
Improving system security using
Processing-in-Memory architecture

Matthew Brown

A thesis submitted in partial completion of the
degree of

Bachelor of Advanced Computing (Research &
Development)(Honours)

at The Australian National University

October 2019

c© Matthew Brown 2019

Except where otherwise indicated, this thesis is my own original work.

Matthew Brown
1 October 2019

To my family and friends.

Acknowledgments

I would like to thank Steve Blackburn and Adrian Herrera, for helping me stay on
track throughout this thesis. Your feedback and direction has been invaluable. I
appreciate all the time you have taken to share your knowledge and constructive
feedback over the last year.

vii

Abstract

Ensuring the security and privacy of computing systems and their users has become
a significant concern. Consequently, efforts have been made to improve security on
many different levels. These efforts include (but are not limited to) everything from
the use of compile-time sanitizers to hardware-based Trusted Computing Modules,
all of which are common on most modern computing systems. While there has been
a large improvement in security over the years, malicious actors continue to exploit
vulnerabilities. Common memory bugs such as buffer overflows, use-after-frees, and
uninitialised memory remain the most common entry point for malware today.

At the same time that changes to security have occurred, the development of
memory technology has also progressed. Specifically, the emergence of 3D-stacked
memory, which provides significant performance improvements but requires the use
of an integrated logic layer to operate. This logic layer is separately populated, pro-
viding space that allows us to add other hardware components, including general
purpose processors, that exploit the locality and high bandwidth benefits of being
embedded in DRAM. This technique is known as Processing-in-Memory (PIM).

My thesis is that PIM provides the necessary processing profile to accelerate var-
ious security applications and escape the Von Neumann bottleneck inherent in most
CPUs. This thesis will examine the benefits and limitations provided by PIM, charac-
terising security-relevant workloads that benefit from being offloaded to PIM. We will
then look at how different security domains can take advantage of this technology
to improve the overall security of a system. Specifically, I will provide an in depth
analysis of security monitoring, examining how PIM can guarantee the integrity of
core parts in an OS kernel.

I show that the PIM security monitor can capture all malicious changes to static
regions of the OS kernel and prevent them from being nefariously modified, with
minimal performance overheads. I also quantify the limiting factors of PIM with
respect to the CPU cache, and demonstrate the issues that PIM has with fine-grained
monitoring.

This thesis argues that PIM provides the necessary capabilities to improve sys-
tem security, and should be considered a serious addition to the security toolbox of
modern computing systems.

ix

x

Contents

Acknowledgments vii

Abstract ix

1 Introduction 1
1.1 Problem Statement . 1
1.2 Scope and Contributions . 2
1.3 Thesis Outline . 2

2 Background and Related Work 3
2.1 Processing In Memory . 3

2.1.1 Previous work . 4
2.2 Hardware-based Security . 6
2.3 Summary . 7

3 Understanding the Limitations of PIM 9
3.1 On-chip Mechanisms . 9
3.2 CPU Cache . 10

3.2.1 Loss of Information . 11
3.2.2 Temporal Lag of Information . 12
3.2.3 Reduced Granularity of Information 16

3.3 Offloading to PIM . 16
3.4 PIM Isolation . 17
3.5 Hybrid System . 18
3.6 Summary . 18

4 PIM Security Applications 21
4.1 PIM Workload Profile . 21
4.2 Security Problems . 21

4.2.1 String Matching . 22
4.2.2 Integrity Monitoring . 23

4.3 Case Study 1: HyperCheck – A Hardware-Assisted Integrity Monitor . 24
4.3.1 Original Design . 25
4.3.2 HyperCheck on the PIM . 26

4.4 Case Study 2: KI-Mon – Monitoring Mutable Kernel Objects 28
4.4.1 Original Design . 28
4.4.2 KI-Mon on the PIM . 29

xi

xii Contents

4.5 Case Study 3: Kernel Integrity with Programmable DRAM 31
4.5.1 Original Design . 31
4.5.2 MGuard on the PIM . 32

4.6 Evaluation . 33
4.7 Summary . 34

5 Kernel Integrity Monitor on the PIM 37
5.1 Background and Overview . 37

5.1.1 Threat Model . 38
5.2 Hardware Platform . 38
5.3 Software Platform . 41
5.4 Design analysis . 42

5.4.1 Reporting Security Breaches . 42
5.4.2 Limitations . 43

5.5 Future Work . 44
5.6 Summary . 44

6 Conclusion 47
6.1 Future Work . 48

List of Figures

2.1 Overview of the 3D-stacked DRAM architecture [Ghose et al., 2018] . . 4
2.2 Transient attacks can occur between the snapshots 7

3.1 Proportion of bytes lost to overwrites in the CPU cache is highly ap-
plication specific. 13

3.2 The benchmarks show a wide variation in total cache events and bytes
written. 13

3.3 Normalised cumulative frequency of cache line lifespans. 15
3.4 A linear scale shows that most cache lines have a short lifespan. 15

4.1 HyperCheck’s design uses a remote machine for memory analysis [Wang
et al., 2010]. 25

4.2 The PIM can implement the necessary components for the snapshot-
based HyperCheck integrity monitor. 27

4.3 KI-Mon utilises the separate VTMU component to capture writes to
memory [Lee et al., 2013]. 29

4.4 The PIM enables KI-Mon to detect malicious changes, but is limited to
observing data evicted from cache. 30

4.5 The MGuard paper illustrates the additional hardware required for
monitoring [Liu et al., 2013]. 32

4.6 The PIM implementation of MGuard incorporates the same key com-
ponents into the newer technology. 33

5.1 The logic layer on HMC memory can be modified to include the addi-
tional hardware required for the PIM. 39

5.2 Design of PIM Logic for PIMGuard, an in-memory Kernel Integrity
Monitor . 40

xiii

xiv LIST OF FIGURES

List of Tables

3.1 Cache event data from benchmarks with average and median values. . 19

xv

xvi LIST OF TABLES

Chapter 1

Introduction

This thesis explores the efficacy of using of a Processing-in-Memory (PIM) architec-
ture to develop new security applications. My thesis is that the use of 3D stacked
DRAM to implement PIM hardware architectures can be used to effectively imple-
ment existing and new security applications, to improve security and mitigate some
existing attack vectors on modern computer systems.

1.1 Problem Statement

Security is a major issue for all modern computer systems. While modern computer
architectures contain many layers of security and protections, they can never fully
mitigate all attack vectors. The ubiquitous adoption of computer systems for per-
sonal, commercial, and in critical infrastructure make their security a critical aspect
in our daily lives. The consequences of a security breach can have significant financial
and political costs.

While the importance of having computer security is undeniable, the methods
of implementing security form a wide range of techniques and solutions. Security
measures can be implemented at nearly every layer of abstraction. From hardware-
based memory encryption, kernel level file privileges, to application-level solutions
such as antivirus software.

A problem with application and kernel-level security controls is that they are
vulnerable to attacks which can modify or subvert them. For instance, a privilege
escalation attack can be used to gain root access privileges. Rootkits are another
common method of gaining unauthorised access to a system. Rootkit attacks are
highly valuable as they are almost impossible to detect once they have occurred.
Once a rootkit has been inserted into a system, the malicious user can trivially subvert
or remove any other application-level security controls.

Due to these issues there has been significant research into implementing hardware-
based security, from the introduction of dedicated cryptographically secure hardware
like the Trusted Platform Module (TPM), to the development of external hardware de-
vices to monitor malware. While hardware is generally more expensive than soft-
ware, in both cost and development time, hardware can generally provide much
higher assurance that the system is running correctly.

1

2 Introduction

With the recent advent of 3D-stacked DRAM it is now viable to add custom hard-
ware components to DRAM. This opens up the potential to develop security applica-
tions which are executed in memory. Previous research has identified an application
for PIM as an off-chip accelerator [Ahn et al., 2016; Chi et al., 2016; Seshadri et al.,
2017]. At the time of writing no research has approached the use of PIM to provide
additional security features to the system. This thesis thus explores the efficacy and
limitations of implementing security applications on the PIM architecture.

1.2 Scope and Contributions

I argue that the PIM architecture can be used to implement valuable security con-
trols for the entire computer system. Modern computer systems implement many
of their security controls in software. It has been shown that these security imple-
mentations alone do not provide adequate protection for sophisticated attacks such
as unauthorised privilege escalation [Davi et al., 2010; Seaborn and Dullien, 2015;
Pangaria et al., 2012]. The implementation of security in external hardware mitigates
these risks but provides a new set of limitations. In this thesis I explore and quantify
some of the key limitations of PIM, and discuss their effect on its use for different
security-relevant workloads.

After understanding the limitations of PIM, I analyse a range of security domains
and identify key applications which have ideal characteristics for the processing pro-
file of PIM.

I then present a case study on three external hardware security applications. For
each of these, I analyse their benefits and limitations, and discuss the ramifications
of moving these to the PIM architecture.

Having identified kernel integrity monitors as an application which both fits the
PIM workload profile and provides valuable security controls, I present a basic de-
sign for a kernel integrity monitor on PIM, analysing the design, its constraints, and
feasibility.

1.3 Thesis Outline

Chapter 2 will explore the background of PIM and some of the existing literature
relating to off-chip security applications. Chapter 3 will look deeper into the char-
acteristics of PIM and its limitations. Using this we will identify some applications
which suit the PIM architecture. Chapter 4 focuses on previous work on external
hardware security solutions. I will analyse and discuss the benefits and limitations
of each application. It will also investigate how these applications could be applied
to PIM, and the consequences of such a change. Chapter 5 shows the use of PIM as a
kernel integrity monitor, and investigates performance against existing kernel moni-
tors. Chapter 6 will explain the future work and conclusions of this dissertation.

Chapter 2

Background and Related Work

This chapter looks at the background and existing work of PIM and hardware-based
security devices. For each topic we will explore its history, existing work, and the
current state-of-the-art.

2.1 Processing In Memory

The last decades have seen an explosion in the performance of CPU architectures.
However, the rate of improvement has been much slower for DRAM technology [Car-
valho, 2002]. While the rate of CPU improvement has slowed significantly, there still
lies a large gap in performance between the CPU and memory. In the traditional Von
Neumann computational model the CPU and memory are kept separate [Von Neu-
mann, 1993]. To operate on any data it must be moved from memory, stored in
DRAM, into the CPU. This movement of data is expensive both in terms of time and
energy. As a consequence of this design model the CPU is forced to wait for data
to traverse the slow memory bus. This is known as the Von Neumann bottleneck.
Due to the divergent scaling of CPU and DRAM performance accessing memory has
become an increasing bottleneck in modern architectures.

One solution to this problem is to reduce the bottleneck by locating the com-
putation near or in memory. This concept was conceived in 1970 [Stone, 1970] but
has not been feasible due to the technological limitations of adding processing logic
into DRAM. However, in recent years the development of 3D stacked DRAM has
reopened the possibilities for Processing-in-Memory (PIM).

3D stacked DRAM is made up from layers of memory cells [Hybrid Memory
Cube Consortium, 2014]. These layers are connected vertically with the use of through-
silicon-vias (TSVs) which allow for very high bandwidth communication. The bottom
layer of the stack is a special logic layer and acts as a memory controller, provid-
ing the necessary logic to access the correct parts of the stack. This logic layer is
sparsely used, thus gives us space to develop additional logic and hardware compo-
nents which can do computation on the DRAM stack, allowing for the development
of in-PIM devices. This architecture is outlined in Figure 2.1. The 3D stack of mem-
ory is broken into separate vaults, each with its own vault controller. Each vault
can serve memory requests independently of the others, improving bandwidth and

3

4 Background and Related Work

providing the potential for highly parallel computation. PIM as a high level concept
does not have a specific implementation, but for the purposes of this dissertation
we will define a PIM architecture to be the use 3D stacked DRAM with additional
computational hardware components.

Figure 2.1: Overview of the 3D-stacked DRAM architecture [Ghose et al., 2018]

The major benefits of PIM are: its very high internal memory bandwidth; its
capability for highly parallel processing; and its reduced movement of data. This
makes PIM ideal for workloads that require high memory usage, without the need for
significant computation, as there is limited power and silicon budget for computation
within PIM. It is also interesting to note the while PIM offers massively increased
internal bandwidth, the latency of memory requests is not similarly improved. This is
due to the fundamental physical limitations of DRAM technology [Chang, 2017].

While this technology offers some significant improvements over conventional
DRAM technologies, there are some inherent challenges associated with PIM. The
fact that the PIM is separated from the CPU by the memory bus means that is can-
not cheaply access any of the on-chip functionality that the CPU provides, such as
memory management. The lack of access to the memory management system means
that PIM cannot perform address translation, page table walks, or access the TLB.
This is a significant challenge in developing a PIM device, as the translation between
virtual and physical memory addresses is a critical function for most applications.
The inability to access the CPU cache also provides numerous challenges for PIM.
For example, the issue of coherency of data between the CPU and PIM is compli-
cated by the possibility that the PIM may change memory state, making coherency a
two-way street. This is an problem when the CPU and PIM have a shared resource,
as any changes made by the CPU or PIM must be propagated and reflected in the
other. To become a viable technology, solutions must be developed that address these
challenges. Each of these limitations will be discussed further in Chapter 3

2.1.1 Previous work

There is a depth of knowledge on near-memory and off-chip processing. For the
purposes of this dissertation we will focus on recent research into PIM architectures.

