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Abstract—On the hardware side, asymmetric multicore pro-
cessors present software with the challenge and opportunity of
optimizing in two dimensions: performance and power. Asym-
metric multicore processors (AMP) combine general-purpose big
(fast, high power) cores and small (slow, low power) cores to meet
power constraints. Realizing their energy efficiency opportunity
requires workloads with differentiated performance and power
characteristics.

On the software side, managed workloads written in languages
such as C#, Java, JavaScript, and PHP are ubiquitous. Man-
aged languages abstract over hardware using Virtual Machine
(VM) services (garbage collection, interpretation, and/or just-
in-time compilation) that together impose substantial energy
and performance costs, ranging from 10% to over 80%. We
show that these services manifest a differentiated performance
and power workload. To differing degrees, they are parallel,
asynchronous, communicate infrequently, and are not on the
application’s critical path.

We identify a synergy between AMP and VM services that we
exploit to attack the 40% average energy overhead due to VM
services. Using measurements and very conservative models, we
show that adding small cores tailored for VM services should
deliver, at least, improvements in performance of 13%, energy
of 7%, and performance per energy of 22%. The yin of VM
services is overhead, but it meets the yang of small cores on
an AMP. The yin of AMP is exposed hardware complexity,
but it meets the yang of abstraction in managed languages.
VM services fulfill the AMP requirement for an asynchronous,
non-critical, differentiated, parallel, and ubiquitous workload
to deliver energy efficiency. Generalizing this approach beyond
system software to applications will require substantially more
software and hardware investment, but these results show the
potential energy efficiency gains are significant.

I. INTRODUCTION

Computer hardware is facing a power crisis. For mobile
devices, battery life always falls behind demand. For data cen-
ters, the cost of electricity is a top budgetary consideration [1],
[2]. Consequently, large companies purchase computers with
the best performance per energy (PPE) dollar, rather than
the best absolute performance [3], and the Japanese Green
IT Council promotes PPE as a world standard metric for
data center efficiency [4]. To lower power and improve PPE,
architects are turning to customization and heterogeneity [5],
[6], [7], [8], [9], [10], [11], [12]. Customized hardware for a
specific function is well known to provide orders of magnitude
improvements in performance, power, or both, but offers
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a daunting programming task and the resulting software is
generally not portable.

Meanwhile, software is facing challenges of a similar mag-
nitude, with major changes in the way software is deployed, is
sold, and interacts with hardware. Developers are increasingly
choosing managed languages, sacrificing performance for pro-
grammer productivity, time-to-market, reliability, security, and
portability. Smart phone and tablet applications are exclusively
written in managed languages. Modern web services combine
managed languages, such as PHP on the server side and
JavaScript on the client side. In markets as diverse as financial
software and cell phone applications, Java and .NET are the
dominant choices. Until recently the performance overheads
associated with managed languages were made tolerable by
an exponential growth in sequential hardware performance.
Unfortunately, this source of mitigation is drying up just as
managed languages are becoming ubiquitous.

The hardware and software communities are thus both
facing significant change and major challenges. We use a
hardware-software cooperative approach to address some of
these problems.

On the hardware side, we explore single-ISA heterogeneous
asymmetric multicore processors (AMP) that architects have
recently proposed to meet power constraints. AMP combines
general-purpose big (fast, high power) cores and small (slow,
low power) cores [12], [13]. Vendors such as ARM, Qual-
comm, Texas Instruments, and Intel are building AMP systems
already [5], [9], [10], [14]. By assigning the critical path to the
big core and other execution to the small core, prior research
shows how to improve performance, and consequently energy,
on these architectures [9], [10], [11], [12], [13].

On the software side, we explore Virtual Machine (VM)
services, such as the interpreter, compiler, profiler and garbage
collector, which provide much of the abstraction of man-
aged languages, and also much of their overhead. Since VM
services execute together with every managed application,
improvements to VM services will transparently improve all
managed applications.

We show that the opportunities and challenges of AMP
and managed languages are complimentary. The yin of VM
services is overhead, but it meets the yang of small cores on
an AMP. Meanwhile, the yin of AMP is exposed hardware
complexity, but it meets the yang of abstraction in managed
languages. The conjunction of AMP and VM services may
therefore provide a win-win opportunity for hardware and
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(a) Fraction of cycles spent in VM services on an i7 1C1T @ 3.4 GHz.
See Section III for methodology.
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(b) Execution time increase due to adding small cores on an AMD
Phenom II.1

Fig. 1. Motivation: (a) VM services consume significant resources. (b) The naive addition of small cores slows down applications.

software communities now confronted with performance and
power challenges in an increasingly complex landscape.

This paper identifies and leverages unique combinations of
four software attributes for exploiting AMP: (1) parallelism,
(2) asynchrony, (3) non-criticality, and (4) hardware sensitivity.
This paper goes beyond improving performance on AMP by
also seeking to improve power, energy, and PPE.

We show that VM services are a lucrative target because
they consume almost 40% of total time and energy and they
exhibit the requisite software characteristics. Figure 1(a) shows
the fraction of cycles Java applications spend in VM services.
GC consumes 10% and JIT consumes 12% of all cycles on
average. An additional 15% of total time is spent executing
unoptimized code (e.g., via the interpreter). Total time in VM
services ranges from 9% to 82%. Prior GC performance results
on industry VMs confirm this trend: IBM’s J9, JRockit, and
Oracle’s HotSpot JDK actually show an even higher average
fraction of time spent on garbage collection [15]. VM services
in less mature VMs, such as JavaScript and PHP VMs, likely
consume an even higher fraction of total cycles. Reducing the
power and PPE of VM services is thus a promising target.

Figure 1(b) shows that naively executing managed applica-
tions on AMP platforms without any VM or operating system
support is a very bad idea. In this figure, we measure the effect
of adding small (slow, low power) cores to the performance of
Java applications in Jikes RVM. The downward pointing grey
arrow indicates that lower is better on this graph. The big (fast,
high power) cores are out-of-order x86 cores running at the
default 2.8 GHz and the small ones are simply down-clocked to
0.8 GHz on an AMD Phenom II. We evaluate both the addition
of one slow to one fast, and two slow to two fast. The results
are similar. Even though these configurations provide strictly
more hardware resources, they slow down applications by 35%
and 50% on average!

