are inspected
and traced. Algorithm 4.7 describes the processing for each object traced in the mark
compact space. This processing occurs at the space level.

The basic tracing mechanism used, including the management of the processing
queues, is part of JMTk. Specific to the mark compact collector is the code responsible
for tracing objects within the mark compact space, including the code to ensure each
object is processed exactly once. The initial trace needs to consider the possibility of
objects moved due to pre-copied GC instances.

42 A Sliding Compacting Collector

SPACE.TRACE-OBJECT-MARK � ob j �
1 if HEADER.SET-MARK-BIT � ob j �
2 then // We have marked the object
3 PLAN.ENQUEUE � ob j �
4
5 else if HEADER.IS-TRACED

6 then � ob j �
7 // The object has been copied (a pre GC instance)
8 new � HEADER.GET-FORWARDING-POINTER � ob j �
9

10 else
11 new � ob j
12 return new

Algorithm 4.7: Initial trace for marking live objects.

4.4.3.3 Calculate Forwarding Pointers

At this point all live objects in the heap have been marked, and during this phase the
collector determines where objects need to be moved in order to leave the heap in
a compacted state. The algorithm does this by iterating through the heap and then
essentially reallocating objects into the heap. The process of iterating through the heap
is shown in Algorithm 4.8. To do this reallocation, a reference to the current target
region and a target cursor are kept. The logic is essentially a subset of the allocation
sequence, although it is never possible that a new chunk needs to be acquired – the
compacted set of objects can be at most the same size as the current set of objects. Note
that the forwarding pointers are stored within each object’s status word. When the
status word is non-zero it needs to be saved and restored at the end of the collection.

4.4.3.4 Update References

Once all forwarding pointers have been calculated, it is necessary to update all refer-
ences to objects within the mark compact space. This process occurs by tracing the
live set of the heap and updating references during the trace. The mechanisms to do
this are again part of JMTk. Note that after this phase all references to objects within
the space have to be considered invalid until objects have been moved. The tracing
logic is shown in Algorithm 4.9.

4.4.3.5 Move Objects

Once all references have been updated it is the role of the collector to again iterate
through the heap (Algorithm 4.8) and copy objects to their forwarded location. This

�
4.4 The Algorithm 43

ALLOCATOR.ITERATE-HEAP ���
1 region � start
2
3 // Loop through all regions
4 while region �
 NIL

5 do current � region � 2 addressSize � headerSize
6 currentLimit � region 	 last
7
8 while current � currentLimit
9 do // For every object

10 ob jectSize � VM.GET-OBJECT-SIZE � current �
11
12 PROCESSING FOR EACH OBJECT HERE

13
14 current � current � ob jectSize
15
16 region � region 	 next

Algorithm 4.8: Iterating through the heap.

SPACE.TRACE-OBJECT � ob j �
1 if HEADER.CLEAR-MARK-BIT � ob j �
2 then // We are the first to trace to object
3 PLAN.ENQUEUE � ob j �
4
5 new � HEADER.GET-FORWARDING-POINTER � ob j �
6
7 if new �
 NIL

8 then return new
9 else return ob j

Algorithm 4.9: Second trace to update references.

44 A Sliding Compacting Collector

phase also must ensure that the last object pointer fields for the regions are updated
to reflect the new locations of objects within the heap.

As objects are moved to their new locations header information is reset, including
clearing mark and trace bits and zeroing the status word.

4.4.3.6 Restore Status Words

When forwarding pointers were set for objects that had non-zero status words the
status was saved. All of these saved status words are now restored to ensure that the
state of all objects is consistent after the collection.

4.4.4 Complete Memory Management Strategy

The memory management strategies build upon the basic spaces (boot space, immor-
tal space and meta space) described in section 3.2.6. It provides three additional spaces
as shown in figure 4.4:

Mark Compact Space This is the default space into which new objects are allocated.
Sliding mark compact allocation and collection policies are used.

Large Object Space To avoid compacting large objects, a large object space using
treadmill allocation and collection policies is used for objects larger than 16KB.

Safe Space As is a requirement for the sliding mark compact collector, a small mark-
sweep collected safe space is provided to copy GC instances to during a collec-
tion. This space uses the standard mark-sweep allocation and collection policies.

Boot Space
2 5 6 M B

I m m or tal Space
3 2 M B

M etaD ata Space
3 2 M B

V i r tu al M em or y

L ar g e O b j ect Space
3 0 % of P l an Space

Bu m p P oi n ter
A l l ocator

Bu m p P oi n ter
A l l ocator

R aw P ag e
A l l ocator

A l l ocati on P ol i cy

C ol l ecti on P ol i cy

I m m or tal Space

M ar k C om pact Space
6 5 % of P l an Space

T r ead m i l l
A l l ocator

T r ead m i l l Space M ar k C om pactSpace

M ar k
C om pact
A l l ocator

L ar g e O b j ect
A l l ocator

A l l ocator

Saf e Space
5 % of P l an Space

M ar k Sw eepSpace

M ar k Sw eep
A l l ocator

Seg r eg ated
F r ee L i s t

Figure 4.4: JMTk Sliding Mark Compact Plan

�
4.5 Summary 45

4.5 Summary

A simple concept – sliding live objects down in memory to fill gaps once containing
garbage objects – was translated into detailed object allocation and collection policies.
Several implementation issues faced in the development of these policies were iden-
tified and discussed. Finally, a method by which these policies could be used within
a complete memory management strategy was provided.

46 A Sliding Compacting Collector

Chapter 5

A Free List Compacting Collector

This chapter describes a modified version of the sliding compacting collector that uses
a free list to allocate objects. The previous chapter described in detail the design and
implementation of a sliding compacting collector. This chapter aims only to identify
where this algorithm differs from the previous.

5.1 Motivation

After the initial implementation of the sliding compacting collector (chapter 4) it was
discovered that the cost of a compaction was very high. Because of this it was consid-
ered desirable to be able to perform a less expensive collection most of the time and
compact only every n collections. This was not possible with the sliding compacting
collector as it used a bump pointer for allocation.

The cost of iterating through the heap is also expected to be reduced when working
within a free list. This is because it is not necessary to compute object sizes, but instead
the constant cell size for the size class can be used.

5.2 The Algorithm

The aim of this collector is to take each size class of a segregated free list and compact
it so that fragmentation is reduced as low as possible given the current numbers of
live objects for each size class.

There are a few important differences between this algorithm and the sliding mark
compact algorithm:

� Allocation is performed using the standard JMTk segregated free list instead of
a customised bump pointer.

� Iteration through the heap and the calculation of forwarding pointers is differ-
ent.

� A more complicated procedure to reset the allocator – each free list needs to be
rebuilt.

47

48 A Free List Compacting Collector

� Some logic to determine when to perform a sweep, and a sweeping routine
needs to be written to allow compacting to happen only every n collections.

5.2.1 Sweep vs. Compact

Because this collector is designed to either compact or sweep objects, the steps for
the collection change to those shown in algorithm 5.1. The decision of whether to
compact can be made based on various criteria, but in this project the only criteria was
a compaction frequency, n. This is a configurable parameter that allows compaction
to happen never (n
 0), always (n
 1), or any other specified frequency.

MARK-COMPACT-FREE-LIST � compact �
1 PRE-COPY-GC-INSTANCES ���
2 MARK ���
3 if compact
4 then // We are compacting this time
5 CALCULATE-FORWARDING-POINTERS ���
6 UPDATE-REFERENCES ���
7 MOVE-OBJECTS ���
8 RESTORE-STATUS ���
9

10 else // We are sweeping this time
11 SWEEP ���

Algorithm 5.1: Steps in a free list compacting collection.

5.2.2 Heap Iteration

The new method for iterating through the heap is shown in Algorithm 5.2. The process
is quite simple. For each size class the doubly linked list of blocks is iterated and each
cell within each block is processed. This method of iterating through the heap does
not require any calculation of object size information, and because of this should be
less expensive. This expectation is supported by the results given in section 7.3.

5.2.3 Rebuilding Free Lists

The segregated free list implementation in JMTk stores free lists at the block level.
After compacting the cells within these blocks it is essential that the free lists are up-
dated. Clearly, as this is a compacting collection, only the last block for each size class
can have any free cells. This means that the block level free list can be cleared for all
blocks except the last.

