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Abstract

Two significant revolutions are underway in computing. (1) On the hardware side,
exponentially growing transistor counts in the same area, limited power budget and
the breakdown of MOSFET voltage scaling are forcing power to be the first order
constraint of computer architecture design. Data center electricity costs are billions
of dollars each year in the U.S. alone. To address power constraints and energy
cost, industry and academia propose Asymmetric Multicore Processors (AMP) that
integrate general-purpose big (fast, high power) cores and small (slow, low power)
cores. They promise to improve both single-thread performance and multi-threaded
throughput with lower power and energy consumption. (2) On the software side,
managed languages, such as Java and C#, and an entirely new software landscape of
web applications have emerged. This has revolutionized how software is deployed,
is sold, and interacts with hardware, from mobile devices to large servers. Managed
languages abstract over hardware using Virtual Machine (VM) services (garbage col-
lection, interpretation, and/or just-in-time compilation) that together impose sub-
stantial power and performance overheads. Thus, hardware support for managed
software and managed software utilization of available hardware are critical and per-
vasive problems.

However, hardware and software researchers often examine the changes aris-
ing from these on going revolutions in isolation. Architects mostly grapple with
microarchitecture design through the narrow software context of native sequential
SPEC CPU benchmarks, while language researchers mostly consider microarchitec-
ture in terms of performance alone. This dissertation explores the confluence of the
two trends.

My thesis is that there exists a synergy between managed software and AMP
architectures that can be automatically exploited to reduce VM overheads and de-
liver the efficiency promise of AMP architectures while abstracting over hardware
complexity.

This thesis identifies a synergy between AMP and managed software, and ad-
dresses the challenge of exploiting it through the following three steps. (1) It first
systematically measures and analyzes the power, performance, and energy charac-
teristics of managed software compared to native software on current mainstream
symmetric hardware, which motivates the next part of the thesis. (2) It next demon-
strates that VM services fulfil the AMP workload requirements and tailored small
cores for VM services deliver improvements in performance and energy. (3) Finally,
it introduces a dynamic scheduling algorithm in the VM that manages parallelism,
load balance and core sensitivity for efficiency.

This thesis is the first to quantitatively study measured power and performance
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at the chip level across hardware generations using managed and native workloads,
revealing previously unobserved hardware and software trends. This thesis pro-
poses solutions to the 40% overhead of VM services by using tailored small cores
in AMP architectures. This thesis introduces a new dynamic VM scheduler that of-
fers transparency from AMP heterogeneity and substantial performance and energy
improvements.

Those contributions show that the opportunities and challenges of AMP architec-
tures and managed software are complementary. The conjunction provides a win-
win opportunity for hardware and software communities now confronted with per-
formance and power challenges in an increasingly complex computing landscape.
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Chapter 1

Introduction

This thesis addresses the problem of executing managed software on heterogeneous
hardware efficiently and transparently.

1.1 Problem Statement

In the past decade, computer architecture design changed from being limited by
transistors to being limited by power. While transistor numbers are still scaling up
under Moore’s law, the CMOS threshold voltage set by leakage current is not scaling
down accordingly. As a consequence, under a limited power budget, the fraction
of a chip that can be powered at full speed at one time is decreasing [Esmaeilzadeh
et al., 2011a]. An obvious example is the use of Intel Turbo Boost technique [Intel,
2008]. The technique will power portions of the transistors on a chip at higher fre-
quency while the other transistors are powered off. Another indication is that even
as the transistor size has shrunk in each recent generation, the CPU frequency has
not increased accordingly. Apart from power constraints, energy cost is also a se-
rious issue in PC, server, and portable device markets. Globally, data centers are
estimated currently to consume about US$30B worth of electricity per year [Piszczal-
ski, 2012]. Power and energy problems in all market sectors are redefining the road
for architecture development.

Heterogeneous hardware is recognised by academia and industry as a promising
approach to exploit the abundant transistors of a chip for performance improvement
under a limited power budget. It can accelerate the serial phases of applications on
a few big cores and the parallel phases on many small cores. Some cores can be
tailored for specific purposes. Kumar et al. model a single-ISA asymmetric multicore
architecture [Kumar et al., 2003]. By running applications on the most appropri-
ate cores, they reduce the total energy by 40%. Morad et al. show theoretically that
single-ISA asymmetric multiprocessors can reduce power consumption by more than
two thirds with similar performance compared to symmetric multiprocessors [Morad
et al., 2006]. Vendors are building Asymmetric Multicore Processors (AMPs) already,
such as ARM’s big.LITTLE [Greenhalgh, 2011], Intel QuickIA [Chitlur et al., 2012],
and NVIDIA Tegra 4 [NVIDIA, 2013]. However, heterogeneous processors expose
hardware complexity to software developers. Without software support, the hetero-
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geneous hardware will not be able to deliver on its promise.
The software community is facing orthogonal challenges of a similar magnitude,

with major changes in the way software is deployed, sold, and interacts with hard-
ware. Developers are increasingly choosing managed languages, sacrificing perfor-
mance for programmer productivity, time-to-market, reliability, security, and porta-
bility. Smart phone and tablet applications are predominantly written in managed
languages. Modern web services combine managed languages, such as PHP on the
server side and JavaScript on the client side. In markets as diverse as financial soft-
ware and cell phone applications, Java and .NET are the dominant choices. Until
recently the performance overheads associated with managed languages were made
tolerable by an exponential growth in sequential hardware performance. Unfortu-
nately, this source of mitigation is drying up just as managed languages are becoming
ubiquitous.

The hardware and software communities are thus both facing significant change
and major challenges.

1.2 Scope and Contributions

The aim of my research is to mitigate the two major challenges happening in the
software and hardware worlds—to explore the potential efficiency of heterogeneous
processors while insulating software from this complexity.

There are generally two categories of heterogeneous architectures: those that inte-
grate main cores with accelerators for specific domains (graphics, imaging, security,
speech, etc.) and those that integrate general purpose cores which are normally based
on the same ISA family but asymmetric in performance and power characteristics.
Single-ISA AMPs allow threads to be scheduled between different core types, and
do not necessarily force the redesign of existing software. The single-ISA AMP is the
focus of my thesis. I use Java workloads as the representative of managed software,
since Java has mature virtual machines and sophisticated benchmarks. While spe-
cific quantitative results may vary, the methodologies should be applicable to other
managed languages.

Power measurement and analysis. To exploit the power, energy, and performance
response of different hardware features running with various workloads on
real processors, this thesis is the first to quantitatively study measured power
and performance at the chip level across hardware generations, comparing
managed against native workloads according to different hardware characteris-
tics. The quantitative data reveals thirteen hardware or software findings. Two
themes emerge: (1) energy efficient architecture design (i.e. less energy for the
same task since a pure "race to finish" measure is not sufficient as it can use dis-
proportionate amounts of power) is very sensitive to workload type (native or
managed), and (2) each hardware feature elicits a different power and perfor-
mance response. The variations in responses and the opportunity to mix them
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motivate the exploration of managed software optimization combined with the
use of AMPs.

AMPs and VM services. Researchers often examine the challenges of hardware and
software in isolation. This thesis uses novel hardware/software co-design method-
ologies to solve the challenges together. Heterogeneous hardware will only be
practical if it is transparent to application software. If every new generation
of hardware requires application developers to change their code, developers
are very unlikely to have the time or expertise to use it. This thesis shows
that Virtual Machine (VM) services, such as garbage collection and just-in-time
compilation, can exploit the potential efficiency of AMPs transparently to ap-
plications by running on the small cores. VM services understand and abstract
the hardware. The tailored small cores of AMPs can hide the VM services
overheads and improve total efficiency without any changes to applications.

Managed software scheduler for AMPs. To fully explore the efficiency of AMPs and
abstract over the complexity, we consider the problem of scheduling managed
application threads on AMPs. Managed applications consist of a mess of het-
erogeneous threads with different functions and amounts of work compared
to classic scalable parallel workloads written in native languages. This the-
sis presents a dynamic scheduling algorithm called WASH (Workload Aware
Scheduler for Heterogeneity). WASH can be integrated in managed language
VMs to manage parallelism, load balance, and core sensitivity for both man-
aged application and VM service threads. We show that WASH achieves sub-
stantial performance and energy improvements.

In summary, this thesis addresses the interaction of modern software with emerg-
ing hardware. It shows the potential of exploiting the VM abstraction layer to hide
hardware complexity from applications, and at the same time exploiting the differen-
tiated power and performance characteristics to substantially improve performance
and energy efficiency.

1.3 Thesis Outline

The body of the thesis is structured around the three key contributions outlined
above and starts with related work.

Chapter 2 discusses emerging AMPs and their potential for solving the power
crisis. It presents the related work that proposes to deliver the potential efficiency of
AMPs by scheduling threads to appropriate core types. It introduces a main source
of overhead in managed software—VM services, as well as the relevant literature that
attacks those overheads.

Chapters 3, 4, and 5 comprise the main body of the thesis, covering the three
key contributions. Chapter 3 systematically analyzes the power, performance, and
energy responses of managed software compared with native software, and a vari-
ety of hardware features across five technology generations. For native software, we
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use SPEC CPU2006 and PARSEC as workloads. For managed software, we use SPECjvm,
DaCapo and pjbb2005 as workloads. Chapter 4 identifies the complimentary rela-
tionship of AMP and VM services, which can hide each other’s disadvantages—
complexity and overheads, and exploit each other’s advantages—efficiency and ab-
straction. Chapter 5 describes a new dynamic VM scheduler which schedules both
managed application and VM threads to different core types of AMPs to improve
efficiency. In both Chapter 4 and 5, we use DaCapo and pjbb2005 as managed work-
loads.

Finally, Chapter 6 concludes the thesis, summarizing how my contributions have
identified, quantified, and addressed the challenges of managed software and AMP
architectures. It further identifies key future research directions for emerging hard-
ware and software.



Chapter 2

Background and Related Work

This thesis explores the interplay of Asymmetric Multicore Processors (AMPs) and
managed software. This chapter provides the background information about the
increasing necessity of AMP architectures and how to utilise them for efficiency. Sec-
tion 2.1 introduces AMP architectures and the techniques to expose their potential
energy and performance efficiency. It also explains how Virtual Machines (VMs)
support managed software abstractions and ways to reduce the VM overheads. Sec-
tion 2.2 provides an overview of VMs, with an emphasis on the three major services—
the Garbage Collector (GC), the Just-In-Time compiler (JIT), and the interpreter.

2.1 Single-ISA Asymmetric Multicore Processors

This thesis focuses on single-ISA AMP architectures. This design consists of cores
with the same ISA (instruction set architecture), but different microarchitectural fea-
tures, speed, and power consumption. The single-ISA AMP architecture was pro-
posed by Kumar et al. [2003] to reduce power consumption. The motivation is that
different applications have different resource requirements during their execution.
By choosing the most appropriate core from available cores from different points in
the power and performance design space, specific performance and power require-
ments can be met. Morad et al. show that in theory single-ISA AMP architectures
can reduce power consumption by more than two thirds with similar performance
compared to symmetric multiprocessors [Morad et al., 2006]. Single-ISA AMP ar-
chitectures can be constructed using a set of previously-designed processors with
appropriately modified interfaces, thus reducing the design effort required. For ex-
ample, Intel QuickIA integrates Xeon 5450 and Atom N330 as the big and small cores
via the FSB (front side bus) [Chitlur et al., 2012]. ARM’s big.LITTLE system connect
the Cortex-A15 and Cortex-A7 as the big and small cores via the CCI-400 coherent
interconnect [Greenhalgh, 2011]. Also, code can migrate among different cores with-
out recompilation. However, AMP architectures cannot deliver on the promise of
efficiency without software assistance to schedule threads to appropriate cores. The
following subsection will discuss current proposals to utilize AMP architectures.

5



6 Background and Related Work

2.1.1 AMP Utilization

Several AMP schedulers are proposed in previous work. Most of them make schedul-
ing decisions according to the thread’s microarchitecture characteristics [Saez et al.,
2011, 2012; Craeynest et al., 2012; Kumar et al., 2004; Becchi and Crowley, 2006],
while others do not [Li et al., 2007; Mogul et al., 2008; Saez et al., 2010]. We will
discuss them separately in the following text.

For those algorithms considering the thread’s microarchitecture characteristics,
the fundamental property for making scheduling decisions is speedup factor, that
is, how much quicker a thread retires instructions on a fast core relative to a slow
core [Saez et al., 2012]. Systems either measure or model the speedup factor. To
directly determine speedup, the system runs threads on each core type, getting their
IPC directly [Kumar et al., 2004; Becchi and Crowley, 2006]. To model the speedup,
the system uses thread characteristics such as cache-miss rate, pipeline-stall rate and
the CPU’s memory-access latency. This information can be either gathered online
by performance counters [Saez et al., 2011, 2012; Craeynest et al., 2012], or offline
by using a reuse-distance profile [Shelepov et al., 2009]. By contrast to direct mea-
surements, modelling does not need to migrate threads among different core types
before making scheduling decisions.

Saez et al. gather memory intensity (cache miss rate) information online to model
the speedup while they use an AMP platform with cores only differing in clock
speed [Saez et al., 2011]. More recently, they consider an AMP composed of cores
with different microarchitectures [Saez et al., 2012]. They change the retirement
width of several out-of-order cores in a system to model the behaviour of in-order
cores, while the other cores use their default settings. They use an additive regression
technique from the WEKA machine learning package to find out the performance
counters that contribute more significantly to the resulting speedup factor, which are
IPC, LLC miss rate, L2 miss rate, execution stalls and retirement stalls. The modeled
speedup will be the linear combination of those performance counter values with
their additive-regression factors. Craeynest et al. consider cores with different mi-
croarchitecture too and use MLP and ILP information to estimate CPI for different
core types [Craeynest et al., 2012]. They calculate MLP from LLC misses rate, big
core reorder buffer size, and average data dependancy distance. They calculate ILP
from instruction issue width and the probability of executing a certain number of
instructions in a given cycle on the small cores.

There are several algorithms oblivious to the thread’s microarchitecture character-
istics. Li et al. propose a scheduling algorithm to ensure the load on each core type
is proportional to its computing power and to ensure fast-core-first, which means
threads run on fast cores whenever they are under-utilised [Li et al., 2007]. This al-
gorithm does not consider which threads can benefit the most from the big cores’
resources. Mogul et al. schedule frequently used OS functions to small cores [Mogul
et al., 2008]. This algorithm can only benefit OS-intensive workloads. Saez et al. dy-
namically detect the parallelism of applications [Saez et al., 2010]. If the number of
runnable threads of an application is higher than a threshold, the threads of this ap-
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plication will primarily run on the slow cores. Otherwise those threads will primarily
run on fast cores.

Whether or not the scheduling decisions can be changed while the threads run
determines whether the AMP algorithm is static or dynamic. Static means threads will
not be migrated again once decisions are made [Kumar et al., 2004; Shelepov et al.,
2009; Saez et al., 2011], while dynamic adapts when thread behaviours change [Bec-
chi and Crowley, 2006; Saez et al., 2012] or there is CPU load imbalance [Li et al.,
2007]. For dynamic algorithms, the interval for sampling and migrating affects the
performance, since migration can increase cache misses, especially for NUMA sys-
tems. Li et al. analyze the migration overhead and use a resident-set-based algorithm
to predict the overhead before migration [Li et al., 2007].

Recent work also proposes to schedule critical sections to big cores in AMP ar-
chitectures [Du Bois et al., 2013; Joao et al., 2012, 2013]. Du Bois et al. use a criticality
time array with each entry for each thread to work out which one is the most critical
thread [Du Bois et al., 2013]. After each time interval, the hardware will divide the
time by active thread numbers in that period and add the value to the criticality time
array. The thread with the highest value in the array will be the critical thread, and
will be scheduled to the big cores. Joao et al. measure the cycles of threads having
to wait for each bottleneck, and accelerate the most critical section on the big cores
of the AMP architecture [Joao et al., 2012]. Their approach requires the programmer,
compiler or library code to insert specific instructions to the source code, assisting
hardware to keep track of the bottlenecks. Subsequently, they extend their work to
detect threads that execute longer than other threads and put them on the big cores
too [Joao et al., 2013]. They evaluate the results by using both a single multithreaded
application and multiple multithreaded applications running concurrently. However,
they always set the total number of threads equal to the number of cores.

The AMP scheduler proposed in this thesis schedules threads based on not only
the number of threads, but also the scalable or non-scalable parallelism exhibited by
those threads. It dynamically accelerates the critical thread and shares resources as
appropriate. The prior algorithms do not consider scheduling appropriate threads
on slower cores for energy efficiency, while our scheduler exploits to gain energy
efficiency, especially for threads that are not on the critical path. Furthermore, none
of the prior work considers application and VM service threads together.

2.2 Managed Language Virtual Machines

This section provides some background on modern virtual machines for managed
languages. Figure 2.1 shows the basic VM structure. While executing managed
software, the VM uses dynamic interpretation and JIT compilation to translate stan-
dardised portable bytecode to the binary code of the target physical machine. The
JIT uses dynamic profiling to optimize frequently executed code for performance.
The GC automatically reclaims memory not in use anymore. There are some other
VM services too, such as a scheduler and finalizer. Most of those VM services are
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Figure 2.1: Basic Virtual Machine and structure.

multithreaded, asynchronous, non-critical and have their own hardware behaviour
characteristics. This thesis will focus on the three main services: GC, JIT, and inter-
preter.

There are several mature Java VMs, such as Oracle’s Hotspot, Oracle’s JRockit,
IBM’s J9, and Jikes RVM [Alpern et al., 2005; The Jikes RVM Research Group, 2011].
This thesis mainly uses Oracle’s Hotspot, the most widely used production JVM, and
Jikes RVM, the most widely used research JVM.

2.2.1 Garbage Collector

Managed languages use GC to provide memory safety to applications. Program-
mers allocate heap memory and the GC automatically reclaims it when it becomes
unreachable. GC algorithms are graph traversal problems, amenable to paralleliza-
tion, and fundamentally memory-bound. There are several canonical GC algorithms,
such as reference counting, mark-sweep, semi-space and mark-region. The following
paragraphs will introduce the GCs used in this thesis.

Mark-region collectors divide the heap into fixed sized regions. The collectors
allocate objects into free regions and reclaim regions containing no live objects.
The best performing example of a mark-region algorithm is Immix [Blackburn and
McKinley, 2008]. It uses a hierarchy of blocks and line regions, in which each block
consists of some number of lines. Objects may cross lines but not blocks. Immix
recycles partly used blocks by reclaiming at a fine-grained line granularity. It uses
lightweight opportunistic evacuation to address fragmentation and achieves space
efficiency, fast collection, and continuous allocation for application performance.

Production GCs normally divide the heap into spaces for objects of different ages,
which are called generational GCs [Lieberman and Hewitt, 1983; Ungar, 1984; Moon,
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1984]. The generational hypothesis states that most objects have very short lifetimes,
therefore generational GCs can attain greater collection efficiency by focusing collec-
tion effort on the most recently allocated objects. The youngest generation is nor-
mally known as the nursery and the space containing the oldest objects is known as
the mature space. Different collection policies can be applied to each generation. For
example, Jikes RVM uses a generational collector with an evacuating nursery and an
Immix mature space for its production configuration. The default collector for Oracle
Hotspot uses an evacuating nursery, a pair of semi-spaces as the second generation,
and a mark-sweep-compact mature space. Generational GCs are very effective. The
majority of collectors in practical systems are generational.

There are stop-the-world and concurrent GCs, depending on whether the applica-
tion execution halts or not during a collection. As the application halts and guaran-
tees not to change the object graph while a collection, stop-the-world GC is simpler
to implement and faster than concurrent GC. However, it is not suited to real-time or
interactive programs where application pauses can be unacceptable. Concurrent GC
is designed to reduce this disruption and improve application responsiveness. For
concurrent GC, both collector and application threads are running simultaneously
and synchronize only occasionally. Many concurrent collectors have been proposed,
see for example [Ossia et al., 2002; Printezis and Detlefs, 2000; O’Toole and Nettles,
1984]. The concurrent mark-sweep collector in Jikes RVM uses a classic snapshot-at-
the-beginning algorithm [Yuasa, 1990].

2.2.2 Just-In-Time Compiler

High performance VMs use a JIT to dynamically optimize code for frequently exe-
cuted methods and/or traces. Because the code will have already executed at the
time the optimizing JIT compiles it, the runtime has the opportunity to dynamically
profile the code and tailor optimizations accordingly. The JIT will compile code asyn-
chronously with the application and may compile more than one method or trace at
once.

Compilation strategies may be incrementally more aggressive according to the
heat of the target code. Thus, a typical JIT will have several optimization levels. The
first level may apply register allocation and common sub-expression elimination and
the second level applies optimizations that require more analysis, e.g., loop invariant
code motion and loop pipelining. The compiler also performs feedback-directed
optimizations. For example, it chooses which methods to inline at polymorphic
call sites based on the most frequently executed target thus far. Similarly, it may
perform type specialization based on the most common type, lay out code based
on branch profiles, and propagate run-time constant values. These common-case
optimizations either include code that handles the less frequent cases or that falls
back to the interpreter or recompiles when the assumptions fail.

Each system uses a cost model that determines the expected cost to compile the
code and the expected benefit. For example, the cost model used in Jikes RVM uses
the past to predict the future [Arnold et al., 2000]. Offline, the VM first computes
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compiler DNA: (1) the average compilation cost as a function of code features such as
loops, lines of code, and branches, and (2) average improvements to code execution
time due to the optimizations based on measurements on a large variety of code. The
compiler assumes that if a method has executed for 10% of the time thus far, it will
execute for 10% of the time in the future. At run time, the JIT recompiles a method
at a higher level of optimization if the predicted cost to recompile it at that level and
the reduction in the method execution time will reduce total time.