Using hardware and software configuration, power measure-
ments, and modeling, this paper shows how to exploit the char-
acteristics of garbage collector (GC), interpreter, and just-in-
time optimizing compiler (JIT) workloads on AMP hardware
to improve total power, performance, energy, and PPE. Each
VM component has a unique combination of (1) parallelism,

(2) asynchrony, (3) non-criticality and (4) hardware sensitivity.
Garbage Collection. Because garbage collection (GC) may

be performed asynchronously and is not on the critical path, it
is amenable to executing on a separate core. The computation
the collector performs, a graph traversal, is parallel and thus
benefits from more than one separate cores. Furthermore,
GC is memory bound and many high-performance, power-
hungry hardware features that improve application PPE are
inefficient for GC. GC does not benefit from a high clock rate
or instruction level parallelism (ILP), but it does benefit from
memory bandwidth. Consequently, adding in-order low power
cores with high memory bandwidth for GC does not slow GC
performance much, or at all, given the right design. The result
is improvement to system PPE.

JIT. The JIT is also asynchronous, exhibits some par-
allelism, and because its role is optimization, is generally
non-critical, which also makes it amenable to executing on
separate cores. The JIT workload itself is very similar to Java
application workloads and PPE therefore benefits from big
core power-hungry features, such as out-of-order execution,
bandwidth, and large caches. We show that because the JIT is
not on the critical path, executing it at the highest performance
is not important. Furthermore, putting the JIT on the small
core takes it off the application’s critical path. Slowing the
JIT down on a small core does not matter because the JIT can
deliver optimized code fast enough at much less power. On a
small core, we can make the JIT more aggressive, such that
it elects to optimize code earlier and delivers more optimized
application code, with little power cost. The resulting system
design improves total performance, energy, and PPE.

Interpreter. The interpreter is, however, on the critical path
and is not asynchronous. The interpreter parallelism reflects
the applications’ parallelism and can thus often benefit from
multiple cores. However, we find that the interpreter has very
low ILP, a small cache footprint, and does not use much
memory bandwidth. Therefore, executing interpreter threads
on a high performance, high power core is inefficient, and a
better choice for PPE and energy is to execute the interpreter
on low power cores.

1The avrora benchmark is excluded from Figure 1(b) due to its erratic
behavior in this heterogeneous environment.



Each service offers a different combination of software
characteristics, yet we show how to design software and
hardware to improve PPE through improvements to power and
performance. Using power and performance measurements of
modern hardware and very conservative models, we show that
the addition of small cores for GC and JIT services alone
should deliver, at least, improvements in performance of 13%,
energy of 7%, and performance per energy of 22%. This
paper shows that (1) VM services are significant consumers of
resources, (2) AMP is ineffective without hardware/software
co-design, and (3) optimizing VM services and AMP hardware
together should deliver substantially better total energy and
PPE.

II. VM BACKGROUND

We start with some background on modern virtual machine
(VM) services for managed languages. Managed languages
use garbage collection (GC) for memory safety, dynamic inter-
pretation and/or just-in-time (JIT) compilation for portability,
and dynamic profiling and JIT optimizations for performance.
Figure 2 shows the basic VM structure.

Garbage Collection. Managed programming languages use
garbage collection (GC) to provide memory safety to applica-
tions. Programmers allocate memory and the GC automatically
reclaims it when it becomes unreachable. GC algorithms
are graph traversal problems, amenable to parallelization,
and fundamentally memory-bound. We focus on concurrent
and parallel GC. The term concurrent denotes that the GC
executes concurrently to the application and synchronizes only
occasionally, while the term parallel denotes that the work of
the GC is conducted by multiple GC threads. GC is prima facie
an excellent candidate for parallel heterogeneous hardware.

Interpretation. Many managed languages support dynamic
loading and do not perform ahead-of-time compilation. The
language runtime must consequently execute code immedi-
ately, as it is loaded. Modern VMs use interpretation, template
compilation to machine code, or simple compilation without
optimizations (all of which we refer to as interpretation for
convenience). The interpreter is thus highly responsive but
offers poor code quality. Advanced VMs will typically identify
frequently executed code and dynamically optimize it using
an optimizing compiler. At steady state, performance-critical
code is optimized and the remaining code executes via the
interpreter. One exception is the .NET framework for C#,
which compiles all code with many optimizations immediately,
only once at, load time. As Figure 1(a) shows, about 20% of
all cycles executed by the application are due to unoptimized
code, amounting to about 15% of all cycles. The interpreter
itself is not parallel, but it will reflect any parallelism in
the application it executes. We show that the interpreter is
strikingly atypical in its microarchitectural requirements, and
is significantly better suited to execution on a simple core than
is optimized application code.

Just In Time Compilation. High performance VMs use a JIT
optimizing compiler to produce dynamically optimized code
for frequently executed methods and/or traces. Because the
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Fig. 2. Basic Virtual Machine services and structure

code will have already executed at the time the optimizing
JIT compiles it, the runtime has the opportunity to dynamically
profile the code and tailor optimizations accordingly. A typical
JIT will have several optimization levels and will select among
them based on a cost model [16]. The JIT will compile code at
a higher level of optimization if the predicted cost to compile
and the reduction in code’s execution time will reduce total
time. The JIT will compile code asynchronously with the
application and may compile more than one method or trace
at once. JIT compilation is therefore a natural candidate for
exploiting small cores.

Other VM Services. Other VM services may present good
opportunities for heterogeneous multicore architectures, but
are beyond the scope of this paper. These services include
zero-initialization [17], finalization, and profiling. For exam-
ple, feedback-directed-optimization (FDO) depends on pro-
filing of the running application. Such profiling is typically
implemented as a producer-consumer relationship, with the
instrumented application as the producer and one or more pro-
filing threads as the consumers [18]. The profiler is parallel and
exhibits an atypical memory-bound execution profile, making
it a likely candidate for heterogeneous multicore architecture.
However, we do not explore profiling here.