There are then two possibilities for the final block. The first is that the final block is
completely full; in this case the free list for this block can also be cleared. The second

�
5.2 The Algorithm 49

ALLOCATOR.ITERATE-HEAP ���
1 s � 0
2 while s � sizeClasses
3 do block � f irstBlock � s �
4 cellSize � cellSize � s �
5 blockSize � blockSize � s �
6
7 while block �
 NIL

8 do
9 current � block � headerSize � blockHeaderSize � s �

10 limit � block � blockSize
11
12 while current � limit
13 do // For every object
14
15 PROCESSING FOR EACH OBJECT HERE

16
17 current � current � cellSize
18
19 // Loop through all blocks
20 block � block 	 next
21
22 // Loop through all size classes
23 s � s � 1

Algorithm 5.2: Iterating through the heap.

50 A Free List Compacting Collector

PR
EV

IO
US

BL
OC

K

NE
XT

BL
OC

K

FR
EE

LI
ST

Figure 5.1: Final block for a size class after compaction.

possibility (shown in figure 5.1) is that there are several empty cells at the end of the
last block. In this case the memory for these cells needs to be cleared and the free list
rebuilt. The desired result is given in figure 5.2.

PR
EV

IO
US

BL
OC

K

NE
XT

BL
OC

K

FR
EE

LI
ST

Figure 5.2: Final block for a size class with rebuilt free list.

Once all block free lists have been updated the segregated free list needs to be
updated to point to the newly constructed free list within the current block, or cleared
in that case that the last block was completely full.

5.2.4 Sweeping Free Lists

In order to allow periodic compactions, a non-compacting collection over the free list
needed to be implemented. Due to the time available a very simple sweep was chosen.
The heap is iterated as in algorithm 5.2, and for each object algorithm 5.3 is run. The
sweep walks through all cells after the mark phase and frees any that are unmarked.
The sweep also resets the header information on all objects to allow the next collection
to proceed correctly.

5.3 Summary

The chapter described a simple method of extending the sliding compacting collec-
tor to work with a free list allocator. The use of this allocator allowed for periodic
compaction, rather than forcing a compaction every collection.

�
5.3 Summary 51

ALLOCATOR.SWEEP � ob j �
1 if HEADER.IS-MARKED � ob j �
2 then
3 FREE-CELL � ob j �
4
5 else
6 HEADER.RESET-BITS � ob j �

Algorithm 5.3: Sweep processing for each cell.

52 A Free List Compacting Collector

Chapter 6

A Generational Compacting
Collector

This chapter describes a generational compacting collector. As JMTk provides gener-
ational collection out-of-the-box, this process was relatively simple.

6.1 Motivation

High performance Java and C# runtimes almost invariably utilise generational col-
lectors. Blackburn, Cheng, and McKinley [2003] show the performance improvement
that can be gained from combining collection policies with a nursery within Jikes RVM
and JMTk. Investigating how a generation compacting collector performs relative to
other generational collectors, and comparing this to how the compacting collector
performs against other full heap collectors might provide some insight into the char-
acteristics of both collectors.

6.2 Two-Phase Collection

The compaction algorithm requires several phases, while other existing JMTk collec-
tors required only a single phase. This was already solved for full-heap collectors, but
not for generational collectors. As JMTk is structured, generational collectors are a
specialisation of stop-the-world collectors. In order to implement two phase genera-
tional collectors, a copy of the existing JMTk generational collection code was created
and set to inherit from the two-phase collector, instead of the stop-the-world collector.
Because of JMTk’s abstraction, this resulted in creating two-phase generational collec-
tors essentially for free, with hardly any of the two-phase generational code needing
to be changed.

6.3 The Algorithm

Due to time constraints and the observed similarities between the algorithms, only
one of the free list and sliding compacting collectors was selected to be used in a gen-

53

54 A Generational Compacting Collector

erational collector. Preliminary performance comparisons showed that the free list
compacting collector outperformed the sliding compacting collector. This, coupled
with the fact that the free list compacting collector offered greater flexibility by pro-
viding the option to sweep, led to the decision to use it as the algorithm to test in
within a generational collector.

6.4 Complete Memory Management Strategy

All generational strategies build upon a basic generational plan that adds a mature
space and a nursery to the basic spaces (boot space, immortal space and meta space)
described in section 3.2.6. The spaces provided by the generational mark compact
collector beyond these three basic spaces are shown in figure 6.1:

Nursery This is the space into which most new objects are allocated. Large objects
are allocated directly into the large object space.

Large Object Space To avoid compacting large objects, a large object space using
treadmill allocation and collection policies is used for objects larger than 8KB.

Mature Space Any objects that survive a nursery collection are allocated into the ma-
ture space. This mature space uses free list mark compact allocation and collec-
tion policies.

Safe Space As is a requirement for the sliding mark compact collector, a small mark-
sweep collected safe space is provided to copy GC instances to during a collec-
tion. This space uses the standard mark-sweep allocation and collection policies.
Note that to save space on the figure the allocation and collection policy for the
safe space have been omitted.

6.5 Summary

Because of JMTk, implementing a generational version of an existing collector is triv-
ial. In this case there was additional work combing the two-phase and generational
concepts.

The complete memory management strategy for the generational compacting col-
lector was described.

�
6.5 Summary 55

Boot Space
2 5 6 M B

I m m or tal Space
3 2 M B

M etaD ata Space
3 2 M B

V i r tu al M em or y

L ar g e O b j ect Space
3 3 % of P l an Space

Bu m p P oi n ter
A l l ocator

Bu m p P oi n ter
A l l ocator

R aw P ag e
A l l ocator

A l l ocati on P ol i cy

C ol l ecti on P ol i cy

I m m or tal Space

M atu r e Space
3 0 % of P l an Space

T r ead m i l l
A l l ocator

T r ead m i l l Space M ar k C om pactSpace

M ar k
C om pact
A l l ocator

L ar g e O b j ect
A l l ocator

A l l ocator

N u r s er y
3 0 % of P l an Space

C opy Space

Bu m p P oi n ter
A l l ocator

Sa
fe

Sp
ac

e

Figure 6.1: JMTk Generational Mark Compact Plan

56 A Generational Compacting Collector

Chapter 7

Performance Evaluation

This chapter describes the methods used to analyse the performance of memory man-
agement strategies utilising the compacting collectors. It also provides an overview
of the results for each experiment that was conducted. A more detailed discussion
of these results is given in the following chapter. It is important to note that not all
results are given in this chapter; the complete results are given in appendix A.

7.1 Benchmarking Methodology

This section describes the techniques used to benchmark the virtual machine run-
ning various memory management strategies. The platform, the benchmarks, and the
memory management strategies that were compared are described.

7.1.1 Experimental Platform

All experiments were performed on a single machine. The specifications of this ma-
chine are:

� Intel(R) Pentium(R) 4 2.6 GHz with hyper-threading, an 800MHz FSB, a 64 byte
L1 and L2 cache line size, an 8KB 4-way set associative L1 data cache, a 12K L1
instruction trace cache, and a 512KB unified 8-way set associative L2 on-chip
cache.

� ASUS(R) P4C800 motherboard (Intel(R) i875P chipset).

� 1GB of memory (Matched pair of 512MB modules)

� Red Hat Linux 9, with SMP Kernel version 2.4.20-19.

Some experiments required that the size of physical memory was limited. This
was achieved by passing appropriate parameters to the Linux kernel at boot time.
Full details of what was done are given in the relevant results section.

57

58 Performance Evaluation

7.1.2 Benchmarks

Eight benchmarks from the SPECjvm98 suite [Standard Performance Evaluation Cor-
poration 2003] were used. The amount of pressure these benchmarks place on the
memory manager varies. Generally speaking, these benchmarks are not an ideal set
of benchmarks to fully test a memory management strategy [Blackburn et al. 2003].
However, these are real world applications that do place some pressure on the mem-
ory manager.

The SPECjvm98 benchmarks used are listed in table 7.1 with information regard-
ing minimum heap sizes and allocation loads as specified on the SPEC web-site [Stan-
dard Performance Evaluation Corporation 2003].