2.2.3 Interpreter

Many managed languages support dynamic loading and do not perform ahead-of-
time compilation. The language runtime must consequently execute code imme-
diately, as it is loaded. Modern VMs use interpretation, template compilation to
machine code, or simple compilation without optimizations (all of which we refer
to as interpretation for convenience). An interpreter is thus highly responsive but
offers poor code quality. Advanced VMs will typically identify frequently executed
code and dynamically optimize it using an optimizing compiler. In steady state,
performance-critical code is optimized and the remaining code executes via the in-
terpreter. One exception is the .NET framework for C#, which compiles all code with
many optimizations immediately, only once, at load time. The interpreter itself is not
parallel, but it will reflect any parallelism in the application it executes.

2.2.4 VM Overhead

This section will introduce the related work on studying overheads of VM services
and how to reduce those overheads while improving managed software performance.
Most of the works focus on improving the software algorithm or building specific
hardware for that purpose. There are few works focusing on fulfilling the task
through utilizing the available hardware efficiently.

2.2.4.1 VM Performance Overhead Studies

There have been many studies analyzing and optimizing the performance overheads
of VM services since the earlier days of language VMs such as Lisp interpreter [Mc-
Carthy, 1978], SmallTalk VM [Deutsch and Schiffman, 1984] and others. Here we
summarize some of the more recent relevant papers.

Arnold et al. describe the adaptive optimization system of Jikes RVM [Arnold
et al., 2000]. The system uses low-overhead sampling technique to drive adaptive and
online feedback-directed multilevel optimization. The overhead of this optimization
system is 8.6% in start-up period and 6.0% for long-running period (accumulative
timings of five runs for the same benchmark) using SPECjvm98.

Ha et al. introduce a concurrent trace-based JIT that use novel lock-free synchro-
nization to trace, compile, install, and stitch traces on a separate core to improve
responsiveness and throughput [Ha et al., 2009]. It also opens up the possibility of



§2.2 Managed Language Virtual Machines 11

increasing the code quality with compiler optimizations without sacrificing the appli-
cation pause time. The paper shows the interpreter and JIT time in Tamarin-Tracing
VM using the SunSpider JavaScript benchmark suite. When using sequential JIT, the
compilation time ranges from 0.2% to 24.6% and the range for interpreter is 0.4% to
58.0%. By using concurrent JIT, the throughput can increase 5% on average and up
to 36%.

Blackburn et al. give detailed performance studies of three whole heap GCs and
generational counterparts: semi-space, mark-sweep and reference counting [Black-
burn et al., 2004]. They measure the GC and application execution time for differ-
ent benchmarks as a function of heap size for different GC algorithms. They also
evaluate the impact of GC on application’s cache locality. The conclusions from ex-
periments include that (1) GC and total execution time are sensitive to heap size; (2)
generational GC performs much better than their whole heap variants; and (3) the
contiguous allocation of collectors attains significant locality benefits over free-list
allocators.

2.2.4.2 VM Energy Overhead Studies

In contrast to the number of studies conducted into performance, there are fewer
studies that evaluate power and energy overhead of VM services.

Chen et al. study mark-sweep GC using an energy simulator and the Shade
SPARC simulator, which is configured to be a cacheless SoC [Chen et al., 2002]. They
use embedded system benchmarks, ranging from utility programs used in hand-held
devices to wireless web browser to game programs. Their results show that the GC
costs 4% in total energy. They also develop a mechanism to improve leakage energy
by using a GC-controlled optimization to shut off memory banks without live data.

Velasco et al. study the energy consumption of state-of-the-art GCs (e.g., mark-
sweep, semi-space, and generational GC) and their impact on total energy cost for
designing embedded systems [Velasco et al., 2005]. They use Jikes RVM, Dynamic
SimpleScalar (DSS) [Huang et al., 2003], and combine DSS with a CACTI energy/de-
lay/area model to calculate energy. Their energy simulation results follow the perfor-
mance measurements from prior work [Blackburn et al., 2004]. They use SPECjvm98
benchmarks and divide the benchmarks into three scenarios: limited memory use,
C-like memory use, and medium to high amounts of memory use. For the second
scenario, the copying collector with mark-sweep gets the best energy results and the
generational GC achieves the best for the third scenario. However, their results show
GC costs 25% to 50% in the second and third scenarios, which is a big contrast with
prior results.

Hu and John evaluate the performance and energy overhead of GC and JIT compi-
lation, and their impact on application energy consumption on a hardware adaption
framework [Hu et al., 2005] implemented with DSS and Jikes RVM [Hu and John,
2006]. In their evaluation, for SPECjvm benchmarks, JIT costs around 10% in total
on average. GC costs depend on the heap size, ranging from 5% to 18% on average.
By using the adaptive framework, they study the preferences of configurable units
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(issue queue, reorder buffer, L1 and L2 caches) on the JIT and GC. Their results show
that GCs prefer simple cores for energy efficiency. GCs can use smaller cache, issue
queue, and reorder buffer with minimal performance impact. A JIT requires larger
data caches than normal applications, but smaller issue queues and reorder buffers.

While the work described above uses simulators, our work measures the power
and energy overhead of GC and JIT on real machines. The interpreter’s power and
energy overhead was not measured due to the sampling frequency limitations of the
measurement hardware.

2.2.4.3 Hardware Support for GC

There exist many proposals for hardware supported GC [Moon, 1985; Ungar, 1987;
Wolczko and Williams, 1992; Nilsen and Schmidt, 1994; Wise et al., 1997; Srisa-an
et al., 2003; Meyer, 2004, 2005, 2006; Stanchina and Meyer, 2007b,a; Horvath and
Meyer, 2010; Click et al., 2005; Click, 2009; Cher and Gschwind, 2008; Maas et al.,
2012; Bacon et al., 2012]. The goals for this work are mainly to eliminate GC pauses
and improve safety, reliability, and predictability. Some works aim to have a better
use of the available hardware by offloading GC to it.

The first use of hardware to support GC was in Lisp machines [Moon, 1985]. In
those machines, special microcode accompanies the implementation of each mem-
ory fetch or store operation. The worst-case latencies are improved, but the runtime
overhead and the throughput are not improved. The following projects, Smalltalk on
a RISC (SOAR) [Ungar, 1987] and Mushroom [Wolczko and Williams, 1992], target
improving the throughput, but not the worst-case latencies of GC. At that time, since
the target audience was small for such special-purpose architectures, major software
developers did not consider it economical to port their products to specialized archi-
tectures.

Starting in the 1990s, to avoid the pitfalls of special purpose machines, researchers
proposed active memory modules with hardware support for GC, including Nilsen
and Schmidt’s garbage collected memory module [Nilsen and Schmidt, 1994], Wise
et al.’s reference count memory [Wise et al., 1997] and Srisa-an et al.’s active memory
processor [Srisa-an et al., 2003]. This technology investment may be shared between
users of many different processor architectures. However, the hardware cost for the
memory module is relatively high and depends on the size of the garbage collected
memory.

Meyer’s group published a series of works exploring hardware support for GC [Meyer,
2004, 2005, 2006; Stanchina and Meyer, 2007b,a; Horvath and Meyer, 2010]. They ini-
tially developed a novel processor architecture with an object-based RISC main core
and a small, microcoded on-chip GC coprocessor. Because of the tight coupling
of processor and collector, all synchronization mechanisms for real-time GC are ef-
ficiently realized in hardware. Both read barrier checking and read barrier fault
handling are entirely realized in hardware [Meyer, 2004, 2005, 2006]. Based on this
initial system, they then introduced a hardware write barrier for generational GC
to detect inter-generational pointers and execute all related book-keeping operations
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entirely in hardware. The runtime overhead of generational GC is reduced to near
zero [Stanchina and Meyer, 2007a]. In recent work, they developed a low-cost multi-
core GC coprocessor to solve the synchronization problem for parallel GCs [Horvath
and Meyer, 2010].

Azul Systems built a custom chip to run Java business applications [Click et al.,
2005; Click, 2009]. They redesigned about 50% of the CPU and built their own OS
and VM. The chips have special support for read and write barriers, fast user-mode
trap handlers, cooperative pre-emption, and special TLB support, which enable a
highly concurrent, parallel and compacting GC algorithm capable of handling very
large heaps and large numbers of processors.

Several proposals use specialized processing units designed for something else
to run GC. Cher and Gschwind offload the mark phase to the SPE co-processor on a
Cell system [Cher and Gschwind, 2008]. Maas et al. offload GC to a GPU, motivated
by the observation that consumer workloads often underutilize GPU and create an
opportunity to offload some system tasks to GPU [Maas et al., 2012]. They show a
new algorithm, and variations thereof, for performing the mark phase of a mark-
sweep GC on the GPU by using a highly parallel queue-based breadth-first search.
They use an AMD APU integrating CPU and GPU into a single device as a test
platform. The performance result of this GPU-based GC turns out to be 40 to 80%
slower than CPU-based collector, partly because of the large data transfer overhead
between the CPU and GPU, and the limited memory space for the GPU.

In very recent work, Bacon et al. implement the first complete GC in hardware (as
opposed to hardware-assist or microcode) [Bacon et al., 2012]. By using a concurrent
snapshot algorithm and synthesising it into hardware, the collector provides single-
cycle access to the heap and never stalls the mutator for a single cycle. Compared to
the work before, the CPU does not need modification, and also the heap size does
not need to be larger than the maximum live data. However, they trade flexibility in
memory layout for large gains in collector performance. The shape of the objects (the
size of the data fields and the location of pointers) is fixed. Results show this com-
plete hardware GC achieves higher throughput and lower latency, memory usage,
and energy consumption than stop-the-world collection.

Our work focuses more broadly on all VM services and in the context of AMP
hardware, which is general purpose.

2.3 Summary

This chapter discussed how the prior work addresses the AMP architectures hard-
ware complexity, as well as the overheads for managed software. In the following
chapters, we will explain how to bring the two tracks together to hide each other’s
disadvantages and exploit their advantages. To more deeply understand the interac-
tion of hardware and software in a modern setting, we start with measurements. We
perform a detailed analysis of the power, energy and performance characteristics of
managed as well as native software on a range of hardware features.
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Chapter 3

Power and Performance
Characteristics for Language and
Hardware

To improve the efficiency of hardware supporting managed software and managed
software utilising available hardware, we need to comprehensively understand the
power, performance and energy characteristics of current hardware features and soft-
ware. This chapter reports and analyzes measured chip power and performance on
five process technology generations covering six hardware features (chip multipro-
cessors, simultaneous multithreading, clock scaling, die shrink, microarchitecture
and turbo boost) executing a diverse set of benchmarks.

This chapter is structured as follows. Section 3.2 describes the hardware, work-
load, measurements, and software configuration. Section 3.3 examines the energy
tradeoffs made by each processor over time and conducts a Pareto energy efficiency
analysis to find out which hardware settings are more efficient for managed and
native benchmarks. Section 3.4 explores the energy impact of hardware features.

This chapter describes work published in the paper “Looking Back on the Lan-
guage and Hardware Revolutions: Measured Power, Performance, and Scaling” [Es-
maeilzadeh, Cao, Yang, Blackburn, and McKinley, 2011b], in the paper “What is Hap-
pening to Power, Performance, and Software?” [Esmaeilzadeh, Cao, Yang, Blackburn,
and McKinley, 2012a], and in the paper“Looking Back and Looking Forward: Power,
Performance, and Upheaval” [Esmaeilzadeh, Cao, Yang, Blackburn, and McKinley,
2012b]. All the data are published in the ACM Digital Library as a companion to
this paper [Esmaeilzadeh, Cao, Yang, Blackburn, and McKinley, 2011c]. In this col-
laboration, I was primarily responsible for managed software and hardware feature
analysis.

3.1 Introduction

Quantitative performance analysis is the foundation for computer system design and
innovation. In their classic paper, Emer and Clark noted that “A lack of detailed tim-
ing information impairs efforts to improve performance” [Emer and Clark, 1984].

15
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They pioneered the quantitative approach by characterizing instruction mix and cy-
cles per instruction on timesharing workloads. They surprised expert reviewers by
demonstrating a gap between the theoretical 1 MIPS peak of the VAX-11/780 and
the 0.5 MIPS it delivered on real workloads [Emer and Clark, 1998]. Industry and
academic researchers in software and hardware all use and extend this principled
performance analysis methodology. Our research applies this quantitative approach
to measured power. This work is timely because the past decade heralded the era of
power and energy constrained hardware design. A lack of detailed energy measure-
ments is impairing efforts to reduce energy consumption on modern workloads.

Using controlled hardware configurations, we explore the energy impact of hard-
ware features and workloads. We perform historical and Pareto analyses that identify
the most power and performance efficient designs in our architecture configuration
space. Our data quantifies a large number of workload and hardware trends with
precision and depth, some known and many previously unreported. Our diverse
findings include the following: (a) native sequential workloads do not approximate
managed workloads or even native parallel workloads; (b) diverse application power
profiles suggest that future applications and system software will need to participate
in power optimization and management; and (c) software and hardware researchers
need access to real measurements to optimize for power and energy.

3.2 Methodology

This section describes our benchmarks, compilers, Java Virtual Machines, operating
system, hardware, and performance measurement methodologies.

3.2.1 Benchmarks

The following methodological choices in part prescribe our choice of benchmarks.
(1) Individual benchmark performance and average power: We measure execution time
and average power of individual benchmarks in isolation and aggregate them by
workload type. While multi-programmed workload measurements, such as SPECrate
can be valuable, the methodological and analysis challenges they raise are beyond the
scope of this thesis. (2) Language and parallelism: We systematically explore native /
managed, and scalable / non-scalable workloads. We create four benchmark groups
in the cross product and weight each group equally.

Native Non-scalable: C, C++ and Fortran single threaded benchmarks from SPEC

CPU2006.
Native Scalable: Multithreaded C and C++ benchmarks from PARSEC.
Java Non-scalable: Single and multithreaded benchmarks that do not scale well

from SPECjvm, DaCapo 06-10-MR2, DaCapo 9.12, and pjbb2005 [Blackburn et al.,
2006].

Java Scalable: Multithreaded benchmarks from DaCapo 9.12, selected because their
performance scales similarly to Native Scalable on the i7 (45).
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Grp Src Name Time (s) Description
N

at
iv

e
N

on
-s

ca
la

bl
e

SI

perlbench 1037 Perl programming language
bzip2 1563 bzip2 Compression
gcc 851 C optimizing compiler
mcf 894 Combinatorial opt/singledepot vehicle scheduling
gobmk 1113 AI: Go game
hmmer 1024 Search a gene sequence database
sjeng 1315 AI: tree search & pattern recognition
libquantum 629 Physics / Quantum Computing
h264ref 1533 H.264/AVC video compression
omnetpp 905 Ethernet network simulation based on OMNeT++
astar 1154 Portable 2D path-finding library
xalancbmk 787 XSLT processor for transforming XML

SF

gamess 3505 Quantum chemical computations
milc 640 Physics/quantum chromodynamics (QCD)
zeusmp 1541 Physics/Magnetohydrodynamics based on ZEUS-MP
gromacs 983 Molecular dynamics simulation
cactusADM 1994 Cactus and BenchADM physics/relativity kernels
leslie3d 1512 Linear-Eddy Model in 3D computational fluid dynamics
namd 1225 Parallel simulation of large biomolecular systems
dealII 832 PDEs with adaptive finite element method
soplex 1024 Simplex linear program solver
povray 636 Ray-tracer
calculix 1130 Finite element code for linear and nonlinear 3D structural applications
GemsFDTD 1648 Solves the Maxwell equations in 3D in the time domain
tonto 1439 Quantum crystallography
lbm 1298 Lattice Boltzmann Method for incompressible fluids
sphinx3 2007 Speech recognition

N
at

iv
e

Sc
al

ab
le

PA

blackscholes 482 Prices options with Black-Scholes PDE
bodytrack 471 Tracks a markerless human body
canneal 301 Minimizes the routing cost of a chip design with cache-aware simulated annealing
facesim 1230 Simulates human face motions
ferret 738 Image search
fluidanimate 812 Fluid motion physics for realtime animation with SPH algorithm
raytrace 1970 Uses physical simulation for visualization
streamcluster 629 Computes an approximation for the optimal clustering of a stream of data points
swaptions 612 Prices a portfolio of swaptions with the Heath-Jarrow-Morton framework
vips 297 Applies transformations to an image
x264 265 MPEG-4 AVC / H.264 video encoder

Ja
va

N
on

-s
ca

la
bl

e

SJ

compress 5.3 Lempel-Ziv compression
jess 1.4 Java expert system shell
db 6.8 Small data management program
javac 3.0 The JDK 1.0.2 Java compiler
mpegaudio 3.1 MPEG-3 audio stream decoder
mtrt 0.8 Dual-threaded raytracer
jack 2.4 Parser generator with lexical analysis

D6
antlr 2.9 Parser and translator generator
bloat 7.6 Java bytecode optimization and analysis tool

D9

avrora 11.3 Simulates the AVR microcontroller
batik 4.0 Scalable Vector Graphics (SVG) toolkit
fop 1.8 Output-independent print formatter
h2 14.4 An SQL relational database engine in Java
jython 8.5 Python interpreter in Java
pmd 6.9 Source code analyzer for Java
tradebeans 18.4 Tradebeans Daytrader benchmark
luindex 2.4 A text indexing tool

JB pjbb2005 10.6 Transaction processing, based on SPECjbb2005

Ja
va

Sc
al

ab
le

D9

eclipse 50.5 Integrated development environment
lusearch 7.9 Text search tool
sunflow 19.4 Photo-realistic rendering system
tomcat 8.6 Tomcat servlet container
xalan 6.9 XSLT processor for XML documents

Table 3.1: Benchmark Groups; Source: SI: SPEC CINT2006, SF: SPEC CFP2006, PA: PARSEC,
SJ: SPECjvm, D6: DaCapo 06-10-MR2, D9: DaCapo 9.12, and JB: pjbb2005.
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Execution Time Power
average max average max

Average 1.2% 2.2% 1.5% 7.1%

Native Non-scalable 0.9% 2.6% 2.1% 13.9%
Native Scalable 0.7% 4.0% 0.6% 2.5%

Java Non-scalable 1.6% 2.8% 1.5% 7.7%
Java Scalable 1.8% 3.7% 1.7% 7.9%

Table 3.2: Experimental error. Aggregate 95% confidence intervals for measured
execution time and power, showing average and maximum error across all processor
configurations, and all benchmarks.

Native and managed applications embody different tradeoffs between performance,
reliability and portability. In this setting, it is impossible to meaningfully separate
language from workload. We therefore offer no commentary on the virtue of a lan-
guage choice, but rather, reflect the measured reality of two workload classes that are
ubiquitous in today’s software landscape.

We draw 61 benchmarks from six suites to populate these groups. We weight
each group equally in our aggregate measurements; see Section 3.2.6 for more de-
tails on aggregation. We use Java to represent the broader class of managed lan-
guages because of its mature VM technology and benchmarks. Table 3.1 shows the
benchmarks, their groupings, the suite of origin, the reference running time (see Sec-
tion 3.2.6) to which we normalize our results, and a short description. In the case
of native benchmarks, all single threaded benchmarks are non-scalable and all par-
allel multithreaded native benchmarks are scalable up to eight hardware contexts,
the maximum we explore. By scalable, we mean that adding hardware contexts im-
proves performance. Bienia et al. also find that the PARSEC benchmarks scale up to
8 hardware contexts [Bienia et al., 2008]. To create a comparable group of scalable
Java programs, we put multithreaded Java programs that do not scale well in the
non-scalable category.

3.2.1.1 Native Non-scalable Benchmarks

We use 27 C, C++, and Fortran codes from the SPEC CPU2006 suite [Standard Per-
formance Evaluation Corporation, 2006] for Native Non-scalable and all are single
threaded. The 12 SPEC CINT benchmarks represent compute-intensive integer applica-
tions that contain sophisticated control flow logic, and the 15 SPEC CFP benchmarks
represent compute-intensive floating-point applications. These native benchmarks
are compiled ahead-of-time. We chose Intel’s icc compiler because we found that
it consistently generated better performing code than gcc. We compiled all of the
Native Non-scalable benchmarks with version 11.1 of the 32-bit Intel compiler suite
using the -o3 optimization flag, which performs aggressive scalar optimizations. We
used the 32-bit compiler suite because the 2003 Pentium 4 (130) does not support 64-
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bit. This flag does not include any automatic parallelization. We compiled each
benchmark once, using the default Intel compiler configuration, without setting any
microarchitecture-specific optimizations, and used the same binary on all platforms.
We exclude 410.bwaves and 481.wrf because they failed to execute when compiled with
the Intel compiler. Three executions are prescribed by SPEC. We report the mean
of these three successive executions. Table 3.2 shows that aggregate 95% confidence
intervals are low for execution time and power: 1.2% and 1.5% respectively.

3.2.1.2 Native Scalable Benchmarks

The Native Scalable benchmarks consists of 11 C and C++ benchmarks from the PAR-

SEC suite [Bienia et al., 2008]. The benchmarks are intended to be diverse and forward
looking parallel algorithms. All but one uses POSIX threads and one contains some
assembly code. We exclude freqmine because it is not amenable to our scaling exper-
iments, in part, because it does not use POSIX threads. We exclude dedup from our
study because it has a large working set that exceeds the amount of memory avail-
able on the 2003 Pentium 4 (130). The multithreaded PARSEC benchmarks include gcc
compiler configurations, which worked correctly. The icc compiler failed to produce
correct code for many of the PARSEC benchmarks with similar configurations. Con-
sequently we used the PARSEC default gcc build scripts with gcc version 4.4.1. The
gcc scripts use -O3 optimization. We report the mean of five successive executions
of each benchmark. We use five executions, which as Table 3.2 shows, gives low
aggregate 95% confidence intervals for execution time and power: 0.9% and 2.1% on
average.