III. EXPERIMENTAL METHODOLOGY

We base our study on real power and performance measures
of existing hardware, leveraging our existing well-developed
tools and methodology [19], [20]. Evaluating the power and
performance of future AMP systems is complex, just as evalu-
ating managed languages can be challenging [20]. This section
describes the hardware, measurements, workload, and software
configuration that we use to explore hardware and software
energy efficiency. We have made all of our data publicly
available online.2 This data includes quantitative measures of
experimental error and evaluations that we could not report
here due to space constraints.

2http://cecs.anu.edu.au/∼steveb/downloads/results/yinyang-isca-2012.zip

http://cecs.anu.edu.au/~steveb/downloads/results/yinyang-isca-2012.zip


i7 (32) i3 (32) AtomD (45) Phenom II (45)
Processor Core i7-2600 Core i3-2120 AtomD510 X6 1055T
Architecture Sandy Bridge Sandy Bridge Bonnell Thuban
Technology 32 nm 32 nm 45 nm 45 nm
CMP & SMT 4C2T 2C2T 2C2T 6C1T
LLC 8 MB 3 MB 1 MB 6 MB
Frequency 3.4 GHz 3.3 GHz 1.66 GHz 2.8 GHz
Transistor No 995 M 504 M 176 M 904 M
TDP 95 W 65 W 13 W 125 W
DRAM Model DDR3-1333 DDR3-1333 DDR2-800 DDR3-1333

(a) Experimental processors used in this paper

(b) Hall effect sensor and PCI card on the Atom

Fig. 3. Hardware and Power Measurement Methodology

A. Hardware

Figure 3(a) lists characteristics of the four experimental
machines we use in this study. Hardware parallelism is in-
dicated in the CMP & SMT row, and throughout the rest of
this paper, as nCmT: the machine has n cores (CMP) and
m simultaneous hardware threads (SMT) on each core. The
Atom and Sandy Bridge families are at the two ends of Intel’s
product line. Atom has an in-order pipeline, small caches, a
low clock frequency, and is low power. Sandy Bridge is Intel’s
newest generation high performance architecture. It has an out-
of-order pipeline, sophisticated branch prediction, prefetching,
Turbo Boost power management, and large caches. We use
two Sandy Bridge machines to explore hardware variability,
such as cache size, within a family. We choose Sandy Bridge
06 2AH processors because they provide an on-chip RAPL
energy performance counter [21]. We use the AMD Phenom II
since it exposes independent clocking of cores to software,
whereas the Intel hardware does not.

Together we use this hardware to mimic, understand, mea-
sure, and model AMP designs that combine big (fast, high
power) cores with small (slow, low power) cores in order to
meet power constraints and provide energy efficiency archi-
tectures.

B. Power and Energy Measurement

We use on-chip energy counters provided on Intel’s Sandy
Bridge processors [21], and an improvement of the Hall effect
sensor methodology that we previously introduced [19]. Intel
recently introduced user-accessible energy counters as part of
a new hardware feature called RAPL (Runtime Average Power
Limit). The system has three components: power measurement
logic, a power limiting algorithm, and memory power limiting
control. The power measurement logic uses activity counters
and predefined weights to record accumulated energy in MSRs

(Machine State Registers). The values in the registers are up-
dated every 1 msec, and overflow about every 60 seconds [22].
Reading the MSR, we obtain package, core, and uncore
energy. Key limitations of RAPL are: (1) it is only available
on processors with the Sandy Bridge microarchitecture, and
(2) it has a temporal resolution of just 1 msec, so it cannot
resolve short-lived events. Unfortunately, VM services such
as the GC, JIT and interpreter often occur in phases of less
than 1 msec.

We extend the prior methodology for measuring power with
the Hall effect sensor by raising the sample rate from 50 Hz
to 5 KHz and using a PCI card to identify execution phases.
Figure 3(b) shows a Pololu ACS714 Hall effect linear current
sensor positioned between the power supply and the voltage
regulator supplying the chip. We read the output using an
Arduino board with an AVR microcontroller. We connect a
PCI card to the measured system and the digital input of a
Arduino board and use the PCI bus to send signals from the
measured system to the microcontroller to mark the start and
end of each execution phase of a VM service. Using the PCI
card allows us to demarcate execution phases at a resolution
of 200 µsec or better so we can attribute each power sample
to the application or to the VM service being measured.

One limitation of this method is that the Hall effect sen-
sor measures the voltage regulator’s power consumption. We
compared the Hall effect sensor to RAPL measurements. As
expected, power is higher for the Hall effect sensor: 4.8%
on average, ranging form 3% to 7%. We adjust for the
voltage regulator by subtracting 5% from Hall effect sensor
measurements. We were unsuccessful in using this higher
sample rate methodology on the AMD Phenom II, so we are
limited to the lower sample rate methodology for it.

When measuring the i3 and i7, we use RAPL to measure
energy and divide the measurement by time to present average
power. Conversely, when measuring the Atom and AMD, we
use the Hall effect sensor to take power samples and integrate
them with respect to time to present energy.

Because the interpreter normally executes in phases that
are shorter than any of our methodologies can resolve, we
only directly measure the interpreter by running the JVM in
interpreter-only mode.

Static Power Estimates: We take care to account for
the static power consumption of cores when we model AMP
systems using real hardware. Unfortunately, per-core static
power data for production processors is not generally available,
nor easy to measure [23]. By measuring power with cores in
different idle states, we estimate the per-core static power on
the Phenom II at 3.1 W per core. For the AtomD, we make
a conservative estimate of 0.5 W per core. In the absence of
better quality data, we were conservative and were able to
demonstrate that our results are quite robust with respect to
these estimates. The evaluation in Sections IV-B and IV-F
uses the six-core Phenom II to model a single core system
and a two core AMP system. Because the Phenom II powers
the unused cores, we subtract the static power contribution
of unused cores. When we model two Atom cores and one



Phenom II core as part of the AMP system in Section IV-F,
we subtract the static power for five AMD cores and add the
static power for two Atom cores.