§2.1 Processing In Memory 5

While the broad concept of PIM is not new, the work on PIM in the practical context
of 3D-stacked DRAM is still in its infancy but has shown rapid progress. As the
research in this field is in its early stages there are no standardised methods for how
a PIM device should operate. This gives researchers and hardware architects freedom
to explore many different architectures. These architectures tend to be custom made
for a single purpose with specific hardware components.

Recently, there has been a wide range of research on PIM architectures for various
purposes. A critical area of research is investigating methods to solve the limitations
inherent in PIM. This has seen the development of LazyPIM, a cache coherency mech-
anism for PIM [Boroumand et al., 2017]. Hsieh et al. [2016] have also presented an
implementation of an in-memory pointer chasing accelerator (IMPICA) with PIM.
This work solves some of the key challenges with off-chip address translation, but
incurs a significant overhead to PIM execution.

Another key issue with utilising PIM for computation is the current lack of stan-
dardisation. For PIM to be commercially viable there needs to be an ecosystem
of tools including programming languages, development environments, supported
operating systems, and architectures [Zhang et al., 2013]. By having no standard
mechanism for communication between CPU and PIM each application must de-
velop its own method, incurring significant development time and cost. To mitigate
these costs there has been some research into developing a new layer of abstraction
to communicate with PIM, through the use of PIM-enabled instructions [Ahn et al.,
2015]. This abstraction allows for applications to offload workloads onto PIM without
detracting from the traditional programming framework. However, these solutions
require modifications to both PIM and the CPU. For initial large-scale adoption of
PIM it is not feasible to require significant modification to CPU architectures, due to
high costs of developing and fabricating such specialised mechanisms.

Other PIM architectures have focused on developing applications which take ad-
vantage of PIMs benefits. Such research has used PIM as an accelerator for graph
processing [Ahn et al., 2016], neural network computation [Chi et al., 2016], and bulk
bitwise operations [Seshadri et al., 2017]. These are areas which are traditionally
limited by low memory bandwidth and number of processing cores.

Many modern applications working with large workloads need to execute bulk
operations against a large set of data. The development of AMBIT as a bulk bitwise
operation accelerator has demonstrated the significant advantages that PIM provides
[Seshadri et al., 2017]. By performing the bitwise operations in-memory it achieves a
35-fold increase over state-of-the-art CPU systems. This technique has applications in
many different fields which require the usage of bitwise operations, such as database
design, DNA sequencing, and encryption algorithms.

The work of Ahn et al. [2016] shows the use of PIM for graph processing ap-
plications. This work used the HMC-based memory architecture to implement a
graph-processing accelerator. The results showed that this PIM solution performed
an order of magnitude better than the existing state-of-the-art while reducing energy
usage by 87%.

As outlined above, even in its early stages of development, PIM has shown huge

6 Background and Related Work

potential as a high memory bandwidth off-chip accelerator. The variety of PIM ap-
plications shows its versatility among many different disciplines such as machine-
learning and HPC. Yet there has been an absence of development for the use of PIM
in security. As PIM is a hardware device external to the CPU, it provides some in-
teresting properties for its use for security. In the next section we will discuss the
background, history and current literature around external hardware-based security
devices.

2.2 Hardware-based Security

Security is a particularly broad field of research, and has implications in the design of
every aspect and abstraction layer in a computer, from application-level security like
antivirus scanning, to OS level security such as file privileges, down to hardware-
based security. Hardware security solutions provide some additional advantages
which cannot be replicated in software. As PIM is still a new and emerging tech-
nology, to the best of our knowledge there has been an absence of research into
the use of PIM architectures as a security device; because it is a new and emerging
technology. However, there have been numerous hardware-based security devices
for computer systems. This section will provide a brief overview on the current re-
search and technologies for hardware-based security, focusing on the use of external
hardware solutions.

The range of hardware security solutions can be categorised as either internal or
external to the CPU. Internal security hardware include solutions such as Intels SGX
which applies hardware-based isolation and encryption to an application, so that
its execution can be trusted [Costan and Devadas, 2016]. Since developing internal
hardware on a CPU is not feasible for most researchers, the development of external
hardware-based security has emerged. The primary advantage over software based
security measures is that the hardware can run independent of the CPU, meaning
that no level of system privilege can modify, disable, or remove the security system
from running. Other benefits include the usage of hardware-based cryptography and
encryption mechanisms to protect the confidentiality of the data.

Many external hardware-based security devices aim to improve security by cap-
turing data from the system, analysing the data, and detecting any invalid, or illegal
operations made by the system. This type of application describes a whole class
of security programs called monitors. Often these monitors are looking for invalid
changes to the OS data structures, which would indicate a breach of security. The
implementation of a monitor has followed two key approaches, through the use of
memory snapshots and bus snooping.

Snapshot-based Monitors A memory snapshot approach takes snapshots of mem-
ory at regular time intervals, analysing the data for its correctness. One of the first
implementations of a security monitor, called Copilot, used this approach and im-
plemented a kernel run time integrity monitor [Petroni Jr et al., 2004]. This method

§2.3 Summary 7

is simple to implement but can fail to catch illegal changes due to transient attacks.
These are attacks which occur between the snapshots of the monitor, as illustrated
in Figure 2.2.

Figure 2.2: Transient attacks can occur between the snapshots

Bus Snooping-based Monitors To address the issue of transient attacks for security
monitors some recent research has adopted the use of bus snooping [Moon et al.,
2012; Lee et al., 2013]. This uses a more sophisticated approach by listening, or
snooping, the memory bus between the CPU and memory, to analyse the data traffic
in real-time and detect any invalid memory requests. Bus snooping monitors will be
discussed further in Chapter 4, where we will evaluate some current implementations
and the efficacy of developing such a monitor with PIM.

2.3 Summary

This chapter has provided a background of both PIM and hardware-based security,
outlining some of the history and current literature in their respective areas. We have
also outlined some of the security issues which can be solved by the use of hardware-
based security. While previous work has shown that PIM brings some significant
benefits to off-chip processing workloads there are some inherent limitations of its
design. The next chapter will focus on identifying and evaluating these limitations
and discussing their effect on the uses for PIM.

8 Background and Related Work

Chapter 3

Understanding the Limitations of
PIM

The previous chapter gave a high-level overview of PIM, and the current landscape
of the field. While we have discussed many of the benefits of PIM, there are some
inherent limitations presented by its architecture. This chapter will analyse these
limitations through experimentation, discussing the results and their implication for
developing PIM applications, as well as potential solutions. As outlined in Chapter 2,
the primary benefit of PIM is its potential for extremely high-bandwidth memory ac-
cess. This means that PIM works best for offloading memory-intensive applications
that require a relatively small amount of computation. Ideally, such applications
should be designed to run in parallel among the many PIM cores. The main limi-
tations to using PIM are the lack of access to on-chip mechanisms such as address
translation, and the CPU cache. We will now explore these limitations further.

3.1 On-chip Mechanisms

Modern CPU architectures provide many different on-chip mechanisms to improve
overall performance. For example, the Advanced Encryption Standard (AES) is of-
ten built into the CPU to improve security and reduce the performance overheads
of encrypting/decrypting data [Gueron, 2010]. A limitation of being isolated from
the CPU is the lack of low-latency access to these mechanisms. Perhaps the most
important mechanism with respect to PIM is the memory management subsystem.
This means that PIM does not have fast access to any high-level address translation
and protection mechanisms such as the page table or Table Lookaside Buffer (TLB).
While the PIM could probe the CPU with address translation requests, any perfor-
mance benefit provided by PIM could easily be negated due to the long latency times
associated with such probes.

As a consequence, the only information received by the PIM is the CPU’s physical
memory requests, with no efficient mechanism to access further information. By only
seeing physical addresses the PIM loses information about how the CPU is executing
a program, as program data will typically be discontiguous in physical memory. This
is a problem for any system with layers of abstraction, as higher level abstractions

9

10 Understanding the Limitations of PIM

must be translated into concrete low level constructs. In this translation we can lose
critical information and context. This problem is known as the semantic gap [Dorai
and Venkatesh, 2003]. The semantic gap means that without additional context it is
difficult to generate high level understanding of the CPU and its behaviour from low
level information.

Without fast access to the on-chip mechanisms the use cases and applications for
PIM are reduced. To solve these problems, the PIM must either implement its own
mechanisms, or develop applications that are not affected by this limitation. Dupli-
cating the CPU’s Memory Management Unit (MMU) in PIM would not be feasible
for a number of reasons. First among them is the need for additional coherency
mechanisms between the CPU and PIM MMU, which is a nontrivial task and adds
significant complexity to the system. It would also undermine the PIM’s advantages
by increasing bus traffic to maintain coherency.

As discussed in Chapter 2, there has been some research into solving this is-
sue. The work of Hsieh et al. [2016] demonstrated the use of PIM for an In-Memory
Pointer Chasing Accelerator (IMPICA), which implements its own address engine to
perform address translation outside of the CPU. This works by allocating linked data
structures in contiguous regions of virtual memory, and using custom region-based
page tables optimised for pointer chasing. In this way, given the first pointer it can
determine the physical addresses of all further linked structures. This solution per-
forms well for the specific task of pointer chasing. However, it does not scale beyond
this use case and does not solve the issue of address translation for all memory. By
allocating all data in the manner presented in IMPICA, we would remove all of the
benefits of the virtual address space, regressing to a physical memory model.

The address translation problem is still an open area of research for PIM archi-
tectures. Current solutions may work for a specific subset of workloads and applica-
tions, but do not solve the fundamental problem.

3.2 CPU Cache

The CPU cache provides another key challenge in developing PIM applications. The
cache is a data store which offers access speeds orders of magnitude greater than
DRAM. The trade off is that caches are limited in capacity due to die size and cost
constraints. The cache is used to store frequently used pieces of data and instructions
to increase the performance of the system. To get data back to memory the cache
must implement a write policy, commonly either write-back, or write-through. A
write-back policy is most common for CPU caches, writing first to the cache, and
only writing back to memory when the data is evicted from the cache. This improves
performance and reduces bus traffic, but also introduces the time delay between
changing a value and observing the change in memory. The write-through policy
will synchronously write to both the cache and memory. This is a simple policy that
mitigates the complexity of a write-back policy at the cost of performance.

The primary challenge is maintaining and propagating the changes made to data

§3.2 CPU Cache 11

that is in both the CPU cache and PIM. This is a key concept called cache coherency.
The lack of native cache coherency mechanisms between the main CPU and PIM
is one of the most significant disadvantages of PIM. In the context of running PIM
workloads, the CPU cache becomes a problem when the main CPU and PIM are
reading and writing to the same memory location. For some applications this may
not be an issue because the CPU offloads the execution to PIM to work indepen-
dently. However, security applications such as integrity monitors may be accessing
and analysing data concurrently with the main CPUs execution. Previous work has
shown an implementation for a cache-coherent PIM, but it still requires significant
overheads for some applications [Boroumand et al., 2017].

The following work investigate the issues that the CPU cache presents when PIM
does not have a cache coherency mechanism. The caching mechanisms of the CPU
leads to three core issues for the correct execution of PIM: the loss of information;
temporal lag of information; and reduced granularity of information.

These problems undermine the efficacy of security applications such as security
monitors. These are often used to mitigate memory violations like buffer overflows,
use-after-free, and other common exploits. Each cache issue will be discussed in
depth in the following sections in the context of developing a PIM security monitor.

3.2.1 Loss of Information

CPU caches typically employ a least-recently-used (LRU) eviction policy for the last
level (LL) cache, thus, in principle data which is used often by the CPU could stay in
the cache indefinitely. This data can be written and modified by the CPU an arbitrary
number of times. When a byte in the cache is overwritten, all knowledge of the pre-
vious state is lost. While the data is in the CPU cache, the PIM has no visibility to the
overwritten values, meaning that the information is lost. For a PIM security monitor
this results in the loss of potentially critical information about security breaches.

As part of my research I developed a tool to quantify the scope of this issue. I
added functionality to the Cachegrind [Valgrind Developers, 2009] cache simulator
which is part of the Valgrind [Nethercote and Seward, 2003] suite of tools. This
allowed me to measure the number of overwrites that occur to the same piece of
data during the execution of a program. This was tested against the SPEC CPU 2006
benchmarks, which provides a range of compute and memory intensive applications
with varying cache behaviours [Spradling, 2007]. We chose this suite of benchmarks
in the absence of standardised security-focused workloads.

Figure 3.1 shows the percentage of bytes that are overwritten during the execution
of each benchmark. These values were computed by finding the total number of bytes
that were overwritten in the cache against the total number of modified bytes which
were flushed from cache for each benchmark. From these results we can observe
a wide variation between the different benchmarks, with the percentage of bytes
overwritten ranging between 0.02 and 204 percent of the bytes written to the cache.
The highest three results are all over 100%, suggesting that a significant proportion
of modified bytes were overwritten more than once. For other applications we see a

12 Understanding the Limitations of PIM

very small amount of information loss, with 7 out of 15 benchmarks showing a loss
of less than 10%. Table 3.1 shows the median and average loss of information, with
15% and 47% respectively. Because the average value is heavily skewed by the top
three results, we take median value as a more representative figure.

This data does not capture the distribution of these overwrites. For instance, an
application that overwrites only one byte many times would achieve a similar per-
centage score to an application which overwrites many bytes only once. However,
this does not change the validity of this analysis as this data is still lost and unreach-
able for PIM.