3.2.1.3 Java Non-scalable Benchmarks

The Java Non-scalable group includes benchmarks from SPECjvm, both releases of Da-
Capo, and pjbb2005 that do not scale well. It includes both single threaded and mul-
tithreaded benchmarks. SPECjvm is intended to be representative of client-side Java
programs. Although the SPECjvm benchmarks are over ten years old and Blackburn
et al. have shown that they are simple and have a very small instruction cache and
data footprint [Blackburn et al., 2006], many researchers still use them. The DaCapo
Java benchmarks are intended to be diverse, forward-looking, and non-trivial [Black-
burn et al., 2006; The DaCapo Research Group, 2006]. The benchmarks come from
major open source projects under active development. Researchers have not reported
extensively on the 2009 release, but it was designed to expose richer behavior and
concurrency on large working sets. We exclude tradesoap because its heavy use of
sockets suffered from timeouts on the slowest machines. We use pjbb2005, which is a
fixed-workload variant of SPECjbb2005 [Standard Performance Evaluation Corpora-
tion, 2010] that holds the workload, instead of time, constant. We configure pjbb2005
with 8 warehouses and 10,000 transactions per warehouse. We include the follow-
ing multithreaded benchmarks in Java Non-scalable: pjbb2005, avrora, batik, fop, h2,
jython, pmd, and tradebeans. As we show below, these applications do not scale well.
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Figure 3.1: Scalability of Java multithreaded benchmarks on i7 (45), comparing four
cores with two SMT threads per core (4C2T) to one core with one SMT thread (1C1T).

Section 3.2.2 discusses the measurement methodology for Java. Table 3.2 indicates
low aggregate 95% confidence intervals for execution time and power: 1.6% and
1.5%.

3.2.1.4 Java Scalable Benchmarks

The Java Scalable group includes the multithreaded Java benchmarks that scale simi-
larly to the Native Scalable benchmarks. Figure 3.1 shows the scalability of the multi-
threaded Java benchmarks. The five most scalable are: sunflow, xalan, tomcat, lusearch
and eclipse, all from DaCapo 9.12. Together, they speed up on average by a factor of
3.4 given eight hardware contexts compared to one context on the i7 (45). Our Native
Scalable benchmarks scale better on this hardware, improving by a factor of 3.8. Al-
though eliminating lusearch and eclipse would improve average scalability, it would
reduce the number of benchmarks to three, which we believe is insufficient. Table 3.2
shows low aggregate 95% confidence intervals for execution time and power: 1.8%
and 1.7%.

3.2.2 Java Virtual Machines and Measurement Methodology

We report results using an Oracle (Sun) HotSpot build 16.3-b01 Java 1.6.0 VM. We did
some additional experiments with Oracle JRockit build R28.0.0-679-130297 and IBM
J9 build pxi3260sr8. Figure 3.2 shows the difference of running time and energy for
Java benchmarks on three different VMs on an i7 (45) (each point is one benchmark).
Exploring the influence of the choice of native compiler and JVM on power and
energy is an interesting avenue for future research.

To measure both Java Non-scalable and Java Scalable, we follow the recommended
methodologies for measuring Java [Georges et al., 2007; Blackburn et al., 2008]. We
use the -server flag and fix the heap size at a generous 3× the minimum required
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Figure 3.2: The choice of JVM affects energy and performance. Benchmark time and
energy on three different Java VMs on i7 (45), normalized to each benchmark’s best
result of the three VMs. A result of 1.0 reflect the best result on each axis.

for each benchmark. We did not set any other JVM flags. We report the fifth iteration
of each benchmark within a single invocation of the JVM to capture steady state
behavior. This methodology avoids class loading and heavy compilation activity
that often dominates the early phases of execution. The fifth iteration may still have
a small amount of compiler activity, but has sufficient time to optimize frequently
executed code. We perform this process twenty times and report the mean. Table 3.2
reports the measured error. We require twenty invocations to generate a statistically
stable result because the adaptive JIT and GC induce non-determinism. In contrast to
the compiled ahead-of-time native configurations, Java compilers may dynamically
produce microarchitecture-specific code.

3.2.3 Operating System

We perform all the experiments using 32-bit Ubuntu 9.10 Karmic with the 2.6.31
Linux kernel. We use a 32-bit OS and compiler builds because the 2003 Pentium 4 (130)
does not support 64-bit. Exploring the impact of word size is also interesting future
work.

3.2.4 Hardware Platforms

We use eight IA32 processors, manufactured by Intel using four process technologies
(130 nm, 65 nm, 45 nm, and 32 nm), representing four microarchitectures (NetBurst,
Core, Bonnell, and Nehalem). Table 3.3 lists processor characteristics: uniquely iden-
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tifying sSpec number, release date / price; CMP and SMT (nCmT means n cores, m
SMT threads per core), die characteristics; and memory configuration. Intel sells a
large range of processors for each microarchitecture—the processors we use are just
samples within that space. Most of our processors are mid-range desktop processors.
The release date and release price in Table 3.3 provides the context regarding Intel’s
placement of each processor in the market. The two Atoms and the Core 2Q (65) Kents-
field are extreme points at the bottom and top of the market respectively.

3.2.5 Power Measurement

In contrast to whole system power studies [Isci and Martonosi, 2003; Bircher and
John, 2004; Le Sueur and Heiser, 2010], we measure on-chip power. Whole system
studies measure AC current to an entire computer, typically with a clamp amme-
ter. To measure on-chip power, we must isolate and measure DC current to the
processor on the motherboard, which cannot be done with a clamp ammeter. We
use Pololu’s ACS714 current sensor board, following prior methodology [Pallipadi
and Starikovskiy, 2006]. The board is a carrier for Allegro’s ±5 A ACS714 Hall effect-
based linear current sensor. The sensor accepts a bidirectional current input with a
magnitude up to 5 A. The output is an analog voltage (185 mV/A) centered at 2.5 V
with a typical error of less than 1.5%. The sensor on i7 (45), which has the highest
power consumption, accepts currents with magnitudes up to 30 A.

Each of our experimental machines has an isolated power supply for the proces-
sor on the motherboard, which we verified by examining the motherboard specifica-
tion and confirmed empirically. This requirement precludes measuring, for example
the Pentium M, which would have given us a 90 nm processor. We place the sensors
on the 12 V power line that supplies only the processor. We experimentally measured
voltage and found it was very stable, varying less than 1%. We send the measured
values from the current sensor to the measured machine’s USB port using Sparkfun’s
Atmel AVR Stick, which is a simple data-logging device. We use a data-sampling
rate of 50 Hz. We execute each benchmark, log its measured power values, and then
compute the average power consumption over the duration of the benchmark.

To calibrate the meters, we use a current source to provide 28 reference currents
between 300 mA and 3 A, and for each meter record the output value (an integer in
the range 400-503). We compute linear fits for each of the sensors. Each sensor has an
R2 value of 0.999 or better, which indicates an excellent fit. The measurement error
for any given sample is about 1%, which reflects the fidelity of the quantization (103
points).

3.2.6 Reference Execution Time, Reference Energy, and Aggregation

As is standard, we weight each benchmark equally within each workload group,
since the execution time of the benchmark is not necessarily an indicator of bench-
mark importance. For example, the benchmark running time for SPEC CPU2006 and
PARSEC can be two orders of magnitude longer than DaCapo. Furthermore, we want to
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represent each of our benchmark groups equally. These goals require (1) a reference
execution time and a reference energy value for each benchmark for normalization,
and (2) an average of the benchmarks in each workload group. Since the average
power of a benchmark is not directly biased by execution time, we use it directly
in the power analysis. We also normalize energy to a reference, since energy is the
integral of power over time and practically we use the average of the sampled power
multiplied by time to calculate energy.

Table 3.1 shows the reference running time we use to normalize the execution
time and energy results. As we need to fairly evaluate each machine, not their be-
haviour relative to a specific machine, to avoid biasing performance measurements
to the strengths or weaknesses of one architecture, we normalize individual bench-
mark execution times to its average execution time executing on four architectures.
We choose the Pentium 4 (130), Core 2D (65), Atom (45), and i5 (32) to capture all four
microarchitectures and all four technology generations in this study. The reference
energy is the average power on these four processors times the average runtime in-
stead of the average energy of those four processors to be consistent throughout.
Given a power and time measurement, we compute energy and then normalize it to
the reference energy.

Table 3.1 shows that the native workloads tend to execute for much longer than
the managed workloads. Measuring their code bases is complicated because of the
heavy use of libraries by the managed languages and by PARSEC. However, some
native benchmarks are tiny and many PARSEC codes are fewer than 3000 lines of non-
comment code. These estimates show that the size of the native and managed appli-
cation code bases alone (excluding libraries) does not explain the longer execution
times. There is no evidence that native execution times are due to more sophisticated
applications; instead these longer execution times are often due to more repetition.

The averages equally weight each of the four benchmark groups. We report re-
sults for each group by taking the arithmetic mean of the benchmarks within the
group. We use the mean of the four groups for the overall average. This aggregation
avoids bias due to the varying number of benchmarks within each group (from 5
to 27). Table 3.4 and Table 3.5 show the normalized performance and the measured
power for each of the processors and each of the benchmark groups. The table in-
dicates the weighted average (Avgw), which is the average of the four groups and
we use throughout the chapter, and for comparison, the simple average of all of the
benchmarks (Avgb). The table also records the highest and lowest performance and
power measures seen on each of the processors.

3.2.7 Processor Configuration Methodology

We evaluate the eight stock processors and configure them for a total of 45 proces-
sor configurations. We produce power and performance data for each benchmark
for each configuration, which is available for downloading at the ACM Digital Li-
brary [Esmaeilzadeh, Cao, Yang, Blackburn, and McKinley, 2011c]. To explore the
influence of architectural features, we control for clock speed and hardware contexts.
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Speedup Over Reference
Processor NN NS JN JS Avgw Avgb Min Max

Pentium 4 0.91 6 0.79 7 0.80 6 0.75 7 0.82 6 0.85 6 0.51 6 1.25 6

Core 2 Duo E6600 2.02 5 2.10 5 1.99 5 2.04 5 2.04 5 2.03 5 1.40 4 2.85 5

Core 2 Quad Q6600 2.04 4 3.62 3 2.04 4 3.09 3 2.70 3 2.41 4 1.39 5 4.67 3

Atom 230 0.49 8 0.52 8 0.53 8 0.52 8 0.52 8 0.51 8 0.39 8 0.75 8

Core i7 920 3.11 2 6.25 1 3.00 2 5.49 1 4.46 1 3.84 1 2.16 2 7.60 1

Core 2 Duo E7600 2.48 3 2.76 4 2.49 3 2.44 4 2.54 4 2.53 3 1.45 3 3.71 4

Atom D510 0.53 7 0.96 6 0.61 7 0.86 6 0.74 7 0.66 7 0.41 7 1.17 7

Core i5 670 3.31 1 4.46 2 3.18 1 4.26 2 3.80 2 3.56 2 2.39 1 5.42 2

Table 3.4: Average performance characteristics. The rank for each measure is indi-
cated in small font. The machine list is ordered by release date.

Power (W)
Processor NN NS JN JS Avgw Avgb Min Max

Pentium 4 42.1 7 43.5 6 45.1 7 45.7 6 44.1 6 43.5 7 34.5 7 50.0 6

Core 2 Duo E6600 24.3 5 26.6 4 26.2 5 28.5 4 26.4 5 25.6 5 21.4 5 32.3 4

Core 2 Quad Q6600 50.7 8 61.7 8 55.3 8 64.6 8 58.1 8 55.2 8 45.6 8 77.3 7

Atom 230 2.3 1 2.5 1 2.3 1 2.4 1 2.4 1 2.3 1 1.9 1 2.7 1

Core i7 920 27.2 6 60.4 7 37.5 6 62.8 7 47.0 7 39.1 6 23.4 6 89.2 8

Core 2 Duo E7600 19.1 3 21.1 3 20.5 3 22.6 3 20.8 3 20.2 3 15.8 3 26.8 3

Atom D510 3.7 2 5.3 2 4.5 2 5.1 2 4.7 2 4.3 2 3.4 2 5.9 2

Core i5 670 19.6 4 29.2 5 24.7 4 29.5 5 25.7 4 23.6 4 16.5 4 38.2 5

Table 3.5: Average power characteristics. The rank for each measure is indicated in
small font. The machine list is ordered by release date.
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We selectively down-clock the processors, disable cores, disable simultaneous multi-
threading (SMT), and disable Turbo Boost [Intel, 2008]. Intel markets SMT as Hyper-
Threading [Intel Corporation, 2011]. The stock configurations of Pentium 4 (130),
Atom (45), Atom D (45), i7 (45), and i5 (32) include SMT (Table 3.3). The stock config-
urations of the i7 (45) and i5 (32) include Turbo Boost, which automatically increases
frequency beyond the base operating frequency when the core is operating below
power, current, and temperature thresholds [Intel, 2008]. We control each variable
via the BIOS. We experimented with operating system configuration, which is far
more convenient, but it was not sufficiently reliable. For example, operating system
scaling of hardware contexts often caused power consumption to increase as hard-
ware resources were decreased! Extensive investigation revealed a bug in the Linux
kernel [Li, 2011]. We use all the means at our disposal to isolate the effect of various
architectural features using stock hardware, but often the precise semantics are un-
documented. Notwithstanding such limitations, these processor configurations help
quantitatively explore how a number of features influence power and performance
in real processors.

3.3 Perspective

We organize our analysis into eleven findings, which we list in Table 3.6. We begin
with broad trends. We first show that applications exhibit a large range of power
and performance characteristics that are not well summarized by a single number.
This section then conducts a Pareto energy efficiency analysis for all of the 45 nm
processor configurations. Even with this modest exploration of architectural features,
the results indicate that each workload prefers a different hardware configuration for
energy efficiency.

3.3.1 Power is Application Dependent

The nominal thermal design power (TDP) for a processor is the amount of power
the chip may dissipate without exceeding the maximum transistor junction tempera-
ture. Table 3.3 lists TDP for each processor. Because measuring real processor power
is difficult and TDP is readily available, TDP is often substituted for real measured
power [Chakraborty, 2008; Hempstead et al., 2009; Horowitz et al., 2005]. Figure 3.3
shows that this substitution is problematic. It plots on a logarithmic scale, mea-
sured power for each benchmark on each stock processor as a function of TDP and
indicates TDP with an 7. TDP is strictly higher than actual power. The gap be-
tween peak measured power and TDP varies from processor to processor and TDP
is up to a factor of four higher than measured power. The variation among bench-
marks is highest on the i7 (45) and i5 (32), likely reflecting their advanced power
management. For example on the i7 (45), measured power varies between 23 W for
471.omnetpp and 89W for fluidanimate! The smallest variation between maximum
and minimum is on the Atom (45) at 30%. This trend is not new. All the proces-
sors exhibit a range of benchmark-specific power variation. TDP loosely correlates
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Findings

Power consumption is highly application dependent and is poorly correlated to TDP.

Power per transistor is relatively consistent within microarchitecture family, independent
of process technology.

Energy-efficient architecture design is very sensitive to workload. Configurations in the
Native Non-scalable Pareto Frontier substantially differ from all the other workloads.

Comparing one core to two, enabling a core is not consistently energy efficient.

The JVM induces parallelism into the execution of single threaded Java benchmarks.

Simultaneous multithreading (SMT) delivers substantial energy savings for recent hard-
ware and for in-order processors.

The most recent processor in our study does not consistently increase energy consumption
as its clock increases.

The power / performance response to clock scaling of Native Non-scalable differs from the
other workloads.

Two recent die shrinks deliver similar and surprising reductions in energy, even when
controlling for clock frequency.

Controlling for technology, hardware parallelism, and clock speed, the out-of-order archi-
tectures have similar energy efficiency as the in-order ones.

Turbo Boost is not energy efficient on the i7 (45).

Table 3.6: Findings. We organize our discussion around these eleven findings from
an analysis of measured chip power, performance, and energy on sixty-one work-
loads and eight processors.
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Figure 3.3: Measured power for each processor running 61 benchmarks. Each point
represents measured power for one benchmark. The ‘7’s are the reported TDP for
each processor. Power is application-dependent and does not strongly correlate with
TDP.

with power consumption, but it does not provide a good estimate for (1) maximum
power consumption of individual processors, (2) comparing among processors, or
(3) approximating benchmark-specific power consumption.

Finding: Power consumption is highly application dependent and is poorly corre-
lated to TDP.

Figure 3.4 plots power versus relative performance for each benchmark on the i7 (45)
with eight hardware contexts. Native (red) and managed (green) are differentiated
by color, whereas scalable (triangle) and non-scalable (circle) are differentiated by
shape. Unsurprisingly, the scalable benchmarks (triangles) tend to perform the best
and consume the most power. More unexpected is the range of power and perfor-
mance characteristics of the non-scalable benchmarks. Power is not strongly corre-
lated with performance across workload or benchmarks. The points would form a
straight line if the correlation were strong. For example, the point on the bottom
right of the figure achieves almost the best relative performance and lowest power.
The correlation coefficient of relative speedup and power is 0.752 for all benchmarks.
Java scalable has the strongest correlation among the four groups with the coefficient
as 0.946, while native non-scalable has the weakest with the coefficient as -0.32. The
coefficients for Java non-scalable and native scalable are 0.418 and 0.374 respectively.

3.3.2 Historical Overview

Figure 3.5(a) plots the average power and performance for each processor in their
stock configuration relative to the reference performance, using a log / log scale. For
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Figure 3.4: Power / performance distribution on the i7 (45). Each point represents one
of the 61 benchmarks. Power consumption is highly variable among the benchmarks,
spanning from 23 W to 89 W. The wide spectrum of power responses from different
applications points to power saving opportunities in software.

example, the i7 (45) points are the average of the workloads derived from the points
in Figure 3.4. Both graphs use the same color for all of the experimental processors in
the same family. The shapes encode release age: a square is the oldest; the diamond
is next; and the triangle is the youngest, smallest technology in the family.

While historically, mobile devices have been extensively optimized for power,
general-purpose processor design until recently has not. Several results stand out
illustrating that power is now a first-order design goal and trumps performance in
some cases. (1) The Atom (45) and Atom D (45) are designed as low power processors for
a different market, however they successfully execute all these benchmarks and are
the most power-efficient processors. Compared to the Pentium 4 (130), they degrade
performance modestly and reduce power enormously, consuming as little as one
twentieth the power. Device scaling from 130 nm to 45 nm contributes significantly
to the power reduction from Pentium to Atom. (2) Comparing between 65 nm and
45 nm generations using the Core 2D (65) and Core 2D (45) shows only a 25% increase
in performance, but a 35% drop in power. (3) Comparing the two most recent 45 nm
and 32 nm generations using the i7 (45) and i5 (32) shows that the i5 (32) delivers
about 15% less performance, while consuming about 40% less power. This result has
three root causes: (1) the i7 (45) has four cores instead of two on the i5 (32); (2) since
half the benchmarks are scalable multithreaded benchmarks, the software parallelism
benefits more from the additional two cores, increasing the advantage to the i7 (45);
and (3) the i7 (45) has significantly better memory performance. Comparing the
Core 2D (45) to the i5 (32) where the number of processors are matched, the i5 (32)
delivers 50% better performance, while consuming around 25% more power than the
Core 2D (45).

Contemporaneous comparisons also reveal the tension between power and per-
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Figure 3.5: Power / performance tradeoff by processor. Each point is an average
of the four workloads. Power per million transistor is consistent across different
microarchitectures regardless of the technology node. On average, Intel processors
burn around 1 Watt for every 20 million transistors.
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formance. For example, the contrast between the Core 2D (45) and i7 (45) shows that
the i7 (45) delivers 75% more performance than the Core 2D (45), but this performance
is very costly in power, with an increase of nearly 100%. These processors thus span
a wide range of energy tradeoffs within and across the generations. Overall, these re-
sults indicate that optimizing for both power and performance is proving a lot more
challenging than optimizing for performance alone.

Figure 3.5(b) explores the effect of transistors on power and performance by di-
viding them by the number of transistors in the package for each processor. We
include all transistors because our power measurements occur at the level of the
package, not the die. This measure is rough and will downplay results for the i5 (32)
and Atom D (45), each of which have a GPU in their package. Even though the bench-
marks do not exercise the GPUs, we cannot discount them because the GPU tran-
sistor counts on the Atom D (45) are undocumented. Note the similarity between the
Atom (45), Atom D (45), Core 2D (45), and i5 (32), which at the bottom right of the graph,
are the most efficient processors by the transistor metric. Even though the i5 (32) and
Core 2D (45) have five to eight times more transistors than the Atom (45), they all eke
out very similar performance and power per transistor. There are likely bigger dif-
ferences to be found in power efficiency per transistor between chips from different
manufactures.

Finding: Power per transistor is relatively consistent within microarchitecture fam-
ily, independent of process technology.

The left-most processors in the graph yield the smallest amount of performance per
transistor. Among these processors, the Core 2D (65) and i7 (45) yield the least per-
formance per transistor and use the largest caches among our set. The large 8 MB
caches are not effective. The Pentium 4 (130) is perhaps most remarkable—it yields the
most performance per transistor and consumes the most power per transistor by a
considerable margin. In summary, performance per transistor is inconsistent across
microarchitectures, but power per transistor correlates well with microarchitecture,
regardless of technology generation. There are two likely factors which govern this,
which are: (a) the traditional voltage scaling for transistors has been slowed down or
stopped under 90 nm [Venkatesh et al., 2010], so the power cost of a chip mostly de-
pend on the power saving techniques used by its microarchitecture; and (b) the power
cost of on-chip interconnects varies with microarchitecture and scales less favourably
than that of transistors across technology generations [Kahng et al., 2009].

3.3.3 Pareto Analysis at 45 nm

The Pareto optimal frontier defines a set of choices that are most efficient in a tradeoff
space. Prior research uses the Pareto frontier to explore power versus performance
with models that derive potential architectural designs on the frontier [Azizi et al.,
2010]. We present a Pareto frontier derived from measured performance and power. We
hold the process technology constant by using the four 45 nm processors: Atom (45),
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Figure 3.6: Energy / performance Pareto frontiers (45 nm). The energy / perfor-
mance optimal designs are application-dependent and significantly deviate from the
average case.
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Native Non-scalable 4 4 4 4

Java Non-scalable 4 4 4 4 4 4 4

Native Scalable 4 4 4 4 4 4

Java Scalable 4 4 4 4 4 4

Average 4 4 4 4 4 4

Table 3.7: Pareto-efficient processor configurations for each workload. Stock con-
figurations are bold. Each ‘4’ indicates that the configuration is on the energy /
performance Pareto-optimal curve. Native non-scalable has almost no overlap with
any other workload.