C. Hardware configuration methodology

We use hardware configuration to explore the amenability of
future AMP hardware to managed languages. We are unaware
of any publicly available simulators that provide the fine-
grained power and performance measurements necessary for
optimizing application software together with hardware. Com-
pared to simulation, hardware configuration has the disadvan-
tage that we can explore fewer hardware parameters and de-
signs. Hardware configuration has an enormous execution time
advantage; it is orders of magnitude faster than simulation. In
practice, time is limited and consequently, we explore more
software configurations using actual hardware. Measuring real
hardware greatly reduces, but does not completely eliminate,
the effect of inaccuracies due to modelling.

Small Core Evaluation: To understand the amenability of
the various services to small cores in an AMP design, we use
the i3 and AtomD processors. The processors differ in two
ways that are inconsistent with a single-die setting: a) they
have different process technologies (32 nm v 45 nm), and b)
they have different memory speeds (1.33 GHz vs 800 MHz).
Our comparisons adjust for both by down-clocking the i3’s
memory speed to match the Atom, and by approximating the
effect of the technology shrink. Our prior work found that
a die shrink from 45 nm to 32 nm reduces processor energy
and power by 45% on two Intel architectures [19]. We use the
same factor, but do not adjust clock speed, on the grounds that
a simple low power core may well run at a lower frequency.

To evaluate the overall power and PPE effects of deploying
the GC and JIT on a low power core, we use the Phenom II and
the Hall effect sensor without the PCI card. This methodol-
ogy’s inability to measure fine grain events is inconsequential
because we are measuring overall system power and perfor-
mance in the experiments where the Phenom II is used. As
mentioned above, the Phenom II’s separately clocked cores
make it a good base case.

Microarchitectural Characterization: We evaluate mi-
croarchitectural features using BIOS configuration. We explore
the effect of frequency scaling on the i7, varying the clock
from 1.6 GHz to 3.4 GHz. We normalize to 1.6 GHz. We
explore the effect of hardware parallelism on the Phenom II
by varying the number of participating CMP cores and on the
i7 by varying CMP and SMT. We explore the effect of last
level cache sizes by comparing the i7 and i3, each configured
to use two cores at 3.4 GHz, but with 8 MB and 3 MB of LLC
respectively. To explore sensitivity to memory bandwidth, we
use the i3 with 800 MHz single channel memory relative to
the default 1.33 GHz dual channel memory. To understand
the effect of gross microarchitectural change, we compare
the i3 and Atom running at the same clock speed, and make
adjustments for variation in process technology, reducing the
energy and power of the Atom by 45% to simulate fabrication
at 32 nm [19].

D. Workload

We use ten widely used Java benchmarks taken from the
DaCapo suites and SPECjbb: bloat, eclipse, and fop (DaCapo-
2006); avrora, luindex, lusearch, pmd, sunflow, and xalan
(DaCapo-9.12); and pjbb2005 [20]. All are multithreaded
except for fop, luindex and bloat. These benchmarks are non-
trivial real-world open source Java programs [20].

E. Virtual machine configuration

All our measurements follow Blackburn et al.’s best prac-
tices for Java performance analysis [20] with the following
adaptations to deal with the limitations of the power and
energy measurement tools at our disposal.

Garbage Collection: We focus our evaluation on concur-
rent garbage collection because it executes concurrently with
respect to the application and is thus particularly amenable
to AMP. We also evaluate Jikes RVM’s default production
garbage collector, generational Immix [24]. We evaluated, but
do not report, four other garbage collectors to better understand
GC workloads in the context of AMP. The measurements that
we do not explicitly report here are available in our online
data. All of our evaluations are performed within Jikes RVM’s
memory management framework, MMTk [25].

We report time for the production collector in Figure 1(a)
because it is the best performing collector and thus yields the
lowest time. In all other cases, we use the concurrent collector.
Our concurrent mark-sweep collector uses a classic snapshot-
at-the-beginning algorithm [26]. Because GC is a time-space
tradeoff, the available heap space determines the amount of
work the GC does, so it must be controlled. We use a heap
1.5 × the minimum in which the collectors executes and is
typical. For the concurrent collector, the time-space tradeoff
is significantly more complex because of the concurrency
of the collector’s work, so we explicitly controlled the GC
workload by forcing regular concurrent collections every 8 MB
of allocation for avrora, fop, and luindex, which have a low
rate of allocation, and 128 MB for the remaining benchmarks.

Measurement of concurrent GC faces two major challenges:
a) we have no way of measuring the power and/or energy
of a particular thread, and thus we cannot directly measure
power or energy of concurrent collection, and b) unlike full
heap stop-the-world (STW) collectors, which suspend all ap-
plication threads when collecting, concurrent collectors require
the application to perform modest housekeeping work which
can not be directly measured because it is finely entangled
within the application. We use a full-heap STW collector
and a STW variation on our concurrent collector to solve
this methodological challenge. Using the STW-concurrent
collector, we can isolate and measure concurrent GC power
and performance. Using the full-heap STW collector we can
identify application power and time in isolation from any GC.
We can then measure the net overhead of concurrent GC by
subtracting application power and time from total power and
time measured when using concurrent GC.

The GC implementations expose software parallelism and
exploit all available hardware contexts.
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(b)
Fig. 4. GC, JIT, and application power and energy on i7 4C2T at 3.4 GHz. (a) Average power for GC, JIT, and application. (b) Fraction of energy due to
GC and JIT. The power demands of the GC and JIT are relatively uniform across benchmarks. Together they contribute about 20% to total energy.

JIT Compiler: Because the unit of work for the JIT when
executing normally is too fine grained for either RAPL or
Hall effect measurements, we perform and measure all JIT
work at once from a replay profile [20]. Replay compilation
removes the nondeterminism of the adaptive optimization sys-
tem. The methodology uses a compilation profile produced on
a previous execution that records what the adaptive compiler
chose to do. It first executes one iteration of the benchmark
without any compilation, forcing all classes to be loaded. Then
the compilation profile is applied en mass, invoking the JIT
once for each method identified in the profile. We measure the
JIT as it compiles all of the methods in the profile. We then
disable any further JIT compilation and execute and measure
the application on the second iteration. The application thus
contains the same mix of optimized and unoptimized code as it
would have eventually had with in vivo execution, but now we
can measure both the compiler and application independently
and thus the experiments are repeatable and measurable with
small variation. To decrease or eliminate GC when measuring
the JIT, we use Jikes RVM’s default generational Immix GC,
since it performs the best, and set the heap size to be four
times the minimum size required.

