
Friendly Barriers:
Efficient Work-Stealing With Return Barriers ∗

Vivek Kumar†, Stephen M. Blackburn†, David Grove‡

†Australian National University ‡IBM T.J. Watson Research

Abstract
This paper addresses the problem of efficiently supporting
parallelism within a managed runtime. A popular approach
for exploiting software parallelism on parallel hardware is
task parallelism, where the programmer explicitly identi-
fies potential parallelism and the runtime then schedules the
work. Work-stealing is a promising scheduling strategy that
a runtime may use to keep otherwise idle hardware busy
while relieving overloaded hardware of its burden. How-
ever, work-stealing comes with substantial overheads. Re-
cent work identified sequential overheads of work-stealing,
those that occur even when no stealing takes place, as a sig-
nificant source of overhead. That work was able to reduce
sequential overheads to just 15% [21].

In this work, we turn to dynamic overheads, those that
occur each time a steal takes place. We show that the dy-
namic overhead is dominated by introspection of the victim’s
stack when a steal takes place. We exploit the idea of a low
overhead return barrier to reduce the dynamic overhead by
approximately half, resulting in total performance improve-
ments of as much as 20%. Because, unlike prior work, we
attack the overheads directly due to stealing and therefore
attack the overheads that grow as parallelism grows, we im-
prove the scalability of work-stealing applications. This re-
sult is complementary to recent work addressing the sequen-
tial overheads of work-stealing. This work therefore substan-
tially relieves work-stealing of the increasing pressure due to
increasing intra-node hardware parallelism.
Categories and Subject Descriptors D1.3 [Software]: Concur-
rent Programming – Parallel programming; D3.4 [Programming Lan-
guages]: Processors – Code generation; Compilers; Optimization; Run-time
environments.
General Terms Design, Languages, Performance.
Keywords Scheduling, Task Parallelism, Work-Stealing, X10, Managed
Languages.

∗ This work is supported by IBM and ARC LP0989872. Any opinions,
findings and conclusions expressed herein are the authors’ and do not
necessarily reflect those of the sponsors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
VEE ’14 March 01 - 02 2014, Salt Lake City, UT, USA
Copyright c© 2014 ACM 978-1-4503-2764-0/14/03. . . $15.00
http://dx.doi.org/10.1145/2576195.2576207

1. Introduction
This paper is concerned with the efficient support for dy-
namic task parallelism within managed runtimes. Paral-
lelism is a critical concern as improvements in on-chip per-
formance are now delivered through hardware parallelism
rather than clock scaling — single nodes can now scale to
over one hundred cores.

Dynamic task parallelism is a popular strategy for expos-
ing software parallelism to the underlying hardware. The
programmer exposes the parallelism and the problem of
scheduling that work is delegated to a supporting library or
runtime. Work-stealing has emerged as a popular strategy for
scheduling task parallel work [8, 12, 22, 28]. However, there
are significant overheads associated with work-stealing, both
sequential ones, that manifest whether or not stealing takes
place, and dynamic ones, that manifest when stealing occurs.
Our paper addresses dynamic work-stealing overheads, with
the goal of improving the efficiency and scalability of intra-
node parallelism.

Work-stealing has a long history which includes lazy
task creation [26] and the MIT Cilk project [12], which of-
fered both a theoretical and practical framework. It has also
been adopted by more recent languages including X10 [8],
which we use as the context for the work we present here.
X10 is designed to ease programming of scalable concurrent
and distributed systems, with explicit constructs for paral-
lelism and data distribution. X10 uses a finish/async idiom
to capture software parallelism, and its runtimes use work-
stealing to efficiently schedule the work. Although the work
we present here is evaluated in the context of X10, work-
stealing has much broader application, and we hope that our
insights will be applicable beyond this specific context.

Kumar et al. demonstrate that work-stealing overheads
can be as high as 4×. They evaluate work-stealing overheads
in X10 and attack the problem of sequential overheads; those
that manifest independent of the level of actual parallelism.
They reduced the sequential overheads due to work-stealing
in X10 from around 4× to 15%. They achieved this through
three principal means: a) using the victim’s execution stack
as an implicit deque; b) modifying the runtime to extract ex-
ecution state directly from the victim’s stack and registers;
and c) using the exception handling mechanism to dynami-
cally switch to different versions of code between the thief
and victim.