One factor that could influence these results is the total execution time of the
program, and the overall number of bytes written to the cache. Figure 3.2 shows the
total time and number of bytes written to cache for each benchmark. The time in
this context increments on every read and write to cache. The only result that would
suggest a correlation is the 464.h264href benchmark. While this has a particularly
high total time, it has a proportionally small number of writes to the cache, meaning
that the longer execution time is not performing a significantly more number of
writes. We can conclude that there is no significant correlation between the loss of
information and program execution time.

From this data we can conclude that the amount of lost information is highly
dependant on the specific application behaviour. The lack of cache coherence be-
tween the CPU and the PIM leads to lost information, which is uncontrollable by
PIM. The loss of information from the cache is a significant problem for the PIM,
and the development of PIM applications. While for some experiments there was a
minimal amount lost information, the scope of this loss is not observable to the PIM.
For some applications, such as security monitors, the loss of any information could
lead to a violation of security being missed. The use of a write-through cache policy
would mitigate this issue, but would cause a significant performance reduction and
increased bus traffic, making it an unreasonable solution. For these reasons, the loss
of information caused by the CPU cache appears to be a significant limitation for
PIM architectures.

3.2.2 Temporal Lag of Information

The temporal lag of information propagating from the CPU down to the PIM is the
most intuitive limitation for PIM architectures. This is caused by the use of a write-
back cache policy. The CPU cache will store a local copy of data until it is evicted. A
commonly used cache eviction heuristic is the least-recently-used method. This means
that only the data that is least used is written back to memory. The problem is
that frequently used data can stay in the cache until the program execution finishes,
which for some programs such as OS kernels could be the lifetime of the system.

To quantify the significance of this issue I added functionality to the Cachegrind
cache simulator to track the amount of time each cache line is held in the cache for.
Similar to the previous experiments, we use the SPEC CPU 2006 benchmarks to anal-
yse the lifespan of cache lines for various computationally and memory intensive

§3.2 CPU Cache 13

Figure 3.1: Proportion of bytes lost to overwrites in the CPU cache is highly applica-
tion specific.

Figure 3.2: The benchmarks show a wide variation in total cache events and bytes
written.

14 Understanding the Limitations of PIM

workloads. The data was collected by measuring the time taken for each cache line
to be evicted. Due to the large number of cache lines, the data was collected as a
histogram, bucketing the data on a log2 scale. Figure 3.3 shows a high level view of
the normalised cumulative frequency of the lifespan of cache lines. It is important
to note that this data is plotted using a logarithmic scale. As such, each step in the
lifespan axis increases by two. The consequence of using a logarithmic scale is the re-
duction of fine-grained analysis, as the window for each cache line lifespan increases
exponentially, but allows us to observe the high level lifespans and distribution of
cache lines.

Using this data we can extract some interesting information about how the lifes-
pan of cache lines is distributed. From Figure 3.3 we observe that most benchmarks
follow a similar pattern. A few of these experiments show a large step in the per-
centage of cache lines. This would indicate a large quantity of data being held in
cache for a similarly long amount of time. From this data we can compute that on
average, the longest held cache lines were in cache for 111 (or 26.8) times the median
cache lines lifespan.

To gain a better understanding of these results, we can plot these experiments on
a linear scale. Figure 3.4 shows a representative subset of experiments plotted on a
linear scale. It is clear from this that the majority of cache lines have a relatively short
lifespan. We can also observe that the last 20% of cache lines survive in cache for a
significantly longer period of time, as shown by the long tails. This is to be expected,
as programs will often only need to read or use a cache line once. The longer living
cache lines are those which the CPU uses often. This could indicate a commonly
used constant, or updated working variable that could stay in cache for the majority
of the runtime.

The results show that the majority of cache lines used are stored in cache for a
relatively short proportion of the total execution time. While most cache lines were
evicted quickly, the few that remained stayed significantly longer. There is a chance
that an area of memory PIM requires is being held indefinitely by the CPU, causing
the PIM to miss security violations due to the use of stale data. For some application
this is a significant limitation. Using the example of a PIM security monitor; the
CPU could violate a security control, but PIM might not find it until the end of the
programs execution. Taking this further, the CPU could intentionally keep the data
in cache to stop it from being evicted. This is also coupled to the previous issue
of information loss, both of which are consequences of using a write-back cache
policy. This is because the longer the data sits in memory, the more likely it is to be
modified, incurring a loss of information for PIM. The use of a write-through policy
would similarly mitigate this issue, but would not be a reasonable solution due to
the high reduction in performance. For time-critical security-related applications, the
issue of temporal lag may be a significant limitation.

§3.2 CPU Cache 15

Figure 3.3: Normalised cumulative frequency of cache line lifespans.

Figure 3.4: A linear scale shows that most cache lines have a short lifespan.

16 Understanding the Limitations of PIM

3.2.3 Reduced Granularity of Information

The final issue is more nuanced than the others described previously. First, we need
to understand how the CPU interacts with the cache. When the CPU requests a byte
of data from memory, the memory controller loads in a whole cache line. The size
of the cache line is dependent on the Last Level (LL) cache line size. The cache line
is the minimum size that the cache can read in, or write out to memory. Once the
data is in the cache, the CPU can access and modify each byte. When the data is no
longer required, the cache will evict the entire cache line back to memory.

The reduced granularity of information comes from the fact that the cache is
working at a lower resolution: at the cache line level instead of the byte level. This
means that the PIM can only observe changes to the entire cache line when it gets
evicted from the cache. The only information we have about modifications to the
cache line is from the dirty bit, which tells us if any data in the cache line has been
modified. Any further information about which bytes have been modified cannot
be captured without additional hardware. It is feasible for PIM to implement a
mechanism to check the incoming cache line with the existing data in memory to
identify the modified values. However, even then, the full extent of the changes
cannot be captured due to the loss of information problem which we previously
outlined, and could reduce performance due to latency. In this case, a byte could be
modified from its initial value, used for some amount of execution, and then changed
back to its initial form. The PIM would not be able to catch these edge cases. For
applications such as a security integrity monitor this issue could mean that malicious
code may be able to modify and break critical parts of the program of system without
detection.

3.3 Offloading to PIM

Another issue comes with offloading a process from the CPU to PIM. Early in this
research we investigated the potential for offloading security application like Address-
Sanitizer (ASan) to PIM. ASan is compile-time and run-time tool which instruments
code with additional checks and ensures that the code doesn’t violate any memory
bugs; such as buffer overflows, dangling pointers etc.. This is a costly operation
which slows performance, and as such is not used widely in production environ-
ments. Offloading the ASan operations to PIM would provide significant value to
developers. However, when investigating ASan’s behaviour we find that it adds a
small number of sanity checks for each allocation and write to data. By offloading
this to PIM it would generate a large number of small workloads. Any potential gain
from PIM would be lost due to the huge overheads associated with transferring data
between the CPU and PIM, as well as the synchronisation required.

This issue is separate from the caching and on-chip mechanisms, as some ap-
plications are not well suited to be offloaded to PIM. Offloading a process to PIM
can perform particularly well if it can run independently from any other process.
The addition of dependencies and coupling it to the CPU runtime creates a far more

§3.4 PIM Isolation 17

complex model for using PIM and can reduce the benefits of PIM. Doing small batch
workloads on PIM adds additional traffic onto the memory bus and can reduce per-
formance. Ideally the workloads are larger and have high memory usage and can be
executed independently of the main CPU.

Work by Ahn et al. [2015] has presented the concept of PIM Enabled Instructions
(PEIs), which are special instructions constructed for operations that are optimised
for PIM. This allows any workload compiled with these instructions to utilise PIM.
The runtime also calculates whether offloading the operation will be faster than keep-
ing it in the CPU due to the overheads. This solution provides a good base for
utilising PIM. However, it does require the addition of multiple mechanisms to the
CPU, which is not feasible in the short term for commercial grade CPU architectures
outside of simulations.

3.4 PIM Isolation

The concept of isolation between the CPU and PIM can either be beneficial or a
significant limitation, depending on the application. For many PIM applications, the
isolation from the CPU causes many problems, largely due to the lack of exposure
to on-chip mechanisms and caches. Communication between the CPU and the PIM
could allow for more complex tasks to be offloaded to and executed by PIM. This is
useful for many applications which require input from the CPU. However, the ability
to modify the execution of the PIM from the CPU presents some serious security
concerns. Specifically, that malicious agents could interact with the PIM to modify or
subvert its execution. For security-related applications this provides a critical attack
vector which could eliminate any additional security features provided by PIM. This
is particularly important in protecting against privileged attacks at the kernel level,
as we can no longer trust the host OS to operate correctly. Removing the ability to
modify and change the PIM’s firmware and execution would mitigate this risk, and
further isolate the two as independent devices. This does limit the efficacy of some
applications, as this would remove the ability to offload arbitrary workloads.

Many PIM applications do this already, as the firmware is baked into the hard-
ware, and cannot be updated or changed by the CPU. This makes such PIM devices
an Application Specific Integrated Circuit (ASIC), which detracts from the versatility
and value of these devices. To compensate for this, the PIM chips could be de-
signed to be updated manually by reprogramming the chip on the physical device.
Of course, the security of this approach depends on the assumption that malicious
actors do not have physical access to the hardware.

Currently, many security solutions running on the CPU, such as traditional secu-
rity monitors, can be subverted by malware to avoid detection. The isolation of the
PIM guarantees that no malware can modify its behaviour, meaning that we can trust
the execution of the PIM. While the execution cannot be changed, any inputs from
the CPU must be trusted to be correct. For instance, if the PIM has implemented an
antivirus scanner and the CPU can update the signature list; a malicious actor could

18 Understanding the Limitations of PIM

remove all signatures from the scanner, rendering it useless. To mitigate corruption
from invalid CPU inputs we can either develop applications which do not require in-
puts; or program all relevant information into the PIM. In the previous example we
could program the antivirus signature list into the PIM directly to remove the need
for CPU inputs. Chapter 4 will further discuss this idea, and the problems which
arise from this isolation, such as updating.

3.5 Hybrid System

So far we have focused on offloading entire workloads from the CPU to PIM. While
this can provide significant performance benefits, there are also many unavoidable
limitations. Primarily, as it restricts the set of workloads significantly: only those
which match its strict processing profile would be viable. An interesting idea is
the use of the PIM in conjunction with traditional CPU-based security applications.
This would see a CPU and a PIM application working cooperatively, thus mitigating
caching issues. In this way, the CPU program could monitor the CPU cache, with the
PIM monitoring memory. The CPU could then send minimal relevant information to
the PIM to validate. Implementing such a system would be challenging, as we must
develop two separate but cooperating programs, but could resolve some of the in-
herent issues. This helps mitigate some of the fundamental limitations of PIM while
maintaining a high degree of security. Unfortunately, this does not improve system
performance. However, it could be used to guarantee that the system is running
correctly. The CPU is still vulnerable to existing attacks and exploits, but as the PIM
is isolated it could still maintain a base level of security. This is different to the PEIs
discussed in Section 3.3 as these are two distinct programs which are working to-
gether. It would also require no further modification to the CPU architecture, unlike
the PEI implementation.

3.6 Summary

In this chapter we have identified and discussed the limitations and constraints of
using the PIM architecture in its current state. For many of these limitations there
are no simple, efficient or scalable solutions. Therefore, it is important to identify and
characterise the areas and applications which will not be compatible, or benefit from
PIMs capabilities. Chapter 4 will explore potential security applications for PIM ar-
chitectures with respect to these limitations, and discuss the efficacy of implementing
existing security controls on PIM.

§3.6 Summary 19

B
en

ch
m

ar
k

To
ta

l
ti

m
e

(c
ac

he
ev

en
ts

)
To

ta
l

by
te

s
w

ri
t-

te
n

to
ca

ch
e

(b
yt

es
)

To
ta

l
by

te
s

m
od

ifi
ed

an
d

flu
sh

ed
fr

om
ca

ch
e

(b
yt

es
)

To
ta

l
by

te
s

ov
er

-
w

ri
tt

en
in

ca
ch

e
(b

yt
es

)

Pe
rc

en
ta

ge
of

by
te

s
lo

st
to

ov
er

w
ri

te
s,

%

40
1.

bz
ip

2
8,

65
8,

63
0,

33
5

6,
54

3,
86

4,
97

0
22

,9
42

,0
08

5,
37

6
0.

02
40

3.
gc

c
23

,4
77

,7
70

,1
85

4,
32

1,
02

8,
80

9
10

,4
33

,2
71

91
0,

55
3

8.
73

42
9.

m
cf

4,
48

8,
99

1,
93

3
1,

35
0,

33
3,

74
9

21
,4

67
,2

82
10

,0
47

,1
55

46
.8

43
3.

m
ilc

8,
80

5,
81

2,
05

3
5,

58
1,

80
4,

49
1

36
,8

07
,8

28
15

,4
05

,0
40

41
.8

5
44

4.
na

m
d

1,
06

1,
37

2,
07

9
68

4,
22

9,
73

5
8,

98
6,

72
6

76
7,

63
6

8.
54

44
5.

go
bm

k
21

,9
31

,4
80

,9
82

9,
68

0,
51

6,
26

3
51

8,
68

6,
43

5
79

,6
89

,6
28

15
.3

7
45

3.
po

vr
ay

26
5,

91
8,

05
7

53
,0

39
,8

88
51

4,
18

8
6,

17
6

1.
2

45
6.

hm
m

er
22

,4
90

,2
53

,4
31

8,
12

2,
93

5,
05

0
22

,1
96

,6
80

29
8,

08
5

1.
34

45
8.

sj
en

g
9,

10
4,

13
4,

87
4

3,
56

5,
32

3,
52

3
9,

73
8,

86
1

19
,8

91
,7

21
20

4.
25

46
2.

lib
qu

an
tu

m
46

,3
16

,5
60

,1
68

26
,6

24
,3

90
,7

06
13

5,
00

3,
27

1
41

1,
24

8
0.