Normally the JIT executes asynchronously to the application
and GC. Although the JIT compiler could readily exploit
parallelism by compiling different code in multiple threads,
Jikes RVM’s JIT is not parallel. We thus evaluate the JIT on
a single hardware context. When we evaluate the JIT and GC
together we use multiple hardware contexts.

Interpreter: Evaluating the interpreter is challenging be-
cause interpretation is finely interwoven with optimized code
execution. We evaluate the interpreter two ways, using two
JVMs, the Oracle HotSpot JDK 1.6.0 and Jikes RVM. HotSpot
interprets bytecodes and Jikes RVM template compiles them.
Both adaptively (re)compile hot methods to machine code. We
first use Jikes RVM and a timer-based sampler to estimate the
fraction of time spent in interpreted (template-compiled) code.
We use HotSpot to evaluate the interpreter’s microarchitectural
sensitivity. We execute HotSpot with the compiler turned
off, so that all application code is interpreted. Because the
interpreter is tightly coupled with the application, it exhibits

no independent parallelism and cannot execute asynchronously
with respect to the application. However, it reflects all software
parallelism inherent in the application.

IV. EXPERIMENTAL ANALYSIS

We now present a quantitative analysis of garbage col-
lection, JIT compilation, and interpretation with respect to
their suitability to asymmetric multicore processors (AMP).
We start with a motivating analysis of the power and energy
footprint of VM services on orthodox hardware. We then
assess the amenability of VM services to a small core. We
evaluate the extent to which VM services can benefit from
targeted microarchitectural optimizations, an opportunity that
AMP offers. Finally we model the overall impact of executing
VM services on a simple AMP system.

A. Motivation: Power and Energy Footprint of VM Services

Figure 4 shows the overall contribution of the GC and
JIT to system power and energy on existing hardware. As
we mentioned in the previous section, the interpreter’s fine-
grained entanglement with the application makes it too difficult
to isolate and measure its power or energy with current tools.
Figure 1(a) shows that the fraction of cycles due to the
interpreter is significant. Although we do not evaluate the
interpreter further here, it remains a significant target for power
and energy optimization on future AMP systems. Figure 4
reports isolated GC and JIT power and energy on a stock i7
(4C2T at 3.4 GHz). Our methodology generates typical JIT
and GC workloads. We use the JIT workload during warm-up
(the first iteration of each benchmark), in which it performs
most of its work. We use the GC and application workload in
steady state (5th iteration), where the GC sees a typical load
from the applications and the application spends most its time
in optimized code. Since the GC is concurrent and parallel,
it utilizes all available hardware. The JIT is concurrent, but
single threaded, although JIT compilation is not intrinsically
single threaded. The benchmarks themselves exhibit varying
degrees of parallelism.

Figure 4(a) shows that power consumption is quite uniform
for the GC and JIT regardless of benchmark on the i7, at
around 40 W and 30 W respectively. The JIT has lower power
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Fig. 5. Utility of adding a core dedicated to VM services on total energy,
power, time, and PPE. Overall effect of binding GC, JIT, and both GC & JIT
to the second core running at 2.8 GHz (dark), 2.2 GHz (middle), and 0.8 GHz
(light) on the AMD Phenom II corrected for static power. The baseline uses
one 2.8 GHz core.

because it is single threaded, whereas the parallel GC uses all
four cores and SMT. This power uniformity shows that the GC
and JIT workload are both largely benchmark independent. By
contrast, application power varies by nearly a factor of three,
from 20 W to 60 W, reflecting the diverse requirements and
degrees of parallelism among the benchmarks.

Figure 4(b) shows that the GC and JIT each contribute about
10% on average to the total energy consumption, totalling
about 20%. This confirms our hypothesis that VM services
may provide a significant opportunity for energy optimization.
The figure also shows significant variation in GC and JIT
energy consumption across benchmarks, despite their uniform
power consumption. This variation reflects the different extents
to which the benchmarks exercise the JIT and GC. Some
benchmarks require more or less GC and JIT services, even
though the behavior of each service is quite homogeneous.

B. Amenability of VM Services to a Dedicated Core

The above results demonstrate the potential for energy
savings and we now explore the amenability of executing VM
services on dedicated small cores. This experiment explores
whether the services will a) benefit from dedicated parallel
hardware, and b) be effective, even if the hardware is slow.

Because we are not yet considering the small core microar-
chitecture, we use existing stock hardware. We choose the
AMD Phenom II because it provides independent frequency
scaling of the cores. We model the small core by down-
clocking a regular core from 2.8 GHz to 2.2 GHz and 0.8 GHz.
We subtract our conservative estimate of static power 3.1 W
per core from our measurements to avoid overstating our
results. (Section III-B explains the estimation.)

We bind the VM service(s) to separate cores and measure
the entire system. We use regular adaptive JIT compilation
because it interleaves its work asynchronously and in parallel
with the application (replay compilation, although easier to
measure, does neither). We measure total time for the first
iteration of each benchmark because the first iteration is
a representative JIT workload that imposes significant JIT
activity (see Figure 1(a)).

Figure 5 shows the effect of adding a dedicated core for
GC and JIT services on energy, power, performance, and

PPE. The light grey arrows show which direction is better
(lower for energy and power, and higher for performance and
PPE). The leftmost bar in each cluster shows the effect when
the additional core runs at 2.8 GHz, the same speed as the
main core. This result evaluates our first question: whether
the system benefits from hardware parallelism dedicated to
VM services. For both the GC and JIT, the introduction of
dedicated hardware improves performance by 8-10% while
increasing power by around 15%. They independently increase
energy by around 6% and marginally improve PPE. When
both GC and JIT are bound to the additional core the effect
is amplified, leading to a net PPE improvement of 13% and
a 2% increase in energy. This data shows that simple binding
of the JIT and GC to an additional core is effective.