In this work, we attack the dynamic overheads of work-
stealing; those that manifest as steal rates grow, and are thus
most evident when parallelism is greatest. As core counts
increase, dynamic overheads are an increasingly important
factor in the performance of work-stealing runtimes. We
identify walking the victim’s execution stack at every steal
as the major dynamic cost. We address this problem by
using a return barrier [36] to reduce the time spent scanning
the stack. This reduces dynamic overheads by around 50%,
leading to total performance improvements of up to 20%.

The system we improve upon is already high perfor-
mance. In Section 6.5 we compare our system directly
against the Fork-Join and Habanero-Java frameworks, two
other widely used frameworks that use work-stealing, eval-
uating all three against a straightforward sequential Java
baseline. We show that our system is highly competitive. It
consistently performs well, and in three out of six workloads
it substantially outperforms the other systems (from 50% to
6× better).

The principal contributions of this paper are as follows:
a) a detailed study of the dynamic costs of work-stealing
— costs associated with stealing work from victims; b) an
approach for reducing this overhead and c) evaluation of our
new design using classical work-stealing benchmarks.

The rest of the paper is structured as follows. Section 2
provides the relevant background. Section 3 discusses our
evaluation methodology. Section 4 discusses the motivation
for this work. Section 5 explains the design of our new
system. Section 6 discusses the performance evaluation of
our new design. Section 7 discusses the related work and
finally section 8 concludes the paper.

2. Background
This section provides a brief overview of key background
material, including return barriers, work-stealing and X10.

2.1 Return Barriers
A return barrier, like a write barrier, allows the runtime to
intercept a common event, and (conditionally) interpose spe-
cial semantics. In the case of a write barrier, a runtime typi-
cally interposes itself on pointer field updates, conditionally
remembering updates of pointers in certain conditions. On
the other hand, a return barrier [36], interposes special se-
mantics upon the return from a method (which corresponds
to the popping of a stack frame). One use for a return barrier
is to keep track of a ‘low water mark’ for each stack since
some particular event, such as the last garbage collection. In
a language where pointers into the stack are not permitted,
there is a guarantee that no part of the stack below the low
water mark has been changed since the low water mark was
set. This information can be used to reduce the overhead of
stack scanning. In our work, we use a return barrier to ‘pro-
tect’ the victim from stumbling upon a thief introspecting
the victim’s stack.

1 foo() {
2 val X:Int;
3 val Y:Int;
4 finish {
5 async X = S1();
6 Y = S2();
7 }
8 }

Figure 1. X10’s finish-async style programming
model.

2.2 Work-stealing
Work-stealing is a strategy for efficiently distributing work
in a parallel system. The runtime maintains a pool of worker
threads, each of which maintains a set of tasks. When local
work runs out, the worker becomes a thief and seeks out a
victim thread from which to steal work. A steal occurs when
a thief takes work from a victim. The runtime provides the
thief with the execution context of the stolen work, includ-
ing the execution entry point and sufficient program state for
execution to proceed. The runtime ensures that work is exe-
cuted exactly once and that the state of the program reflects
the contributions of all workers.

2.3 X10
X10 is a strongly-typed, imperative, class-based, object-
oriented programming language. X10 includes specific fea-
tures to support parallel and distributed programming. A
computation in X10 consists of one or more asynchronous
activities (light-weight tasks). A new activity, S, is created
by the statement async S. To synchronize activities, X10
provides the statement finish S. Control will not return
from within a finish until all activities spawned within the
scope of the finish have terminated. Figure 1 shows X10’s
finish-async programming model. X10 is implemented
via compilation to either C++ (native X10) or Java (man-
aged X10).