3
46

4.
h2

64
re

f
12

4,
12

9,
49

2,
12

8
30

,0
14

,6
87

,3
49

20
2,

99
8,

30
6

30
6,

44
8,

84
2

15
0.

96
47

0.
lb

m
3,

86
5,

26
6,

70
9

2,
71

7,
81

1,
08

0
13

,2
87

,7
30

3,
30

1,
07

4
24

.8
4

47
1.

om
ne

tp
p

78
,2

76
,7

30
,4

53
26

,3
42

,9
21

,1
28

16
4,

92
0,

23
7

40
,0

88
,1

14
24

.3
1

47
3.

as
ta

r
2,

29
0,

20
6,

66
6

2,
10

7,
29

5,
20

5
7,

42
9,

01
6

12
,2

68
,3

47
16

5.
14

48
2.

sp
hi

nx
30

,6
05

,9
02

,6
55

7,
49

9,
75

2,
85

4
32

,4
42

,3
00

1,
98

8,
95

0
6.

13

A
ve

ra
ge

25
,7

17
,9

01
,5

14
9,

01
3,

99
5,

65
3

80
,5

23
,6

09
32

,7
68

,5
30

46
.6

5
M

ed
ia

n
9,

10
4,

13
4,

87
4

5,
58

1,
80

4,
49

1
22

,1
96

,6
80

3,
30

1,
07

4
15

.3
6

Ta
bl

e
3.

1:
C

ac
he

ev
en

t
da

ta
fr

om
be

nc
hm

ar
ks

w
it

h
av

er
ag

e
an

d
m

ed
ia

n
va

lu
es

.

20 Understanding the Limitations of PIM

Chapter 4

PIM Security Applications

The previous chapter looked in depth at the benefits and limitations of the PIM
architecture. This chapter will identify and discuss a range of security-related areas
which are suited for PIM architectures. We will evaluate three applications which use
hardware to implement additional security features. These applications implement
security integrity monitoring systems using different technologies and mechanisms.
I will evaluate all three applications in-depth, analysing the benefits and limitations
of each. We will then explore the potential of moving these applications to PIM.

4.1 PIM Workload Profile

As discussed in Chapter 3, PIM architectures are suited to workloads which require
high memory usage, with relatively low computation, that can be run in parallel to
utilise all PIM cores. We have identified some of the limitations for PIM workloads,
which include: high latency access to CPU on-chip mechanisms; no cache coherence
mechanisms; and no cache visibility for applications dependent on CPU execution.
Consequently, PIM applications which can run independently from the CPU are the
best candidates for implementation.

4.2 Security Problems

There are many security applications which could employ PIM. However, many of
these would not be feasible due to the limitations previously outlined. Many security
solutions are implemented at the OS kernel level, such as file privileges, network se-
curity, namespaces, and cryptography. While additional security mechanisms could
be implemented with a PIM at the kernel level it would limit the PIM’s versatility. To
encourage the adoption of a PIM, it should work without the addition of any special
mechanisms on the CPU. As such, the focus of security problem space is on appli-
cations which work outside of the kernel. The following sections outline different
security areas which could be addresses through the use of a PIM.

21

22 PIM Security Applications

4.2.1 String Matching

String matching on large regions of data is a simple process which is constrained by
the speed of reading memory into the CPU. In the security world, string matching
is an important technique, often used for applications such as deep packet inspec-
tion and antivirus (AV) scanning. An AV scanner commonly uses a signature-based
check. This searches all of the data in memory and on disk against a list of known
virus signatures, stored in the AV database. The signature-based search is the most
primitive form of AV checking, but still makes up for a significant part of modern
AV systems. One of the limitations of this system is that it can only find viruses that
are known in the database. Viruses are often purposefully obfuscated and manipu-
lated in an attempt to avoid signature detection. More modern AV systems also use
advanced behavioural and heuristic approaches to detect any suspicious activity on
a system. The AV signature check is equivalent to a substring search problem, as we
are searching large text regions (memory and disk data) for a smaller string (the virus
signature). This application fits the PIM processing profile as it is computationally
simple and is a memory-bandwidth bound problem which can run independent of
the CPU. Signature checking can also exploit the PIM’s parallelism by searching all
memory vaults simultaneously.

Developing an AV signature checking PIM architecture would provide some se-
curity benefits. The PIM could continually analyse memory for potential viruses,
reducing the compute workload for the CPU and catching viruses faster than tradi-
tional approaches. To reduce its overhead, the application could run passively in the
background, only running when there is low activity. For example, the application
may run if the PIM detects that a memory vault has a low or empty memory request
queue. This would significantly reduce the AV scanner’s compute time. The most
significant issue with this solution is the need for AVs to regularly update their signa-
ture databases, ensuring they can detect new malware. The method of updating the
database on a PIM would depend on its implementation. If the PIM allows for mod-
ification from the CPU, then the CPU could simply send the updated information
across the memory bus to the PIM. Alternatively, if the CPU has restricted access to
the PIM then it would have to be reprogrammed with the new database. This would
be an annoyance for the user, as AV databases are updated frequently. The trade-off
between security and usability is harder to justify for this usecase, and may cause
users to not update, or not use the system.

Another point to consider is the necessity for developing an accelerated AV scan-
ner. Unlike other security controls, AV scanning is not a time-critical operation. A
system may only be scanned once a day or week. Because this operation is not
time-critical and is run infrequently, the benefit and value of using a PIM is reduced.
While the PIM could provide improvements to conventional AV scanning, the value
of these improvements may not be enough to justify the cost of current hardware.

§4.2 Security Problems 23

4.2.2 Integrity Monitoring

Integrity monitoring is a security application that aims to prevent malicious changes
and operations by monitoring the execution of the system. These monitors have
a long history and have been used to ensure the integrity of critical parts of the
system, such as program code, data structures, and files. The history of monitoring
technologies as well as some current solutions were discussed in Section 2.2. In
practice, integrity monitoring works by ensuring a set of invariants are maintained
throughout the system’s execution. This is a computationally and memory-intensive
task, and can significantly reduce the performance of applications. Such monitors
are either implemented in the hypervisor layer, which sacrifices performance, or by
external hardware, which can be expensive and difficult to maintain. Therefore, by
offloading this process to a PIM we can reduce the performance overheads without
the introduction of additional external hardware, which improves the efficacy of
using integrity monitors; in turn improving the security of the system.

Implementing integrity monitors: As previously outlined, there are a couple of
approaches to implementing an integrity monitor. Modern integrity monitors are
either implemented in the hypervisor layer or as external hardware. Early develop-
ment for integrity monitors used in-VM approaches which ran the monitor in user
space, as a normal application [Forrest et al., 1996; Kim and Spafford, 1994; Abadi
et al., 2005]. This was quickly found to be insufficient as malicious applications could
gain unauthorised privileges and subvert the monitor. To combat this, new monitors
were moved to a higher level of privilege, specifically, the hypervisor [Jiang and
Wang, 2007; Dolan-Gavitt et al., 2011; Hofmann et al., 2011].

Implementing the monitor at the hypervisor level means that it has a higher
privilege than the kernel or applications. In theory, this ensures that no malicious
applications can gain access to the hypervisor layer to modify or remove the mon-
itor from operating. However, hypervisors themselves have been shown to contain
software vulnerabilities which can be exploited, thus negating the effectiveness of
integrity monitors [MITRE, 2019]. Consequently, the use of external hardware has
been adopted to mitigate the risk of malware interfering with the monitor. This cre-
ates a clear separation between the monitoring system and the OS, making it far
more difficult to exploit. There have been many implementations of monitors using
external hardware to provide a secure platform that runs independently of the main
CPU [Bauman et al., 2015].

Given that integrity monitoring is a memory-intensive task that has been shown
to work on external hardware devices, a PIM appears to be a suitable fit for this
application. As outlined in Section 2.2, external hardware-based monitors are com-
monly implemented by taking snapshots of memory at regular intervals. Some recent
approaches have used bus-snooping to capture incoming memory requests to moni-
tor [Moon et al., 2015; Lee et al., 2013]. Utilising the PIM for this application would
allow for either approach to be viable, as it can see all incoming requests, and has
high-bandwidth access to memory. The consequence of implementing some types of

24 PIM Security Applications

monitors on a PIM is that we face the caching limitations outlined in Chapter 3. This
is due to the lag and loss issues stemming from the use of write-back caching pol-
icy. This could be solved by allocating the monitored structures into a write-through
region of memory, but as previously discussed this would cause significant perfor-
mance degradation for frequently used memory regions. However, this is an issue
common to all external hardware-based integrity monitors. The development of the
Kernel Integrity Monitor (KIM) mitigates many of these limitations.

Kernel Integrity Monitoring (KIM) KIM is a specialised implementation of an in-
tegrity monitor. Instead of monitoring an application, a KIM focuses on maintaining
the integrity of the OS kernel. This works by monitoring changes to kernel code, data
structures and control flow, to ensure that the kernel is not maliciously or incorrectly
modified.

Operating systems have dedicated security mechanisms to stop changes to kernel
code and static regions. For example, the page table has a read-only bit which stops
any process from writing to the page. However, some types of malware (e.g., rootkits)
are able to gain kernel privileges and hide from the system. These types of malware
can modify any part of the system, including changing the page table read-only
bit. Most KIMs aim to protect systems from sophisticated malware attacks such as
rootkits, which can subvert and compromise any security mechanism implemented
in kernel or user space. Rootkits are types of malware which can be deployed to gain
root privileges and modify the system while remaining hidden.

For its use on a PIM, a kernel integrity monitor offers a small advantage for solv-
ing the caching issues. As many parts of the kernel are read-only static objects, the
use of a write-through cache region would have little effect on the system perfor-
mance. By allocating all immutable kernel objects in this region, the monitor can
catch any violations immediately. Extending this for mutable kernel objects makes it
more complex as the monitor may incur significant performance loss, and must verify
that any changes are correct. Section 4.4 will discuss this problem in depth, looking
at how a monitor for mutable kernel objects could work with the PIM architecture.

The following sections focus on three different KIMs which are implemented
using external hardware. These applications will be discussed and analysed, looking
at their benefits, limitations, and the efficacy of implementing a similar system on
PIM.

4.3 Case Study 1: HyperCheck – A Hardware-Assisted In-
tegrity Monitor

HyperCheck presents an external hardware device which is used to remotely assure
kernel integrity [Wang et al., 2010]. This paper uses a modified PCI Network Interface
Card (NIC) device to take a snapshot of the CPU and memory state, before sending
it to a remote machine to be analysed. The remote machine compares the given data
against the initialised state for any malicious changes. By offloading the analysis to

§4.3 Case Study 1: HyperCheck – A Hardware-Assisted Integrity Monitor 25

a dedicated machine, it saves in compute time, as well as allowing it to scale for a
network of machines. This system works at the BIOS level, allowing it to protect the
hypervisor, kernel, and applications above it. HyperCheck makes use of the CPU
System Management Mode (SMM) which creates a snapshot of the current CPU state.
This feature is available on all commodity x86 CPU architectures. When SMM is
used the processor saves its entire state to the System Management RAM (SMRAM),
which cannot be accessed from standard CPU modes.

4.3.1 Original Design

The system is comprised of three parts: the memory acquisition; CPU register check-
ing; and the analysis module. In its implementation, the analysis is done by a remote
monitoring machine, while the acquisition and register checking is done by the target
machine. Figure 4.1 shows a high level view of the HyperCheck design.

Figure 4.1: HyperCheck’s design uses a remote machine for memory analysis [Wang
et al., 2010].

The analysis module is used to check the current memory state of the kernel
against its initial, trusted state. If a difference is found then an alert is made, which
the administrator can decide is either a valid or malicious change. The register check-
ing is used to ensure that critical CPU registers have not been maliciously tampered
with. Specifically, the Interrupt Descriptor Table Register (IDTR) and CR3 registers are
checked. The IDTR is a register that points to the Interrupt Descriptor Table (IDT); a
data structure which determines the response for interrupts and exceptions. Modi-
fying the IDTR a common method for malware to exploit a system to run malicious
interrupts. HyperCheck regularly verifies the IDTR is still valid, as it should not
change after its initialisation. The CR3 register points to the page table, and is used
for address translation. Periodically checking these registers for changes prevents
some potential attacks which the monitor can otherwise fail to detect [Jang et al.,
2014].

A key limitation of this system is in its memory analysis. Many mutable ker-
nel objects may change throughout the system life, any changes that occur to these
mutable objects will be reported by the HyperCheck system, relying on the outside
administrator to determine the correctness of the modification. This allows for a
degree of human error, where the administrator may mistakenly accept a modified
object as valid.