In this paper however, we are exploring future systems in
which adding more big cores is not feasible because of power
or energy constraints. If it were, dedicating a big core to
the VM services rather than sharing it with the application
is probably a poor design choice.

The lighter bars in Figure 5 show the effect of slowing down
the dedicated VM services core. The power overhead of the
additional core is reduced by nearly half when the dedicated
core is slowed down to 0.8 GHz. However performance also
suffers, particularly for GC. Nonetheless, the PPE improves for
the JIT and JIT & GC cases, which indicates that the GC and
JIT could efficiently utilize a small core. A very promising
result from Figure 5 is that executing JIT and GC on the
dedicated core at 2.2 GHz delivers a 13% higher PPE than
one processor with virtually no energy cost.

We also measure the effect on power and energy of in-
troducing a small core without binding the VM services.
This configuration led to a significant slow down, which is
illustrated in Figure 1(b). There was also a modest increase
in energy, which together lead to a 30% degradation in PPE.
This result emphasizes that without binding of tasks or some
other guidance to the OS scheduler, the addition of a small
core is counterproductive.

C. Amenability of VM Services to Hardware Specialization

A single-ISA heterogeneous processor design has the oppor-
tunity to include a variety of general purpose cores tailored
to various distinct, yet ubiquitous, workload types. Such a
design offers an opportunity for very efficient execution of
workloads that do not well utilize big out-of-order designs.
We now explore the amenability of VM services to alternative
core designs. We start with measuring a stock small processor,
the in-order, low power, AtomD. We then evaluate how the
VM services respond to a range of microarchitectural variables
such as clock speed, cache size, etc. To ease measurement,
this analysis evaluates the GC and application with respect
to a steady state workload and the replay JIT workload. We
evaluate the interpreter using the HotSpot JDK with its JIT
disabled and measure the second iteration of the benchmark,
which reflects steady state for the interpreter.

Small Core: We first compare contemporary in-order
cores to out-of-order cores. We use an i3 and AtomD with the
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Fig. 6. Amenability of services and the application to an in-order-processor.
These results compare execution on an in-order AtomD to an out-of-order i3.

same degree of hardware parallelism (2C2T), and run with the
same memory bandwidth to focus on the microarchitectural
differences. We do not adjust for clock frequency in this
experiment on the grounds that the small core may well run at
a lower clock, so they execute at their 3.4 GHz and 1.66 GHz
default frequencies respectively. We explore the effect of clock
scaling separately, below. An important difference between
the two machines is their process technology. To estimate the
effect of shrinking the process, we project the AtomD power
consumption data to 32 nm by reducing measured power by
45%, as described in Section III-C.

Figure 6 shows the effect on energy, power, performance
and PPE when moving from the i3 to the in-order AtomD.
The figure shows, unsurprisingly, that the Atom offers lower
energy, power, and performance in all cases. Power is uni-
formly reduced by around 90%. Of these, the GC benefits
the most because its performance degradation is less than for
the others. The consequence is greater energy reduction and
a net improvement in PPE of 35%. The JIT, interpreter and
application all see degradations in PPE of around 60-70%.

This data makes it emphatically clear that the simple
memory-bound graph traversal at the heart GC is much better
suited to small low power in-order processors. In the case
of the JIT, the 35% energy reductions may trump degraded
PPE because the JIT can be trivially parallelized, which
improves performance without significantly increasing energy,
leading to improved PPE. The small core will be a power
and energy efficient execution context for the interpreter in
contexts when the performance reduction is tolerable. Since
performance-critical code is typically optimized and therefore
not interpreted, it is plausible that interpreted code is less likely
to be critical and therefore more resilient to execution on a
slower core.

Figure 7 provides insight into why the GC does so well
on the Atom. This graph shows the effect on the total cycles
executed when scaling the clock on a stock i7. The appli-
cation and JIT execute just 4-5% more cycles as the clock
increases from 1.6 GHz to 3.4 GHz while the GC executes 30%
more cycles. These extra cycles are due to stalls. The result
is unsurprising given the memory-bound nature of garbage
collection. It is also interesting to note what this graph reveals
about the interpreter. The higher clock speed induces no new
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Fig. 7. Cycles executed as a function of clock speed, normalized to cycles
at 1.6 GHz on the i7. The workload is fixed, so extra cycles are due to stalls.

stalls, so the interpreter’s performance scales perfectly with the
clock frequency. This result reflects the fact that an interpreter
workload will invariably have very good instruction locality
because of the interpreter loop that dominates execution. We
confirmed this by directly measuring the frequency of last level
cache accesses by the interpreter and found that it was 70%
lower than the application code. Both the interpreter and the
GC exhibit atypical behavior that suitably tuned cores should
be able to aggressively exploit for greater energy efficiency.

Microarchitectural Characterization: We explore the
sensitivity of the GC, JIT, interpreter, and application work-
loads to microarchitectural characteristics. This characteriza-
tion gives further insight into the amenability of the services to
hardware specialization. Figure 8 shows the result of varying:
hardware parallelism, clock speed, memory bandwidth, cache
size, and gross microarchitecture. For the SMT and CMP
experiments, we drop the three single threaded benchmarks,
and use the seven multithreaded ones to focus on sensitivity
with software parallelism. Similarly, six of the applications fit
in the smaller 3 MB last-level cache, so we use the ones that
do not (bloat, eclipse, pmd and pjbb) to compare with VM
services. To generate the GC workload, we drop avrora, fop,
and luindex here because they have high variation and low GC
time. Note the different y-axis scales on each graph.

Hardware parallelism. We study the effects of hardware
parallelism using the i7. To evaluate CMP performance, we
compare 1C1T and 2C1T configurations, which disable hyper-
threading and ensure that software parallelism is maximally
exposed to the availability of another core. Conversely, to
evaluate SMT performance, we compare 1C1T and 1C2T
configurations, which use just one core to maximize exposure
of software parallelism to the addition of SMT. In all cases,
the processor executes at its 3.4 GHz stock frequency. Because
our JIT is single threaded, we omit the JIT from this part of the
study. However, some JITs are parallel and would be amenable
to hardware parallelism.