Name Description Min. Heap Alloc.
201 compress LZW compression on real file data. 20MB 334MB
202 jess Java Expert Shell System (logic puzzles). 2MB 748MB
205 raytrace Single threaded ray-tracer. not specified
209 db Memory resident database. 16MB 224MB
213 javac JDK 1.0.2 Java compiler. 12MB 518MB
222 mpegaudio MP3 decompressor. insignificant GC
227 mtrt Multi-threaded version of 205 raytrace. 16MB 355MB
228 jack Parser generator 2MB 481MB

Table 7.1: SPECjvm98 Benchmarks.

As can be seen by the minimum heap sizes and allocation workloads the most GC
intensive benchmarks are 202 jess, 228 jack and 213 javac. Actual minimum heap
sizes and allocation loads will change between configurations, but the figures above
serve as a guide.

Each benchmark is executed twice within a single instantiation of the runtime, and
only the second execution is counted. This approach aims to factor out the majority
of the cost of compilation, most of which will occur during the first execution. The
virtual machine was always executed in single processor mode.

For any given experiment the benchmark was run five times and the fastest time
was used. There is not a large amount of variation between each run and this fastest
run is considered the least disturbed by other system factors [Blackburn et al. 2003].

7.1.3 Configurations

Several different configurations were developed and tested during this project, in ad-
dition to existing configurations within Jikes RVM and JMTk. This section aims to
provide the reader with the necessary information to relate benchmark results back to
the theory discussed in the previous chapters.

All configurations were compiled in FastAdaptive mode. This forces ahead of time
optimised compilation of the runtime itself and required system classes. It also en-
ables the adaptive optimisation system for the most efficient combination of compiled

�
7.1 Benchmarking Methodology 59

code at runtime. All assertion checking is also switched off to improve speed. This is
the recommended configuration for benchmarking purposes.

Because of different choices that were made during development several branches
of the code were made. Jikes RVM and JMTk were branched independently and then
combined to make the various configurations. The branches for Jikes RVM were:

Original Object Model This is the original Jikes RVM source code modified to make
all reference types strong references (see section 4.3.10), type information im-
mortal (see section 4.3.3), and address based hashing disabled (see section 4.3.5).
This object model does not support the compacting collectors. It also includes the
fixes to dynamic linking that makes the flipped object model (see section 4.3.4).

Flipped Object Model This is the original object model with scalar objects laid out
forward in memory (see section 4.3.1).

Constant Header Object Model This is the flipped object model with the single change
that scalars and arrays have the same size header. This was achieved by wasting
space for scalar objects as described in section 4.3.6.

And the branches for JMTk were:

Base This is the original JMTk source with all required additions and modifications
for the compacting collectors. This can be used with either the original or flipped
object models; however, the compacting collectors will not work with the origi-
nal object model.

This branch includes the required changes to allow immortal type information
(see section 4.3.3), two phase collection (see section 4.3.8), multiple allocators for
a single space and kernel thread (see section 4.3.11), and collectors that place
more strict requirements on object accessibility during collections (see section
4.3.7).

It also includes implementations of the sliding compacting collector (see chapter
4), the free list compacting collector (see chapter 5), and the generational com-
pacting collector (see chapter 6).

Constant Header This is the same as the base JMTk branch, with the exception of
the compacting collectors being modified to have arrays and scalars allocated
together (see section 4.3.6). This could have been included in the base branch,
but was not due to time constraints.

These were combined to give the following set of configurations. All results are
recorded against one or more configurations from this set.

MarkSweep This is the standard JMTk mark-sweep configuration, using the original
object model and the base JMTk code.

MarkSweep-FOM This is the standard JMTk mark-sweep configuration, using the
flipped object model and the base JMTk code.

60 Performance Evaluation

SemiSpace This is the standard JMTk semi-space configuration, using the original
object model and the base JMTk code.

SemiSpace-FOM This is the standard JMTk semi-space configuration, using the flipped
object model and the base JMTk code.

GenMS This is the standard JMTk generational mark-sweep configuration, using the
original object model and the base JMTk code. A variable sized nursery is used.

GenMS-FOM This is the standard JMTk generational mark-sweep configuration, us-
ing the flipped object model and the base JMTk code. A variable sized nursery is
used.

MarkCompact This is the sliding compacting collector (see chapter 4), using the flipped
object model and the base JMTk code.

MarkCompact-CH This is the sliding compacting collector (see chapter 4) with arrays
and scalars allocated together. This uses the constant header object model and the
constant header JMTk code.

MarkCompact-Inst This is the sliding compacting collector (see chapter 4), using the
flipped object model and the base JMTk code. Additional instrumentation code has
been added to gather statistics of object counts.

MarkCompactFL-n This is the free list compacting collector (see chapter 5), using
the flipped object model and the base JMTk code. The n is the frequency at which
compactions occur. 0 – never compact, 1 – always compact, n � 1 – compact
every n collections.

MarkCompactFL-CH This is the free list compacting collector (see chapter 5) with
arrays and scalars allocated together. This uses the constant header object model
and the constant header JMTk code. It is based on the MarkCompactFL-1 config-
uration and as such compacts every GC.

MarkCompactFL-Inst This is the free list compacting collector (see chapter 5), us-
ing the flipped object model and the base JMTk code. Additional instrumenta-
tion code has been added to gather statistics of object counts. It is based on the
MarkCompactFL-1 configuration and as such compacts every GC.

GenMC This is the generational compacting collector (see chapter 6), using the flipped
object model and the base JMTk code. A variable sized nursery is used.

7.1.4 Heap Sizes

In order to more accurately determine the properties of a memory management strat-
egy it is essential to test the strategy at various heap sizes. Some strategies will make
efficient usage of space and run well in a small heap, while others will use additional
space to allow faster execution in a larger heap. For all benchmarks a minimum heap

�
7.1 Benchmarking Methodology 61

size was determined that allowed execution of the benchmark under most configura-
tions. Then the benchmark was run at various heap sizes ranging from the minimum
to six times the minimum.

7.1.5 Collection of Metrics

When executing a benchmark using JMTk, it is possible to pass in command line op-
tions that make the runtime print out statistics during execution. The information that
is printed out includes information about:

� The finish time: END.

� The start and finish times of each collection (GC i
start and GCi

end), counted from the
when the runtime was started.

� Timing information for each of the phases of each collection.

� The number of live objects with non-zero status words found during each col-
lection for the compacting collectors (GCi

saved).

� The total number of live objects found during each collection for the compacting
collectors (GCi

live).

The output is then processed by a series of scripts to produce charts of the fol-
lowing statistics. Note that this includes factoring out the first run from the statistics.
The total number of collections performed during the benchmark run, GCcount is also
calculated.

Total run time. This is the total amount of time the benchmark took to run. It is
given simply by:

TOTALtime
 END � RUNstart (7.1)

GC time. This is the total amount of time spent performing collection activity during
execution. It is given by:

GCtime

GCcount

∑
i � 1

� GCi
end � GCi

start � (7.2)

Mutator time. This is the amount of time that the benchmark is running. It is given
simply by:

MUTtime
 TOTALtime � GCtime (7.3)

62 Performance Evaluation

Pause time. The pause time is an indicator of how responsive the collection strategy
is to the benchmark. High average pause times indicate that the collection strategy
may less suitable for real time or highly interactive applications.

PAUSE i
time

GCi
time

GCi
count

(7.4)

Percentage of objects with non-zero status words. By using the information from
each collection regarding the number of live objects and the number of these objects
with non-zero status, we can calculate a percentage.

PCTsaved
 ∑GCcount
i � 1 GCi

saved

∑GCcount
i � 1 GCi

live

(7.5)

It is possible to derive other statistics from this information or captured through
adding information to what is output by the runtime. Such information includes max-
imum pause times and the benchmark’s reported runtime.

7.1.6 Missing Results

There are several situations that arise that mean some results could not be obtained:

Small Heap Sizes Different memory management strategies require different amounts
of memory to perform the same amount of work. For this reason in some situa-
tions there will only be results for a subset of the configurations for the smallest
heap sizes.