Atom D (45), Core 2D (45), and i7 (45). We expand the number of processor configura-
tions from 4 to 29 by configuring the number of hardware contexts (SMT and CMP),
by clock scaling, and disabling / enabling Turbo Boost. The 25 non-stock configu-
rations represent alternative design points. For each configuration, we compute the
averages for each workload and their average to produce an energy / performance
scatter plot (not shown here). We next pick off the frontier — the points that are not
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dominated in performance or energy efficiency by any other point — and fit them
with a polynomial curve. Figure 3.6 plots these polynomial curves for each work-
load and the average. The rightmost curve delivers the best performance for the least
energy.

Each row of Table 3.7 corresponds to one of the five curves in Figure 3.6. The
check marks identify the Pareto-efficient configurations that define the bounding
curve and include 15 of 29 configurations. Somewhat surprising is that none of
the Atom D (45) configurations are Pareto efficient. Notice the following. (1) Native
non-scalable shares only one choice with any other workload. (2) Java Scalable and
the average share all the same choices. (3) Only two of eleven choices for Java Non-
scalable and Java Scalable are common to both. (4) Native non-scalable does not
include the Atom (45) in its frontier. This last finding contradicts prior simulation
work, which concluded that dual-issue in-order cores and dual-issue out-of-order
cores are Pareto optimal for Native Non-scalable [Azizi et al., 2010]. Instead we find
that all of the Pareto-efficient points for Native Non-scalable in this design space are
quad-issue out-of-order i7 (45) configurations.

Figure 3.6 starkly shows that each workload deviates substantially from the av-
erage. Even when the workloads share points, the points fall in different places on
the curves because each workload exhibits a different energy / performance trade-
off. Compare the scalable and non-scalable benchmarks at 0.40 normalized energy
on the y-axis. It is impressive how well these architectures effectively exploit soft-
ware parallelism, pushing the curves to the right and increasing performance from
about 3 to 7 while holding energy constant. This measured behavior confirms prior
model-based observations about the role of software parallelism in extending the
energy / performance curve to the right [Azizi et al., 2010].

Finding: Energy-efficient architecture design is very sensitive to workload. Config-
urations in the Native Non-scalable Pareto frontier differ substantially
from all other workloads.

One might try to conclude that managed language workloads are less energy-efficient
compared to native workloads from Figure 3.6 since the curves are steeper, but the
workloads are quite different. SPEC CPU is CPU-intensive workload with scientific
codes, whereas DaCapo is client-side Java with language, query, and event process-
ing programs. For many years hardware development has focused on efficiency gains
based on SPEC CPU and similar native benchmarks, rather than managed workloads.
It is to be expected that native benchmark energy efficiency scales more reasonably
than managed benchmarks. In summary, architects should use a variety of work-
loads, and in particular, should avoid only using Native Non-scalable workloads.

3.4 Feature Analysis

This section explores the energy impact of hardware features through controlled ex-
periments. We present two pairs of graphs for feature analysis experiments as shown



34 Power and Performance Characteristics for Language and Hardware

in Figure 3.7, for example. The top graph compares relative power, performance, and
energy as an average of the four workload groups. The bottom graph breaks down
energy by workload group. In these graphs, higher is better for performance. Lower
is better for power and energy.

3.4.1 Chip Multiprocessors

Figure 3.7 shows the average power, performance, and energy effects of chip mul-
tiprocessors (CMPs) by comparing one core to two cores for the two most recent
processors in our study. We disable Turbo Boost in these analyses because it ad-
justs power dynamically based on the number of idle cores. We disable Simultane-
ous Multithreading (SMT) to maximally expose thread-level parallelism to the CMP
hardware feature. Figure 3.7(a) compares relative power, performance, and energy
as a weighted average of the workloads. Figure 3.7(b) breaks down the energy as a
function of workload. While average energy is reduced by 9% when adding a core
to the i5 (32), it is increased by 12% when adding a core to the i7 (45). Figure 3.7(a)
shows that the source of this difference is that the i7 (45) experiences twice the power
overhead for enabling a core as the i5 (32), while producing roughly the same perfor-
mance improvement.

Finding: Comparing one core to two, enabling a core is not consistently energy
efficient.

Figure 3.7(b) shows that Native Non-scalable and Java Non-scalable suffer the most
energy overhead with the addition of another core on the i7 (45). As expected, per-
formance for Native Non-scalable is unaffected. However, turning on an additional
core for Native Non-scalable leads to a power increase of 4% and 14% respectively for
the i5 (32) and i7 (45), translating to energy overheads.

More interesting is that Java Non-scalable does not incur an energy overhead when
enabling another core on the i5 (32). In fact, we were surprised to find that the reason
for this is that the single threaded Java Non-scalable workload runs faster with two
processors! Figure 3.8 shows the scalability of the single threaded subset of Java Non-
scalable on the i7 (45), with SMT disabled, comparing one and two cores. Although
these Java benchmarks are single threaded, the JVMs on which they execute are not.

Finding: The JVM induces parallelism into the execution of single threaded Java
benchmarks.

Since VM services for managed languages, such as JIT, GC, and profiling, are of-
ten concurrent and parallel, they provide substantial scope for parallelization, even
within ostensibly sequential applications. We instrumented the HotSpot JVM and
confirmed that its JIT and GC are parallel. Detailed performance counter measure-
ments revealed that the GC induced memory system improvements with more cores
by reducing the collector’s cache displacement effect on the application thread.
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(a) Impact of doubling the number of cores on performance, power,
and energy, averaged over all four workloads.

0.6 

0.7 

0.8 

0.9 

1.0 

1.1 

1.2 

Native 
Non-scale 

Native 
Scale 

Java 
Non-scale 

Java 
Scale 

2
 C

o
re

s 
/ 

1
 C

o
re

 

i7 (45) i5 (32) 

(b) Energy impact of doubling the number of cores for each work-
load.

Figure 3.7: CMP: Comparing two cores to one core. Doubling the cores is not con-
sistently energy efficient among processors or workloads.
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Figure 3.8: Scalability of single threaded Java benchmarks. Some single threaded Java
benchmarks scale well. The underlying JVM exploits parallelism for compilation,
profiling and GC.

3.4.2 Simultaneous Multithreading

Figure 3.9 shows the effect of disabling simultaneous multithreading (SMT) [Tullsen
et al., 1995] on the Pentium 4 (130), Atom (45), i5 (32), and i7 (45). Each processor
supports two-way SMT. SMT provides fine-grain parallelism to distinct threads in the
processors’ issue logic and in modern implementations, threads share all processor
components (e.g., execution units, caches). Singhal states that the small amount of
logic exclusive to SMT consumes very little power [Singhal, 2011]. Nonetheless, this
logic is integrated, so SMT contributes a small amount to total power even when
disabled. Our results therefore slightly underestimate the power cost of SMT. We
use only one core, ensuring SMT is the sole opportunity for thread-level parallelism.
Figure 3.9(a) shows that the performance advantage of SMT is significant. Notably,
on the i5 (32) and Atom (45), SMT improves average performance significantly without
much cost in power, leading to net energy savings.

Finding: SMT delivers substantial energy savings for recent hardware and for in-
order processors.

Given that SMT was and continues to be motivated by the challenge of filling issue
slots and hiding latency in wide issue superscalars, it may appear counter intuitive
that performance on the dual-issue in-order Atom (45) should benefit so much more
from SMT than the quad-issue i7 (45) and i5 (32) benefit. One explanation is that the
in-order pipelined Atom (45) is more restricted in its capacity to fill issue slots. Com-
pared to other processors in this study, the Atom (45) has much smaller caches. These
features accentuate the need to hide latency, and therefore the value of SMT. The
performance improvements on the Pentium 4 (130) due to SMT are half to one third
that of more recent processors, and consequently there is no net energy advantage.
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(a) Impact of enabling two-way SMT on a single-core with respect to
performance, power, and energy, averaged over all four workloads.
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(b) Energy impact of enabling two-way SMT on a single-core for
each workload.

Figure 3.9: SMT: one core with and without SMT. Enabling SMT delivers significant
energy savings on the recent i5 (32) and the in-order Atom (45).
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This result is not so surprising given that the Pentium 4 (130) is the first commercial
implementation of SMT.

Figure 3.9(b) shows that, as expected, the Native Non-scalable workload experi-
ences very little energy overhead due to enabling SMT, whereas Figure 3.7(b) shows
that enabling a core incurs a significant power and thus energy penalty. The scalable
workloads unsurprisingly benefit most from SMT.

The excellent energy efficiency of SMT is impressive on recent processors as com-
pared to CMP, particularly given its very low die footprint. Compare Figure 3.7
and 3.9. SMT provides less performance improvement than CMP—SMT adds about
half as much performance as CMP on average, but incurs much less power cost. The
results on the modern processors show SMT in a much more favorable light than in
Sasanka et al.’s model-based comparative study of the energy efficiency of SMT and
CMP [Sasanka et al., 2004].

3.4.3 Clock Scaling

We vary the processor clock on the i7 (45), Core 2D (45), and i5 (32) between their mini-
mum and maximum settings. The range of clock speeds are: 1.6 to 2.7 GHz for i7 (45);
1.6 to 3.1 GHz for Core 2D (45); and 1.2 to 3.5 GHz for i5 (32). We uniformly disable
Turbo Boost to produce a consistent clock rate for comparison; Turbo Boost may vary
the clock rate, but only when the clock is set at its highest value. Each processor is
otherwise in its stock configuration. Figures 3.10(a) and 3.10(b) express changes in
power, performance, and energy with respect to doubling in clock frequency over the
range of clock speeds to normalize and compare across architectures.

The three processors experience broadly similar increases in performance of around
80%, but power differences vary substantially, from 70% to 180%. On the i7 (45) and
Core 2D (45), the performance increases require disproportional power increases—conse-
quently energy consumption increases by about 60% as the clock is doubled. The
i5 (32) is starkly different—doubling its clock leads to a slight energy reduction.

Finding: The most recent processor in our study does not consistently increase en-
ergy consumption as its clock increases.

Figure 3.11(a) shows that this result is consistent across the range of i5 (32) clock rates.
A number of factors may explain why the i5 (32) performs relatively so much better
at its highest clock rate: (a) the i5 (32) is a 32 nm process, while the others are 45 nm;
(b) the power-performance curve is non-linear and these experiments may observe
only the upper (steeper) portion of the curves for i7 (45) and Core 2D (45); (c) although
the i5 (32) and i7 (45) share the same microarchitecture, the second generation i5 (32)
likely incorporates energy improvements; (d) the i7 (45) is substantially larger than
the other processors, with four cores and a larger cache.

Finding: The power / performance response to clock scaling of Native Non-scalable
differs from the other workloads.
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(a) Impact of doubling clock with respect to performance, power,
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(b) Energy impact of doubling clock in stock configurations for each
workload.

Figure 3.10: Clock: doubling clock in stock configurations. Doubling clock does not
increase energy consumption on the recent i5 (32).
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Figure 3.11: Clock: scaling across the range of clock rates in stock configurations.
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Figure 3.10(b) shows that doubling the clock on the i5 (32) roughly maintains or im-
proves energy consumption of all workloads, with Native Non-scalable improving the
most. For the i7 (45) and Core 2D (45), doubling the clock raises energy consumption.
Figure 3.11(b) shows that Native Non-scalable has a different power / performance
behavior compared to the other workloads and that this difference is largely inde-
pendent of clock rate. The Native Non-scalable workload draws less power overall,
and power increases less steeply as a function of performance increases. Native
non-scalable (SPEC CPU2006) is the most widely studied workload in the architecture
literature, but it is the outlier. These results reinforce the importance of including
scalable and managed workloads in energy evaluations.

3.4.4 Die Shrink

We use processor pairs from the Core (Core 2D (65) / Core 2D (45)) and Nehalem
(i7 (45) / i5 (32)) microarchitectures to explore die shrink effects. These hardware
comparisons are imperfect because they are not straightforward die shrinks. To limit
the differences, we control for hardware parallelism by limiting the i7 (45) to two
cores. The tools and processors at our disposal do not let us control the cache size
nor for other microarchitecture changes that accompany a die shrink. We compare
at stock clock speeds and control for clock speed by running both Cores at 2.4 GHz
and both Nehalems at 2.66 GHz. We do not directly control for core voltage, which
differs across technology nodes for the same frequency. Although imperfect, these
are the first published comparisons of measured energy efficiency across technology
nodes.

Finding: Two recent die shrinks deliver similar and surprising reductions in energy,
even when controlling for clock frequency.

Figure 3.12(a) shows the power and performance effects of the die shrinks with the
stock clock speeds for all the processors. The newer processors are significantly
faster at their higher stock clock speeds and significantly more power efficient. Fig-
ure 3.12(b) shows the same experiment, but down-clocking the newer processors to
match the frequency of their older peers. Down-clocking the new processors im-
proves their relative power and energy advantage even further. Note that as ex-
pected, the die shrunk processors offer no performance advantage once the clocks
are matched, indeed the i5 (32) performs 10% slower than the i7 (45). However, power
consumption is reduced by 47%. This result is consistent with expectations, given
the lower voltage and reduced capacitance at the smaller feature size.

Figures 3.12(a) and 3.12(b) reveal a striking similarity in power and energy sav-
ings between the Core (65 nm / 45 nm) and Nehalem (45 nm / 32 nm) die shrinks.
This data suggests that Intel maintained the same rate of energy reduction across the
two most recent generations. As a point of comparison, the models used by the Inter-
national Technology Roadmap for Semiconductors (ITRS) predicted a 9% increase in
frequency and a 34% reduction in power from 45 nm to 32 nm [ITRS Working Group,
2011]. Figure 3.12(a) is both more and less encouraging. Clock speed increased by
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Figure 3.12: Die shrink: microarchitectures compared across technology nodes.
‘Core’ shows Core 2D (65) / Core 2D (45) while ‘Nehalem’ shows i7 (45) / i5 (32) when
two cores are enabled. Both die shrinks deliver substantial energy reductions.
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26% in the stock configurations of the i7 (45) to the i5 (32) with an accompanying 14%
increase in performance, but power reduced by 23%, less than the 34% predicted. To
more deeply understand die shrink efficiency on modern processors requires mea-
suring more processors in each technology node.

3.4.5 Gross Microarchitecture Change

This section explores the power and performance effect of gross microarchitectural
change by comparing microarchitectures while matching features such as processor
clock, degree of hardware parallelism, process technology, and cache size.

Figure 3.13 compares the Nehalem i7 (45) with the NetBurst Pentium 4 (130), Bon-
nell Atom D (45), and Core 2D (45) microarchitectures, and it compares the Nehalem
i5 (32) with the Core 2D (65). Each comparison configures the Nehalems to match the
clock speed, number of cores, and hardware threads of the other architecture. Both
the i7 (45) and i5 (32) comparisons to the Core show that the move from Core to Ne-
halem yields a small 14% performance improvement. This finding is not inconsistent
with Nehalem’s stated primary design goals, i.e., delivering scalability and memory
performance.

Finding: Controlling for technology, hardware parallelism, and clock speed, the out-
of-order architectures have similar energy efficiency as the in-order ones.

The comparisons between the i7 (45) and Atom D (45) and Core 2D (45) hold process
technology constant at 45 nm. All three processors are remarkably similar in energy
consumption. This outcome is all the more interesting because the i7 (45) is disad-
vantaged since it uses fewer hardware contexts here than in its stock configuration.
Furthermore, the i7 (45) integrates more services on-die, such as the memory con-
troller, that are off-die on the other processors, and thus outside the scope of the
power meters. The i7 (45) improves upon the Core 2D (45) and Atom D (45) with a more
scalable, much higher bandwidth on-chip interconnect, that is not exercised heavily
by our workloads. It is impressive that, despite all of these factors, the i7 (45) delivers
similar energy efficiency to its two 45 nm peers, particularly when compared to the
low-power in-order Atom D (45).

It is unsurprising that the i7 (45) performs 2.6× faster than the Pentium 4 (130),
while consuming one third the power, when controlling for clock speed and hard-
ware parallelism (but not for factors such as memory speed). Much of the 50%
power improvement is attributable to process technology advances. This speedup of
2.6 over seven years is however substantially less than the historical factor of eight im-
provement experienced in every prior seven year time interval between 1970 through
the early 2000s. This difference in improvements marks the beginning of the power-
constrained architecture design era.
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Figure 3.13: Gross microarchitecture: a comparison of Nehalem with four other mi-
croarchitectures. In each comparison the Nehalem is configured to match the other
processor as closely as possible. The most recent microarchitecture, Nehalem, is more
energy efficient than the others, including the low-power Bonnell (Atom).
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3.4.6 Turbo Boost Technology

Intel Turbo Boost Technology on Nehalem processors over-clocks cores under the
following conditions [Intel, 2008]. With Turbo Boost enabled, all cores can run one
“step” (133 MHz) faster if temperature, power, and current conditions allow. When
only one core is active, Turbo Boost may clock it an additional step faster. Turbo Boost
is only enabled when the processor executes at its default highest clock setting. This
feature requires on-chip power sensors. We verified empirically on the i7 (45) and
i5 (32) that all cores ran 133 MHz faster with Turbo Boost. When only one core was
active, the core ran 266 MHz faster. Since the i7 (45) runs at a lower clock (2.67 GHz)
than the i5 (32) (3.46 GHz), it experiences a relatively larger boost.

Finding: Turbo Boost is not energy efficient on the i7 (45).

Figure 3.14(a) shows the effect of disabling Turbo Boost at the BIOS on the i7 (45)
and i5 (32) in their stock configurations (dark) and when we limit each machine to a
single hardware context (light). With the single hardware context, Turbo Boost will
increment the clock by two steps if thermal conditions permit. The actual perfor-
mance changes are well predicted by the clock rate increases. The i7 (45) clock step
increases are 5 and 10%, and the actual performance increases are 5 and 7%. The
i5 (32) clock step increases are 4 and 8%, and the actual performance increases are
3 and 5%. However, the i7 (45) responds with a substantially higher power increase
and consequent energy overhead, while the i5 (32) is essentially energy-neutral. That
difference can be accounted for as a result of: (a) the static power for i5 (32) taking
a larger portion of total power compared to that of the i7 (45); (b) the i7 (45) experi-
encing a relatively greater boost to that of the i5 (32), since the i7 (45) runs at a lower
clock; and (c) the improvements in the turbo boost technique of the i5 (32) over that
of the i7 (45).

Figure 3.14(b) shows that when all hardware contexts are available (dark), the
non-scalable benchmarks consume relatively more energy than scalable benchmarks
on the i7 (45) in its stock configuration. Because the non-scalable native and some-
times Java utilize only a single core, Turbo Boost will likely increase the clock by
an additional step. Figure 3.14(a) shows that this technique is power-hungry on the
i7 (45).

3.5 Summary

This chapter explored the performance, power, and energy impact of a variety of
hardware features on both managed and native software. The quantitative data in
this chapter revealed the extent of some known and previously unobserved hardware
and software trends. We highlighted eleven findings from the analysis of the data
we gathered, from which two themes emerge.

(1) Workload: The power, performance, and energy trends of native workloads do
not approximate managed workloads. For example, native single threaded work-
loads never experience performance or energy improvements from CMPs or SMT,
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while single threaded Java workloads run on average about 10% faster and up to
60% faster on two cores when compared to one core due to the parallelism exploited
by the VM. The results recommend architects always include native and managed
workloads when designing and evaluating energy-efficient hardware. The diverse
application power profiles suggest that software needs to participate in power opti-
mization.

(2) Architecture: Clock scaling, microarchitecture, SMT, CMP and turbo boost each
elicit a huge variety of power, performance, and energy responses. For example,
halving the clock rate of the i5 (32) increases its energy consumption around 4%,
whereas it decreases the energy consumption of the i7 (45) and Core 2D (45) by
around 60%, i.e., running the i5 (32) at its peak clock rate is as energy efficient as
running it at its lowest, whereas running the i7 (45) and Core 2D (45) at their lowest
clock rate is substantially more energy efficient than their peak. This variety and the
difficulty of obtaining power measurements recommends exposing on-chip power
meters and when possible, structure-specific power meters for cores, caches, and
other structures. Just as hardware event counters provide a quantitative grounding
for performance innovations, power meters are necessary for energy optimizations.

The conclusion of this chapter motivates the following chapters in this thesis.
The real machine power measurement framework and hardware/software configu-
ration methodology explored in this chapter will be used throughout the thesis. The
hardware characteristics identified in this chapter form a basis to model and tailor
future AMP architectures. These hardware insights combined with the behaviour
of the workloads evaluated leads us to investigate the significant characteristics of
VMs, such as parallelism, in the next chapter in order to improve managed software
efficiency on AMP architectures.
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Chapter 4

Asymmetric Multicore Processors
and Managed Software

The previous chapter explores the energy and performance characteristics of man-
aged software with respect to a variety of hardware features. We further develop the
power measurement methodology of the previous chapter and utilize that methodol-
ogy to explore a greater range of hardware and software configurations. Using those
results and modelling, we show how to exploit the differentiated characteristics of
Virtual Machine (VM) services to improve total power, performance, and energy on
Asymmetric Multicore Processors (AMPs), which require differentiated software to
be effective.

Section 4.2 describes the hardware, measurements, workload, and software con-
figuration used in this chapter. Section 4.3 starts with a motivating analysis of the
power and energy footprint of VM services on orthodox hardware. Section 4.4 ex-
plores whether the services will benefit from dedicated parallel hardware and be
effective even if the hardware is slow. Section 4.5 explores the amenability of VM
services to alternative core designs, since AMP has the opportunity to include a vari-
ety of general purpose cores tailored to various distinct workload types. Section 4.6
models VM services running on a hypothetical AMP scenario. Section 4.7 discusses a
new opportunity offered by executing the Just-in-Time compiler (JIT) on small cores.