Figure 8(a) shows that increasing the number of cores
improves both GC and multithreaded applications’ PPE sim-
ilarly. The interpreter sees an even greater benefit, which is
likely due to the lower rate of dependencies inherent in the
slower interpreter loop relative to typical optimized application
code. Figure 8(b) shows that SMT does not improve PPE as
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(a) Effect of CMP on GC, interpreter, and application.
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(b) Effect of SMT on GC, interpreter, and application.
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(c) Effect of clock frequency on performance and energy. Points are clock
speeds 1.6, 2.0 and 3.4 GHz (from left to right) on i7 4C2T.
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(d) Memory bandwidth effect. The high memory bandwidth is 1.33 GHz
x 2 channels relative to 0.8 GHz x 1 channel.
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(e) LL cache size effect on i7 and i3 with 8 MB and 3 MB LL cache
respectively.
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(f) Gross architecture effect on Sandy Bridge and Atom at same frequency,
hardware threads, and process technology.

Fig. 8. Microarchitectural characterization of VM services and application.

much as CMP, but effectively decreases energy. SMT requires
very little additional power as compared to CMP and is
a very effective choice given a limited power budget [19].
The advantage of the interpreter over the other workloads is
even more striking here. Six multithreaded benchmarks exhibit
dramatic interpreter performance improvements on SMT and
CMP respectively: sunflow (87%, 164%), xalan (54%, 119%),
avrora (55%, 74%), pmd (45%, 113%), lusearch (53%, 111%),
and pjbb (36% and 67%). Eclipse is the only multithreaded
benchmark that did not improve due to hardware parallelism
when fully interpreted. These results show that VM services
can very effectively utilize available hardware parallelism.

Clock speed. Figure 8(c) plots performance (x-axis) and
energy (y-axis) as a function of clock frequency on the i7.
The single threaded JIT uses a 1C1T configuration, while

all other workloads use the stock 4C2T configuration. Values
are normalized to those measured at the minimum clock
frequency (1.6 GHz). The different responses of each workload
is striking. The JIT, interpreter, and application all improve
their performance two-fold as the clock increases. On the
other hand, the GC performance improves very little beyond
2.0 GHz. Figure 7 and our measurements of cache miss rates
suggest that memory stalls are the key factor in this result.
The different workloads also have markedly different energy
responses. The single-threaded JIT energy only increases by
4% going from the lowest to the maximum clock speed,
whereas the application and GC energy consumption increase
by 25% and 23% respectively with clock speed increases.

Memory bandwidth. Figure 8(d) shows the effect of increas-
ing memory bandwidth from a single channel at 0.8 GHz to



two channels at 1.33 GHz. The increase in memory bandwidth
reduces CPU energy for all workloads, but most strikingly for
GC. The GC performance increases dramatically, leading to a
2.4× improvement in PPE. Of course the increased memory
bandwidth will lead to increased energy consumption by the
off-chip memory subsystem, and our measurements are limited
to the processor chip and thus not captured by this data. The
GC’s response to memory bandwidth is unsurprising, given
that the workload is dominated by a graph traversal. It is
interesting to note that while the JIT and the application also
see significant, if less dramatic, improvements, the interpreter
does not. The results in Figure 8(d) are quite consistent with
the results in Figure 7. The GC is memory-bound and sensitive
to memory performance. The interpreter has excellent locality
and is relatively insensitive to memory performance.

Last-level cache size. A popular use of abundant transis-
tors is to increase cache size. This experiment evaluates the
approximate effect of increased cache size on the GC and
application using the i7 and i3. We configure them with
the same hardware parallelism (2C2T) and clock frequency
(3.4 GHz). After controlling for hardware parallelism and
clock speed, the most conspicuous difference between the
systems is their last level cache: the i7’s LL cache is 8 MB
and i3’s is 3 MB. Six of our ten benchmarks are insensitive
to the large cache size. Cache is not a good use of transistors
for them. The four cache-sensitive benchmarks (bloat, eclipse,
pmd and pjbb2005) have large minimum heap sizes of more
than 100 MB. For these benchmarks, the increase in LL cache
size from 3 MB to 8 MB is approximately 3% of the average
maximum volume of live objects. Note the y-axis scale in
Figure 8(e). Even these benchmarks only improve performance
by 6% with a larger cache. The larger cache improves JIT
performance and PPE by 10%, but these improvements are
very modest in comparison with the other hardware features
explored in Figure 8. The interpreter, which has good locality,
sees a reduction in PPE when the cache size is increased.

Gross microarchitecture. Figure 8(f) compares the impact of
gross microarchitecture using the AtomD and i3, controlling
for clock frequency (1.66 GHz for AtomD and 1.6 GHz for
i3), hardware parallelism (2C2T), and memory bandwidth. We
configure them both to use 800 MHz single channel memory.
We adjust for process technology on the AtomD, as we do
above, by scaling by 45%. The results make it clear that the
GC is better suited to the small in-order AtomD than a big
core, with the high performance architectural features of the
i3. GC has a better PPE on the AtomD than on the i3. The
interpreter does not do as well as the GC, but the benefit of the
i3 is muted compared to that for the JIT and the application.

D. Discussion

These results show that each of the VM services exhibit a
distinctly different response to microarchitectural features. The
similarities between the JIT and application are not a surprise.
The characteristics of compilers have been studied extensively
in the literature and are included in many benchmark suites
including the ones we use here. On the other hand, the GC and
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Fig. 9. Adjusting the JIT’s cost-benefit model to account for lower JIT
execution costs yields improvements in total application performance.

interpreter each exhibit striking deviations from the applica-
tion. This heterogeneity presents designers with a significant
opportunity for energy optimizations that tune small general
purpose cores more closely to the microarchitectural needs of
this ubiquitous workload.

E. Further Opportunities for the JIT

Although the JIT is broadly similar to the applications and
therefore may not offer an opportunity for tuned hardware,
executing the JIT on small cores does offer a new opportunity
to improve code quality. Minimizing JIT cost means that in
theory, the JIT can optimize more code, more aggressively,
improving application code quality. Figure 9 evaluates this hy-
pothesis. It compares the total performance (GC, application,
and interpreter, but not JIT) using the standard optimization
decisions that Jikes RVM produces on the first iteration using
its cost benefit analysis (see Section II), to a more aggressive
cost model model that compiles code sooner and compiles
more code. We configure the compiler cost model by reducing
the cost of compilation by a factor of 10. Figure 9 shows that
making the JIT more aggressive improves total performance
by around 5%. This result suggests that software/hardware co-
design has the potential to improve power, performance, and
PPE further.