Research Virtual Machine Jikes RVM is a research virtual machine, and as such is not
expected to be as stable as production virtual machines. Specific benchmark
runs at specific heap sizes can cause the runtime to crash. Sometimes this can
be avoided by simply re-running benchmarks, as the errors are sometimes in-
termittent – most likely due to the effects of the adaptive optimisation system.
Any such errors were investigated by me but where problems occurred within
unmodified code, time constraints meant that not all issues could be resolved.

In particular this has affected the stability of the generational configurations,
with many errors arising in the optimising compilers on smaller heap sizes.

Any results missing for reasons different to those listed above will be discussed
separately within the relevant results sections.

7.2 Non-Zero Status Words

During a compacting collection, the status word of each live object is used to store the
object’s forwarding pointer. In the case that the status word is non-zero, it must be
saved and restored after the collection. The alternative to this approach is to allocate

�
7.2 Non-Zero Status Words 63

additional header space to store the forwarding pointer. This issue is discussed in
detail in section 4.3.2.

(a) Total percentage (b) Maximum percentage

Figure 7.1: Percentage of live objects with non-zero status words for 213 javac.

The percentage of objects with non-zero status words was calculated for all bench-
marks for both full-heap compacting collectors with the necessary instrumentation
(MarkCompact-Inst and MarkCompactFL-Inst). With the exception of 213 javac (see
figure 7.1), all benchmarks recorded a total percentage less than 2%, and a peak per-
centage less than 9%. A peak percentage of close to 30% is seen in 213 javac on all
heap sizes; this is most likely due to systematic usage of hash tables or other data
structures that require calculation of object hash codes. There is no significant differ-
ence between MarkCompact-Inst and MarkCompactFL-Inst.

Two different factors lead to non-zero status words (see section 4.4.1 for informa-
tion on the object header): synchronisation and hashing. On synchronised objects the
locking bits in the header switch on and off as threads access the object. This type
of behaviour explains the noise in the charts for most benchmarks, particularly in the
worst case scenario. Hash codes behave quite differently, and once a hash code is set
the status word for that object must be saved at every subsequent collection it remains
live.

It is interesting to note the lower average percentages for 213 javac in small heap
sizes. This is caused by early GCs where not all objects have yet been hashed, thereby
reducing the average. With larger heaps, fewer or no GCs are triggered before all such
objects have been hashed.

By pushing status words onto a queue instead of storing the forwarding pointer
in the header, we are saving one word in every object at a cost of two words for each
object that requires its status to be saved. If we assume a worst case scenario where
1
3 of all objects have a non-zero status word, there is a space saving of 1

3 . This is
because an extra word per object is a cost of 1, while an extra cost of two words for
only one third of live objects is a total cost of 2

3 . This is in addition to the fact that
no space is wasted for garbage objects with non-zero status words. Note that this is
only a comparison of space costs, although it is thought that there would be minimal

64 Performance Evaluation

time cost differences between these approaches. In the average case where only 2%
of status words need to be saved, the use of an additional forwarding pointer would
require 25 times more space.

Complete results are given in the appendix in section A.1.

7.3 Phase Timings

The time taken to perform the collection is divided into the following phases:

Roots The time taken to determine the root set for both traces.

Prepare The time taken to prepare for the compacting collection; the largest cost of
this is the calculation of forwarding pointers to prepare for the second trace.

Finalization The time spent processing finalizable objects. This includes both looking
through finalizable objects to see if they are garbage and need to be resurrected
for finalization, and updating the finalization structures after forwarding point-
ers have been calculated.

Initial Trace The time spent tracing objects during the mark phase of the collection.

Second Trace The time spent tracing objects while updating pointers into the com-
pacted space.

Release The time spent finishing up from the collection; the largest cost of this is
copying objects to their new locations.

(a) MarkCompact-Inst (b) MarkCompactFL-1-Inst

Figure 7.2: Phase timings for compacting collectors running 202 jess.

The total time spent in each phase was calculated, and then was normalised against
the slowest run. The resulting graph gives an indication of actual time and the per-
centage of total collection time spent in each phase. Figure 7.2 shows the result for
each configuration running 202 jess. Several general observations were made:

�
7.4 Flipped Object Model 65

� The cost of the two tracing phases far outweighs the cost of all other phases.
This makes them primary candidates for initial optimisation work. It also makes
investigation into implementing a compacting collector that updates forwarding
pointers without requiring an additional trace attractive.

� The cost of the prepare and release phases is always less for the free list com-
pacting collector. This was an expected result as the cost of iterating the heap
should be less when not calculating each objects size.

� The initial trace is always more expensive that the second trace. Both the amount
of work performed and the number of nodes reached for each of these phases is
similar. Further investigation into why there is such a clear difference is justified
by this result.

Other benchmark runs showed similar results, although the percentage of time in
the release phase is greater for those benchmarks that place a higher GC load on the
virtual machine. Complete results are given in the appendix in section A.2.

7.4 Flipped Object Model

After making the change to lay scalars out forwards in memory, some basic tests
were carried out to ensure that there was no associated cost. The configurations
GenMS, MarkSweep, and SemiSpace were compared with their counterparts using
the flipped object model: GenMS-FOM, MarkSweep-FOM, and SemiSpace-FOM.

(a) 202 jess (b) 222 mpegaudio

Figure 7.3: Total time for the original vs. flipped object models.

Under more GC stressful benchmarks such as 202 jess (figure 7.3a), there was no
perceivable difference between the performance of memory management strategies in
the original object model compared to the flipped object model. In 222 mpegaudio
(figure 7.3b) there was a noticeable difference between GenMS and GenMS-FOM. The
amount of garbage collection work in this benchmark is considered insignificant and
the time constraints did not allow for any further investigation.

66 Performance Evaluation

These results indicate that, as expected, there is no reason to not lay scalar objects
forward in memory on the Linux/IA32 platform. Complete results can be found in
the appendix in section A.3.

7.5 Constant Size Header

The possibility of using an additional word within the header of each scalar to make
object header sizes the same for both array and scalar objects was considered. This al-
lows the use of a single allocator for arrays and scalars, as it allows heap iteration.
MarkCompact and MarkCompact-CH were compared alongside MarkCompactFL-5
and MarkCompactFL-5-CH (see section 7.6 for details why FL-5 was used). For this
additional cost to be considered, it must result in faster execution times. This was not
the case in most benchmarks.

(a) 202 jess (b) 209 db

Figure 7.4: Total time when segregating arrays and scalars vs. wasting header space.

Figure 7.4b shows the only significant win for a constant header size configura-
tion with MarkCompact-CH outperforming MarkCompact by between 10% and 15%
in 209 db. All other benchmarks showed either a slight advantage for non CH builds,
or very closely matched performance figures such as with 202 jess (figure 7.4a).

There were problems with MarkCompact-CH failing when running 205 raytrace
and 227 mtrt. As the MarkCompactFL-CH did execute these correctly, and the differ-
ences between constant header configurations and their counterparts were consistent
between the free list and sliding compacting collectors, this result was not looked into
further.

These results showed that there was no measurable performance gain from using
the constant sized header, so the approach was discarded for the rest of the project.

Complete results can be found in the appendix in section A.4.

�
7.6 Free List: Compact vs Sweep 67

7.6 Free List: Compact vs Sweep

One of the motives for the development of the free list compacting collector was the
ability to compact the heap periodically, instead of at each collection. Once this is pos-
sible, the question of how to determine when to trigger a sweep versus a compacting
collection arises. Initially, the only heuristic that was considered was to compact every
n collections.1 This test involved comparing all of the MarkCompactFL-n configura-
tions.

Figure 7.5: Mutator time for compacting every n GCs (104MB heap).

As would be expected the results showed a trade-off between increased collection
times (more compacting GCs) and improved mutator performance. Figure 7.5 shows
the mutator time, where the most aggressive compacting configuration, MarkCompactFL-
1 performs very well in the GC intensive benchmarks 202 jess and 213 javac. How-
ever, the increase in GC time illustrated in figure 7.6 is much more significant than
this benefit, making MarkCompactFL-1 perform poorly overall.