2.4 DefaultWS work-stealing framework
We use as our baseline the low-overhead work-stealing
framework, JavaWS (Try-Catch), developed by Kumar et
al. [21]. As demonstrated in that previous work, this frame-
work achieves both good scalability and good absolute per-
formance and is therefore a strong foundation for our work.
The baseline framework supports managed X10 and uses the
Jikes RVM [2] Java runtime. As in [21] the benchmark pro-
grams operate directly on Java arrays to avoid the sequential
array access overhead of managed X10. In the rest of the
paper we simply refer to this system as DefaultWS.

DefaultWS relies on: yieldpoints [3], on-stack replace-
ment [11], dynamic code-patching [32], and exception han-
dling. These fundamental mechanisms are already available
in most production JVMs. The key engineering challenge
the DefaultWS solves is how to represent the unusual code
structure and control flow implied by the finish-async

S1

foo
c
b
a

Top

Base
VICTIM

St
ac

k
G

ro
w

th
 D

ire
ct

io
n

z
y
x

THIEF

(a) Initial stack states.

S1

foo
c
b
a

Top

Base
VICTIM

c
b
a

THIEF

foo

(b) Victim is stopped and
thief copies entire stack up to
foo.

S2

foo
c
b
a

THIEF

Top

Base

S1

foo
c
b
a

VICTIM

(c) Victim is released and
thief throws special exception
to start S2.

Figure 2. Stack states during a steal procedure.

programming model in a way that facilitates efficient work-
stealing. The DefaultWS system does this by re-writing
finish-async into regular Java and exploiting the se-
mantics Java offers for exception handling, which is very
efficiently implemented in most modern JVMs. The result
is that the runtime can walk a victim’s stack and identify all
async and finish contexts, resulting in a reduction in
overhead from 4× to just 15%.

When a thief attempts to steal a task, it first requests the
runtime to stop the victim so that it may safely walk the
victim’s execution stack. If the thief finds a steal-able task,
it duplicates the victim’s stack before allowing the victim
to resume. The thief then runs a modified version of the
runtime’s exception delivery code to start this stolen task.
Figure 2 describes this steal process in DefaultWS. The
focus in this paper is on reducing the overheads arising from
the thief interrupting the victim, which are incurred every
time there is an attempt to steal.

We now conduct a quantitative analysis to characterize
the dynamic overheads of workstealing.

3. Methodology
In Section 4 we conduct an analysis to motivate the problem
we address. Before presenting that analysis, we briefly out-
line our experimental methodology, which is also used in the
analysis of our solution, presented in Section 6.

3.1 Benchmarks
Because the primary goal of our work is to reduce the cost
of steal operations, we have intentionally selected some of
our benchmarks with high steal rates (they are available at

http://cs.anu.edu.au/˜vivek/ws-vee-2014/). De-
faultWS almost completely eliminates the sequential over-
heads. This avoids the need to control task granularity and
enhances programmer’s productivity. The programmer only
need to expose parallelism without worrying about the se-
quential per-task overhead. Most of our benchmarks follow
this approach.

In each case we ported the benchmark to plain Java (for
the sequential case). This sequential version does not have
any work-stealing specific calls and also does not have any
synchronization constructs. The managed X10 compiler au-
tomatically generates the Jikes RVM work-stealing runtime
calls from the X10 version of benchmarks. Our six bench-
marks are:

Jacobi Iterative mesh relaxation with barriers: 10 steps of
nearest neighbor averaging on 1024×1024 matrices of
doubles (based on an algorithm taken from Fork-Join).

FFT This is a Cooley-Tukey Fast Fourier Transform algo-
rithm (adopted from Cilk). Input size is 1024×1024.

CilkSort A divide and conquer variant of mergesort (adopted
from Cilk) for sorting 10 million integers.

Barnes-Hut A n-body algorithm to calculate gravitational
forces acting on a galactic cluster of 100000 bodies.
Adopted from Lonestar benchmark suite [20].

UTS The unbalanced tree search benchmark designed in [27].
We have used their tree type T2.

LUD Decomposition of 1024×1024 matrices of doubles
(adopted from Cilk).

3.2 Hardware Platform
All experiments were run on a dual-socket machine with
two Intel Xeon E5-2450 Sandy Bridge processors. Each
processor has eight cores running at 2.10 GHz sharing a
20 MB L3 cache. The machine was configured with 47 GB
of memory.