This chapter describes work published in the paper “The Yin and Yang of Power
and Performance for Asymmetric Hardware and Managed Software” [Cao, Black-
burn, Gao, and McKinley, 2012].

4.1 Introduction

This chapter uses a hardware-software cooperative approach to address the major
challenges happening in hardware and software communities.

On the hardware side, we explore single-ISA AMP architectures. On the software
side, we explore VM services, such as the interpreter, JIT, profiler, and Garbage Col-
lector (GC), which provide much of the abstraction of managed languages, and also
much of their overheads. Since VM services execute together with every managed

49
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(a) Fraction of cycles spent in VM services on an i7 1C1T @ 3.4 GHz. See
Section 4.2 for methodology.
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(b) Execution time increase due to adding small cores on an AMD Phe-
nom II1.

Figure 4.1: Motivation: (a) VM services consume significant resources; (b) The naive
addition of small cores slows down applications.
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application, improvements to VM services will transparently improve all managed
applications.

This chapter identifies and leverages unique combinations of four software at-
tributes for exploiting AMP: (1) parallelism, (2) asynchrony, (3) non-criticality, and
(4) hardware sensitivity. We go beyond improving performance on AMP architecture
by also seeking to improve power, energy, and performance per energy (PPE); the
reciprocal of the EDP (Energy-Delay Product) metric [Laros III et al., 2013].

We show that VM services are a lucrative target because they consume almost
40% of total time and energy and they exhibit the requisite software characteristics.
Figure 4.1(a) shows the fraction of cycles Java applications spend in VM services.
GC consumes 10% and JIT consumes 12% of all cycles on average. An additional
15% of total time is spent executing unoptimized code (e.g., via the interpreter).
Total time in VM services ranges from 9% to 82%. Prior GC performance results
on industry VMs confirm this trend: IBM’s J9, JRockit, and Oracle’s HotSpot JDK
actually show an even higher average fraction of time spent on GC [Ha et al., 2008].
VM services in less mature VMs, such as JavaScript and PHP VMs, likely consume
an even higher fraction of total cycles. Reducing the power and PPE of VM services
is thus a promising target.

Figure 4.1(b) shows that naively executing managed applications on AMP plat-
forms without any VM or operating system support is a very bad idea. In this figure,
we measure the effect of adding small (slow, low power) cores to the performance
of Java applications in Jikes RVM. The downward pointing grey arrow indicates that
lower is better on this graph. The big (fast, high power) cores are out-of-order x86
cores running at the default 2.8 GHz and the small ones are simply down-clocked
to 0.8 GHz on an AMD Phenom II. We evaluate both the addition of one slow core
to one fast core, and two slow cores to two fast cores. The results are similar. Even
though these configurations are set by the OS and provide strictly more hardware
resources, they slow down applications by 35% and 50% on average!

Using hardware and software configuration, power measurements, and model-
ing, this chapter shows how to exploit the characteristics of GC, interpreter, and JIT
workloads on AMP hardware to improve total power, performance, energy, and PPE.
Each VM component has a unique combination of (1) parallelism, (2) asynchrony,
(3) non-criticality and (4) hardware sensitivity.

GC. Because GC may be performed asynchronously and a concurrent collector is
normally not on the critical path, it is amenable to executing on a separate core. The
resources applied to GC need to be tailored according to the work rate generated by
the application to ensure that the collector keeps up and remains off the application’s
critical path. The computation the collector performs, a graph traversal, is parallel
and thus benefits from more than one separate core. Furthermore, GC is memory
bound and many high-performance, power-hungry hardware features that improve
application PPE are inefficient for GC. GC does not benefit from a high clock rate
or instruction level parallelism (ILP), but it does benefit from higher memory band-

1The avrora benchmark is excluded from Figure 4.1(b) due to its erratic behavior in this heteroge-
neous environment.
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width. Consequently, adding in-order small cores with high memory bandwidth for
GC does not slow GC performance much, or at all, given the right design. The result
is improvement to system PPE.

JIT. The JIT is also asynchronous and exhibits some parallelism. Because its role
is optimization, the JIT is generally non-critical, which also makes it amenable to
executing on separate cores. The JIT workload itself is very similar to Java application
workloads and PPE therefore benefits from big core power-hungry features, such as
out-of-order execution, bandwidth, and large caches. We show that because the JIT
is not on the critical path, executing it at the highest performance is not important.
Furthermore, putting the JIT on the small core takes it off the application’s critical
path. Slowing the JIT down on a small core does not matter because the JIT can
deliver optimized code fast enough at much less power. On a small core, we can
make the JIT more aggressive, such that it elects to optimize code earlier and delivers
more optimized application code, with little power cost. The resulting system design
improves total performance, energy, and PPE.

Interpreter. The interpreter is, however, on the critical path and is not asyn-
chronous. The interpreter parallelism reflects the applications’ parallelism and can
thus often benefit from multiple cores. However, we find that the interpreter has
very low ILP, a small cache footprint, and does not use much memory bandwidth.
Therefore, executing interpreter threads on a high performance, high power core is
inefficient, and a better choice for PPE and energy is to execute the interpreter on
small cores.

Other VM Services. Other VM services may present good opportunities for het-
erogeneous multicore architectures, but are beyond the scope of this thesis. These
services include zero-initialization [Yang et al., 2011], finalization, and profiling. For
example, feedback-directed-optimization (FDO) depends on profiling of the running
application. Such profiling is typically implemented as a producer-consumer rela-
tionship, with the instrumented application as the producer and one or more profil-
ing threads as the consumers [Ha et al., 2011]. The profiler is parallel and exhibits an
atypical memory-bound execution profile, making it a likely candidate for heteroge-
neous multicore architectures. However, we do not explore profiling here.

4.2 Methodology

We base our study on real power and performance measures of existing hardware,
leveraging our existing well-developed tools and methodology related in Section 3.2.
Evaluating the power and performance of future AMP systems is complex, just as
evaluating managed languages can be challenging [Blackburn et al., 2006]. This sec-
tion describes the hardware, measurements, workload, and software configuration
that we use to explore hardware and software energy efficiency. We have made all
of our data publicly available online.2 This data includes quantitative measures of

2http://cecs.anu.edu.au/~steveb/downloads/results/yinyang-isca-2012.zip

http://cecs.anu.edu.au/~steveb/downloads/results/yinyang-isca-2012.zip
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i7 (32) i3 (32) AtomD (45) Phenom II (45)
Processor Core i7-2600 Core i3-2120 AtomD510 X6 1055T

Architecture Sandy Bridge Sandy Bridge Bonnell Thuban
Technology 32 nm 32 nm 45 nm 45 nm
CMP & SMT 4C2T 2C2T 2C2T 6C1T
LLC 8 MB 3 MB 1 MB 6 MB
Frequency 3.4 GHz 3.3 GHz 1.66 GHz 2.8 GHz
Transistor No 995 M 504 M 176 M 904 M
TDP 95 W 65 W 13 W 125 W
DRAM Model DDR3-1333 DDR3-1333 DDR2-800 DDR3-1333

Table 4.1: Experimental processors.

experimental error and evaluations that we could not report here due to space con-
straints.

4.2.1 Hardware

Table 4.1 lists characteristics of the four experimental machines we use in this study.
Hardware parallelism is indicated in the CMP & SMT row, the same as in Sec-
tion 3.2.4. The notation nCmT means the machine has n cores (CMP) and m simul-
taneous hardware threads (SMT) on each core. The Atom and Sandy Bridge families
are at the two ends of Intel’s product line. Atom has an in-order pipeline, small
caches, a low clock frequency, and is low power. Sandy Bridge is Intel’s newest gen-
eration high performance architecture. It has an out-of-order pipeline, sophisticated
branch prediction, prefetching, Turbo Boost power management, and large caches.
We use two Sandy Bridge machines to explore hardware variability, such as cache
size, within a family. We choose Sandy Bridge 06_2AH processors because they pro-
vide an on-chip RAPL energy performance counter [David et al., 2010]. We use the
AMD Phenom II since it exposes independent clocking of cores to software, whereas
the Intel hardware does not.

Together we use this hardware to mimic, understand, measure, and model AMP
designs that combine big (fast, high power) cores with small (slow, low power) cores
in order to meet power constraints and provide energy efficiency architectures.

4.2.2 Power and Energy Measurement

We use on-chip energy counters provided on Intel’s Sandy Bridge processors [David
et al., 2010], and an improvement to the Hall effect sensor methodology that we pre-
viously introduced in Section 3.2.5. Intel recently introduced user-accessible energy
counters as part of a new hardware feature called RAPL (Runtime Average Power
Limit). The system has three components: power measurement logic, a power lim-
iting algorithm, and memory power limiting control. The power measurement logic
uses activity counters and predefined weights to record accumulated energy in MSRs
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Figure 4.2: Hall effect sensor and PCI card on the Atom.

(Machine State Registers). The values in the registers are updated every 1 msec, and
overflow about every 60 seconds [Intel, 2011]. Reading the MSR, we obtain package,
core, and uncore energy. Key limitations of RAPL are: (1) it is only available on pro-
cessors with the Sandy Bridge microarchitecture, and (2) it has a temporal resolution
of just 1 msec, so it cannot resolve short-lived events. Unfortunately, VM services
such as the GC, JIT and interpreter often occur in phases of less than 1 msec.

We extend the prior methodology for measuring power with the Hall effect sen-
sor by raising the sample rate from 50 Hz to 5 KHz and using a PCI card to identify
execution phases. Figure 4.2 shows a Pololu ACS714 Hall effect linear current sensor
positioned between the power supply and the voltage regulator supplying the chip.
We read the output using an Arduino board with an AVR microcontroller. We con-
nect a PCI card to the measured system and the digital input of a Arduino board
and use the PCI bus to send signals from the measured system to the microcontroller
to mark the start and end of each execution phase of a VM service. Using the PCI
card allows us to demarcate execution phases at a resolution of 200 µsec or better so
we can attribute each power sample to the application or to the VM service being
measured.

One limitation of this method is that the Hall effect sensor measures the voltage
regulator’s power consumption. We compared the Hall effect sensor to RAPL mea-
surements. As expected, power is higher for the Hall effect sensor: 4.8% on average,
ranging form 3% to 7%. We adjust for the voltage regulator by subtracting a nomi-
nal 5% voltage regulator overhead from Hall effect sensor measurements. We were
unsuccessful in using this higher sample rate methodology on the AMD Phenom II,
so we are limited to the lower sample rate methodology for it.

When measuring the i3 and i7, we use RAPL to measure energy and divide the
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measurement by time to present average power. Conversely, when measuring the
Atom and AMD, we use the Hall effect sensor to take power samples and integrate
them with respect to time to present energy. We calculate performance as 1/time
for a given workload. We compute relative performance per energy (PPE) values
based on the experiment. For example, when we compute PPE of hardware feature
X compared to feature Y running the same workload, we calculate:

PPEX

PPEY
=

workload/run timeX
energyX

workload/run timeY
energyY

=
run timeY · energyY

run timeX · energyX

Because the interpreter normally executes in phases that are shorter than any of
our methodologies can resolve, we only directly measure the power and energy of
the interpreter by running the JVM in interpreter-only mode.

Static Power Estimates We take care to account for the static power consumption
of cores when we model AMP systems using real hardware. Unfortunately, per-core
static power data for production processors is not generally available, nor easy to
measure [Le Sueur, 2011]. By measuring power with cores in different idle states,
we estimate the per-core static power on the Phenom II at 3.1 W per core. For the
Atom, we make a conservative estimate of 0.5 W per core. Note that static power
consumption is temperature sensitive. The approach taken here, which assumes
static power is constant and thus can be approximated by idle power, is therefore a
first-order approximation. In the absence of better quality data, we were conservative
and were able to demonstrate that our results are quite robust with respect to these
estimates. The evaluation in Sections 4.4 and 4.6 uses the six-core Phenom II to
model a single core system and a two core AMP system. Because the Phenom II
powers the unused cores, we subtract the static power contribution of unused cores.
When we model two Atom cores and one Phenom II core as part of the AMP system
in Section 4.6, we subtract the static power for five AMD cores and add the static
power for two Atom cores.

4.2.3 Hardware Configuration Methodology

We use hardware configuration to explore the amenability of future AMP hardware
to managed languages. We are unaware of any publicly available simulators that pro-
vide the fine-grained power and performance measurements necessary for optimiz-
ing application software together with hardware. Compared to simulation, hardware
configuration has the disadvantage that we can explore fewer hardware parameters
and designs. Hardware configuration has an enormous execution time advantage;
it is orders of magnitude faster than simulation. In practice, time is limited and
consequently, we explore more software configurations using actual hardware. Mea-
suring real hardware greatly reduces, but does not completely eliminate, the effect
of inaccuracies due to modelling.
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4.2.3.1 Small Core Evaluation

To understand the amenability of the various services to small cores in an AMP
design, we use the i3 and Atom processors. The processors differ in two ways that
are inconsistent with a single-die setting: a) they have different process technologies
(32 nm vs 45 nm), and b) they have different memory speeds (1.33 GHz vs 800 MHz).
Our comparisons adjust for both by down-clocking the i3’s memory speed to match
the Atom, and by approximating the effect of the technology shrink. Section 3.4.4 has
found that a die shrink from 45 nm to 32 nm reduces processor power by 45% on two
Intel architectures. We use the same factor, but do not adjust clock speed, on the
grounds that a simple low power core may well run at a lower frequency.

To evaluate the overall power and PPE effects of deploying the GC and JIT on a
low power core, we use the Phenom II and the Hall effect sensor without the PCI card.
This methodology’s inability to measure fine grain events is inconsequential because
we are measuring overall system power and performance in the experiments where
the Phenom II is used. As mentioned above, the Phenom II’s separately clocked cores
make it a good base case.

4.2.3.2 Microarchitectural Characterization

As we did in Section 3.2.7, we evaluate microarchitectural features using BIOS con-
figuration. We explore the effect of frequency scaling on the i7, varying the clock from
1.6 GHz to 3.4 GHz. We normalize to 1.6 GHz. We explore the effect of hardware par-
allelism on the Phenom II by varying the number of participating CMP cores and on
the i7 by varying CMP and SMT. We explore the effect of last level cache sizes by com-
paring the i7 and i3, each configured to use two cores at 3.4 GHz, but with 8 MB and
3 MB of LLC respectively. To explore sensitivity to memory bandwidth, we use the i3
with 800 MHz single channel memory relative to the default 1.33 GHz dual channel
memory. To understand the effect of gross microarchitectural change, we compare the
i3 and Atom running at the same clock speed, and make adjustments for variation in
process technology, reducing the power of the Atom by 45% to simulate fabrication at
32 nm (see Section 3.4.4).

4.2.4 Workload

We use ten widely used Java benchmarks taken from the DaCapo suites and SPECjbb
in this chapter, which can run successfully on Jikes RVM with its replay compila-
tion: bloat, eclipse, and fop (DaCapo-2006); avrora, luindex, lusearch, pmd, sunflow,
and xalan (DaCapo-9.12); and pjbb2005. All are multithreaded except for fop, luin-
dex, and bloat. These benchmarks are non-trivial real-world open source Java pro-
grams [Blackburn et al., 2006].
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4.2.5 Virtual Machine Configuration

All our measurements follow Blackburn et al.’s best practices for Java performance
analysis [Blackburn et al., 2006] with the following adaptations to deal with the lim-
itations of the power and energy measurement tools at our disposal.

4.2.5.1 GC

We focus our evaluation on concurrent GC because it executes concurrently with
respect to the application and is thus particularly amenable to AMP. We also evaluate
Jikes RVM’s default production GC, generational Immix [Blackburn and McKinley,
2008]. We evaluated, but do not report, four other GCs to better understand GC
workloads in the context of AMP. The measurements that we do not explicitly report
here are available in our online data. All of our evaluations are performed within
Jikes RVM’s memory management framework, MMTk [Blackburn et al., 2004].

We report time for the production collector in Figure 4.1(a) because it is the best
performing collector and thus yields the lowest time. In all other cases, we use the
concurrent collector. Because GC is a time-space tradeoff, the available heap space
determines the amount of work the GC does, so it must be controlled. We use a heap
1.5 × the minimum in which the collectors executes and is typical. For the concurrent
collector, the time-space tradeoff is significantly more complex because of the concur-
rency of the collector’s work, so we explicitly controlled the GC workload by forcing
regular concurrent collections every 8 MB of allocation for avrora, fop, and luindex,
which have a low rate of allocation, and 128 MB for the remaining benchmarks.

Measurement of concurrent GC faces two major challenges: (a) Except using
RAPL on Sandy Bridge, we have no way of measuring the power and/or energy
of a particular thread, and thus we cannot directly measure power or energy of con-
current collection, and (b) unlike full heap stop-the-world (STW) collectors, which
suspend all application threads when collecting, concurrent collectors require the
application to perform modest housekeeping work which can not be directly mea-
sured because it is finely entangled within the application. We use a STW variation
on our concurrent collector to solve this methodological challenge. Using the STW-
concurrent collector, a modified concurrent collector which behaves in all respects as
a concurrent collector except that the application is stopped during GC phase, we can
isolate and measure the application energy consumption and running time. Using
concurrent GC, we measure the total energy and time of application and GC. We can
then deduce the net overhead of concurrent GC by subtracting application energy
and time from total energy and time measured when using concurrent GC.

The GC implementations expose software parallelism and exploit all available
hardware contexts.

4.2.5.2 JIT

Because the unit of work for the JIT when executing normally is too fine grained for
either RAPL or Hall effect measurements, we perform and measure all JIT work at
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once from a replay profile on Jikes RVM [Blackburn et al., 2006]. Replay compilation
removes the nondeterminism of the adaptive optimization system. The methodology
uses a compilation profile produced on a previous execution that records what the
adaptive compiler chose to do. It first executes one iteration of the benchmark with-
out any compilation, forcing all classes to be loaded. Then the compilation profile
is applied en mass, invoking the JIT once for each method identified in the profile.
We measure the JIT as it compiles all of the methods in the profile. We then disable
any further JIT compilation and execute and measure the application on the second
iteration. The application thus contains the same mix of optimized and unoptimized
code as it would have eventually had with regular execution, but now we can mea-
sure both the compiler and application independently and thus the experiments are
repeatable and measurable with small variation. To decrease or eliminate GC when
measuring the JIT, we use Jikes RVM’s default generational Immix GC, since it per-
forms the best, and set the heap size to be four times the minimum size required.

Normally the JIT executes asynchronously to the application and GC. Although
the JIT compiler could readily exploit parallelism by compiling different code in
multiple threads, Jikes RVM’s JIT is not parallel. We thus evaluate the JIT on a
single hardware context. When we evaluate the JIT and GC together we use multiple
hardware contexts.

4.2.5.3 Interpreter

Evaluating the interpreter is challenging because interpretation is finely interwoven
with optimized code execution. We evaluate the interpreter two ways, using two
JVMs, the Oracle HotSpot JDK 1.6.0 and Jikes RVM. HotSpot interprets bytecodes
and Jikes RVM template compiles them. Both adaptively (re)compile hot methods
to machine code. We first use Jikes RVM and a timer-based sampler to estimate the
fraction of time spent in interpreted (template-compiled) code. We use HotSpot to
evaluate the interpreter’s microarchitectural sensitivity. We execute HotSpot with
the compiler turned off, so that all application code is interpreted. Because the inter-
preter is tightly coupled with the application, it exhibits no independent parallelism
and cannot execute asynchronously with respect to the application. However, it re-
flects all software parallelism inherent in the application.

4.3 Motivation: Power and Energy Footprint of VM Services

Figure 4.3 shows the overall contribution of the GC and JIT of Jikes RVM to system
power and energy on existing hardware. As we mentioned in the previous section,
the interpreter’s fine-grained entanglement with the application makes it too difficult
to isolate and measure its power or energy with current tools. Figure 4.1(a) shows
that the fraction of cycles due to the interpreter is significant. Although we do not
evaluate the interpreter further here, it remains a significant target for power and
energy optimization on future AMP systems. Figure 4.3 reports isolated GC and
JIT power and energy on a stock i7 (4C2T at 3.4 GHz). Our methodology generates
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(a) Average power for GC, JIT, and application.
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(b) Fraction of energy due to GC and JIT.

Figure 4.3: GC, JIT, and application power and energy on i7 4C2T at 3.4 GHz using
Jikes RVM. The power demands of the GC and JIT are relatively uniform across
benchmarks. Together they contribute about 20% to total energy.
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typical JIT and GC workloads. We use the JIT workload during warm-up (the first
iteration of each benchmark), in which it performs most of its work. We use the GC
and application workload in steady state (5th iteration), where the GC sees a typical
load from the application and the application spends most its time in optimized code.
Since the GC is concurrent and parallel, it utilizes all available hardware. The JIT is
concurrent, but single threaded, although JIT compilation is not intrinsically single
threaded. The benchmarks themselves exhibit varying degrees of parallelism.

Figure 4.3(a) shows that power consumption is quite uniform for the GC and JIT
regardless of benchmark on the i7, at around 40 W and 30 W respectively. The JIT
has lower power because it is single threaded, whereas the parallel GC uses all four
cores and SMT. This power uniformity shows that the GC and JIT workload are both
relatively benchmark independent. By contrast, application power varies by nearly a
factor of three, from 22 W to 62 W, reflecting the diverse requirements and degrees of
parallelism among the benchmarks.

Figure 4.3(b) shows that the GC and JIT each contribute about 10% on average
to the total energy consumption, totalling about 20%. This confirms our hypothesis
that VM services may provide a significant opportunity for energy optimization. Re-
call from Figure 4.1(a) that GC and JIT totally use around 20% CPU cycles (although
with different software and hardware configurations), which also provides a signif-
icant opportunity for performance optimization. The figure also shows significant
variation in total GC and JIT energy consumption across benchmarks, despite their
uniform power consumption. This variation, together with the data in Figure 4.1(a),
reflects the different extents to which the benchmarks exercise the JIT and GC. Some
benchmarks require more or less GC and JIT services, even though the behavior of
each service is quite homogeneous.