These results supported the selection of MarkCompactFL-5 as the optimal selection
when using compaction frequency as the heuristic. MarkCompactFL-5 was within a
close margin of the best performer in terms of GC time, mutator time, and total time
for all benchmark and heap size combinations.

Complete results for each of the tests run are in the appendix in section A.5.

1Any other sensible heuristic would require gathering additional information from within the segre-
gated free list and was not considered in this project due to time constraints.

68 Performance Evaluation

Figure 7.6: GC time for compacting every n GCs (104MB heap).

7.7 Limited Physical Memory

Compacting collectors aim to eliminate memory fragmentation after a collection, thereby
minimising the number of pages in use by the virtual machine. Because of this it
would be expected that compacting collectors exhibit good locality. Limiting physical
memory should allow the exploration of locality issues at the page level, as opposed to
tests with ample physical memory that predominantly test cache locality effects. For
this experiment MarkCompact, MarkCompactFL-1, MarkCompactFL-5, MarkSweep-
FOM and SemiSpace-FOM were used.

The set of configurations were run at a single heap size of 41MB in two situations:
one where ample physical memory was available, and one where only limited mem-
ory was available. Although it would have been ideal to perform tests with a hard
limit on the amount of physical memory available to the runtime, this was not possi-
ble within this project.2 Instead, the total amount of physical memory available to the
operating system was reduced from 1GB to 96MB.

Unfortunately, this method led to very noisy results. In many cases there were
orders of magnitude differences between the performance of successive runs of the
same benchmark/configuration pair. Additionally, the execution of these benchmarks
took an extremely long amount of time – up to 60 minutes for a single execution of
the virtual machine. No insight into the locality performance of the collectors could
be obtained from the results, although they have been included in the appendix in
section A.6.

2In order to test using such a method a different version of the Linux kernel supporting such restric-
tions would be required.

�
7.8 Performance Bakeoff 69

7.8 Performance Bakeoff

This section aims to make a performance comparison between several full-heap col-
lectors, including the original JMTk MarkSweep and SemiSpace collectors, and the
new compacting collectors: MarkCompact, MarkCompactFL-5, and MarkCompactFL-
1. It is important to note that the compacting collectors have not been given the same
performance tuning as the other collectors; the observation of general trends in perfor-
mance is more valuable than simply looking for the fastest or slowest configuration.

(a) 202 jess (b) 213 javac

Figure 7.7: Total time for full-heap collectors across heap sizes.

Figure 7.7 shows the total time required for 202 jess and 213 javac for the full-
heap collectors when running across a variety of heap sizes. MarkSweep performs
very well across all heap sizes. As was expected from the literature the performance
of SemiSpace was excellent with low heap residency, but degraded as heap residency
increased. This is due to the cost of keeping a copy reserve, and is best illustrated
through the GC counts shown in figure 7.8. As the heap size decreases the gap be-
tween SemiSpace and the other collectors increases.

Figure 7.8: GC counts for full-heap collectors across heap sizes for 202 jess.

70 Performance Evaluation

Although the performance of the sliding compacting collector, MarkCompact, is
quite poor, it is interesting to note that at the very smallest heap sizes the performance
is very close to that of MarkSweep. This supports the hypothesis that a compacting
collector is very efficient when memory is limited; further performance optimisations
to the compacting collector are required to further test this hypothesis.

Figure 7.9: Total time for full-heap collectors (41MB heap).

Figure 7.9 shows the performance of the full-heap collectors in a small heap of
41MB. At this heap size MarkSweep performance is difficult to match. The compact-
ing collectors MarkCompactFL-1 and MarkCompact perform very poorly on the GC
intensive benchmarks 202 jess, 213 javac and 228 jack. Although MarkSweep has
the fastest total times, mutator time performance in figure 7.10 shows that MarkCom-
pact often outperforms it.

�
7.8 Performance Bakeoff 71

Figure 7.10: Mutator time for full-heap collectors (41MB heap).

Figure 7.11: Total time for full-heap collectors (104MB heap).

On larger heap sizes (figure 7.11), SemiSpace slightly outperforms MarkSweep on
GC intensive benchmarks. Again MarkCompact performs very poorly due to massive
collection times. Complete results for each of the tests run are in the appendix in
section A.7.

72 Performance Evaluation

7.9 Generational

A compacting collector should be able to provide improved performance at the cost of
a more expensive collection. This is expected to be very inefficient when considering
large numbers of short lived objects. A generational collector aims to avoid this cost
through the use of a copy-collected nursery. This experiment aims to compare GenMC
with the existing GenMS-FOM.

Figure 7.12: GC time for generational collectors across heap sizes for 202 jess.

It was expected that there will be less of a difference between these two strategies
and their full-heap counterparts. This is due to the fact that the majority of collections
are nursery collections and this collection is almost identical for both collectors.

Stability problems with the generational configurations made it impossible to gen-
erate a full set of results. Sufficient data points to perform a comparison was obtained.
It was found that there was no significant difference between the two generational col-
lectors, as illustrated in figure 7.12.

Complete results for each of the tests run are in the appendix in section A.8.

7.10 Summary

A methodology for benchmarking virtual machines was discussed. Several experi-
ments were then devised and carried out to assist in analysing the performance of the
compacting collectors. Results for each of these experiments were given, and where
possible, each experiment presented and justified a recommendation.

Chapter 8

Conclusion

8.1 Summary

Modern object oriented languages such as Java and C# have been gaining widespread
industry support in recent times. Such languages rely on a runtime infrastructure that
provides automatic dynamic memory management services. The performance of such
services is a crucial component of overall system performance.

Compacting collectors are used in several important production runtimes, includ-
ing Microsoft’s Common Language Runtime and IBM’s Java Runtime Environment.
Through the addition of a similar type of collector to JMTk, the ability to effectively
compare the performance of these algorithms against others has been provided.

Such collectors have been shown to be very demanding of the host runtime, with
the implementation of these algorithms leading to several significant modifications to
the underlying infrastructure of both JMTk and Jikes RVM. It is anticipated that this
work in broadening the set of operations supported by JMTk and Jikes RVM will also
allow new classes of collectors to be implemented and compared.

Chapter 2 explored the rich literature surrounding this area of research. There are a
multitude of different automatic memory management strategies that a runtime in-
frastructure can employ, but there is no single best solution for all situations.

Chapter 3 described the target platform, a high performance Java virtual machine,
with cutting edge compiler and memory management technologies.

Chapters 4, 5 and 6 provided descriptions of several compacting algorithms. These
utilised both bump pointer and free list allocation policies, and the final algorithm
was a generational collector.

Chapter 7 provided a detailed performance evaluation of the compacting collectors,
and led to the validation of many of the decisions taken through the design process.

A method for reusing the status word to store a forwarding pointer was described
and found to be effective. The average percentage in most situations was only 2%, a
situation that would have the use of an additional header word using 25 times more
space.

73

74 Conclusion

An analysis of the performance of each phase of the compacting collectors gave
some insight into what areas should be targeted for optimisation. This work also
validated the hypothesis that iterating the heap would be more efficient over a free
list.

The new object model in which scalar objects are laid out forward in memory was
compared to the current model. No reason to continue the use of the original object
model was discovered for Jikes RVM running on Linux/IA32.

An optimal compaction frequency was found for the free list compacting collector
through a detailed performance comparison over multiple heap sizes.

A performance comparison between several full-heap collectors, including both
standard JMTk collectors and the new compacting collectors showed that compaction
can provide real performance benefits. While the cost of performing the compaction
makes the collectors perform poorly, they are yet to be optimised.

Finally, it was found that a generational compacting collector provided equivalent
performance to other high performance generational collectors in JMTk.

These results are however, far from a conclusive investigation into compacting
collection techniques, and raises many questions for future research.

8.2 Further Work

The results of this work are not conclusive, but they do make compacting collection
algorithms appear promising as a method of reducing fragmentation and improving
performance in some situations. This research identifies two key challenges faced
with compacting collection. Firstly, there is the challenge to reduce the cost of a com-
pacting collection as much as possible. Secondly, there is the challenge to develop new
and innovative ways to combine compacting collection with other collection strate-
gies; through this, it is possible to provide benefits of reduced fragmentation when
required, without paying the high price of compaction at each and every collection.