3.3 Software Platform
Jikes RVM Version 3.1.3. We used the production build.

This is used as the Java runtime for managed X10. The
command line arguments we used are: -Xms1024M -
X:gc:variableSizeHeap=false -X:gc:threads=1.

OpenJDK 64-Bit Server VM (build 20.0-b12, mixed mode).

Fork-Join Java Fork-Join work-stealing framework [22].
Version 1.7.0.

Habanero-Java A work-stealing framework from Rice
University, which uses X10’s finish-async style in
the Java programming language [7]. Version 1.3.1. We
were unable to compile the benchmarks with the adaptive
runtime of Habanero-Java. We build with both work-first
and help-first policies and report the time from the policy
which performs best for a particular benchmark.

http://cs.anu.edu.au/~vivek/ws-vee-2014/

We ported JavaWS (Try-Catch) of Kumar et al. from ver-
sion 3.1.2 of Jikes RVM to version 3.1.3. This also includes
one bug fix. In the original system the thief performs a small
pause in the case when it fails to find a victim from any
worker. After this pause, the thief reiterates searching for a
victim. The downside of the pause is minimal in the case of
infrequent steals, however even this small pause becomes a
measurable overhead in frequent stealing. Hence, we modi-
fied JavaWS (Try-Catch) and allow the thief to continuously
spin, searching for victims. This same setting is used in de-
fault work-stealing implementation of X10.

3.4 Measurements
For each benchmark, we ran twenty invocations, with fifteen
iterations per invocation where each iteration performed the
kernel of the benchmark. We report the mean of the final
five iterations, along with a 95% confidence interval based
on a Student t-test. For each invocation of the benchmark,
the total number of garbage collector threads is kept as one.
We report the mutator time only in all the experiments.

4. Motivating Analysis
Although work-stealing is a very promising mechanism
for exploiting software parallelism, it can bring with it
formidable overheads to the simple sequential case. Kumar
et al. [21] exploited rich features that pre-exist within the
JVM implementation to significantly reduce these overheads
from around 4× to 15% [21]. We use their system to further
attack the problem of dynamic overheads — those associated
with the cost of each steal — which increase as parallelism
increases. Our approach is also to exploit highly optimized
features within the runtime.

The principal sequential costs relate to organizing normal
computation in such a way as to facilitate movement of a
task to another thread if a steal should happen to occur. On
the other hand, the principal cost in the dynamic case lies
in synchronizing victim and thief threads at the time of a
steal to ensure that the thief is able to take the victim’s work
without tripping upon each other.

Kumar et al. leveraged the runtime’s yieldpoint mecha-
nism to yield the victim while each steal took place. The
yieldpoint mechanism is designed precisely for preemption
of threads and has been highly optimized. When a thief ini-
tiates a steal, it sets a yield bit in the victim’s runtime state.
The next time the victim executes a yieldpoint, it will see
the yield bit and yield to the thief. The JVM’s JIT com-
piler injects yieldpoints on method prologues and loop back
edges, tightly bounding the time it takes the victim to yield.
Notwithstanding the efficiency of the yieldpoint mechanism,
this approach nonetheless requires the victim to yield for the
duration of the steal, whether or not the steal is successful.

To shed light on the dynamic costs due to stealing and
further motivate our design, we now measure 1) the steal

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
te

a
ls

 /
 T

a
s
k

Threads

Jacobi

FFT

CilkSort

Barnes-Hut

UTS

LUD

Figure 3. Steal ratio, as a function of thread count.

 0

 5

 10

 15

 20

 25

 30

 35

 40

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
te

a
ls

 P
e

r
M

il
li
s
e
c
o

n
d

Threads

Jacobi

FFT

CilkSort

Barnes-Hut

UTS

LUD

Figure 4. Steal rate as a function of thread count.

rate (steals/msec), and 2) the overhead imposed by the steal
mechanism upon the victims.

4.1 Steal Rate
The steal ratio (Figure 3) is only one dimension of the steal
overheads. We also measure the steal rate (steals per mil-
lisecond), which is shown in Figure 4. Steal rate is calculated
by dividing the total number of steals by the benchmark ex-
ecution time. This indicates how frequently we are forcing
the victim to execute the yieldpoint.