4.4 Amenability of VM Services to a Dedicated Core

The above results demonstrate the potential for energy savings and we now explore
the amenability of executing VM services on dedicated small cores. This experiment
explores whether the services will a) benefit from dedicated parallel hardware, and
b) be effective, even if the hardware is slow.

Because we are not yet considering the small core microarchitecture, we use exist-
ing stock hardware. We choose the AMD Phenom II because it provides independent
frequency scaling of the cores. We model the small core by down-clocking a regular
core from 2.8 GHz to 2.2 GHz and 0.8 GHz. We subtract our conservative estimate
of static power of 3.1 W per core from our measurements to avoid overstating our
results. (Section 4.2.2 explains the estimation.)

We bind the VM service(s) to separate cores and measure the entire system. We
use regular adaptive JIT because it interleaves its work asynchronously and in par-
allel with the application (replay compilation, although easier to measure, does nei-
ther). We measure total time for the first iteration of each benchmark because the
first iteration is a representative JIT workload that imposes significant JIT activity
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Figure 4.4: Utility of adding a core dedicated to VM services on total energy, power,
time, and PPE using Jikes RVM. Overall effect of binding GC, JIT, and both GC & JIT
to the second core running at 2.8 GHz (dark), 2.2 GHz (middle), and 0.8 GHz (light)
on the AMD Phenom II corrected for static power. The baseline uses one 2.8 GHz
core.

(see Figure 4.1(a)).
Figure 4.4 shows the effect of adding a dedicated core for GC and JIT services on

energy, power, performance, and PPE. The light grey arrows show which direction
is better (lower for energy and power, and higher for performance and PPE). The
leftmost bar in each cluster shows the effect when the additional core runs at 2.8 GHz,
the same speed as the main core. This result evaluates our first question: whether
the system benefits from hardware parallelism dedicated to VM services. For both
the GC and JIT, the introduction of dedicated hardware improves performance by
8-10% while increasing power by around 15%. They independently increase energy
by around 6% and marginally improve PPE. When both GC and JIT are bound to the
additional core the effect is amplified, leading to a net PPE improvement of 13% and
a 2% increase in energy. This data shows that simple binding of the JIT and GC to
an additional core is effective.

In this chapter however, we are exploring future systems in which adding more
big cores is not feasible because of power or energy constraints. If it were, dedicating
a big core to the VM services rather than sharing it with the application is probably
a poor design choice.

The lighter bars in Figure 4.4 show the effect of slowing down the dedicated VM
services core. The power overhead of the additional core is reduced by nearly half
when the dedicated core is slowed down to 0.8 GHz. However performance also
suffers, particularly for GC. Nonetheless, the PPE improves for the JIT and JIT &
GC cases, which indicates that the GC and JIT could efficiently utilize a small core.
A very promising result from Figure 4.4 is that executing JIT and GC on the dedi-
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cated core at 2.2 GHz delivers a 13% higher PPE than one processor with virtually
no energy cost. From this figure, we can also see that while we reduce the JIT core
frequency from 2.8 GHz to 0.8 GHz (reduced 70%), the application performance only
reduces around 3%. So even though we slow the JIT down, it still can deliver opti-
mized code fast enough, which provides the opportunity to run JIT on a small core
with much lower power.

We also measure the effect on power and energy of introducing a small core
without binding the VM services. This configuration led to a significant slow down,
which is illustrated in Figure 4.1(b). There was also a modest increase in energy,
which together lead to a 30% degradation in PPE. This result emphasizes that without
binding of tasks or some other guidance to the OS scheduler, the addition of a small
core is counterproductive.

4.5 Amenability of VM services to Hardware Specialization

A single-ISA heterogeneous processor design has the opportunity to include a va-
riety of general purpose cores tailored to various distinct, yet ubiquitous, workload
types. Such a design offers an opportunity for very efficient execution of workloads
that do not well utilize big out-of-order designs. We now explore the amenability
of VM services to alternative core designs. We start with measuring a stock small
processor, the in-order, low power, Atom. We then evaluate how the VM services re-
spond to a range of microarchitectural variables such as clock speed, cache size, etc.
To ease measurement, this analysis evaluates the GC and application with respect
to a steady state workload and the replay JIT workload. We evaluate the interpreter
using the HotSpot JDK with its JIT disabled and measure the second iteration of the
benchmark, which reflects steady state for the interpreter.

4.5.1 Small Core

We first compare contemporary in-order cores to out-of-order cores. We use an i3
and Atom with the same degree of hardware parallelism (2C2T), and run with the
same memory bandwidth to focus on the microarchitectural differences. We do not
adjust for clock frequency in this experiment on the grounds that the small core
may well run at a lower clock, so they execute at their 3.4 GHz and 1.66 GHz default
frequencies respectively. We explore the effect of clock scaling separately, below.
An important difference between the two machines is their process technology. To
estimate the effect of shrinking the process, we project the Atom power consumption
data to 32 nm by reducing measured power by 45%, as described in Section 4.2.3.1.

Figure 4.5 shows the effect on energy, power, performance, and PPE when moving
from the i3 to the in-order Atom. The figure shows, unsurprisingly, that the Atom offers
lower energy, power, and performance in all cases. Power is uniformly reduced by
around 90%. Of these, the GC benefits the most because its performance decrease
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Figure 4.6: Cycles executed as a function of clock speed, normalized to cycles at
1.6 GHz on the i7. GC, JIT, and interpreter use Jikes RVM. Interpreter uses HotSpot
JDK, as stated in Section 4.2.5.3. The workload is fixed, so extra cycles are due to
stalls.

is less than for the others. The consequence is greater energy reduction and a net
improvement in PPE of 35%. The JIT, interpreter, and application all see degradations
in PPE of around 60-70%.

This data makes it emphatically clear that the simple memory-bound graph traver-
sal at the heart GC is much better suited to small low power in-order processors. In
the case of the JIT, the 35% energy reductions may trump degraded PPE because the
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JIT can be trivially parallelized, which improves performance without significantly
increasing energy, leading to improved PPE. The small core will be a power- and
energy-efficient execution context for the interpreter in contexts when the perfor-
mance reduction is tolerable. Since performance-critical code is typically optimized
and therefore not interpreted, it is plausible that interpreted code is less likely to be
critical and therefore more resilient to execution on a slower core.

Figure 4.6 provides insight into why the GC does so well on the Atom. This
graph shows the effect on the total cycles executed when scaling the clock on a stock
i7. The application and JIT execute just 4-5% more cycles as the clock increases
from 1.6 GHz to 3.4 GHz while the GC executes 30% more cycles. These extra cycles
are due to stalls. The result is unsurprising given the memory-bound nature of
GC. It is also interesting to note what this graph reveals about the interpreter. The
higher clock speed induces no new stalls, so the interpreter’s performance scales
perfectly with the clock frequency. This result reflects the fact that an interpreter
workload will invariably have very good instruction locality because the interpreter
loop dominates execution. We confirmed this hypothesis by directly measuring the
frequency of last level cache accesses by the interpreter and found that it was 70%
lower than the application code. Both the interpreter and the GC exhibit atypical
behavior that suitably tuned cores should be able to aggressively exploit for greater
energy efficiency.

4.5.2 Microarchitectural Characterization

This section further explores the sensitivity of the GC, JIT, interpreter, and applica-
tion workloads to microarchitectural characteristics. This characterization gives more
insight into the amenability of the services to hardware specialization. Figure 4.7
and 4.8 show the result of varying: hardware parallelism, clock speed, memory band-
width, cache size, and gross microarchitecture. For the SMT and CMP experiments,
we drop the three single threaded benchmarks, and use the seven multithreaded ones
to focus on sensitivity with software parallelism. Similarly, six of the applications fit
in the smaller 3 MB last-level cache, so we use the ones that do not (bloat, eclipse,
pmd and pjbb2005) to compare with VM services. To generate the GC workload,
we drop avrora, fop, and luindex here because they have high variation and low GC
time. Note the different y-axis scales on each graph.

4.5.2.1 Hardware Parallelism

We study the effects of hardware parallelism using the i7. To evaluate CMP perfor-
mance, we compare 1C1T and 2C1T configurations, which disable hyperthreading
and ensure that software parallelism is maximally exposed to the availability of an-
other core. Conversely, to evaluate SMT performance, we compare 1C1T and 1C2T
configurations, which use just one core to maximize exposure of software parallelism
to the addition of SMT. In all cases, the processor executes at its 3.4 GHz stock fre-
quency. Because the JIT of Jikes RVM is single threaded, we omit the JIT from this
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part of the study. However, some JITs are parallel and would be amenable to hard-
ware parallelism.

Figure 4.7(a) shows that increasing the number of cores improves the PPE of both
GC and multithreaded applications similarly. The interpreter sees an even greater
benefit, which is likely due to the lower rate of dependencies inherent in the slower
interpreter loop relative to typical optimized application code. Figure 4.7(b) shows
that SMT does not improve PPE as much as CMP, but effectively decreases energy.
In Section 3.4.2, we have shown SMT requires very little additional power as com-
pared to CMP and is a very effective choice given a limited power budget. The
advantage of the interpreter over the other workloads is even more striking here. Six
multithreaded benchmarks exhibit dramatic interpreter performance improvements
on SMT and CMP respectively: sunflow (87%, 164%), xalan (54%, 119%), avrora
(55%, 74%), pmd (45%, 113%), lusearch (53%, 111%), and pjbb2005 (36% and 67%).
Eclipse is the only multithreaded benchmark that did not improve due to hardware
parallelism when fully interpreted. These results show that VM services can very
effectively utilize available hardware parallelism.

4.5.2.2 Clock Speed

Figure 4.7(c) plots performance (x-axis) and energy (y-axis) as a function of clock
frequency on the i7. The single threaded JIT uses a 1C1T configuration, while all
other workloads use the stock 4C2T configuration. Values are normalized to those
measured at the minimum clock frequency (1.6 GHz). The different responses of
each workload is striking. The JIT, interpreter, and application all improve their per-
formance two-fold as the clock increases. On the other hand, the GC performance
improves very little beyond 2.0 GHz. Figure 4.6 and our measurements of cache miss
rates suggest that memory stalls are the key factor in this result. The different work-
loads also have markedly different energy responses. The single threaded JIT energy
only increases by 4% going from the lowest to the maximum clock speed, whereas
the application and GC energy consumption increase by 25% and 23% respectively
with clock speed increases.

4.5.2.3 Memory Bandwidth

Figure 4.8(a) shows the effect of increasing memory bandwidth from a single channel
at 0.8 GHz to two channels at 1.33 GHz on the i7. The increase in memory bandwidth
reduces CPU energy for all workloads, but most strikingly for GC. The GC perfor-
mance increases dramatically, leading to a 2.4× improvement in PPE. Of course the
increased memory bandwidth will lead to increased energy consumption by the off-
chip memory subsystem, and our measurements are limited to the processor chip
and thus not captured by this data. The GC’s response to memory bandwidth is
unsurprising, given that the workload is dominated by a graph traversal. It is in-
teresting to note that while the JIT and the application also see significant, if less
dramatic, improvements, the interpreter does not. The results in Figure 4.8(a) are
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(a) Effect of CMP on GC, interpreter, and multithreaded application
on i7.
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(b) Effect of SMT on GC, interpreter, and multithreaded application
on i7.
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(c) Effect of clock frequency on performance and energy. Points are
clock speeds 1.6, 2.0, and 3.4 GHz (from left to right) on i7.

Figure 4.7: Microarchitectural characterization of VM services and application. GC,
JIT, and interpreter use Jikes RVM. Interpreter uses HotSpot JDK, as stated in Sec-
tion 4.2.5.3.
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(a) Effect of memory bandwidth (1.33 GHz x 2 channels vs 0.8 GHz
x 1 channel) on i7.
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(b) Effect of LL cache size (8 MB vs 3 MB) on i7 and i3.
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(c) Effect of gross architecture on Sandy Bridge and Atom at same
frequency, hardware threads, and process technology.

Figure 4.8: Microarchitectural characterization of VM services and application. GC,
JIT, and interpreter use Jikes RVM. Interpreter uses HotSpot JDK, as stated in Sec-
tion 4.2.5.3.
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quite consistent with the results in Figure 4.6. The GC is memory-bound and sensi-
tive to memory performance. The interpreter has excellent locality and is relatively
insensitive to memory performance.

4.5.2.4 Last-level Cache Size

A popular use of abundant transistors is to increase cache size. In Figure 4.8(b),
the experiment evaluates the approximate effect of increased cache size on the GC
and application using the i7 and i3. We configure them with the same hardware
parallelism (2C2T) and clock frequency (3.4 GHz). After controlling for hardware
parallelism and clock speed, the most conspicuous difference between the systems is
their last level cache: the i7’s LL cache is 8 MB and i3’s is 3 MB. Six of our ten bench-
marks are insensitive to the large cache size. Cache is not a good use of transistors
for them. The four cache-sensitive benchmarks (bloat, eclipse, pmd and pjbb2005)
have large minimum heap sizes. For these benchmarks, the increase in LL cache size
from 3 MB to 8 MB is only a small amount of the average maximum volume of live
objects. Note the y-axis scale in Figure 4.8(b). Even these benchmarks only improve
performance by 6% with a larger cache. The larger cache improves JIT performance
and PPE by 10%, but these improvements are very modest in comparison with the
other hardware features explored in Figure 4.7 and Figure 4.8. The interpreter, which
has good locality, sees a reduction in PPE when the cache size is increased.

4.5.2.5 Gross Microarchitecture

Figure 4.8(c) compares the impact of gross microarchitecture change using the Atom
and i3, controlling for clock frequency (1.66 GHz for Atom and 1.6 GHz for i3), hard-
ware parallelism (2C2T), and memory bandwidth. We configure them both to use
800 MHz single channel memory. We adjust for process technology on the Atom, as
we do above, by scaling by 45%. The results make it clear that the GC is better suited
to the small in-order Atom than a big core, with the high performance architectural
features of the i3. GC has a better PPE on the Atom than on the i3. The interpreter
does not do as well as the GC, but the benefit of the i3 is muted compared to its
performance benefit for the JIT and the application.

4.5.3 Discussion

These results show that each of the VM services exhibit a distinctly different response
to microarchitectural features. The similarities between the JIT and application are
not a surprise. The characteristics of compilers have been studied extensively in
the literature and are included in many benchmark suites including the ones we use
here. On the other hand, the GC and interpreter each exhibit striking deviations from
the application. This heterogeneity presents designers with a significant opportunity
for energy optimizations that tune small general purpose cores more closely to the
microarchitectural needs of this ubiquitous workload.
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Figure 4.9: Modeling total energy, power, time, and PPE of an AMP system. The
light bars show a model of an AMP with one 2.8 GHz Phenom II core and two Atom
cores dedicated to VM services. The dark bars reproduce Phenom II results from
Figure 4.4 that use a 2.8 GHz dedicated core for VM services.

4.6 Modeling Future AMP Processors

This section evaluates a hypothetical AMP scenario. The absence of a suitable AMP
processor in silicon and our software constraints for executing on an x86 ISA motivate
using a model. Our model combines measured application power and performance
results on the big Phenom II core at 2.8 GHz with the power and performance re-
sults for GC and JIT on two small Atom cores at 1.66 GHz. We compare this model
to the Phenom II AMP core results from Figure 4.4, which we corrected for static
power. Because the Atom cores are projected into the Phenom II die, we assume the
Phenom II’s memory bandwidth and LL cache size, and accordingly raise the Atom’s
performance by 79% and 5% for the GC and 2% and 10% for the JIT, based on our
measurements in Figures 4.8(a) and 4.8(b).

For the small cores, which run the VM services, we model GC throughput by
straightforwardly scaling up our measures of GC throughput on the regular Atom
according to the adjustments for the Phenom II cache size and memory bandwidth.
We do the same for the JIT, however, we also scale the JIT from 1C1T to 2C2T, making
the assumption that the JIT will scale as well as typical applications. This adjustment
is conservative since the JIT is embarrassingly parallel.

To make our model more accurate, we capture the effect on the application of
slowing down the GC and JIT. We leverage the results on the Phenom II that down-
clock cores in Figure 4.4. The modeled performance for the GC on the two Atom
cores is slightly better than on the Phenom II at 2.2 GHz, and the JIT modeled on the
two Atom cores is slightly better than on the Phenom II at 0.8 GHz. We thus use the
application measurements when running with the 2.2 GHz and 0.8 GHz dedicated
VM services cores respectively. This measurement conservatively captures the effect
on the application of slowing the GC and JIT.
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Figure 4.10: Adjusting the JIT’s cost-benefit model to account for lower JIT execution
costs yields improvements in total application performance.

Figure 4.9 shows that even our conservative model of the two Atom cores (light
bars) is promising. For the GC alone, energy improves by 4% due to a performance
improvement of 7% but at only a 3% power cost. The JIT alone has slightly worse
total performance impact, but at a commensurate power cost. Individually, the PPE
improvement is 11% and 6% from GC and JIT respectively. When we bind both the
GC and JIT to the small cores, the result is more than additive results because of
the better utilization of the small cores. Total performance is very similar to that of
the 2.8 GHz dedicated core but power, energy, and PPE are all markedly improved.
The performance improvement is 13% with only a 5% power cost, resulting in a 7%
energy improvement and a 22% PPE improvement.
Discussion. To realize these gains requires more research and infrastructure. At least,
we will need (1) big/small core hardware with new hardware features, e.g., voltage
scaling on a thread basis to, for example, accelerate the interpreter; (2) on-chip power
meters, (3) OS or VM scheduling support; (3) concurrent GC and parallel JIT tuned
for the hardware; and (4) scheduling algorithms to coordinate application and VM
threads.

4.7 Further Opportunity for the JIT

Although the JIT is broadly similar to the applications and therefore may not offer an
opportunity for tuned hardware, executing the JIT on small cores does offer a new
opportunity to improve application code quality. Minimizing JIT cost means that
in theory, the JIT can optimize more code, more aggressively, improving application
code quality. Figure 4.10 evaluates this hypothesis. It compares the total performance
(GC, application, and interpreter, but not JIT) using the standard optimization deci-
sions that Jikes RVM produces on the first iteration using its cost benefit analysis
(see Section 2.2.2), to a more aggressive cost model that compiles code sooner and
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compiles more code. We configure the compiler cost model by reducing the cost of
compilation by a factor of 10. Figure 4.10 shows that making the JIT more aggressive
improves total performance by around 5%. This result suggests that software/hard-
ware co-design has the potential to improve power, performance, and PPE further.

4.8 Summary

This chapter first showed the advantages and disadvantages of VMs and AMP archi-
tectures. VM services provide abstractions but consume significant resources. AMP
architectures provide potential efficiency but behave inefficiently without software
support. We identified that the opportunities and challenges of AMP processors
and managed software are complementary. The VM’s overhead can be hidden by
utilizing the small cores on an AMP, and the AMP’s hardware complexity can be
abstracted by the managed languages. Using power and performance measurements
of modern hardware and very conservative models, we showed that the addition of
small cores for GC and JIT services alone should deliver, at least, improvements in
performance of 13%, energy of 7%, and performance per energy of 22%.

This chapter explored efficiency improvements by running VM services on the
small cores of AMP architectures. The next chapter extends the exploration of man-
aged languages and AMP processors to application threads and VM services threads,
and develops an algorithm that uses online metrics of parallelism, communication,
and core sensitivity to schedule threads to the appropriate cores for improved system
efficiency.
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Chapter 5

A VM Scheduler for AMP

The previous chapter shows that by manually scheduling Virtual Machine (VM) ser-
vices to the small cores on Asymmetric Multicore Processors (AMPs), the VM can
improve performance and energy. This chapter presents a dynamic VM scheduler
that shields both the VM threads and application threads from the hardware com-
plexity of AMP architectures, resulting in substantial performance and energy im-
provements for managed applications.

Section 5.2 evaluates how well the existing schedulers perform for different bench-
mark groups. Section 5.3 presents how we dynamically identify benchmark par-
allelism online and Section 5.4 presents our model to predict thread sensitivity to
different core types. Section 5.5 introduces the WASH (Workload Aware Scheduler
for Heterogeneity) algorithm. Section 5.6 describes the hardware, measurements,
workload, and software configuration used in this chapter. Section 5.7 shows the
performance and energy improvements by using WASH on three different big/small
core configurations.

This chapter describes work in the paper under review “Dynamic Analysis and
Scheduling Managed Software on Asymmetric Multicore Processors” [Jibaja, Cao,
Blackburn, and McKinley, 2014]. In this collaboration, I was primarily responsible for
the detection of thread contention, dynamic profiling, and the scheduling algorithm.

5.1 Introduction

This chapter presents a fully automated AMP-aware runtime system that transpar-
ently delivers on the performance and energy efficiency potential of AMP. Prior work
focused on: core sensitivity of each thread [Saez et al., 2011, 2012; Craeynest et al.,
2012; Kumar et al., 2004; Becchi and Crowley, 2006]; using the number of threads
to determine a schedule [Saez et al., 2010]; prioritizing threads on the critical path
in multithreaded applications [Du Bois et al., 2013; Suleman et al., 2010; Joao et al.,
2012, 2013]; or statically binding special threads to cores as in Chapter 4;. Each ap-
proach addresses only a part of the problem and is thus insufficient. Core sensitivity
identifies the different microarchitectural needs of threads; the number of threads
and critical paths are essential to efficient scheduling; and exploiting a priori knowl-
edge of special purpose threads is profitable. Unfortunately, this prior work either
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requires applications that: are parallel and scalable; have one thread or N where N is
the number of hardware contexts; or have critical locks annotated by the developer so
that the runtime can identify bottlenecks [Du Bois et al., 2013; Joao et al., 2012, 2013].
In contrast, this paper presents an AMP runtime system that does not restrict the
number of threads; automatically identifies application parallelism (none, scalable,
non-scalable); assesses and manages thread criticality, progress, and core sensitivity;
and requires no changes to applications.