8.2.1 Performance Tuning

This project did not allow sufficient time to performance tune the collectors. The clear-
est example of this is the difference in performance between MarkCompact-FL0 and
MarkSweep. The costs of the different phases of collection were identified, and this
would be a good starting point for such performance tuning.

This phase cost information shows that the cost of tracing from the roots is very
significant. Using another technique to update forwarding pointers, such as remem-
bering the set of pointers into the compacted space during the mark phase should be
investigated.

The method used for sweeping within the free list collector should also be looked
into. A solution similar to the mark bitmap used with JMTk’s mark-sweep collector
could improve performance considerably.

After a compacting collection the way that blocks are considered for allocation
should also be investigated. Currently, all blocks are reconsidered for allocation, even

�
8.2 Further Work 75

though it is a trivial observation that only the last block could possible have any free
cells.

8.2.2 N Generational Collector

JMTk’s generational collectors include only two generations: the nursery and the ma-
ture space. Other implementations of generational collection have more generations,
and the size of these are sometimes dynamically determined [Richter 2000a; Richter
2000b]. While there is a cost associated with this as the write barrier needs to per-
form more work, it would be worthwhile implementing such a collector in JMTk to
determine if there is any benefit associated with this cost.

When many generations are in use, a more incremental approach can be taken to
collection, which is an important consideration for real-time or interactive applica-
tions.

8.2.3 Alternate Compacting Algorithms

Only one simple compacting algorithm was implemented during this project. It would
be interesting to compare sliding compaction to other compacting collectors, such as
table-based or threaded algorithms.

8.2.4 Generational Sliding Compaction

In this project only the free list compacting collector was placed within a generational
collection strategy. It would be beneficial to compare the two compacting algorithms
in a generational setting, particularly after any performance enhancements have been
made.

8.2.5 Compact vs. Sweep Heuristic

Only a simple heuristic for triggering compacting collections was implemented. With
more detailed information regarding the fragmentation levels within the heap, it should
be possible to develop a heuristic that triggers a compacting collection more intelli-
gently.

Sansom [1991] describes a method of implementing a garbage collector that com-
bines a compacting collector and a copying collector, and triggers the compacting
collector based on heap residency. Other hybrid compacting collectors such as this
should be investigated.

8.2.6 Limited Memory Testing

The amount of limited memory testing that was conducted as part of this project was
not able to provide conclusive results. Further work on the development and appli-
cation of a framework for testing virtual machines under limited physical memory
situations should assist in showing the benefits to locality of compaction.

76 Conclusion

8.3 Conclusion

This thesis has contributed a fully functional set of compacting collectors to JMTk.
The ability of compaction to improve runtime performance was demonstrated.

Hybrid collectors, that could occasionally take advantage of a compacting collection,
while still being able to perform cheaper mark-sweep collections, were very promis-
ing.

A new and effective technique to store forwarding pointers in way that made more
efficient use of memory was described and evaluated.

There has been little work done on performance optimisation of the collectors, and one
remains optimistic that such optimisations will reduce, or eliminate, the performance
gap between them and other full-heap collectors.

Appendix A

Complete Results

This appendix shows complete results for all experiments conducted as part of the
project. Representative and summary information is used within individual results
sections in chapter 7 to communicate major findings, but those more involved in the
field may be interested in more detailed results.

For each section in the performance evaluation section, a matching section is pro-
vided within this appendix listing complete results.

77

78 Complete Results

A.1 Non-Zero Status Words

(a) 201 compress (b) 202 jess

(c) 205 raytrace (d) 209 db

(e) 213 javac (f) 222 mpegaudio

(g) 227 mtrt (h) 228 jack

Figure A.1: Average percentage: Percentage of live objects that had non-zero status.

�
A.1 Non-Zero Status Words 79

(a) 201 compress (b) 202 jess

(c) 205 raytrace (d) 209 db

(e) 213 javac (f) 222 mpegaudio

(g) 227 mtrt (h) 228 jack

Figure A.2: Worst case percentage: Percentage of live objects that had non-zero status.

80 Complete Results

A.2 Phase Timings

(a) 201 compress (b) 202 jess

(c) 205 raytrace (d) 209 db

(e) 213 javac (f) 222 mpegaudio

(g) 227 mtrt (h) 228 jack

Figure A.3: Phase timings: Sliding Mark Compact

�
A.2 Phase Timings 81

(a) 201 compress (b) 202 jess

(c) 205 raytrace (d) 209 db

(e) 213 javac (f) 222 mpegaudio

(g) 227 mtrt (h) 228 jack

Figure A.4: Phase timings: Mark Compact Free List

82 Complete Results

A.3 Flipped Object Model

(a) 41MB heap

(b) 104MB heap

Figure A.5: Total time summary: Original Object Model vs. Flipped Object Model.

�
A.3 Flipped Object Model 83

(a) 201 compress (b) 202 jess

(c) 205 raytrace (d) 209 db

(e) 213 javac (f) 222 mpegaudio

(g) 227 mtrt (h) 228 jack

Figure A.6: Total time: Original Object Model vs. Flipped Object Model.

84 Complete Results

A.4 Constant Size Header

(a) 201 compress (b) 202 jess

(c) 205 raytrace (d) 209 db

(e) 213 javac (f) 222 mpegaudio

(g) 227 mtrt (h) 228 jack

Figure A.7: Total time: Segregation vs. increasing scalar header size.

�
A.4 Constant Size Header 85

(a) 201 compress (b) 202 jess

(c) 205 raytrace (d) 209 db

(e) 213 javac (f) 222 mpegaudio

(g) 227 mtrt (h) 228 jack

Figure A.8: Average GC time: Segregation vs. increasing scalar header size.

86 Complete Results

(a) 201 compress (b) 202 jess

(c) 205 raytrace (d) 209 db

(e) 213 javac (f) 222 mpegaudio

(g) 227 mtrt (h) 228 jack

Figure A.9: Mutator time: Segregation vs. increasing scalar header size.

�
A.4 Constant Size Header 87

(a) 201 compress (b) 202 jess

(c) 205 raytrace (d) 209 db

(e) 213 javac (f) 222 mpegaudio

(g) 227 mtrt (h) 228 jack

Figure A.10: GC time: Segregation vs. increasing scalar header size.

88 Complete Results

(a) 201 compress (b) 202 jess

(c) 205 raytrace (d) 209 db

(e) 213 javac (f) 222 mpegaudio

(g) 227 mtrt (h) 228 jack

Figure A.11: GC count: Segregation vs. increasing scalar header size.

�
A.5 Free List: Compact vs Sweep 89

A.5 Free List: Compact vs Sweep

(a) Total time

(b) Mutator time

(c) GC time

Figure A.12: Summary: Mark Compact Free List compacting every n GCs (41MB).

90 Complete Results

(a) Total time

(b) Mutator time

(c) GC time

Figure A.13: Summary: Mark Compact Free List compacting every n GCs (104MB).

�
A.5 Free List: Compact vs Sweep 91

(a) 201 compress (b) 202 jess

(c) 205 raytrace (d) 209 db

(e) 213 javac (f) 222 mpegaudio

(g) 227 mtrt (h) 228 jack

Figure A.14: Total time: Mark Compact Free List compacting every n GCs.

92 Complete Results

(a) 201 compress (b) 202 jess

(c) 205 raytrace d) 209 db

(e) 213 javac (f) 222 mpegaudio

(g) 227 mtrt (h) 228 jack

Figure A.15: Average GC time: Mark Compact Free List compacting every n GCs.

�
A.5 Free List: Compact vs Sweep 93

(a) 201 compress (b) 202 jess

(c) 205 raytrace (d) 209 db

(e) 213 javac (f) 222 mpegaudio

(g) 227 mtrt (h) 228 jack

Figure A.16: Mutator time: Mark Compact Free List compacting every n GCs.

94 Complete Results

(a) 201 compress (b) 202 jess

(c) 205 raytrace (d) 209 db

(e) 213 javac (f) 222 mpegaudio

(g) 227 mtrt (h) 228 jack

Figure A.17: GC time: Mark Compact Free List compacting every n GCs.