F. Modeling Future AMP Processors

This section evaluates a hypothetical AMP scenario. The
absence of a suitable AMP processor in silicon and our soft-
ware constraints for executing on an x86 ISA motivate using
a model. Our model combines measured application power
and performance results on the big Phenom II core at 2.6 GHz
with the power and performance results for GC and JIT on
two small Atom cores at 1.66 GHz. We compare this model
to the Phenom II AMP core results from Figure 5, which
we corrected for static power. Because the Atom cores are
projected into the Phenom II die, we assume the Phenom II’s
memory bandwidth and LL cache size, and accordingly raise
the Atom’s performance by 79% and 5% for the GC and
2% and 10% for the JIT, based on our measurements in
Figures 8(d) and 8(e).

For the small cores, which run the VM services, we model
GC throughput by straightforwardly scaling up our measures
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Fig. 10. Modeling total energy, power, time, and PPE of an AMP system.
The light bars show a model of an AMP with one 2.8 GHz Phenom II core and
two Atom cores dedicated to VM services. The dark bars reproduce Phenom II
results from Figure 5 that use a 2.8 GHz dedicated core for VM services.

of GC throughput on the regular Atom according to the adjust-
ments for the Phenom II cache size and memory bandwidth.
We do the same for the JIT, however, we also scale the
JIT from 1C1T to 2C2T making the assumption that the JIT
will scale as well as typical applications. This adjustment is
conservative since the JIT is embarrassingly parallel.

To make our model more accurate, we capture the effect on
the application of slowing down the GC and JIT. We leverage
the results on the Phenom II that down-clock cores in Figure 5.
The modeled performance for the GC on the two Atom cores
is slightly better than on the Phenom II at 2.2 GHz, and the
JIT modeled on the two Atom cores is slightly better than
on the Phenom II at 0.8 GHz. We thus use the application
measurements when running with the 2.2 GHz and 0.8 GHz
dedicated VM services cores respectively. This measurement
conservatively captures the effect on the application of slowing
the GC and JIT.

Figure 10 shows that even our conservative model of the
two Atom cores (light bars) is promising. For the GC alone,
energy improves by 4% due to a performance improvement of
7% but at only a 3% power cost. The JIT alone has slightly
worse total performance impact, but at a commensurate power
cost. Individually, the PPE improvement is 11% and 6% from
GC and JIT respectively. When we bind both the GC and JIT to
the small cores, the result is more than additive results because
of the better utilization of the small cores. Total performance
is very similar to that of the 2.8 GHz dedicated core but power,
energy, and PPE are all markedly improved. The performance
improvement is 13% with only a 5% power cost, resulting in
a 7% energy improvement and a 22% PPE improvement.

Discussion. To realize all these gains requires more research
and infrastructure. At least, we will need (1) big/small core
hardware with new hardware features, e.g., voltage scaling
on a thread basis to, for example, accelerate the interpreter;
(2) on-chip power meters, (3) OS scheduling support; (3)
concurrent GC and parallel JIT tuned for the hardware; and
(4) total system algorithms to coordinate application and VM
threads.

V. RELATED WORK

Several recent publications describe operating system
scheduling algorithms for improving performance on AMP

hardware [9], [10], [11], [12], [13], but the combination of
AMP and VM services is unique to our work. Some work
has however focused on architecture specialization for the
VM workload. Most of this work focuses on GC, although
some early LISP work considers architectures for JIT and
interpretation [27].

Velaso et al. study the energy consumption of state-of-
the-art GCs for designing embedded systems [28]. They use
Jikes RVM, Dynamic SimpleScalar (DSS) [29], and combine
DSS with a CACTI energy/delay/area model to calculate
energy. Their energy simulation results follow the performance
measurements from prior work [25]. Their simulation indi-
cate that GC consumes a disproportionate amount of energy,
but our results refute this finding. Chen et al. study mark-
sweep GC using an energy simulator and the Shade SPARC
simulator [30]. They improve leakage energy by using a GC-
controlled optimization to shut off memory banks that do not
hold live data. Diwan et al. measure the impact of four memory
management strategies on C programs executing on the Itsy
Pocket Computer [31]. Their results demonstrate that the
memory management algorithm changes the program’s energy
consumption. Our paper focuses more broadly on hardware
customization for VM services, rather than improving energy
with GC or selecting an energy-efficient GC algorithm.

Meyer et al. explore hardware for GC [32][33][34]. They
develop a novel processor architecture with an objected-based
RISC core and a GC core using VHDL and generate an
FPGA. Their goals are to eliminate GC pauses for real-time
embedded systems and improve safety and reliability given
stringent safety requirements, such as for satellites and aircraft.
In comparison, we focus on general purpose hardware and
software. Azul systems built a custom chip to run Java business
applications [35]. They redesign about 50% of the CPU and
build their own OS and VM. The chips have special GC
instructions, such as read and write barriers, but do not have
specialized GC cores. Our work focuses more broadly on
VM services and explores if tuning general-purpose multicore
hardware can improve overall PPE.

VI. CONCLUSION

Rapid change in hardware design is relentless. However
changes afoot today in research and industry are increas-
ingly less predictable and more complex. On the other hand,
many application developers are choosing managed languages,
which insulate them from hardware change by a layer of
abstraction. One emerging hardware trend is asymmetric mul-
ticore processors (AMP) with a single ISA. This paper shows
that a software/hardware co-design for big and small cores
and the system software, and in particular VM services, is
a promising approach. Our data suggests that small cores tai-
lored to services such as garbage collection, the interpreter, and
JIT will help AMP deliver on their energy efficiency promise.
By targeting VM services, our approach has broad reach, does
not burden application programmers, nor does it compromise
application portability to rapidly evolving hardware.
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