From Figure 3, we can notice that the steal ratio for
Jacobi at 16 threads is as low as 0.0004. However, out of
all the benchmarks, Jacobi has the highest rate of almost 35
steals per millisecond with same number of threads. This
result shows that even a benchmark with very low steal ratio
can still have a very high steal rate. In our next study we
will explore how the high steal rates can affect the overall
performance of the benchmarks.

4.2 Steal Overhead
In this study, we measure the cost of steals as imposed upon
the victim by the thief. We measure this by calculating the

 0

 2

 4

 6

 8

 10

 12

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

D
y
n
a

m
ic

 O
v
e

rh
e
a

d
 (

%
)

Threads

Jacobi

FFT

CilkSort

Barnes-Hut

UTS

LUD

Figure 5. Dynamic overhead as a function of thread count.

percentage of CPU cycles lost by the victim while waiting
for the thief to release it from the yieldpoint. For measuring
the CPU cycles utilized by the work-stealing threads, we
use hardware performance counters. We use the time stamp
counter (TSC) [18] for measuring the cycles lost by the
victim waiting to be released from yieldpoint. These cycles
are summed for all the steals over the benchmark execution.
The result in Figure 5 is calculated by dividing these cycles
by total program execution cycles obtained from hardware
performance counters as mentioned above.

By comparing this overhead in Figure 5 with the steal rate
in Figure 4, we can see that higher steal rates correlate with
higher overheads. The steal overhead can even be as much
as 11.2% (Jacobi with 16 threads). This study clearly shows
that forcing the victim to wait inside a yieldpoint at every
steal is not an efficient strategy.

5. Design and Implementation
The previous sections identified the problem of dynamic
overhead in a work-stealing runtime, highlighting the in-
efficiency of forcing the victim to wait inside a yieldpoint
each time an attempt is made to steal work from it. We ap-
proach the problem by using a return barrier [36], to ‘protect’
the victim from any thief, which may be performing a steal
lower down on the victim’s stack. The insight is that the cost
of the barrier is only incurred each time the victim unwinds
past the barrier. So long as the victim remains above the pro-
tected frame, it sees no cost at all, and yet is fully protected
from any thief stealing work lower down on the stack.

We now discuss the design and implementation of our
return barrier, and the modifications made to DefaultWS
(section 2.4).

5.1 Return Barrier Implementation
We use a return barrier to ‘protect’ the victim from stumbling
upon an active thief. We do this by installing a return barrier
above the stealable frames, allowing the victim to ignore all
steal activity that occurs below the frame in which the barrier

is installed. Only when the frame above the return barrier is
unwound does the victim need to consider the possibility of
an active thief.

A naive implementation of a return barrier would re-
quire some (modest) code to be executed upon every re-
turn, just as a write barrier is typically executed upon every
pointer update. Instead we use an approach similar to that of
Yuasa [36]. We hijack the return address for a given frame,
redirecting it to point to a special return barrier trampoline
method, remembering the original return address is a sepa-
rate data structure. When the affected frame is unwound, the
return takes execution to our trampoline method rather than
the caller of the returning frame. The trampoline method ex-
ecutes the return barrier semantics (which may include re-
installing the return barrier at a lower frame), before return-
ing to the correct calling frame (whose address was remem-
bered in a side data structure). This barrier has absolutely no
overhead in the common case, and only incurs a modest cost
when the frame targeted by the return barrier is unwound.

We can use the return barrier trampoline to protect the
victim from active thieves — ensuring that the victim never
unwinds to a frame a thief is actively stealing. We now
discuss the general process of stealing work before detailing
how we use the return barrier to perform efficient work-
stealing.

5.2 Overview of Conventional Steal Process
Before describing our return barrier-based implementation,
we outline the steps used to perform a steal in the prior
implementation. In this process the thief steals the oldest
unstolen continuation from the victim.