�
A.5 Free List: Compact vs Sweep 95

(a) 201 compress (b) 202 jess

(c) 205 raytrace (d) 209 db

(e) 213 javac (f) 222 mpegaudio

(g) 227 mtrt (h) 228 jack

Figure A.18: GC count: Mark Compact Free List compacting every n GCs.

96 Complete Results

A.6 Limited Physical Memory

(a) Total time

(b) Mutator time

(c) GC time

Figure A.19: Limited physical memory tests with 96MB physical memory.

�
A.6 Limited Physical Memory 97

(a) Total time

(b) Mutator time

(c) GC time

Figure A.20: Limited physical memory tests with 1GB physical memory.

98 Complete Results

A.7 Performance Bakeoff

(a) Total time

(b) Mutator time

(c) GC time

Figure A.21: Summary: Bakeoff of all non-generational collectors (41MB).

�
A.7 Performance Bakeoff 99

(a) Total time

(b) Mutator time

(c) GC time

Figure A.22: Summary: Bakeoff of all non-generational collectors (104MB).

100 Complete Results

(a) 201 compress (b) 202 jess

(c) 205 raytrace (d) 209 db

(e) 213 javac (f) 222 mpegaudio

(g) 227 mtrt (h) 228 jack

Figure A.23: Total time: Bakeoff of all non-generational collectors.

�
A.7 Performance Bakeoff 101

(a) 201 compress (b) 202 jess

(c) 205 raytrace (d) 209 db

(e) 213 javac (f) 222 mpegaudio

(g) 227 mtrt (h) 228 jack

Figure A.24: Average GC time: Bakeoff of all non-generational collectors.

102 Complete Results

(a) 201 compress (b) 202 jess

(c) 205 raytrace (d) 209 db

(e) 213 javac (f) 222 mpegaudio

(g) 227 mtrt (h) 228 jack

Figure A.25: Mutator time: Bakeoff of all non-generational collectors.

�
A.7 Performance Bakeoff 103

(a) 201 compress (b) 202 jess

(c) 205 raytrace (d) 209 db

(e) 213 javac (f) 222 mpegaudio

(g) 227 mtrt (h) 228 jack

Figure A.26: GC time: Bakeoff of all non-generational collectors.

104 Complete Results

(a) 201 compress (b) 202 jess

(c) 205 raytrace (d) 209 db

(e) 213 javac (f) 222 mpegaudio

(g) 227 mtrt (h) 228 jack

Figure A.27: GC count: Bakeoff of all non-generational collectors.

�
A.8 Generational 105

A.8 Generational

a) 201 compress b) 202 jess

c) 205 raytrace d) 209 db

e) 213 javac f) 222 mpegaudio

g) 227 mtrt h) 228 jack

Figure A.28: Total Time: Generational Mark Compact vs. Mark Sweep.

106 Complete Results

a) 201 compress b) 202 jess

c) 205 raytrace d) 209 db

e) 213 javac f) 222 mpegaudio

g) 227 mtrt h) 228 jack

Figure A.29: Average GC Time: Generational Mark Compact vs. Mark Sweep.

�
A.8 Generational 107

a) 201 compress b) 202 jess

c) 205 raytrace d) 209 db

e) 213 javac f) 222 mpegaudio

g) 227 mtrt h) 228 jack

Figure A.30: Mutator Time: Generational Mark Compact vs. Mark Sweep.

108 Complete Results

a) 201 compress b) 202 jess

c) 205 raytrace d) 209 db

e) 213 javac f) 222 mpegaudio

g) 227 mtrt h) 228 jack

Figure A.31: GC Time: Generational Mark Compact vs. Mark Sweep.

Glossary

barrier, read: Code that is executed whenever an object is read from.

barrier: See write barrier and read barrier.

barrier, write: Code that is executed whenever an object is written to.

bitmap: An area in memory storing an array of bits. Most commonly used for mark-
ing bits.

collection, concurrent: A collection that runs concurrently with mutators.

collection, incremental: A collection that can run in several smaller steps or incre-
ments.

collection, parallel: A collection where multiple kernel threads are involved

collection: The processes of reclaiming space taken by garbage.

garbage: Any object that is not reachable by the executing program but still taking
space in the heap.

garbage collection: See collection.

GC: See collection.

generation: A space containing objects related based on age.

heap residency: The percentage of the total size of the heap that is in use.

heap: The area of memory in which dynamically allocated objects reside.

kernel thread: An operating system thread. Multiple kernel threads (such as when
multiple processors are involved) are truly concurrent while threads within the
runtime are managed by the runtime’s scheduler.

mature space: Any generation in a generational collector other than the nursery. This
term is normally used when there are only two generations.

mutator: A thread or process that runs the user program. This is called the mutator as
it is the way it changes the object graph that is important for automatic memory
management.

nursery: The first generation in a generational collector. Generally speaking, objects
are first allocated into the nursery.

109

110 Glossary

page fault: Occurs when a request is made for a page that is not in the resident set of
pages.

page: The unit at which virtual memory systems manage memory. For the architec-
ture used the page size is 4096 bytes.

policy: A set of rules or algorithm that governs how objects are allocated or collected.

protected memory: Memory that when accessed can be used to trigger operations
such as a barrier, or direct program behaviour such as in the case of handling
invalid or null references.

resident set: The set of pages that is currently in physical memory.

space: An area of virtual memory that have allocation and collection policies attached
to it.

toki: A man that was turned into an ape in the game of the same name by Ocean in
1990. See figure 1.

Figure 1: Toki

virtual memory: In a system with virtual memory, applications deal with virtual ad-
dresses that are mapped to physical memory or a backing store such as disk.
This, among other things, allows protected memory, and ensures processes can
not access each others memory.

Bibliography

ALPERN, B., ATTANASIO, C. R., COCCHI, A., LIEBER, D., SMITH, S., NGO, T., BAR-
TON, J. J., HUMMEL, S. F., SHEPERD, J. C., AND MERGEN, M. 1999. Imple-
menting Jalapeño in Java. In OOPSLA’99 ACM Conference on Object-Oriented Sys-
tems, Languages and Applications, Volume 34(10) of ACM SIGPLAN Notices (Denver,
CO, Oct. 1999), pp. 314–324. ACM Press. (p. 19)

ALPERN, B., ATTANASIO, D., BARTON, J. J., BURKE, M. G., CHENG, P., CHOI, J.-
D., COCCHI, A., FINK, S. J., GROVE, D., HIND, M., HUMMEL, S. F., LIEBER, D.,
LITVINOV, V., MERGEN, M., NGO, T., RUSSELL, J. R., SARKAR, V., SERRANO,
M. J., SHEPHERD, J., SMITH, S., SREEDHAR, V. C., SRINIVASAN, H., AND WHA-
LEY, J. 2000. The Jalapeño virtual machine. IBM System Journal 39, 1 (Feb.).

ALPERN, B., BUTRICO, M., COCCHI, A., DOLBY, J., FINK, S., GROVE, D., AND NGO,
T. 2002. Experiences porting the Jikes RVM to Linux/IA32. In Usenix Java Vir-
tual Machine Research and Technology Symposium (JVM ’02) (San Francisco, CA, Aug.
2002). (p. 19)

APPEL, A. W. 1989. Simple generational garbage collection and fast allocation.
Software Practice and Experience 19, 2, 171–183.