26 PIM Security Applications

The overhead associated with HyperCheck is largely dependant on the sampling
rate. Sampling at one second intervals incurs an 11% performance overhead. By
using faster sampling rates the overhead increases substantially. For some malware a
one second interval may not be sufficient to detect the changes, as the malware may
have completely hidden with no trace in that time. As such, improving the efficiency
of the system would lead to increased sampling rates, and overall improving per-
formance and security of HyperCheck. Another source of performance and energy
overhead in the system is by sending large amounts of memory over the network
for remote analysis. For each sample, the system collects the data from the specified
memory regions, and then send it to the remote machine, spending approximately 90
million cycles to transmit the data. This transmission accounts for the majority of the
systems execution time. The following section will discuss the possibility for using
the PIM architecture to implement HyperCheck. The advantages and limitations of
implementing the various components of HyperCheck in PIM will now be discussed.

4.3.2 HyperCheck on the PIM

Using the HyperCheck system on the PIM architecture would require some funda-
mental changes to its design. However, this would improve its performance and
detection rates while reducing the system complexity. The PIM could accelerate this
application by removing the need for a remote monitoring machine and running
the analysis on the PIM. The PIM could be designed to perform all three functions:
memory acquisition; memory analysis; and CPU checking. This would remove the
need to transmit the data to a remote machine, which the system spends the vast
majority of its CPU cycles executing. By doing the analysis on the same machine
it also removes the additional latency and attack surface of transferring the data to
a remote machine. Without the use of encryption, the data could give away critical
information about the system and how it is set up, which is valuable for potential
attackers. Even with encryption, the existence of the communication mechanism to
a remote machine provides a large attack surface for malicious agents to exploit.

The HyperCheck system uses a snapshot-based approach as its method of mem-
ory acquisition. The use of a PIM for memory acquisition would significantly im-
prove performance, because the PIM has much higher bandwidth to memory. This
would allow the PIM to acquire memory faster, enabling faster sampling rates. How-
ever, by using this approach the system is still vulnerable to transient attacks, in
which the malware is only visible between snapshots, and is not detectable. While
the PIM could use the snapshot-based approach, recent research has showed im-
proved efficiency from the use of bus snooping-based monitors [Moon et al., 2012;
Lee et al., 2013]. As such, the PIM could implement its memory analysis by snooping
all incoming traffic for the monitored regions. This would also capture the changes
immediately, removing the potential for transient attacks. The PIM architecture could
also facilitate the reporting of errors to an external machine. Similar technologies
have shown the use of an embedded serial bus controller to send messages to exter-
nal machines [Liu et al., 2013]. Figure 4.2 shows a potential architecture for a PIM

§4.3 Case Study 1: HyperCheck – A Hardware-Assisted Integrity Monitor 27

implementing the snapshot-based HyperCheck system. This shows the components
for a single PIM core.

Figure 4.2: The PIM can implement the necessary components for the snapshot-based
HyperCheck integrity monitor.

To address the CPU register checking, the PIM could similarly use SMM to reg-
ularly probe the CPU to gain visibility of its critical registers. This would be a slow
process for both the original HyperCheck and the PIM as it must access the on-chip
mechanism. However, the SMM does provide valuable integrity information, and
would ensure the PIM version can catch the same integrity issues as the original
implementation. Another possibility is the PIM to use other mechanisms like the
Trusted Platform Module (TPM) to execute a similar register integrity check, with the
advantage that TPM can inherently be trusted [Trusted Computing Group, 2014].

Both the original and the PIM implementation suffer from the same caching prob-
lems. As discussed in Chapter 3, the CPU cache causes the lag and loss of informa-
tion for external hardware devices. This issue is not addressed in HyperCheck, and
is assumed that all modifications will eventually propagate to memory. To solve
this issue it is possible to create write-through regions of memory. By allocating our
kernel in this region, any modifications in the CPU will be immediately propagated
to memory. While this would improve security, this will have a large overhead for
regions which are modified frequently.

Additionally, both systems would only be capable of efficiently monitoring static
kernel objects: dynamic objects are harder to monitor. The allocation of dynamic
kernel objects is substantially more complex, and requires sophisticated mechanisms
which are difficult for external hardware devices to maintain due to the cache coher-
ence problems.

The PIM architecture provides the necessary properties to implement and im-
prove the HyperCheck system. The key benefits of using a PIM for this application is
its highly parallel computation, high bandwidth access to memory, and its fast access
to incoming memory requests. Using a PIM, the HyperCheck analysis could spread
its workload across many PIM processing modules, reducing the analysis time and
enabling faster detection of malware.

28 PIM Security Applications

4.4 Case Study 2: KI-Mon – Monitoring Mutable Kernel Ob-
jects

KI-Mon is an external hardware device developed to monitor mutable kernel ob-
jects [Lee et al., 2013]. This extends previous works, such as Viligare [Moon et al.,
2012] which presented a solution for monitoring immutable kernel objects. The KI-
Mon platform is the first practical application of a monitor for mutable kernel objects.
The methods used to implement a monitor for immutable kernel objects is simple,
as we can assume that any write to these regions is malicious without further com-
putation or verification. We also know where these regions are because the kernel is
loaded into the same address space at boot time. Therefore, a monitor for immutable
objects only needs a list of the corresponding addresses to function.

For monitoring mutable objects we must detect the writes to monitored regions
and then verify that the change is valid. This task is more complex than immutable
region monitoring. KI-Mon presents a hardware solution which can efficiently mon-
itor mutable regions by comparing the updated value against a whitelist of known
good values. Determining which values are valid is beyond the scope of this work; so
we must assume that there is a finite list of known legitimate values.

4.4.1 Original Design

KI-Mon consists of both a hardware and software platform. The hardware platform
consists of a Vault Table Management Unit (VTMU), the KI-Mon processor, Direct Mem-
ory Access (DMA) module, and an Address Translation Engine. The core mechanisms
which enables the efficiency of KI-Mon are implemented in the VTMU. The VTMU
is responsible for bus snooping and filtering of memory traffic before passing it onto
the main processor using a FIFO queue. This reduces the workload and problem size
and allows KI-Mon to only verify data which is in the monitored regions. The DMA
module is used to take snapshots of parts of the host memory. This allows the plat-
form to read regions such as the page table, which in conjunction with the Address
Translation Engine, allows it to perform address translation. Figure 4.3 shows the
design of this architecture, and the flow of information in the system.

The main KI-Mon processor is used to run the software platform. This soft-
ware layer, named KI-Veri, verifies and enforces MonitoringRules which are used to
program the invariants for the monitored regions. KI-Veri processes the events it re-
ceives from the VTMU, and detects any malicious events with respect to the defined
MonitoringRules. Creating the MonitoringRules is a manual process, and must be
set up for each individual kernel. Rules are created for mutable objects which are
known to have been manipulated by existing rootkit software. A limitation of this
approach is that the rules do not cover all possible attack vector, and is susceptible to
human error, by not covering all possible entry points for the malware. For instance,
if a new type of rootkit is developed and uses a new mechanism to gain access there
may not be a MonitoringRule to detect it. While this is unlikely, it is still a potential
point of failure.

§4.4 Case Study 2: KI-Mon – Monitoring Mutable Kernel Objects 29

Figure 4.3: KI-Mon utilises the separate VTMU component to capture writes to mem-
ory [Lee et al., 2013].

In its implementation the VTMU was placed between the L1 and L2 caches. This
allows it to intercept the modified data quickly, as the L1 cache commonly uses a
write-through policy. This mitigates the caching issues we have identified for PIM
applications. Unfortunately, this is not possible for most CPU architectures, as high
performance processors keep all layers of cache on-chip to optimise performance.
As such, KI-Mon will be able to detect malicious modifications faster than a PIM
implementation.

The next section will detail the implications of using the PIM architecture to im-
plement KI-Mon. Both the advantages and limitations will be discussed, evaluating
the efficacy of using the KI-Mon system on a PIM.

4.4.2 KI-Mon on the PIM

For many areas of this applications design, the use of a PIM could improve its per-
formance significantly. This is largely due to the PIM’s capability for highly parallel
computation, meaning it could evaluate and verify mutable objects concurrently at
a larger scale. Another advantage of having many PIM cores is the increased num-
ber of registers, which the VTMU uses to store its address data for the monitored
regions, which would allow for a greater number of monitoring rules to be enforced.

KI-Mon uses a DMA module to access host memory and take a snapshots of
regions which are stored in KI-Mon’s private memory. The PIM simplifies this system
by removing the need for DMA and private memory of the monitor. Instead, the
PIM can efficiently access memory directly. However, the primary use of the DMA
module was to allow for address translation engine. Previous work has found that
implementing address translation in a PIM is not viable due to the prohibitive cost
and complexity it requires [Ghose et al., 2018]. To solve this we can look at the

30 PIM Security Applications

previous work of Hsieh et al. [2016] which we discussed in Section 3.1. However,
as we are capturing these changes at the PIM and not in the CPU the addresses
would have been translated into the physical address space already. This essentially
removes the need for the address translation engine. While this simplifies the system
substantially, it creates other critical limitations.

Figure 4.4: The PIM enables KI-Mon to detect malicious changes, but is limited to
observing data evicted from cache.

One such limitation with implementing KI-Mon on a PIM is the problems asso-
ciated with CPU caching. As demonstrated in Chapter 3 the CPU cache can cause
a large amount of information loss and lag. While the PIM will eventually see the
changes made to the mutable object, it is impossible to determine if there existed
previous lost values which were invalid. Without a sufficient method of quickly
communicating the modified data to the PIM this limitation would ruin the efficacy
of this application for the PIM. One potential solution is to place all kernel objects
in a write-through memory region. This is a good solution for immutable regions
as there should be no modifications to those regions. However, mutable regions
may be accessed and modified many times during the kernels runtime, whereby a
write-through cache would cause large performance overheads.

Another approach could see the use of the PIM only as the KI-Mon processor;
keeping the VTMU as a separate hardware mechanism. If it is feasible to connect
the VTMU between the L1 and L2 cache it would avoid the caching issues identified
for the use of an entirely PIM implementation. In doing so, it would require the
modification of the CPU architecture to implement the VTMU modules. This is
expensive and not feasible to implement for commodity hardware. It also limits the
usage of this system to a small subset of architectures which support these features,
such as ARM Cortex [ARM, 2019].

Implementing KI-Mon on the PIM would require some significant modifications
to the original design. The PIM can offer improved performance and parallelism
from the many PIM cores, and improved control of memory, but the costs associated
from the PIM’s loss and temporal lag of information detract from its efficacy and

§4.5 Case Study 3: Kernel Integrity with Programmable DRAM 31

value. Figure 4.4 illustrates a basic PIM architecture required to implement the KI-
Mon system. This solution makes use of a serial bus connection to allow updates to
the system. If mechanisms are developed to solve the caching issues then the KI-Mon
system could prove to be a valuable application for the PIM architecture.

4.5 Case Study 3: Kernel Integrity with Programmable DRAM

The work by Liu et al. [2013] presents a kernel integrity monitor built into the con-
trol module for Fully Buffered (FB)-DIMM memory. This work is similar to PIM
as it implements processing off-chip near physical memory. FB-DIMM DRAM was
developed for server-grade machine to improve scalability of memory by chaining
DRAM together [Ganesh et al., 2007]. This reduces the number of data lines required
on the memory bus, as conventionally each DRAM module needs its own set of data
lines. To control and direct the memory requests to the correct device FB-DIMM in-
troduced the Advanced Memory Buffer (AMB). The AMB is a small chip which acts
as a router for memory requests. This paper introduces a kernel integrity monitor
called MGuard.

4.5.1 Original Design

MGuard is implemented by extending the AMB logic on FB-DIMM DRAM to incor-
porate filtering and verification mechanisms. This additional hardware intercepts the
incoming traffic, filters it for the relevant packets then analyses the data for modifica-
tions to known immutable memory regions. If it detects that an immutable area has
been modified then it reports to a remote administrative machine. The computation
for MGuard is run on a lightweight RISC processor, which is part of the extended-
AMB. This is a general purpose processor and allows MGuard to be updated and
customised depending on the specific kernel, hypervisor or new knowledge of poten-
tial attack areas. Another benefit of using a RISC core is its small die space and low
energy consumption, incurring only a 3.5% energy overhead. This can be achieved
as the RISC core stays in idle mode most of the time, waking periodically to run the
integrity checks on thee queue of the captured system memory modifications. To
utilise the RISC processor a serial bus controller was also implemented, in order to
update, and program the operation of MGuard. This allows an extra level of flex-
ibility, and enables the program to be developed and fine-tuned over time without
having to fabricate new hardware.

MGuard uses an approach similar to the bus-snooping monitors which we have
previously discussed, by copying all incoming write requests for the system to anal-
yse. This allows MGuard to continuously monitor the accesses to physical DRAM
from the entire execution of the system. The benefit of this approach is that it does
not introduce any performance overheads for FB-DIMM as all computation is done
off the critical path. Figure 4.5 shows a detailed design architecture for MGuard.

The system does have a few limitations, that may cause it to miss some types
of kernel integrity violations. First, MGuard can only verify the immutable kernel

32 PIM Security Applications

Figure 4.5: The MGuard paper illustrates the additional hardware required for mon-
itoring [Liu et al., 2013].

regions, meaning that any mutable kernel object is not checked. If malware were to
modify these mutable objects, the monitor will not be able to detect it. Second, the
CPU caching provides another key limitation to the system. MGuard does not pro-
vide any mechanisms to check the CPU cache, and is susceptible to the loss and lag
of cache data, as discussed in Chapter 3. The authors note that MGuard could force
the CPU to flush its caches periodically, however, this would cause some significant
reduce the CPU performance.