1. The thief initiates a steal.

2. The victim yields execution at the next yieldpoint.

3. The thief performs a walk of the victim’s stack to find
the oldest unstolen continuation frame.

4. The thief adjusts the return addresses of the callee of
the stolen continuation to ensure the unstolen callee is
correctly joined with the stolen continuation upon return.

5. The thief copies the frame of the stolen continuation and
those of each of its callers onto a secondary stack in the
following steps:
• The thief links the copied frame on the secondary

stack.
• The thief scans callee frames to capture any refer-

ences pertinent to the stolen frames. This is neces-
sary due to the callee-save calling conventions used
by many compilers.

6. The victim resumes execution.

7. The thief throws a special exception, which has the effect
of resuming its execution on the secondary stack (which
is now its primary stack).

Frame
Pointer

Return
Address

Frame D Method D

Frame E

E

D*

C*

B*

A*

Top

Base

St
ac

k
G

ro
w

th
 D

ire
ct

io
n

(a) Initial state of victim’s stack.

Top

Base

Frame
Pointer

Return
Address

Frame D trampoline

Frame E

E

Frame
Pointer

Return
Address

Frame D Method D

trampoline Method

D*

C*

B*

A*

(b) Thief installs return barrier on frame E.

D*

C*

B*

A*

Top

Base

Frame
Pointer

Return
Address

Frame C trampoline

Frame D

Frame
Pointer

Return
Address

Frame C Method C

trampoline Method

(c) Victim moves the return barrier on frame D.

Figure 6. The victim’s stack, installation, and movement of the return barrier.

Notice that the victim must yield to the thief throughout
steps 2 to 6. We now discuss how the return barrier can be
used to avoid such yields when possible.

5.3 Installing the First Return Barrier
Figure 6(a) depicts a typical snapshot of a victim’s execu-
tion stack. The stack frames with stealable continuations are
marked with a * in this figure. The newly executed meth-
ods occupy the stack frame slots on the top of the execu-
tion stack. Each stack frame is recognized with the help of
a frame pointer. The value stored inside this pointer is the
frame pointer of the last executed method. The other infor-
mation of interest to us is the return address, which holds
the address where the control should be transferred after un-
winding to the caller frame.

Once the thief has decided to rob this victim, it first
checks whether a return barrier is already installed on the
victim’s execution stack. If it discovers that there is no return
barrier installed, the thief then stops the victim by forcing it
to execute the yieldpoint mechanism (steal step 2). Once the
victim has stopped, the thief starts walking the stack frames
to identify the oldest unstolen continuation (steal step 3). In
our example, it is the frame A. However, before the thief
reaches frame A, it notices that the first (newest) available
continuation is D. It installs a return barrier to intercept
the return from method E to D. The return address and
return frame pointer in E is hijacked by the return barrier
trampoline. The return address stored in E is changed to that
of the return barrier trampoline method. Figure 6(b) depicts
the victim’s modified execution stack.

The victim holds two boolean fields stealInProgress and
safeToUnwindBarrier, which are now marked as true and
false respectively by the thief. The flag stealInProgress is
marked as false at the end of steal step 5, whereas safeToUn-
windBarrier is marked true at the end of steal step 3. After
installing the return barrier, the thief clones the entire stack
of the victim and then allows the victim to continue. The
victim continues the rest of its computation (i.e. frame E),
oblivious to the activity of the thief, while the thief proceeds
further with the stack walk in steal step 3. However, the thief
now switches to the cloned stack of the victim.

5.4 Synchronization Between Thief and Victim During
Steal Process

When the victim finishes executing method E, it returns
via the trampoline method of the return barrier. It checks
whether safeToUnwindBarrier is true. In this example, we
assume it is still false.

Apart from the above two boolean flags, the victim also
has a fixed size address array (we used size 20) to store
frame pointers of its unstolen continuations. During the stack
walk up to frame A, the thief updates the victim’s frame
pointer address array with the frame pointers of C and B
(unstolen continuations). However, in reality there could be
some unstealable frames in between stealable frames D–
A. To make the description simpler, we have chosen this
layout. In cases where there are more continuations than
the victim’s address array size, the thief starts inserting the
surplus addresses from the middle index. After completing
steal step 3 the thief marks the flag safeToUnwindBarrier as
true. The victim is now ready to unwind to frame D.