ARNOLD, M., FLINK, S., GROVE, D., HIND, M., AND SWEENEY, P. F. 2000. Adap-
tive Optimization in the Jalapeño JVM. In Proceedings of the ACM SIGPLAN Work-
shop on Dynamic and Adaptive Compilation and Optimization, Volume 35(10) (Boston,
MA, 2000), pp. 47–65. (p. 19)

BACON, D. F., ATTANASIO, C. R., LEE, H. B., RAJAN, V. T., AND SMITH, S. 2001.
Java without the coffee breaks: A nonintrusive multiprocessor garbage collector.
In Proceedings of SIGPLAN 2001 Conference on Programming Languages Design and
Implementation, ACM SIGPLAN Notices (Snowbird, Utah, June 2001). ACM Press.
(p. 10)

BACON, D. F., FINK, S. J., AND GROVE, D. 2002. Space- and Time-Efficient im-
plementation of the Java object model. In European Conference on Object-Oriented
Programming (Malaga, Spain, 2002). (pp. 20, 31)

BACON, D. F., KONURU, R. B., MURTHY, C., AND SERRANO, M. J. 1998. Thin
locks: Featherweight synchronization for java. In SIGPLAN Conference on Program-
ming Language Design and Implementation (1998), pp. 258–268. (p. 21)

BAKER, H. G. 1992. The Treadmill, real-time garbage collection without motion
sickness. ACM SIGPLAN Notices 27, 3 (March), 66–70. (pp. 14, 25)

111

112 Bibliography

BLACKBURN, S. M., CHENG, P., AND MCKINLEY, K. S. 2003. A Garbage Collec-
tion Design and Bakeoff in JMTk: An Efficient Extensible Java Memory Manage-
ment Toolkit. In OOPSLA’03 ACM Conference on Object-Oriented Systems, Languages
and Applications (Anaheim, CA, Oct. 2003). (pp. 1, 5, 9, 15, 26, 53, 58)

BLACKBURN, S. M., JONES, R., MCKINLEY, K. S., AND MOSS, J. E. B. 2002. Belt-
way: Getting around garbage collection gridlock. In Proceedings of SIGPLAN 2002
Conference on Programming Languages Design and Implementation, ACM SIGPLAN
Notices (Berlin, June 2002), pp. 153–164. ACM Press. (pp. 13, 16)

BLACKBURN, S. M. AND MCKINLEY, K. S. 2002. In or out? putting write barriers
in their place. In D. DETLEFS Ed., ISMM’02 Proceedings of the Third International
Symposium on Memory Management, ACM SIGPLAN Notices (Berlin, June 2002),
pp. 175–184. ACM Press. (p. 9)

BLACKBURN, S. M. AND MCKINLEY, K. S. 2003. Ulterior Reference Counting: Fast
Garbage Collection without a Long Wait. In OOPSLA’03 ACM Conference on Object-
Oriented Systems, Languages and Applications (Anaheim, CA, Oct. 2003). (p. 16)

BOEHM, H.-J. AND WEISER, M. 1988. Garbage collection in an uncooperative en-
vironment. Software Practice and Experience 18, 9, 807–820.

BORMAN, S. 2002. Sensible sanitation – Understanding the IBM Java Garbage Col-
lector, parts 1, 2 and 3: Garbage collection. (p. 1)

BURKE, M. G., CHOI, J.-D., FLINK, S., GROVE, D., HIND, M., SARKAR, V., SERRANO,
M. J., SREEDHAR, V. C., SRINIVASAN, H., AND WHALEY, J. 1999. The Jalapeño
Dynamic Optimizing Compiler for Java. In ACM 1999 Java Grande Conference (June
1999), pp. 259–269. (p. 19)

CHENEY, C. J. 1970. A non-recursive list compacting algorithm. Communications of
the ACM 13, 11 (Nov.), 677–8. (p. 12)

COLLINS, G. E. 1960. A method for overlapping and erasure of lists. Communica-
tions of the ACM 3, 12 (Dec.), 655–657. (p. 9)

COMFORT, W. T. 1964. Multiword list items. Communications of the ACM 7, 6 (June).
(p. 8)

DEUTSCH, L. P. AND BOBROW, D. G. 1976. An efficient incremental automatic
garbage collector. Communications of the ACM 19, 9 (Sept.), 522–526. (p. 10)

ECMA. 2002a. ECMA-334: The C# Language Specification (Second ed.). ECMA.
(p. 1)

ECMA. 2002b. ECMA-335: Common Language Infrastructure (Second ed.). ECMA.
(p. 1)

JOHNSTONE, M. S. AND WILSON, P. R. 1997. The memory fragmentation problem:
Solved? In P. DICKMAN AND P. R. WILSON Eds., OOPSLA ’97 Workshop on Garbage
Collection and Memory Management (Oct. 1997). (p. 8)

JONES, R. The garbage collection bibliography. (p. vii)

Bibliography 113

JONES, R. E. 1996. Garbage Collection: Algorithms for Automatic Dynamic Memory
Management. Wiley. With a chapter on Distributed Garbage Collection by R. Lins.
(pp. vii, 4, 5, 8, 11, 12, 13, 14, 15, 25, 29, 30)

JONKERS, H. B. M. 1979. A fast garbage compaction algorithm. Information Process-
ing Letters 9, 1 (July), 25–30. (p. 15)

JOY, B., STEELE, G., GOSLING, J., AND BRACHA, G. 2000. The Java Language Speci-
fication (Second Edition ed.). Addison-Wesley. (pp. 1, 21)

KNUTH, D. E. 1973. The Art of Computer Programming (Second ed.), Volume I: Fun-
damental Algorithms, Chapter 2. Addison-Wesley.

LEVANONI, Y. AND PETRANK, E. 2001. An on-the-fly reference counting garbage
collector for Java. In OOPSLA’01 ACM Conference on Object-Oriented Systems, Lan-
guages and Applications, Volume 36(10) of ACM SIGPLAN Notices (Tampa, FL, Oct.
2001). ACM Press. (p. 10)

LIEBERMAN, H. AND HEWITT, C. E. 1983. A real-time garbage collector based on
the lifetimes of objects. Communications of the ACM 26(6), 419–429. Also report TM–
184, Laboratory for Computer Science, MIT, Cambridge, MA, July 1980 and AI Lab
Memo 569, 1981. (p. 16)

MCBETH, J. H. 1963. On the reference counter method. Communications of the
ACM 6, 9 (Sept.), 575. (p. 10)

MCCARTHY, J. 1960. Recursive functions of symbolic expressions and their com-
putation by machine. Communications of the ACM 3, 184–195.

MICROSYSTEMS, S. 2001. The Java HotSpot Virtual Machine. Technical White Pa-
per. (p. 1)

RICHTER, J. 2000a. Garbage collection: Automatic Memory Management in the
Microsoft .Net Framework. MSDN Magazine. (pp. 1, 15, 75)

RICHTER, J. 2000b. Garbage collection part 2: Automatic Memory Management in
the Microsoft .Net Framework. MSDN Magazine.

SANSOM, P. M. 1991. Dual-mode garbage collection. Technical Report CSTR 91–07
(June), Department of Electronics and Computer Science, University of Southamp-
ton. Proceedings of Third International Workshop on Implementation of Functional Lan-
guages on Parallel Architectures. (p. 75)

SCHORR, H. AND WAITE, W. 1967. An efficient machine independent procedure
for garbage collection in various list structures. Communications of the ACM 10, 8
(Aug.), 501–506. (p. 11)

STANDARD PERFORMANCE EVALUATION CORPORATION. 2003. SPEC JVM
Client98 Help. http://www.spec.org/jvm98/jvm98/doc/benchmarks/index.html.
(p. 58)

UNGAR, D. M. 1984. Generation scavenging: A non-disruptive high performance
storage reclamation algorithm. ACM SIGPLAN Notices 19, 5 (April), 157–167. Also
published as ACM Software Engineering Notes 9, 3 (May 1984) — Proceedings

114 Bibliography

of the ACM/SIGSOFT/SIGPLAN Software Engineering Symposium on Practical
Software Development Environments, 157–167, April 1984. (p. 16)

WILSON, P. R. 1994. Uniprocessor garbage collection techniques. Technical report
(Jan.), University of Texas. Expanded version of the IWMM92 paper. (p. 5)

WILSON, P. R., JOHNSTONE, M. S., NEELY, M., AND BOLES, D. 1995. Dynamic
storage allocation: A survey and critical review. In H. BAKER Ed., Proceedings of
International Workshop on Memory Management, Volume 986 of Lecture Notes in Com-
puter Science (Kinross, Scotland, Sept. 1995). Springer-Verlag. (p. 8)

ZORN, B. 1990. Barrier methods for garbage collection. Technical Report CU-CS-
494-90 (Nov.), University of Colorado, Boulder. (p. 9)

ZORN, B. G. 1989. Comparative Performance Evaluation of Garbage Collection Algo-
rithms. PhD thesis, University of California at Berkeley. Technical Report UCB/CSD
89/544. (pp. 6, 9, 12)