While this research shows the effectiveness of MGuard, the use of FB-DIMM
limits its value. FB-DIMM is not widely used, and is no longer being developed, as
the use of DDRX DRAM technologies has become widely adopted. The future work
in this paper suggest its use with DDR4 DRAM technology, however, no research
has investigated this problem. However, we can repurpose the concepts developed
in this paper to evaluate its efficacy in a PIM architecture. The following will look
into the advantages and limitations implementing the MGuard system on the PIM
architecture.

4.5.2 MGuard on the PIM

The design of MGuard is similar to the PIM architecture, due to its near-memory
processing capabilities. Designing a PIM for MGuard is simpler than the previous
case studies because of this similarity. The PIM can provide all the necessary prop-
erties and components to fully implement the MGuard system in a method similar
to the FB-DIMM work. The primary advantage of using a PIM for MGuard is the
improvement in value and practical usage of the system, as FB-DIMM is no longer
available for modern systems, replaced today by DDR4 DRAM.

The PIM would have the same limitations as FB-DIMM in terms of CPU caching.
Both of these suffer from the loss of information and temporal lag due to the CPU
cache. As such, the monitor would only be able to detect changes that affect physical

§4.6 Evaluation 33

memory.
For computation, the PIM could also implement lightweight RISC processors.

Current die space on 3D-stacked memory allows for the addition of a lightweight
RISC processor for each memory vault. This would allow for highly parallel com-
putation for the monitoring, reducing the analysis time. The ability to program and
update the PIM cores would also be necessary for MGuard to be feasible on the PIM.
Implementing a serial bus controller onto a PIM has not been explored in the existing
literature. Assuming that the serial bus controller can fit on the die, there will need
to be further design choices in how the cores will communicate. For instance, there
could be a master-slave hierarchy, where the master PIM core communicates with the
many slaves to distribute the firmware and workloads, or each core could read from
a shared boot image and run completely independently. This will be discussed fur-
ther in Chapter 5. Figure 4.6 demonstrates an example architecture of how MGuard
could be implemented on the PIM. The use of a shared boot image among all PIM
cores allows the process to be updated, while still ensuring the work is spread among
many processors.

Figure 4.6: The PIM implementation of MGuard incorporates the same key compo-
nents into the newer technology.

MGuard appears to be an ideal application for the PIM. Its use with FB-DIMM
for near-memory computation allows for minimal design changes in a potential im-
plementation on a PIM. The PIM can provide the system with some performance
and scaling improvements due to its parallel design. These case studies will now be
evaluated, discussing the benefits and limitations with each applications use of the
PIM.

4.6 Evaluation

The previous three case studies show widely-different implementations for a Kernel
Integrity Monitor using external hardware. For each of these applications we have
discussed and analysed their benefits and limitations, looking at how each appli-

34 PIM Security Applications

cation could utilise the PIM architecture to improve performance, both in terms of
security and computation.

Each of the case studies suffer from similar limitations of CPU caching and slow
access to on-chip mechanisms. These align with the findings in Chapter 3. Case study
1 is the only monitor to check the CPU registers to ensure that no malicious changes
are made to critical CPU registers, and to detect any attempts to subvert the monitor.
Case study 2 is a monitor to verify mutable kernel objects. In its implementation it
resolves the caching issue by placing the VTMU between the L1 and L2 cache. This is
not feasible for the CPU architectures which typically use integrity monitoring. Case
study 3 is the simplest to move to a PIM application. It shares many similarities in
its design, as MGuard is implemented as a near-memory application.

For case studies 1 and 2, the use of a PIM can improve the effectiveness and per-
formance of the monitoring. The PIM’s high bandwidth access to memory offers a
huge performance boost, as these systems are frequently checking against physical
memory. For case study 3, the PIM can improve the processing through its parallel
architecture. It can also provide value to MGuard by being implemented on widely
used DRAM memory technology. The added hardware mechanisms should not im-
pede the memory speed. As seen in case study 3, MGuard was able to intercept and
analyse incoming traffic without interfering with the core memory request paths.
The PIM could implement these mechanisms in a similar approach, to ensure that
the performance of memory is not affected.

In case studies 2 and 3 the example PIM architecture shares many of the same
components with each other. The main differences are in the software layer. Where
the KI-Mon is focused on the integrity of mutable kernel objects, MGuard focuses
primarily on the immutable objects. As these architectures are similar to each other,
it could be possible to merge the functionality of MGuard and KI-Mon to enable the
monitoring of both mutable and immutable kernel objects. This will be explored
further in Chapter 5.

A potential limitation with the PIM is its interactions with other devices. In
the case studies we have seen applications use a remote machine to report to. This
requires additional hardware components to allow for this communication. No exist-
ing work has investigated the use of a PIM to communicate with a remote machine.
However, using the MGuard system as a template, it is feasible to implement a serial
bus controller, with a serial interface to the remote machine. This is dependant on the
die space required for these components. This is an area which should be explored
by future work, to determine what components are feasible to implement in the PIM,
and how to securely report violations without creating additional security flaws in
the system.

4.7 Summary

This chapter has identified multiple security areas where PIM can provide value and
improve upon existing solutions and technologies. In addition, I have further anal-

§4.7 Summary 35

ysed three case studies for implementing a KIM in hardware. I have shown that with
modifications, these applications have the necessary characteristics be implemented
in PIM. Chapter 5 will extend this idea by designing and evaluating a PIM device to
monitor the integrity of an OS kernel.

36 PIM Security Applications

Chapter 5

Kernel Integrity Monitor on the
PIM

The previous chapter has demonstrated various security-related applications in which
a PIM architecture could accelerate existing solutions. In particular, we have focused
on existing technologies for Kernel Integrity Monitors (KIM), investigating the ways in
which PIM could be utilised to improve existing monitoring systems. This chapter
extends these ideas by proposing a design for a PIM architecture, called PIMGuard,
that implements a KIM capable of monitoring all static kernel objects. The proposed
design will be analysed and evaluated for its viability against the limitations dis-
cussed in Chapter 3, and compared to existing monitoring solutions.

5.1 Background and Overview

The use and implementation of KIMs has been extensively covered in this disserta-
tion: particularly in Chapters 2 and 4. In short, a KIM is used to ensure the integrity
of critical OS kernel regions in memory. These memory regions encompass the kernel
code and data structures, and can be monitored due to the observation that almost
all kernel code is static after initialisation. Most monitors focus on immutable mem-
ory regions [Moon et al., 2012; Wang et al., 2010; Petroni Jr et al., 2004]. These are
objects which should not change throughout the kernel’s execution. More recently,
there has been research to investigate the use of monitors for mutable kernel objects,
which require additional verification [Lee et al., 2013]. The KIM’s aim is to improve
security by detecting malware, such as rootkits, which make malicious changes to
these important kernel structures. PIMGuard aims to replace traditional hypervisor
monitoring solutions, such as Window’s PatchGuard [Microsoft, 2006] and the Linux
Kernel Runtime Guard (LKRG) [Openwall, 2019]. This can be done because the PIM
is isolated from the CPU, acting as an external observer, meaning that it cannot be
modified or subverted by the CPU.

37

38 Kernel Integrity Monitor on the PIM

5.1.1 Threat Model

The proposed PIM architecture, PIMGuard, is effective against attackers who have
gained unauthorised, privileged access to the system through the use of a rootkit or
similar exploits. PIMGuard aims to detect malicious modifications to the immutable
kernel regions, as well as detecting potential malicious changes to mutable object.

In Linux, immutable objects include the kernel code and system call table. Mu-
table objects are regions of the kernel which change throughout its execution which
can be exploited by rootkits. For example on Linux, the Virtual File System (VFS),
and Loadable Kernel Modules (LKM) are mechanisms commonly exploited by rootk-
its [Bunten, 2004]. By monitoring the changes to these regions it is possible to detect
malicious changes outside of normal operation.

The monitor should be capable of detecting all malicious modifications that reach
physical memory. Attacks which utilise the CPU cache to hide modifications from
the PIM is an important aspect to address, but is out of scope and left for future
research. This system does not aim to detect attacks which exploit critical CPU
registers, such as Interrupt Descriptor Table (IDT)-hook rootkits [Adamyse, 2002]. So-
phisticated IDT-hook rootkits have been shown to subvert detection from security
monitors by creating a malicious copy of the IDT and changing the IDT register to
the malicious copy address [Jang et al., 2014]. These attacks are out of scope for
PIMGuard and are left for future research.

In this work we assume that an attacker does not have physical access to the
machine. Attacks from insiders with full access to the machine hardware is outside
to the scope of this work.

While PIMGuard may not catch all forms of malicious activity on a machine, it
is another layer of defence in protecting the system. No single tool or technique can
solve all security issues. The PIM monitor adds another layer of assurance and de-
fence against a malicious agent, in line with the defence-in-depth model of computer
security [Ahmad et al., 2014].

The monitor is composed of both the hardware and software platforms. The
hardware is the PIM logic, which provides the capabilities to run computation in
memory. In addition, the software layer is the program running on the PIM, enforcing
the monitoring rules.

5.2 Hardware Platform

In Chapter 4 we observed that the PIM architecture for case study 2 and 3 were par-
ticularly similar. This similarity can be exploited to develop a system which combines
the functionality of both monitors; allowing for both immutable and mutable objects
to be monitored in the same system. At the time of writing there is no published
monitoring applications which combine these methods.

To facilitate the PIM architecture we are using Hybrid Memory Cube (HMC)
memory. As discussed in Chapter 2, HMC uses the 3D-stacked DRAM technology,
controlled through the use of a logic layer. Figure 5.1 shows how the HMC architec-

§5.2 Hardware Platform 39

Figure 5.1: The logic layer on HMC memory can be modified to include the addi-
tional hardware required for the PIM.

ture could be modified to allow for the PIM architecture. In this architecture we have
a single PIM core for each vault controller. For the current HMC specification [Hybrid
Memory Cube Consortium, 2014], the logic layer consists of sixteen vaults. The exist-
ing logic layer is very sparsely populated, and could readily accommodate additional
hardware components. With current microprocessor technology it is possible to add
a lightweight general purpose RISC processing core for each memory vault [Ghose,
2019]. The RISC core is the primary hardware mechanism for the PIM computation.
However, additional components are required to enable the processor to function
efficiently.

The firmware for each PIM core is stored in a central SDRAM chip. This stores
the PIM application code and region data. Having the firmware in a central location
allows us to update the application for all PIM core at once. This is far more efficient
than having individual copies for each core, saving die space and energy usage. The
firmware can be written to via the serial bus, meaning that the chip would need to
be physically accessed to be modified. This serial bus is completely isolated from the
CPU and memory bus, ensuring that malware is incapable of modifying the PIM’s
firmware. The serial bus controller is used by the PIM core in the eventuality of a
security violation. When this occurs the PIM core can send a report of the violation
to a remote machine over the serial connection.

Figure 5.2 shows the hardware architecture within the PIM Logic. As mentioned,
the main processing is done by a lightweight RISC core. The bus-snooping approach
is enabled by the splitter and static region filter mechanisms. The splitter first copies
all incoming memory traffic. The static region filter then only forwards on the write
requests which are in the static kernel regions. This works because the kernel loca-
tion can be known ahead of execution time, and allows only kernel memory writes
to be processed further. Further work could potentially merge these into a single

40 Kernel Integrity Monitor on the PIM

Figure 5.2: Design of PIM Logic for PIMGuard, an in-memory Kernel Integrity Mon-
itor

component, to copy and filter in the same step.
These requests then pass through the Mutable Region Filter. This filter is used to

determine whether the given request is for a mutable or immutable memory region.
Depending on the number of mutable monitoring regions, the filter can keep the
address data in registers, allowing for fast checks on the memory requests. This
is similar to the design of the KI-Mon filter [Lee et al., 2013]. However, in the KI-
Mon filter, the number of regions monitored is restricted by the number of registers
available. In PIMGuard we can allow for an arbitrary number of mutable regions.
For a large number of mutable regions, the filter can use the data stored in the region
lookup to determine whether the memory is a mutable region. Because the monitor
is monitoring all static kernel regions, if the memory is not found in the mutable
region table it must be an immutable region. After the mutable region filter has
analysed a packet, it adds a flag to indicate to the processor whether it is a mutable
or immutable region. All packets which make it through the filters are placed in a
First-In First-Out (FIFO) queue. This acts as a buffer for the RISC core, and allows
for bursts of traffic to be captured. Further testing would be required to determine
the size of this queue. Once packets are in the FIFO queue, the RISC core can start
its analysis for security violations. The software running on the processor is used
to verify the integrity of both mutable and immutable kernel objects against the
provided region data stored in the Region Lookup.

The high-bandwidth memory access engine is used to retrieve data from physical
memory, for use in the immutable region computation. During its initialisation, the
monitor must use the memory access engine to read and store a copy of the moni-
tored regions, to use as the baseline to check for modifications. This data is stored in
the Region Lookup SDRAM. This is required because of the reduced granularity of

§5.3 Software Platform 41

information which is observed by the PIM, (as discussed in Section 3.2.3). The con-
sequence of this issue is that, using the incoming data, we are unable to determine
whether the immutable region has been modified, because the only information re-
ceived is the cache line and dirty bit. To determine whether the immutable region
has been changed we must check against its previous value. The previous value is
stored in the Region Lookup instead of reading it from physical DRAM, since the
write request may have already changed its value because we are analysing a copy
of the request.