There are situations when the frame D is the only unstolen
continuation remaining on victim’s stack. In this case the
flag safeToUnwindBarrier will be marked as true only at the
end of steal step 5. In this case, the victim cannot continue
in parallel to the steal procedure so must wait on a condition
variable until stealInProgress is false.

5.5 Victim Moves the Return Barrier
In our running example, the victim is now inside the return
barrier trampoline method. The thief has finished steal step 3
and marked safeToUnwindBarrier as true. Frame C is the
first frame pointer inside victim’s frame pointer address ar-
ray. Victim changes the position of the return barrier and
reinstalls on frame C. After this the victim safely unwinds
to frame D and starts execution of the method D. Figure 6(c)
shows this newly modified stack frame of the victim. It keeps
on changing the return barrier position until the last available
frame pointer in its address array.

Once the steal is complete, the thief sets the victim’s field
stealInProgress to false and signals the victim. The victim
is now ready to branch to join its part of the computation
and become a thief itself. Hence, the return barrier helps the

victim continue its computation in parallel to thief’s steal
steps 3–5.

5.6 Stealing From a Victim with Return Barrier
Pre-installed

Once installed, the return barrier removes the need for the
yieldpoint mechanism in the steal step 2. Any thief that
attempts to steal from a stack with the return barrier installed
simply marks the victim’s field stealInProgress as true and
continues the rest of the steal steps 3–5 concurrently with
the victim’s computation. The thief uses the cloned stack of
the victim (from the previous thief) to complete rest of its
steal phases. We call this type of steal a free steal. There is
no overhead imposed on the victim (unless the victim waits
inside trampoline).

6. Results
We begin our evaluation of return barriers by measuring the
reduction in dynamic overhead before evaluating the overall
performance gain.

6.1 Dynamic Overhead
We measure the dynamic overhead of work-stealing for both
the default system and our system using the return-barrier.
Our methodology remains same as that used in Section 4.2;
we use the TSC to accurately measure the cycles spent wait-
ing for steals and express that as a percentage of total execu-
tion time. Figure 7 shows the dynamic overhead in both the
systems as a function of the number of worker threads. With
16 worker threads, the dynamic overhead reduces in Jacobi
by 29% (i.e. from 11.2% to 8%), in FFT by 40%, in CilkSort
by 46%, in UTS by 60%, in LUD by 24%, and in Barnes-Hut
by 30%.

Now we explore how the use of the return barrier af-
fects steal rates. Figure 8 compares the total number of steals
in ReturnBarrierWS relative to those in DefaultWS. Values
above 1.0 represent higher number of steals in ReturnBar-
rierWS than DefaultWS and vice versa. We observe from
these figures that with the exception of CilkSort (at all thread
counts) and Barnes-Hut (low thread counts), all other bench-
marks exhibit very similar steal rates in both systems. The
higher steal rates at low thread counts in Barnes-Hut show
up in Figure 7(d) as nullifying the return barrier advantage.
On the other hand, the 15% reduction in steals in Cilk-
Sort is consistent with the good result seen in Figure 7(c).
Aside from these two outliers, ReturnBarrierWS sees a sim-
ilar steal rate and consistently reduces the dynamic overhead
in all other benchmarks.

6.2 Overhead of Executing Return Barrier
We now examine the cost to each thread of using the return
barrier. Recall that this cost is only encountered when the
stack unwinds to the point where a trampoline is installed.
The trampoline is executed and it will either: a) reinstall it-
self on the next unstolen continuation frame further down

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

R
e

la
ti
v
e

 t
o

 D
e

fa
u

lt
W

S

Threads

Jacobi

FFT

CilkSort

Barnes-Hut

UTS

LUD

(a) Relative to DefaultWS.

 100

 1000

 10000

 100000

 1e+06

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
o

ta
l
S

te
a
ls

Threads

Jacobi

FFT

CilkSort

Barnes-Hut

UTS

LUD

(b) Absolute steal count.