We explore managed language workloads and their specific challenges and op-
portunities. By comparison to native parallel workloads in prior work, managed
workloads are complex and messy. Because managed runtime VMs contain helper
threads, such as the garbage collector (GC), just-in-time compiler (JIT), profiler, and
scheduler that run together with the application, they offer a mess of heterogeneous
threads with different functions and amounts of work. Adding to this mess, appli-
cations that run on managed VMs use concurrency in diverse ways, and as a result
are often not scalable. On the other hand, VMs offer an opportunity because they
already profile, optimize, and schedule applications, and have a priori knowledge
about their helper threads.

This chapter presents the design and implementation of an AMP-aware runtime
that consists of: (1) a model of core sensitivity that predicts and assesses thread
performance on frequency-scaled cores and expected thread progress using perfor-
mance counter data; (2) a dynamic parallelism analysis that piggybacks on the un-
derlying locking mechanism to determine scalability, cores, and contention; and (3) a
new Workload Aware Scheduler for Heterogeneous systems (WASH) that optimizes
based on thread type (application or runtime helper), each thread’s core sensitivity,
progress, and parallelism.

A key contribution of this work is the VM’s dynamic parallelism analysis. We
show that the dynamic parallelism analysis is necessary to produce good sched-
ules. To maximize performance and energy efficiency: (1) the scheduler must iden-
tify critical thread(s) in non-scalable workloads and preferentially schedule them on
big cores; (2) the scheduler must place the single thread in a sequential application
on a big core and all runtime helper threads on small cores; and (3) it must fairly
schedule scalable applications threads on both big and small cores based on thread
progress. We demonstrate that our dynamic parallelism analysis accurately classifies
lock contention as a function of thread count, work, and waiting time on a range of
applications and it differentiates variants of a single application configured either as
scalable or non-scalable.

We implement our AMP runtime in Jikes RVM. We evaluate 14 benchmarks from
DaCapo and SPECjbb (five single threaded, five non-scalable, and four scalable) exe-
cuting on the AMD Phenom II with core-independent frequency scaling configured
as an AMP. We compare to the Linux OS AMP-oblivious round-robin scheduler,
which works well for scalable workloads but underutilizes big cores in other work-
loads; and the fixed static assignment of helper threads to small cores from Chapter 4,
which works well on single threaded benchmarks but underutilizes the small cores
in other workloads. We show that neither of these approaches work consistently well
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on AMP with non-scalable workloads. WASH consistently improves performance
and energy in all hardware configurations by utilizing both small and big cores more
appropriately. WASH delivers substantial improvements over the prior work: 20%
average performance and 9% energy on a range of AMP hardware configurations.
More efficient AMP designs that perform voltage scaling (not only frequency scal-
ing) and/or combine different microarchitectures will likely perform better.

Our approach successfully exploits two key aspects of a managed runtime, but
both could be generalized to a kernel-level scheduler. (1) We exploit a priori knowl-
edge of managed runtime helper threads and their respective priorities. The VM
could communicate this information via thread priorities (e.g., assigning low prior-
ity to JIT and GC threads), such that the OS will preferentially schedule them on
small cores. (2) We exploit the biased locking optimization in modern managed
runtimes [Bacon et al., 1998; Dice et al., 2010; Android, 2014], which cost-effectively
identifies true contention. Prior work relied on programmer assistance to identify
contention [Joao et al., 2012, 2013], in part since neither Linux or Windows implement
biased locking. However, some pthread implementations implement lock optimiza-
tions [Android, 2014], and the utility of such optimizations in an AMP setting may
motivate their wider adoption. Although our evaluation focusses on managed lan-
guages, we are optimistic that this approach applies beyond the confines of managed
languages.

5.2 Workload Analysis & Characterization

The analysis in this section leads to the following insights. (1) Existing schedulers
perform well for one of single-threaded or multithreaded workloads, but not both.
(2) No scheduler works consistently well for non-scalable multithreaded workloads.
(3) The OS currently does not have sufficient information to differentiate application
and helper threads. Section 5.3 presents our online analysis that dynamically iden-
tifies parallelism and Section 5.4 presents an offline analysis that produces our core
sensitivity model.

We first explore scalability on small numbers of homogeneous cores by config-
uring a six-core Phenom II to execute with one, three, and six cores at two proces-
sor speeds: big (B: 2.8 GHz) and small (S: 0.8 GHz) and execute the DaCapo Java
benchmarks with Jikes RVM and a 2.6.32 Linux kernel. Section 5.6 describes our
methodology in detail.

Figure 5.1(a) shows the speedup of each benchmark on big core configurations
and Figure 5.1(b) shows the same experiment on small core configurations, both
normalized to one big core. Higher is better. We use the default Linux scheduler
(Oblivious) as the base case. This scheduler initially schedules threads round robin
on each core, seeks to keep all cores busy, and avoids migrating threads between
cores [Sarkar, 2010]. It is oblivious to different core capabilities; a shortcoming not
exposed on the homogeneous hardware in this experiment.

We classify four of eight multithreaded benchmarks (lusearch, sunflow, spjbb and
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(a) Speedup on one, three and six 2.8 GHz big cores.
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(b) Speedup on one, three and six 0.8 GHz small cores.

Figure 5.1: Linux OS scheduler (Oblivious) on homogeneous configurations of a
Phenom II normalized to one big core. We classify benchmarks as single threaded,
non-scalable multithreaded (MT), and scalable MT. Higher is better.
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Figure 5.2: Execution time of Oblivious and bindVM on various AMP configurations,
normalized to one 1B5S with Oblivious. Lower is better.

xalan) as scalable because they improve both from one to three cores, and from three
to six cores. Even though five other multithreaded benchmarks respond well to
additional cores, they do not improve consistently as a function of the number of
cores. For instance, avrora performs worse on three big cores than on one, and eclipse
performs the same on three and six cores on both big and small cores. The reason
for avrora’s unusual behaviour is that its rate of lock inflation (from cheap lock to
heavy lock [Pizlo et al., 2011]) increases hugely from one core to multicore, more
than two orders of magnitude. We found that pjbb2005 does not scale in its default
configuration. We increased the size of its workload to produce a scalable variant,
which we call spjbb. As comparison, the original pjbb2005 is called nspjbb in this
chapter. The number of application threads and these results yield the benchmark
classifications of single threaded (no parallelism), non-scalable multithreaded, and
scalable multithreaded.

Because the VM itself is multithreaded, as noted in Section 3.4.1, all single threaded
applications in Figure 5.1 improve slightly as a function of cores. Just observing
speedup as a function of cores is insufficient to differentiate single threaded applica-
tions from multithread. For example, fop and hsqldb have similar responses to the
number of cores, but fop is single threaded and hsqldb is multithreaded. This result
motivates using the VM, since it knows a priori how many and which threads are
application rather than VM service threads.

We now explore how well current schedulers perform on AMP hardware. We
measure the default Linux scheduler (Oblivious) and the VM-aware scheduler pro-
posed in Chapter 4 (bindVM) which schedules VM services on small cores and appli-
cation threads on big cores. Chapter 4 shows that bindVM improves over Oblivious
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on 1B5S and Figure 5.2 confirms this result. Regardless of the hardware configura-
tion (1B5S, 2B4S, or 3B3S), bindVM performs best for single-threaded benchmarks.
Improvements are highest for single-threaded benchmarks on average, because VM
threads are non-critical and execute concurrently with the application thread. For
performance, the application threads should always have priority over VM threads
on the big cores.

The scalable applications tell a different story. Oblivious performs much better
than bindVM on 1B5S because bindVM restricts the application to just the one big
core, leaving small cores underutilized. In theory, on this Phenom II system, pairing
one big core with five small cores adds 41.6% more instruction execution capacity
compared to six small cores. Ideally, an embarrassingly parallel program will see
this improvement on 1B5S. Our experiments show that for scalable benchmarks, ex-
changing one small core for a big core boosts performance by 33% on average, which
is impressive but short of the ideal 41.6% (not illustrated).

For non-scalable benchmarks, neither scheduler is always best. bindVM performs
best on 1B5S, but worse on 2B4S and 3B3S than Oblivious. Intuitively, with only one
big core, binding the VM threads gives application threads more access to the one big
core. However, with more big cores, round robin does a better job of equal access of
the application threads to the big cores. In summary, neither scheduler consistently
performs best across various AMP hardware configurations or workloads, motivating
a better approach.

5.3 Dynamically Identifying Workload Class

This section describes our dynamic analysis that automatically classifies application
parallelism. We exploit the VM thread scheduler, the Java language specification,
and the VM biased lock implementation to classify applications as multithreaded
scalable (MT) or multithreaded non-scalable. The VM identifies application threads
separately from those it creates for GC, compilation, profiling, and other VM services.
We simply count application threads to determine whether the application is single
or multithreaded.

Our modified VM further classifies multithreaded applications as scalable and
non-scalable. Compared to the approach used by Joao et al. [2013], which requires
the programmer, compiler, or library to insert specific instructions in the source code
to help the hardware identify bottlenecks, our approach is fully automated and re-
quires no changes to applications. To differentiate between scalable and non-scalable
multithreaded benchmarks, we calculate the ratio between the amount of time each
thread contends (waits) for another thread to release a lock and the total execution
time of the thread thus far. When this ratio is high and the thread is responsible
for some threshold of execution time as a function of the total available hardware
resources (e.g., 1% with two cores, 0.5% with four cores, and so on), we categorize
the benchmark as non-scalable. We set this threshold based on the number of cores
and threads.
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Figure 5.3: Fraction of time spent waiting on locks as a ratio of all cycles per thread
in multithreaded benchmarks. The left benchmarks (purple) are scalable, the right
five (pink) are not. Low ratios are highly predictive of scalability.

To compute the time waiting ratio, we piggyback on the runtime’s locking imple-
mentation and thread scheduler. Only when a thread tries to acquire a lock and fails,
does the VM scheduler put the thread on a wait queue, a heavyweight operation. We
time how long the thread sits on the wait queue using the RDTSC instruction, which
incurs an overhead of around 50 cycles each call. The VM implements biased locking,
which lowers locking overheads by ‘biasing’ each lock to an owner thread, making
the common case of taking an owned lock very cheap, at the expense of more over-
head in the less common case where an unowned lock is taken [Bacon et al., 1998;
Russell and Detlefs, 2006]. This optimization allows us to place our instrumentation
on the rarely called code path, resulting in negligible overhead and narrowing our
focus to cases of true contention.

Joao et al. [2013] achieved the same outcome of focus on true contention and very
low overhead by requiring the application programmer to annotate — manually or
semi-automatically — all critical locks. Our approach does not require the program
to be annotated, and could be adopted in any system that uses biased locking or sim-
ilar optimizations. Modern JVMs such as Jikes RVM and HotSpot already implement
such optimizations. Although by default Windows OS and Linux do not implement
biased locking, it is in principle possible and in practice Android does so in its Bionic
implementation of the pthread library [Bacon et al., 1998; Dice et al., 2010; Android,
2014].

Figure 5.3 shows the results for two representative threads from the multithreaded
benchmarks executing on the 1B5S configuration. Threads in the scalable bench-
marks all have low locking ratios and those in the non-scalable benchmarks all have
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high ratios. We observe that a low locking ratio is necessary but not sufficient. Scal-
able benchmarks typically employ homogeneous threads (or sets of threads) that
perform about the same amount and type of work. When we examine the execu-
tion time of each thread in these benchmarks, their predicted sensitivity, and retired
instructions, we observe that for spjbb, sunflow, xalan, and lusearch, threads are ho-
mogeneous. Our dynamic analysis inexpensively observes the progress of threads,
scaled by their core assignment, and determines whether they are homogeneous or
not.

5.4 Speedup and Progress Prediction Model

To effectively schedule threads on AMPs, the system must consider core features and
the sensitivity of a thread to those features. When multiple threads compete for big
cores, ideally the scheduler will execute the threads that benefit the most and are
most critical on the big cores. For example, a thread that is memory bound will not
benefit much from a higher instruction issue rate.

Offline, we create a predictive model that we use at run time. The model takes as
input performance counters and predicts slow down and speedup, as appropriate.
We use a linear regression model based on performance counters for two reasons.
First, we find that for a given program, speedup has a roughly linear relationship
that is well predicted by linear regression for the AMP hardware that we consider
in this thesis. This result is consistent with Saez et al. [2012]. Second, the linear
regression estimates are very inexpensive to compute from performance counters at
runtime, a requirement for quick scheduling decisions. The resulting estimator is
sufficiently accurate such that it does not affect the basic WASH algorithm, although
a better predictor could improve our results.

We use Principal Component Analysis (PCA) to learn the most significant per-
formance monitoring events and then use linear regression to model the relationship
between those events and the speedup of a big core over a small core. Since each
processor may use at most a limited number of performance counters, we use PCA
analysis to select the most predictive ones. We consider two potential architectures
to show the generality of our methodology: the frequency-scaled Phenom II and a
hypothetical big/small design composed of an Intel Atom and i7. Our methodology
is similar to Saez et al. [2012]. They use the additive regression model and machine
learning to pick out the events that contribute most significantly to speedup. They
also show a detailed analysis on the correlation between different performance events
and the speedup. We use performance events on a faster processor to predict slow
down on the small core when cores have very different architecture features.

It is not generally possible to predict speedup from small to big when the mi-
croarchitectures differ a lot. For example, given a small core with a single-issue CPU
and a big core with multiway issue, if the single-issue core is always stalled, it is
easy to predict that the thread won’t benefit from more issue slots. However, if the
single-issue core is operating at its peak issue rate, no performance counter on it will



§5.4 Speedup and Progress Prediction Model 81

Performance counters
Intel AMD

F: INSTRUCTION_RETIRED V: RETIRED_INSTRUCTIONS
F: UNHALTED_REFERENCE_CYCLES V: REQUESTS_TO_L2:ALL
F: UNHALTED_CORE_CYCLES V: L2_CACHE_MISS:ALL
V: UOPS_RETIRED:STALL_CYCLES V: CPU_CLK_UNHALTED
V: L1D_ALL_REF:ANY
V: L2_RQSTS:REFERENCES
V: UOPS_RETIRED:ACTIVE_CYCLES

Table 5.1: Performance counters identified by PCA that most accurately predict thread
core sensitivity. Intel Sandy Bridge simultaneously provides three fixed (F) and up to four
other performance counters (V). AMD Phenom provides up to four performance counters.

reveal how much potential speedup will come from multi-issue. Saez et al. [2012]
observed this problem as well. With the frequency-scaled AMPs, our model can and
does predict both speedups and slow downs because the microarchitecture does not
change.

We execute and measure all of the threads with the comprehensive set of the
performance monitoring events, including the energy performance counter on Sandy
Bridge. We only train on threads that contribute more than 1% of total execution time,
to produce a model on threads that perform significant amounts of application and
VM work. In the PCA model, we first take the threads as PCA variables and then
consider the performance event data for each thread as the observations for each
variable. With this transformation, we determine the weights and scores for each
principle component. We use the absolute value of the first principle component’s
weight to establish the importance of each performance event (greater absolute value
means that they will have more effect on the final score). We then take performance
events as variables, and their data for each thread as the observations. This time, we
use the first principle component’s scores to decide the similarity of the performance
events (events with similar scores are similar). Based on the weights and scores,
we incrementally eliminate performance events with the same scores (redundancy)
and those with low weights (not predictive), to derive the N most predictive events,
where N is the number of simultaneously available hardware performance counters.
We set N to the maximum that the architecture will report at once. This analysis
results in the performance events listed in Table 5.1. By using linear regression on
the selected performance events and the speedup of a big core over a small core, we
determine the linear model parameters for each event.

Figures 5.4(a) and 5.4(b) show the results of the learned models for predicting rel-
ative performance between the two Intel processors and the frequency-scaled AMD
Phenom II. These results predict each application thread from a model trained on
all the other applications threads, using leave-one-out validation. When executing
benchmarks, we use the model trained on all the other benchmarks in all experi-
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Figure 5.4: Accurate prediction of thread core sensitivity. Y-axis is predicted. X-axis
is actual speedup.
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ments. These results show that the PCA methodology has good predictive power.
The mean absolute percentage error for the predicated speedup relative to the mea-
sured value of the Intel and AMD machines are 9% and 8%, and the ranges are (0%,
36%), (0%, 23%) respectively. The residual variance for the Intel machine is 21.77
with 55 threads, and for the AMD machine it is 4.01 with 48 threads.

Our dynamic analysis monitors thread criticality and progress. It uses the retired
instructions performance counter and scales it by the executing core capacity. Like
some adaptive optimization systems [Arnold et al., 2000], we predict that a thread
will execute for the same fraction of time in the future as it has in the past. To correct
for different core speeds, we normalize retired instructions based on the speedup pre-
diction we calculate from the performance events. This normalization gives threads
executing on small cores an opportunity to out-rank threads that execute on the big
cores. Our model predicts fast-to-slow well for the i7 and Atom. Our model predicts
both slow-to-fast and fast-to-slow with frequency scaled cores. Thread criticality is
decided based on the predicted gain for a thread that stays on or migrates to a big
core.

5.5 The WASH Scheduling Algorithm

This section describes how we use core sensitivity, thread criticality, workload and
core capacity to schedule threads. We consider the most general case: both the
application and runtime contain multiple threads that exhibit varying degrees of het-
erogeneity and parallelism. We implement the WASH algorithm by setting thread
affinities, which direct the OS to bind thread execution to one or more nominated
cores. We do not require any change to the OS scheduler. Our runtime scheduler
uses the existing POSIX interface to communicate thread affinities for big and small
cores to the OS. The VM guides the scheduling decisions with the dynamic analysis
described above. We believe that because our approach monitors the threads and
adjusts the schedule accordingly, it would work even if the OS scheduler changes,
but leave this evaluation to future work.

Our dynamic analysis leverages the VM’s profiling infrastructure. High perfor-
mance managed runtimes use feedback directed optimization (FDO) to target com-
piler JIT optimizations [Arnold et al., 2000]. In particular, we use Jikes RVM, which
samples each thread. It sets a timer and samples the call stack to determine hot
methods to compile at higher levels of optimization. We add to this sampling the
gathering of per-thread performance counter data at low overhead. We use 40 ms
as the quantum at which WASH reassesses each thread and adjusts its core affin-
ity as necessary. Craeynest et al. [2012] show no discernible migration overhead on
shared-LLC AMP processors when the quantum is 25 ms or greater.

5.5.1 Overview

The scheduler starts with a default fallback policy of using affinity masks to assign
all application threads to big cores and all VM threads to small cores. The scheduler
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uses the fallback policy each time a new thread is created. These defaults follow
Chapter 4, which shows that GC and JIT threads are good candidates for small cores.
The VM trivially identifies its service threads and explicitly binds them to the small
cores. For long-lived application threads, the starting point is immaterial. For very
short lived application threads that do not last a full time quantum, this fallback
policy accelerates them. All subsequent scheduling decisions are made periodically
based on dynamic information. Every time quantum, WASH reassesses thread sen-
sitivity, criticality, and progress and then adjusts the affinity between threads and
cores accordingly.

We add to the VM the dynamic parallelism classification and the core sensitiv-
ity models described in Sections 5.3 and 5.4. The core sensitivity model takes as
input performance counter values for each thread and predicts how much the big
core benefits the thread. The dynamic parallelism classifier uses a threshold for the
waiting time. It examines the number of threads and their dynamic waiting time to
classify applications as single threaded or multithreaded scalable or multithreaded
non-scalable.

WASH uses this classification to choose a specialized scheduling strategy. For
scalable applications, WASH keeps track of historical thread execution to give appli-
cation threads equal access to big cores. For single-threaded applications and non-
scalable applications with fewer application threads than big cores, WASH binds
application threads to big cores and the default OS scheduler selects cores for VM
threads. When the number of non-scalable application threads exceeds the number
of big cores, WASH prioritizes threads on the big cores based on core capacity, thread
efficiency, and thread criticality. WASH assesses scalability dynamically and adjusts
among the policies accordingly.

Algorithm 1 shows the pseudo-code for the WASH scheduling algorithm. WASH
makes three main decisions. (1) When the number of application threads is less than
or equal to the number of big cores, WASH schedules them on the big cores. (2) For
workloads that are scalable, WASH ensures that all threads have equal access to the
big cores using the execution history. This strategy often follows the default round
robin OS scheduler. (3) For other workloads, the algorithm will find the most critical
alive threads whose instruction retirement rates on big cores match the rate at which
the big cores can retire instructions. VM service threads are scheduled to the small
cores, unless the number of application threads is less than the number of big cores.

The next three subsections discuss each workload in turn.

5.5.2 Single-Threaded and Low Parallelism WASH

When the application creates a thread, WASH’s fallback policy sets the thread’s affin-
ity to the set of big cores. At each time quantum, WASH reassess the thread schedule.
In the case when WASH dynamically detects that the application has one application
thread or the number of application threads |TA| is less than or equal to the number
of big cores |CB|, then WASH sets the affinity for the application threads to the big
cores. If there are fewer application threads than big cores, WASH sets the affinity
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Algorithm 1 WASH
function WASH(TA,TV ,CB,CS,t)

TA: Set of application threads
TV : Set of VM services threads, where TA ∩ TV = ∅
CB: Set of big cores, where CB ∩ CS = ∅
CS: Set of small cores, where CB ∩ CS = ∅
t: Thread to schedule, where t ∈ TA ∪ TV
if |TA| ≤ |CB| then

if t ∈ TA then
Set Affinity of t to CB

else
Set Affinity of t to CB ∪ CS

end if
else

if t ∈ TA then
if ∀τ ∈ TA(LockCycle%(τ) < LockThreshold) then

Set Affinity of t to CB ∪ CS
else

TActive ← {τ ∈ TA : IsActive(τ)}
Rankt ← {τ ∈ TActive : ExecRate(τ) > ExecRate(t)}
if Στ∈Rankt ExecRate(τ) < ExecRate(CB) then

Set Affinity of t to CB
else

Set Affinity of t to CB ∪ CS
end if

end if
else

Set Affinity of t to CS
end if

end if
end function

for the VM threads such that they may execute on the remaining big cores or on
the small cores. It does this by setting the affinity of the VM threads to all cores,
which translates to the relative complement of CB ∪ CS with respect to |TA| big cores
being used by TA. If there are no available big cores, WASH sets the affinity for
all VM threads to execute on the small cores, following Chapter 4. Single-threaded
applications are the most common example of this scenario.