The Region Lookup is used as persistent storage for the monitored region infor-
mation. This contains four data structures: the immutable region table; copies of
immutable region data; the mutable region table; and the mutable region whitelist
table. The immutable and mutable region tables both contain the start and end ad-
dresses for each monitored region. The mutable region whitelist is slightly more
complex, and must store all of the correct values for each mutable monitored region.
The size of these tables, specifically the whitelist, is currently unknown, pending
further testing.

5.3 Software Platform

While the hardware architecture enables the PIM to capture memory write requests,
the software layer must implement the verification mechanisms used by the main
processor. The software platform must allow for the creation of monitoring rules for
both mutable and immutable regions. The boot image used by the RISC core contains
both the firmware and monitoring region’s data. This allows the monitored regions
and rules to be easily updated. Both the mutable and immutable region tables are
implemented as a look-up table, with the start and end addresses for each region.
The monitoring of mutable regions also requires a whitelist of correct values for each
region. To add monitoring rules for the PIM core requires modifying the firmware
data. This data stores the information about the mutable and immutable memory
regions as lookup tables. By adding an entry to the corresponding lookup table, it
will automatically become a new monitoring rule. Tools can be developed to support
the creation of these data structures.

To find the correct values for the mutable regions the system can run in a capture
mode. In this mode, the system captures all of the values for the specified mutable
regions, recording them in the whitelist, which can be sent back to a remote machine
for further analysis. This significantly reduces the overhead in finding correct values,
however, we must ensure the system is running correctly and has not been com-
promised during this mode. Because this mode may not capture all possible value,
additional values can be added in manually.

When first booted, the PIM core must copy the boot image and region data from
the SDRAM and into the region lookup store. Additionally, for each immutable
region, the processor must use the memory access engine to retrieve a copy of the
original values. During the regular execution of the PIM core, the processor will take

42 Kernel Integrity Monitor on the PIM

packets from the FIFO queue, check the flag to detect whether the region is mutable
or immutable, and analyses accordingly. For the immutable case, the processor can
use the immutable look-up table to ensure that this region should not be modified.
Once found, it can be compared against the original value, also stored in the region
lookup. If the region is found to be different, the processor will report the violation
via the serial bus.

For the mutable case, the processor must verify that the modification is valid. This
requires the processor to check the corresponding whitelist entry from the address
lookup. If the modified value is not found on the whitelist, then the processor can
send an alert via the serial bus.

The reporting mechanism must differentiate between strict security violations and
potential breaches. This is because for mutable objects, the kernel may make a valid
modification that is not in the whitelist of correct values. In this case, it is unknown
whether a breach has occurred, but must alert the admin of the potential security
breach. On the other hand, any modification to the immutable regions can be treated
as a security breach. When reporting, the software can include the physical memory
address of the object to help pinpoint the entry point of the breach.

5.4 Design analysis

Currently, there is no standardised design for implementing a PIM architecture.
Many researchers have proposed architectures purpose-built for a single task. Previ-
ously shown in Section 4.5 was the capability for lightweight processors to be placed
in memory. This architecture allowed for the processors to be updated through the
use of a serial link. Similarly, this technology could be used in PIM architectures,
as shown in PIMGuard. As explained in Section 5.2, the logic layer on current 3D-
stacked DRAM contains enough free die space to implement a lightweight RISC core
for each vault. The use of a general purpose processor improves the value of the
architecture, as it allows it to be updated or re-purposed for different applications.
The development and adoption of a general purpose PIM core would dramatically
improve the efficacy of the PIM, and would lead to a larger eco-system of PIM appli-
cations. To enable the architecture to be programmable it must contain a boot image
which can be modified. The serial bus controller allows for the boot image to be
modified by an external device or machine.

The following sections will analyse the design of PIMGuard, discussing the de-
sign choices, and limitations imposed by the architecture.

5.4.1 Reporting Security Breaches

When the application detects a violation of the kernel integrity it must respond.
There are a few ways in which the monitor can take action. It can report it to a
remote administrative machine, or it can report it to the CPU. An extreme, but ef-
fective response to such violation of security would be to force the system to crash.
This could be done by refusing to answer any new memory requests from the CPU,

§5.4 Design analysis 43

stalling all applications, and eventually causing the system to crash. However, this is
definitely not an ideal solution as the system may be running critical infrastructure,
and it would also leave no trace log for what occurred to the system.

Using a remote machine to report the security violations is the simplest solution,
and allows for a network of machines to be running and monitored from a remote
machine. However, as mentioned in Section 4.3 the use of networking with a remote
machine opens up a far larger attack surface. This choice can be justified, as very
few modern computing systems are completely isolated, and would usually already
have a network interface card communicating to other machines.

The main issue is that when a violation is detected, the CPU cannot be trusted, as
it may already be compromised. Reporting the violation to the CPU is problematic,
because malware with knowledge of this system could choose to ignore or remove
the report from the PIM.

5.4.2 Limitations

The PIMGuard design is not free from limitations. As described in Chapter 3, the
issues of caching and on-chip mechanisms cannot be avoided. For PIMGuard, the
CPU cache provides the most problems. The loss of information provides a chal-
lenge, because potentially malicious modifications may be missed. Additionally, the
temporal lag of information can reduce the detection time, between the malware exe-
cution and its detection. To mitigate both of these challenges it is possible to allocate
these areas to a region with a write-through cache policy, allowing all modifications
to be passed to the PIM immediately. However, the performance costs of this must
be evaluated.

Other limitations include: the efficient distribution of workload for parallel com-
putation; and protection from CPU register attacks. The parallelism in the proposed
PIM architecture could have limitations depending on the workload. In the proposed
design, the workload is automatically distributed among the PIM cores, depending
on the physical memory address of the memory request. This could cause asym-
metry in the distribution of workloads, as the PIM cores only receive the memory
requests which are going to its corresponding vault controller, as demonstrated in
Figure 5.1. As such, it is possible that some vault do not contain any monitored
regions, making these PIM cores redundant. The worst case scenario is having all
monitored regions located in the same vault. This would reduce the parallel com-
puting to just the single PIM core. Future research should analyse this problem to
determine the scale of this issue for PIMGuard, and further develop PIM architec-
tures to fairly and efficiently spread the workload.

A recent security flaw has been discovered for the use of external integrity moni-
tors. Researchers outlined an Address Translation Redirection Attack (ATRA), which
takes advantage of an underlying assumption made by the monitor, about the in-
tegrity of the page table [Jang et al., 2014]. This vulnerability used the CPU to create
its own dummy page table and give the monitor the dummy table location. This
allowed the CPU to modify the real page table, and the kernel without detection. In

44 Kernel Integrity Monitor on the PIM

addition, side-channel attacks which exploit characteristics of internal CPU mecha-
nisms, such as Meltdown [Lipp et al., 2018] and Spectre [Kocher et al., 2019] cannot
be caught by the PIMGuard system. Such attacks are deemed outside the scope of
this work.

A fundamental limitation of this type of monitor is that it cannot monitor dynam-
ically allocated kernel regions. To monitor these regions the CPU must communicate
with the PIM to tell it where the dynamic kernel regions are in physical memory.
However, if a rootkit has compromised the system it could stop the CPU from send-
ing these messages, or mislead the monitor by giving it false information. Executing
such an attack is non-trivial and has not been shown to subvert existing hardware-
based monitors.

5.5 Future Work

There is a wide range of work which can follow on from this architecture. First, the
efficacy of this design must be tested. This can be done by using a system simulator.
Implementing PIMGuard in a full system simulator allows us to measure the effec-
tiveness of PIMGuard as a monitor, and the overheads associated with its execution,
in terms of computation and energy. As the PIM’s usage in 3D-stacked memory
is still in its infancy, the limitations in terms of compute performance and energy
consumption are still unknown. This is an important area to consider when looking
to use the PIM, as some tasks may be too computationally complex for the PIM to
efficiently achieve. For the PIMGuard application to be a viable security tool it most
not impose significant performance overheards to the system.

An improved design for PIMGuard is also an area of future work. There may
be areas which can be streamlined in the computation. For instance, merging the
splitter and static region filter into a single component may improve efficiency and
throughput of the monitor.

PIMGuard could also incorporate the CPU register checking mechanism found in
HyperCheck [Wang et al., 2010]. This would help protect against attacks such as the
Address Translation Redirection Attack (ATRA) [Jang et al., 2014]. ATRA exploits
an underlying assumption that the address translation mechanisms have not been
violated. Such exploits could subvert the monitor by copying the kernel memory
regions to a new region, and exploiting the page table pointer to the address of a
new maliciously crafted page table.

5.6 Summary

This chapter has proposed and evaluated PIMGuard, a PIM architecture which im-
plements a Kernel Integrity Monitor. The design builds on existing monitoring solu-
tions which use external hardware to operate. I have shown how the PIM architec-
ture can be used to monitor both mutable and immutable kernel regions in the same
application. While the design is not free from limitations, it covers a wider range

§5.6 Summary 45

of kernel regions than existing technologies, and demonstrates a practical security
application for the PIM.

46 Kernel Integrity Monitor on the PIM

Chapter 6

Conclusion

Security is a critical part of modern computing systems. The emergence of 3D-
stacked DRAM has revived the development of Processing-In-Memory (PIM) archi-
tectures. In its current state, the PIM architecture provides full flexibility for testing
and implementing new architectures and designs; because PIM research is in its in-
fancy and lacks standardisation. In this dissertation I have identified and evaluated
the efficacy of using PIM in security-related applications.

Computer security covers a wide range of applications. For a security-related
application to perform effectively on the PIM, the application must not be restricted
by the inherent limitations of the architecture. Many of these limitations come from
the CPU’s on-chip mechanisms, such as caching and address translation. For many
applications the CPU cache can ruin the PIM’s feasibility. This is evident from the
significant amount of information loss (median loss of 15%), and temporal lag ob-
served by the PIM.

With respect to these limitations, I argue that signature-based antivirus scanning
and kernel integrity monitoring are ideal security applications to utilise the full po-
tential of a PIM. To test this claim, three case studies of external hardware-based
kernel integrity monitors were evaluated. For each study, the PIM provided key ad-
vantages over the existing method; with no additional limitations compared to the
existing approach.

To demonstrate the efficacy of developing security-related applications on the
PIM, PIMGuard is presented. PIMGuard uses the PIM architecture to implement
integrity monitoring for both mutable and immutable regions of the OS kernel. This
design fully utilises the high-bandwidth and parallel processing benefits of the PIM.
PIMGuard extends the current literature by being the first external hardware device
to monitor both mutable and immutable kernel regions. With further testing, this
architecture could prove to be a significant improvement over traditional hypervisor-
based security monitors, and could provide better performance and security assur-
ance than existing hardware-based implementations. Such designs demonstrate that
the PIM offers the necessary properties and processing profile to implement various
new and existing security applications.

47

48 Conclusion

6.1 Future Work

The open-ended nature of identifying and analysing the efficacy of security applica-
tions for the PIM means that there is a substantial amount of future work that can
follow on from the work presented here. Most importantly, the proposed design,
PIMGuard must be experimentally tested. This can be done through the use of sys-
tem simulators. Using a simulator, we can analyse and quantify the performance
difference between monitors in terms of computational and energy overheads, as
well as test the effectiveness of the proposed design against a range of rootkits.

The use of multi-VM systems has exploded over the last decade with the adoption
of cloud computing infrastructure. Cloud computing systems run many VMs on a
single system. The ability to monitor the integrity of these VMs would provide
huge value for both cloud providers and consumers. Implementing this with current
PIM technology has many technical challenges. Specifically, it would require closer
control and communication between the hypervisor and the PIM to determine which
regions to monitor. This is outside the scope of PIMGuard, but is an interesting
monitoring challenge for future research.

Taking a broader view of the PIM architecture, the applications which fit the
PIM’s current properties are very particular. For the PIM architecture to be widely
adopted, the key limitations need to addressed. Identifying and developing solutions
for the address translation and cache coherency problems would greatly improve the
PIM’s versatility and value for consumers. Although previous work has looked into
these areas, the solutions are not scalable at this stage due to the need for major
modifications to CPUs. Finding efficient solutions to these key limitations would
open the door to many more security applications being feasible on the PIM; further
improving the efficacy of security-related applications on the PIM.