5.5.3 Scalable Multithreaded WASH

When the VM detects a scalable |TA| > |CB| and homogenous workload, then the
analysis in Section 5.2 shows that the default round-robin OS scheduler does an ex-
cellent job of scheduling application threads. So WASH only sets VM threads TV
to small cores CS and does not set application threads TA to any particular core.
We use our efficient lock contention analysis to empirically establish a threshold
LockThreshold of 0.5 contention level (time spent contended / time executing) beyond
which a thread is classified as contended (see Figure 5.3). The multithreaded work-
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load is counted as scalable only when none of its threads are contended.

5.5.4 Non-scalable Multithreaded WASH

The most challenging case for AMP scheduling is how to prioritize non-scalable ap-
plications when the number of threads outstrips the number of cores and all threads
compete for both big and small cores. WASH continuously determines for each
thread whether performance will be improved by scheduling each thread on a big or
small core. Our algorithm is based on two main considerations: (a) how important
the thread is to the overall progress of the application, and (b) the relative capacity
of big cores compared to small cores to retire instructions.

We rank the importance of each thread based on its relative capacity to retire
instructions, seeking to accelerate threads that dominate in terms of productive work.

For each active thread TActive (non-blocked for the last two scheduling quanta),
we compute a running total of retired instructions that corrects for core capability. If
a thread runs on a big core, we simply accumulate its retired instructions from the
dynamic performance counter. When the thread runs on a small core, we increase its
retired instructions total by the actual retired instructions multiplied by the predicted
speedup from executing on the big core. We use the speedup model and the dynamic
performance counter values to predict speedup. Thus we assess importance on a
level playing field — judging each thread’s progress as if it had access to big cores.
Notice that threads that will benefit little from the big core will naturally have lower
importance (regardless of which core they are running on in any particular time
quantum), and that conversely threads that will benefit greatly from the big core will
have their importance inflated accordingly. We call this rank computation adjusted
priority and compute it for all active threads. We rank all active threads based on this
adjusted priority.

We next select a set of the highest ranked threads to execute on the big cores.
We do not size the set according to the fraction of cores that are big (B/(B + S)),
but instead size the thread set according to the big cores’ relative capacity to retire
instructions, ExecRate(CB) (BRI/(BRI + SRI)). For example, in a system with one big
core and five small cores, where the big core can retire instructions at five times the
rate of each of the small cores, BRI/(BRI + SRI) = 0.5. In that case, we will assign
to the big cores the top N most important threads such that the adjusted retired
instructions of those N threads is 0.5 of the total.

The effect of this algorithm is twofold. First, overall progress is maximized by
placing on the big cores the threads that are both critical to the application and
that will benefit from the speedup. Second, we avoid over or under subscribing the
big cores by scheduling according to the capacity of those cores to retire instructions.
Compared to prior work that considers scheduling parallel workloads on AMPs [Saez
et al., 2012; Joao et al., 2013], this algorithm explicitly focuses on non-scalable par-
allelism. By detecting contention and modeling total thread progress (regardless of
core assignment), our model corrects itself when threads compete for big cores yet
cannot get them.
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i7 Atom Phenom II
Processor Core i7-2600 AtomD510 X6 1055T

Architecture Sandy Bridge Bonnell Thuban
Technology 32 nm 45 nm 45 nm
CMP & SMT 4C2T 2C2T 6C1T
LLC 8 MB 1 MB 6 MB
Frequency 3.4 GHz 1.66 GHz B: 2.8 GHz; S: 0.8 GHz
Transistor No 995 M 176 M 904 M
TDP 95 W 13 W 125 W
DRAM Model DDR3-1333 DDR2-800 DDR3-1333

Table 5.2: Experimental processors. We demonstrate generality of core sensitivity
analysis on both Intel and AMD processors. Intel supports various clock speeds, but
all cores must run at the same speed. All scheduling results for performance, power,
and energy use the Phenom II since it supports separate clocking of cores, mimicking
an AMP.

5.6 Methodology

This section describes the hardware, measurements, workload, and software config-
uration that we use to explore hardware and software energy efficiency in this chap-
ter. We measure and report power and performance measures of existing hardware,
leveraging prior tools and methodology described in Section 4.2.

5.6.1 Hardware

For the same reasons as in Section 4.2.3, we use configurations of stock hardware to
explore AMP hardware for managed languages. We continue to use the Intel Sandy
Bridge Core i7, the Atom, and the AMD Phenom II (with clock scaling) to explore
and characterize sensitivity to AMP and methodologies for predicting core sensitivity
and parallelism. Table 5.2 lists characteristics of the experimental machines used in
this chapter. As in Section 4.2.2, we use Sandy Bridge 06_2AH processors because
they provide an on-chip RAPL MSR energy performance counter which can measure
each thread’s energy consumption. The Hall effect sensor methodology described in
Section 3.2.5 is used here to measure power and energy on the Phenom II. We show
that our performance counter selection methodology and our model to predict thread
speed generalizes across predicting the Atom from the Sandy Bridge and different
speeds of the Phenom II. We accurately predict sensitivity to fast and slow cores for
these two configurations.

We measure the performance and energy efficiency of our scheduler using the
Phenom II, as it allows us to independently change the clock speed of each core,
whereas the Intel hardware does not.
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single threaded bloat chart fop jython luindex

non-scalable avrora eclipse hsqldb nspjbb pmd

scalable lusearch sunflow xalan spjbb

Table 5.3: Characterization of workload parallelism. Each of the benchmarks is clas-
sified as either single threaded, non-scalable or scalable.

5.6.2 Operating System

We perform all of the experiments using Ubuntu 10.04 lucid with the 2.6.32 Linux
kernel. We use the default Linux scheduler which is oblivious to different core capa-
bilities, seeks to keep all cores busy and balanced based on the task numbers on each
core, and tries not to migrate threads between cores [Sarkar, 2010].

5.6.3 Workload

We use thirteen widely used Java benchmarks taken from the DaCapo suites and
SPECjbb in this chapter, which can run successfully on Jikes RVM: bloat, eclipse, fop,
chart, jython, and hsqldb (DaCapo-2006); avrora, luindex, lusearch, pmd, sunflow, and
xalan (DaCapo-9.12); and pjbb2005. Finding that pjbb2005 does not scale well, we
increased the parallelism in the workload by modifying the JBB inputs to increase the
number of transactions from 10,000 to 100,000, yielding spjbb, which scales on our
six core machine. Table 5.3 shows the application parallelism (none, non-scalable,
and scalable) in these benchmarks determined by the analysis in Section 5.2 of per-
formance on homogeneous CMPs. We organize our analysis and results around this
classification because we find that it determines a good choice of scheduling algo-
rithm.

5.6.4 Virtual Machine Configuration

We use Jikes RVM configured with a concurrent Mark-Sweep GC. All our measure-
ments follow Blackburn et al.’s best practices for Java performance analysis with the
following modifications of note [Blackburn et al., 2006]. As in Section 4.2.5.1, regular
concurrent collection is forced every 8 MB of allocation for avrora, fop and luindex,
which have low allocation rate, and 128 MB for the other benchmarks. The number
of collection threads is configured to be the same as the number of available cores.
The default JIT settings are used in Jikes RVM, which intermixes compilation with
execution.

5.6.5 Measurement Methodology

We execute each benchmark in each configuration 20 or more times and report first
iteration results, which mix compilation and execution. For plotting convenience,
we omit confidence intervals. For the WASH scheduling algorithm, the largest 95%
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Figure 5.5: All benchmarks: geomean time, power and energy with Oblivious,
bindVM, and WASH on all three hardware configurations. Lower is better.

confidence interval for time measurements with 20 invocations is 5.2% and the aver-
age is 1.7%. For bindVM, the 95% confidence interval for time measurements with
20 invocations is 1.6% and the average is 0.7%. However, for Oblivious, the greatest
confidence interval with 20 invocations is 15% and the average is 5.4%. Thus, we run
the benchmarks with Oblivious for 60 invocations, which lowers the largest error
to 9.6% and the average to 3.7%. The confidence intervals are a good indicator of
performance predictability of each of the algorithms.

5.7 Results

We compare WASH to the default OS scheduler (Oblivious) and VM threads to
the small cores (bindVM). Figure 5.5 summarizes the overall performance, power,
and energy results on three AMD hardware configurations: 1B5S (1 Big core and 5
Small cores), 2B4S and 3B3S. Figure 5.6 shows the results for each benchmark group.
Figures 5.7, 5.8, and 5.9 show the individual benchmark results on the same hard-
ware. We normalize to Oblivious and lower is better.

Figure 5.5 shows that WASH consistently improves performance and energy on
average. Oblivious has the worst average time on all hardware configurations and
even though it has the best power cost, 20% less power than WASH, it still con-
sumes the most energy. Oblivious treats all the cores the same and evenly distributed
threads, with the result that the big core may be underutilized and critical threads
may execute unnecessarily on a small core.

WASH attains its performance improvement by using more power than Obliv-
ious, but at less additional power than bindVM. The bindVM scheduler has lower
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(a) Single-threaded benchmarks.
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Figure 5.6: Normalized geomean time, power and energy for different benchmark
groups.
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average time compared to Oblivious, but it has the worst energy and power cost in
all hardware settings, especially on 2B4S. It costs 20% more energy than WASH and
10% more than Oblivious. The bindVM scheduler overloads the big cores, with work
that can be more energy efficiently performed by a small core leading to high power
consumption and underutilizing the small cores.

WASH and bindVM are especially effective in 1B5S compared to Oblivious, where
the importance of correct scheduling decisions is accentuated most strongly. On
1B5S, WASH reduces the geomean time by 27% compared to Oblivious, and by about
7% comparing to bindVM. For energy, WASH saves more than 11% compared to
bindVM and Oblivious. WASH consistently improves over bindVM at lower power
costs. In the following subsections, we structure our detailed analysis based on work-
load categories.

5.7.1 Single-Threaded Benchmarks

Figure 5.6(a) shows that for single-threaded benchmarks, both WASH and bindVM
perform very well in terms of total time and energy on all hardware settings, while
Oblivious performs poorly. Consider 1B5S in Figure 5.7. Compared to Oblivious
scheduling, WASH and bindVM reduce benchmark time by 40% to 60%. Figure 5.7(c)
shows that WASH reduces energy by 20% to 30% and increases average power by 30%
to 55%. Oblivious performs poorly because it is unaware of the heterogeneity among
the cores, so with high probability in the 1B5S case, it schedules the application
thread onto a small core. In this scenario, both WASH and bindVM will schedule
the application thread to the big core and all GC threads to the small cores. When
the number of big cores increases, as in Figure 5.8(a) and Figure 5.9(a), then there
is a smaller distinction between the two policies because the VM threads may be
scheduled on big as well as small cores. In steady state the other VM threads do not
contribute greatly to total time, as long as they do not interfere with the application
thread. One thing to note is that the power consumption is higher for bindVM and
WASH than for Oblivious. When the application thread migrates to a small core,
it consumes less power by about 35% on average compared to bindVM and WASH,
but the loss in performance outweighs the decrease in power. Thus total energy is
reduced by 30 to 20% by bindVM and WASH. WASH and bindVM perform very
similarly in the single-threaded scenario on all configurations.

5.7.2 Scalable Multithreaded Benchmarks

Figure 5.6(b) shows that for scalable multithreaded benchmarks, WASH and Obliv-
ious perform very well in both execution time and energy on all hardware configu-
rations, while bindVM performs poorly. Consider 1B5S in Figure 5.7. Compared to
WASH and Oblivious scheduling, bindVM increases time by 40% to 70%, increases
energy by 55% to 80%, and power by 5% to 10%. By using the contention information
we gather online, WASH detects scalable benchmarks. Since WASH correctly identi-
fies the workload, WASH and Oblivious generate similar results. The reason bindVM
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Figure 5.7: Individual benchmark results on 1B5S. Lower is better.
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Figure 5.8: Individual benchmark results on 2B4S. Lower is better.
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Figure 5.9: Individual benchmark results on 3B3S. Lower is better.
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fails is that it simply binds all application threads to the big cores, leaving the small
cores under-utilized. Scalable benchmarks with homogeneous threads benefit from
round-robin scheduling policies as long as the scheduler migrates threads among the
fast and slow cores frequently enough. Even though Oblivious does not reason ex-
plicitly about the relative core speeds, because it migrates threads frequently enough,
it works well. However, WASH reasons explicitly about relative core speeds using
historical execution data to migrate threads fairly between slow and fast cores. As
the number of big cores increases, the difference between bindVM and Oblivious
reduces.

5.7.3 Non-scalable Multithreaded Benchmarks

Figure 5.6(c) shows that WASH consistently performs best and neither Oblivious
or bindVM is consistently second best in the more complex setting of non-scalable
multithreaded benchmarks. For example, eclipse has about 20 threads and hsqldb
has about 80. They each have high degrees of contention. In eclipse, the Javaindexing
thread takes 56% of the total application thread cycles while the three Worker threads
consume just 1%. Furthermore, avrora threads spend around 60-70% of their cycles
waiting on contended locks, while pmd threads spend around 40-60% of their cycles
waiting on locks. These messy workloads make scheduling challenging.

For eclipse and hsqldb, Figure 5.7, 5.8, and 5.9 show that the results for WASH
and bindVM are very similar with respect to time, power, and energy in almost all
hardware settings. The reason is that even though eclipse has about 20 and hsqldb
has 80 threads, in both cases only one or two of them are dominant. In eclipse, the
threads Javaindexing and Main are responsible for more than 80% of the application’s
cycles. In hsqldb, Main is responsible for 65% of the cycles. WASH will correctly
place the dominant threads on big cores, since they have higher priority. Most other
threads are very short lived, shorter than our 40 ms scheduling quantum. Since
before profiling information is gathered, WASH binds application threads to big
cores, the short-lived threads will just stay on big cores. Since bindVM will put all
application threads on big cores too, the results for the two policies are similar.

For avrora, nspjbb, and pmd, Figure 5.7, 5.8, and 5.9 are good examples of WASH
choosing to execute application threads that will not benefit as much from a big
core on a small core. Particularly, for 1B5S, in Figure 5.7, compared to bindVM,
WASH time is lower; however, because of its better use of the small cores, the power
measurements are much lower. Since bindVM does not reason about core sensitivity,
it does not make a performance/power trade-off. WASH makes better use of small
cores resulting in improved energy efficiency for avrora, nspjbb, and on a smaller
scale for pmd.

In summary, all the above results show that WASH improves performance and
energy consistently. WASH is better at utilizing both small and big cores as appro-
priate to attain better performance at higher power than Oblivious, which under
utilizes the big cores and over utilizes small cores because it does not reason about
them. On the other hand, WASH, uses its understanding of the workload and core
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sensitivity analysis to obtain both better performance and lower power than bindVM
which under utilizes the small cores for the scalable and non-scalable multithreaded
benchmarks. WASH is robust to other OS scheduling choices.

5.8 Summary

This chapter shows how to exploit the VM abstraction for managed applications to
achieve transparency, performance, and efficiency on AMP architectures. We intro-
duce a new fully automatic dynamic analysis that classifies parallelism in workloads
and identifies critical threads. We introduce a new scheduler called WASH that uses
this analysis and predicts performance gains among heterogeneous cores. WASH
sets thread affinities for application and VM threads by assessing thread critical-
ity, expected benefit, and core capacity to balance performance and energy efficiency.
The OS and/or the C standard libraries could implement similar analyses to improve
the OS scheduler, although the VM would still need to differentiate and communicate
a priori knowledge of low priority VM service threads to the OS.

We show that this system delivers substantial improvements in performance and
energy efficiency on frequency scaled processors. Future heterogeneous hardware
should benefit even more. For instance, Qualcomm big/little ARM cores include
more energy-efficient little cores. With better heterogeneous hardware, our approach
should deliver better energy efficiency.

Combined with the findings in the last chapter, we further show that the chal-
lenges and opportunities of AMP architectures and managed software are comple-
mentary. The heterogeneity of AMP eliminates the overhead of managed software,
and the abstraction of managed software makes transparent the complexity of AMP.
The conjunction of AMP and managed software can highlight each other’s advan-
tages and provide a win-win opportunity for hardware and software communities
now confronted with performance and power challenges in an increasingly complex
software and hardware landscape.



Chapter 6

Conclusion

The past decade has seen both hardware and software undergo disruptive revolu-
tions. The way software is built, sold, and deployed has changed radically, while the
principle constraint in CPU design has shifted from transistor count to power. On
one hand, single-ISA Asymmetric Multicore Processors (AMP) use general purpose
cores that make different tradeoffs in the power and performance design space to
resolve power constraints in computer architecture design. However, they expose
hardware complexity to software developers. On the other hand, managed software
is increasingly prevalent in client applications, business software, mobile devices and
the cloud. However, while managed languages abstract over hardware complexity,
they do so at a significant cost.

This thesis seeks to find synergy between two computing revolutions and use
a software and hardware co-design approach to solve the challenges of hardware
complexity without forcing developers to explicitly manage this complexity and to
exploit the opportunities of managed software and AMP architectures.

We present a quantitative analysis of the performance, power and energy char-
acteristics of managed and native workloads on a range of hardware features. The
two major findings that (1) native workloads do not approximate managed work-
loads, and (2) each hardware feature elicits a huge variety of power, performance
and energy response, motivate exploring the opportunities of managed software op-
timization and the utilization of AMP architectures.

We identify four key software properties that make a task amenable to running
on small cores: (1) parallelism, (2) asynchrony, (3) non-criticality, and (4) hardware
sensitivity. These properties form a guide for selecting tasks that can be performed
on small cores.

Virtual Machine (VM) services (GC, interpretation and JIT), together imposing
substantial energy and performance costs, are shown to manifest a differentiated per-
formance and power workload. To differing degrees, they are parallel, asynchronous,
communicate infrequently and are not on the application’s critical path, fulfilling the
small cores requirements of AMP designs. By modelling AMP processors with cores
differing in microarchitecture, using a separate small core to run VM services can
improve total performance by 13% on average and reduce energy consumption by
7% at the cost of 5% higher power.

To shield the hardware complexity and fully expose the potential efficiency of
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AMP designs, only exploiting AMP architectures for VM services is insufficient. This
thesis develops a comprehensive dynamic VM scheduling policy—WASH, which dy-
namically monitors and characterizes both managed applications and VM services’
core sensitivity, criticality, parallelism and CPU load balance. WASH effectively uses
thread contention information to classify workloads into three groups and applies
different scheduling policy for each group. On a 1B5S AMP with cores only differing
in frequency, WASH improves performance by 40% and energy efficiency by 13%
compared to default OS scheduling. Compared to only scheduling VM services to
small cores, WASH improves performance by 7% and energy efficiency by 15%.

In combination, these contributions demonstrate that there exists a synergy be-
tween managed software and AMP architectures that can be automatically exploited
to reduce VM overhead and deliver the efficiency promise of AMP architectures
while abstracting hardware complexity from developers.

6.1 Future Work

There are many directions for future work. The work presented was constrained to
32-bit ISA in order to fairly include the Pentium 4 in the analysis. This work could
be redone using 64-bit ISA although the conclusions should be unchanged. More in-
teresting would be to extend the work to include the evaluation of power and energy
of the memory, and in particular contrast the behaviour of native workloads with
that of managed languages. The measurement of memory power and energy would
have presented greater implementation difficulties, and is likely to have little bear-
ing on examining the synergy between AMP and managed software. The following
two sections focus on future directions that may have significant impact on how to
coordinate managed software and AMP architectures for efficiency.

6.1.1 WASH-assisted OS Scheduling

The WASH scheduler takes advantages of VMs to dynamically gain insight into the
different kinds of threads executing (both application and VM threads), to efficiently
monitor the locking behaviours and to profile the threads for core sensitivity and
criticality. However, the information that VMs cannot gather is the global workload
information on the processor for all applications. The current WASH algorithm uses
the POSIX pthread affinity settings to schedule threads within one managed work-
load and assumes no other workloads are competing the resources.

A promising approach to solve this problem is WASH-assisted OS scheduling.
After WASH makes a thread scheduling decision, instead of scheduling the thread
to the core directly, it will communicate the decision to the OS, and let the OS make
a global decision according to global workload distribution on the processor. This
way, the VM and OS can complement each other for AMP scheduling.
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6.1.2 Heterogeneous-ISA AMP and Managed Software

This thesis focuses on abstracting over hardware complexity for single-ISA AMP ar-
chitectures. Heterogeneous-ISA AMP is also a possible direction for future architec-
ture design, which provides even greater challenges for application programmers to
exploit their potential efficiency. While completely-different-ISA AMP architectures
are unlikely, already cores within a sophisticated AMP device may have ISAs that
differ, such as TI’s OMAP4470 [Texas Instruments, 2013]. Pruning of the ISA allows
for simpler, more efficient cores, at the cost of heterogeneity.

To expose the potential efficiency of heterogeneous-ISA AMP architectures for
managed software, running VM services on the small core should be straightfor-
ward. To schedule arbitrary application threads via the VM requires several areas
to be addressed: (1) Some proportion of the code may need to be compiled for each
heterogeneous core type—code bloat may be a significant issue mostly for small or
embedded AMP devices although it is less likely to be an issue for big servers. (2)
To effectively schedule threads between different core type, the VM will take an even
greater responsibility for scheduling. A possible approach is to use thread models
and schedulers where the VM maintains an M : N mapping of M software threads
to N hardware threads. This mechanism allows a software thread to be mapped to
a hardware thread with one core type then, perhaps at a method call point, have its
execution transferred to another hardware thread with a different core type. This
transfer would be intra-process and should be comparatively cheaper than an OS
level thread migration. (3) A VM will need to integrate compilers with optimizations
that take full advantage of the differentiated cores, which is not significantly different
from the collection of compilers or compiler back ends already implemented for the
hardware.
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