Bibliography

Abadi, M.; Budiu, M.; Erlingsson, U.; and Ligatti, J., 2005. Control-flow integrity.
In Proceedings of the 12th ACM Conference on Computer and Communications Security,
CCS ’05 (Alexandria, VA, USA, 2005), 340–353. ACM, New York, NY, USA. doi:
10.1145/1102120.1102165. http://doi.acm.org/10.1145/1102120.1102165. (cited on
page 23)

Adamyse, K., 2002. Handling interrupt descriptor table for fun and profit. phrack 59.
(cited on page 38)

Ahmad, A.; Maynard, S. B.; and Park, S., 2014. Information security strategies:
Towards an organizational multi-strategy perspective. Journal of Intelligent Manu-
facturing, 25, 2 (2014), 357–370. (cited on page 38)

Ahn, J.; Hong, S.; Yoo, S.; Mutlu, O.; and Choi, K., 2016. A scalable processing-
in-memory accelerator for parallel graph processing. ACM SIGARCH Computer
Architecture News, 43, 3 (2016), 105–117. (cited on pages 2 and 5)

Ahn, J.; Yoo, S.; Mutlu, O.; and Choi, K., 2015. Pim-enabled instructions: a low-
overhead, locality-aware processing-in-memory architecture. In 2015 ACM/IEEE
42nd Annual International Symposium on Computer Architecture (ISCA), 336–348.
IEEE. (cited on pages 5 and 17)

ARM, 2019. Arm v7-m architecture. http://infocenter.arm.com/help/index.jsp?topic=
/com.arm.doc.subset.architecture.reference/index.html. (cited on page 30)

Bauman, E.; Ayoade, G.; and Lin, Z., 2015. A survey on hypervisor-based moni-
toring: approaches, applications, and evolutions. ACM Computing Surveys (CSUR),
48, 1 (2015), 10. (cited on page 23)

Boroumand, A.; Ghose, S.; Patel, M.; Hassan, H.; Lucia, B.; Hsieh, K.; Malladi,
K. T.; Zheng, H.; and Mutlu, O., 2017. Lazypim: An efficient cache coherence
mechanism for processing-in-memory. IEEE Computer Architecture Letters, 16, 1
(2017), 46–50. (cited on pages 5 and 11)

Bunten, A., 2004. Unix and linux based rootkits techniques and countermeasures. In
16th Annual First Conference on Computer Security Incident Handling, Budapest. (cited
on page 38)

Carvalho, C., 2002. The gap between processor and memory speeds. Proc. of IEEE
International Conference on Control and Automation, (2002). (cited on page 3)

49

http://dx.doi.org/10.1145/1102120.1102165
http://dx.doi.org/10.1145/1102120.1102165
http://doi.acm.org/10.1145/1102120.1102165
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.subset.architecture.reference/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.subset.architecture.reference/index.html

50 BIBLIOGRAPHY

Chang, K. K., 2017. Understanding and improving the latency of dram-based mem-
ory systems. arXiv preprint arXiv:1712.08304, (2017). (cited on page 4)

Chi, P.; Li, S.; Xu, C.; Zhang, T.; Zhao, J.; Liu, Y.; Wang, Y.; and Xie, Y., 2016.
Prime: A novel processing-in-memory architecture for neural network computa-
tion in reram-based main memory. In ACM SIGARCH Computer Architecture News,
vol. 44, 27–39. IEEE Press. (cited on pages 2 and 5)

Costan, V. and Devadas, S., 2016. Intel sgx explained. IACR Cryptology ePrint
Archive, 2016, 086 (2016), 1–118. (cited on page 6)

Davi, L.; Dmitrienko, A.; Sadeghi, A.-R.; and Winandy, M., 2010. Privilege escala-
tion attacks on android. In international conference on Information security, 346–360.
Springer. (cited on page 2)

Dolan-Gavitt, B.; Leek, T.; Zhivich, M.; Giffin, J.; and Lee, W., 2011. Virtuoso:
Narrowing the semantic gap in virtual machine introspection. In 2011 IEEE Sym-
posium on Security and Privacy, 297–312. doi:10.1109/SP.2011.11. (cited on page
23)

Dorai, C. and Venkatesh, S., 2003. Bridging the semantic gap with computational
media aesthetics. IEEE multimedia, 10, 2 (2003), 15–17. (cited on page 10)

Forrest, S.; Hofmeyr, S. A.; Somayaji, A.; and Longstaff, T. A., 1996. A sense of
self for unix processes. In Proceedings 1996 IEEE Symposium on Security and Privacy,
120–128. IEEE. (cited on page 23)

Ganesh, B.; Jaleel, A.; Wang, D.; and Jacob, B., 2007. Fully-buffered dimm memory
architectures: Understanding mechanisms, overheads and scaling. In 2007 IEEE
13th International Symposium on High Performance Computer Architecture, 109–120.
IEEE. (cited on page 31)

Ghose, S., 2019. personal communication. (cited on page 39)

Ghose, S.; Hsieh, K.; Boroumand, A.; Ausavarungnirun, R.; and Mutlu, O., 2018.
Enabling the adoption of processing-in-memory: Challenges, mechanisms, future
research directions. arXiv preprint arXiv:1802.00320, (2018). (cited on pages xiii, 4,
and 29)

Gueron, S., 2010. Intel R© advanced encryption standard (aes) new instructions set.
Intel Corporation, (2010). (cited on page 9)

Hofmann, O. S.; Dunn, A. M.; Kim, S.; Roy, I.; and Witchel, E., 2011. Ensuring op-
erating system kernel integrity with osck. In ACM SIGARCH Computer Architecture
News, vol. 39, 279–290. ACM. (cited on page 23)

Hsieh, K.; Khan, S.; Vijaykumar, N.; Chang, K. K.; Boroumand, A.; Ghose, S.; and

Mutlu, O., 2016. Accelerating pointer chasing in 3d-stacked memory: Challenges,
mechanisms, evaluation. In 2016 IEEE 34th International Conference on Computer
Design (ICCD), 25–32. IEEE. (cited on pages 5, 10, and 30)

http://dx.doi.org/10.1109/SP.2011.11

BIBLIOGRAPHY 51

Hybrid Memory Cube Consortium, 2014. Hybrid Memory Cube Speicifcation 2.1.
(cited on pages 3 and 39)

Jang, D.; Lee, H.; Kim, M.; Kim, D.; Kim, D.; and Kang, B. B., 2014. Atra: Ad-
dress translation redirection attack against hardware-based external monitors. In
Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications
Security, 167–178. ACM. (cited on pages 25, 38, 43, and 44)

Jiang, X. and Wang, X., 2007. “out-of-the-box” monitoring of vm-based high-
interaction honeypots. In Recent Advances in Intrusion Detection, 198–218. Springer
Berlin Heidelberg, Berlin, Heidelberg. (cited on page 23)

Kim, G. H. and Spafford, E. H., 1994. The design and implementation of tripwire: A
file system integrity checker. In Proceedings of the 2nd ACM Conference on Computer
and Communications Security, 18–29. ACM. (cited on page 23)

Kocher, P.; Horn, J.; Fogh, A.; ; Genkin, D.; Gruss, D.; Haas, W.; Hamburg, M.;
Lipp, M.; Mangard, S.; Prescher, T.; Schwarz, M.; and Yarom, Y., 2019. Spectre
attacks: Exploiting speculative execution. In 40th IEEE Symposium on Security and
Privacy (S&P’19). (cited on page 44)

Lee, H.; Moon, H.; Jang, D.; Kim, K.; Lee, J.; Paek, Y.; and Kang, B. B., 2013. Ki-
mon: A hardware-assisted event-triggered monitoring platform for mutable kernel
object. In Presented as part of the 22nd {USENIX} Security Symposium ({USENIX}
Security 13), 511–526. (cited on pages xiii, 7, 23, 26, 28, 29, 37, and 40)

Lipp, M.; Schwarz, M.; Gruss, D.; Prescher, T.; Haas, W.; Fogh, A.; Horn, J.; Man-
gard, S.; Kocher, P.; Genkin, D.; Yarom, Y.; and Hamburg, M., 2018. Meltdown:
Reading kernel memory from user space. In 27th USENIX Security Symposium
(USENIX Security 18). (cited on page 44)

Liu, Z.; Lee, J.; Zeng, J.; Wen, Y.; Lin, Z.; and Shi, W., 2013. Cpu transparent protection
of os kernel and hypervisor integrity with programmable dram, vol. 41. ACM. (cited on
pages xiii, 26, 31, and 32)

Microsoft, 2006. An introduction to kernel patch protection.
https://blogs.msdn.microsoft.com/windowsvistasecurity/2006/08/12/
an-introduction-to-kernel-patch-protection/. (cited on page 37)

MITRE, 2019. Vmware: Security vulnerabilities. https://www.cvedetails.com/
vulnerability-list/vendor_id-252/Vmware.html. (cited on page 23)

Moon, H.; Lee, H.; Heo, I.; Kim, K.; Paek, Y.; and Kang, B. B., 2015. Detecting
and preventing kernel rootkit attacks with bus snooping. IEEE Transactions on
Dependable and Secure Computing, 14, 2 (2015), 145–157. (cited on page 23)

Moon, H.; Lee, H.; Lee, J.; Kim, K.; Paek, Y.; and Kang, B. B., 2012. Vigilare: toward
snoop-based kernel integrity monitor. In Proceedings of the 2012 ACM conference

https://blogs.msdn.microsoft.com/windowsvistasecurity/2006/08/12/an-introduction-to-kernel-patch-protection/
https://blogs.msdn.microsoft.com/windowsvistasecurity/2006/08/12/an-introduction-to-kernel-patch-protection/
https://www.cvedetails.com/vulnerability-list/vendor_id-252/Vmware.html
https://www.cvedetails.com/vulnerability-list/vendor_id-252/Vmware.html

52 BIBLIOGRAPHY

on Computer and communications security, 28–37. ACM. (cited on pages 7, 26, 28,
and 37)

Nethercote, N. and Seward, J., 2003. Valgrind: A program supervision framework.
Electronic notes in theoretical computer science, 89, 2 (2003), 44–66. (cited on page 11)

Openwall, 2019. Lkrg - linux kernel runtime guard. https://www.openwall.com/
lkrg/. (cited on page 37)

Pangaria, M.; Shrivastava, V.; and Soni, P., 2012. Compromising windows 8
with metasploitâĂŹs exploit. IOSR Journal of Computer Engineering (IOSRJCE), 5, 6
(2012), 01–04. (cited on page 2)

Petroni Jr, N. L.; Fraser, T.; Molina, J.; and Arbaugh, W. A., 2004. Copilot-a
coprocessor-based kernel runtime integrity monitor. In USENIX Security Sympo-
sium, 179–194. San Diego, USA. (cited on pages 6 and 37)

Seaborn, M. and Dullien, T., 2015. Exploiting the dram rowhammer bug to gain
kernel privileges. Black Hat, 15 (2015). (cited on page 2)

Seshadri, V.; Lee, D.; Mullins, T.; Hassan, H.; Boroumand, A.; Kim, J.; Kozuch,
M. A.; Mutlu, O.; Gibbons, P. B.; and Mowry, T. C., 2017. Ambit: In-memory
accelerator for bulk bitwise operations using commodity dram technology. In Pro-
ceedings of the 50th Annual IEEE/ACM International Symposium on Microarchitecture,
273–287. ACM. (cited on pages 2 and 5)

Spradling, C. D., 2007. Spec cpu2006 benchmark tools. ACM SIGARCH Computer
Architecture News, 35, 1 (2007), 130–134. (cited on page 11)

Stone, H. S., 1970. A logic-in-memory computer. IEEE Transactions on Computers,
100, 1 (1970), 73–78. (cited on page 3)

Trusted Computing Group, 2014. Trusted platform module library: Ar-
chitecture. https://trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-2.
0-Part-1-Architecture-01.07-2014-03-13.pdf. (cited on page 27)

Valgrind Developers, 2009. Cachegrind: a cache and branch-prediction profiler.
http://valgrind.org/docs/manual/cg-manual.html. (cited on page 11)

Von Neumann, J., 1993. First draft of a report on the edvac. IEEE Annals of the History
of Computing, 15, 4 (1993), 27–75. (cited on page 3)

Wang, J.; Stavrou, A.; and Ghosh, A., 2010. Hypercheck: A hardware-assisted
integrity monitor. In International Workshop on Recent Advances in Intrusion Detection,
158–177. Springer. (cited on pages xiii, 24, 25, 37, and 44)

Zhang, D. P.; Jayasena, N.; Lyashevsky, A.; Greathouse, J.; Meswani, M.; Nutter,
M.; and Ignatowski, M., 2013. A new perspective on processing-in-memory ar-
chitecture design. In Proceedings of the ACM SIGPLAN Workshop on Memory Systems
Performance and Correctness, 7. ACM. (cited on page 5)

https://www.openwall.com/lkrg/
https://www.openwall.com/lkrg/
https://trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-2.0-Part-1-Architecture-01.07-2014-03-13.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-2.0-Part-1-Architecture-01.07-2014-03-13.pdf
http://valgrind.org/docs/manual/cg-manual.html

	Acknowledgments
	Abstract
	Contents
	Introduction
	Problem Statement
	Scope and Contributions
	Thesis Outline

	Background and Related Work
	Processing In Memory
	Previous work

	Hardware-based Security
	Summary

	Understanding the Limitations of PIM
	On-chip Mechanisms
	CPU Cache
	Loss of Information
	Temporal Lag of Information
	Reduced Granularity of Information

	Offloading to PIM
	PIM Isolation
	Hybrid System
	Summary

	PIM Security Applications
	PIM Workload Profile
	Security Problems
	String Matching
	Integrity Monitoring

	Case Study 1: HyperCheck – A Hardware-Assisted Integrity Monitor
	Original Design
	HyperCheck on the PIM

	Case Study 2: KI-Mon – Monitoring Mutable Kernel Objects
	Original Design
	KI-Mon on the PIM

	Case Study 3: Kernel Integrity with Programmable DRAM
	Original Design
	MGuard on the PIM

	Evaluation
	Summary

	Kernel Integrity Monitor on the PIM
	Background and Overview
	Threat Model

	Hardware Platform
	Software Platform
	Design analysis
	Reporting Security Breaches
	Limitations

	Future Work
	Summary

	Conclusion
	Future Work