Figure 8. Total steals in ReturnBarrierWS.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

R
e
tu

rn
 B

a
rr

ie
r

O
v
e
rh

e
a
d
 (

%
)

Threads

Jacobi

FFT

CilkSort

Barnes-Hut

UTS

LUD

Figure 9. Overhead of executing return barrier in victims.

 0

 2

 4

 6

 8

 10

 12

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

D
y
n

a
m

ic
 O

v
e

rh
e

a
d

 (
%

)

Threads

DefaultWS ReturnBarrierWS

(a) Jacobi

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

D
y
n

a
m

ic
 O

v
e

rh
e

a
d

 (
%

)

Threads

DefaultWS ReturnBarrierWS

(b) FFT

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

D
y
n

a
m

ic
 O

v
e

rh
e

a
d

 (
%

)

Threads

DefaultWS ReturnBarrierWS

(c) CilkSort

 0

 1

 2

 3

 4

 5

 6

 7

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

D
y
n

a
m

ic
 O

v
e

rh
e

a
d

 (
%

)

Threads

DefaultWS ReturnBarrierWS

(d) Barnes-Hut

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

D
y
n

a
m

ic
 O

v
e

rh
e

a
d

 (
%

)

Threads

DefaultWS ReturnBarrierWS

(e) UTS

 0

 1

 2

 3

 4

 5

 6

 7

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

D
y
n

a
m

ic
 O

v
e

rh
e

a
d

 (
%

)

Threads

DefaultWS ReturnBarrierWS

(f) LUD

Figure 7. Dynamic overhead in our old and new systems.

before returning to the hijacked frame; or b) wait on a condi-
tion lock if there are no more unstolen continuations left and
the steal is still in progress. We measure this overhead by
using a high-resolution timer and measuring the time spent
performing this operation. Figure 9 shows this overhead as a
percentage of total program execution. With sixteen worker
threads, the maximum overhead is around 0.95% in Jacobi
and the minimum is 0.04% in UTS. However, Barnes-Hut
shows an overhead of 0.7% even with just 3 threads.

Figure 8(b) shows that Barnes-Hut has the highest num-
ber of steals. Even with just three threads, there are around
95000 steals, whereas the closest, LUD, has just 8000 steals.
More steals means more frequent trampoline visits by vic-
tims. This combined with a shallow stack (Section 6.3) leads
to Barnes-Hut showing the highest overhead for the return
barrier (max 1.1%).

6.3 Free Steals From Return Barrier
Recall from Section 5.6 that return barriers allow thieves to
perform some steals for free. Figure 10 shows the percentage
of steals that are free. UTS and CilkSort shows the maximum
number of free steals. As the thread count increases, the
percentage of free steels for these benchmarks converge
close to 30%. FFT has 10% and Jacobi has 7%. Barnes-Hut
and LUD have the lowest (3.5% and 1.5% respectively).

A higher free steal count reflects the return barrier staying
longer on the victim’s stack. This tends to reflect the depth of

 0

 10

 20

 30

 40

 50

 60

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
o
ta

l
F

re
e

 S
te

a
ls

 (
%

)

Threads

Jacobi

FFT

CilkSort

Barnes-Hut

UTS

LUD

Figure 10. Free steals.

victim’s stack. A shallow stack will mean that the victim will
tend to more often unwind past the return barrier, meaning
that the thief tends to more often require the victim to ex-
ecute the yieldpoint mechanism. This reduces opportunities
for the return barrier to reduce the dynamic overhead. Fig-
ure 7 supports this conjecture. LUD and Barnes-Hut benefit
the least, whereas UTS and CilkSort benefits the most.

6.4 Overall Work-Stealing Performance
The goal of this work was to reduce dynamic overheads,
which are naturally most evident when the level of paral-

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

P
e
rf

o
rm

a
n
c
e
 I
m

p
ro

v
e
m

e
n
t

Threads

Jacobi FFT CilkSort Barnes-Hut UTS LUD

Figure 11. ReturnBarrierWS performance relative to DefaultWS.

lelism is high. Now we explore how the use of the return bar-
rier affects performance when the number of threads grows
to 16. In Section 6.5 we add a speedup comparison to the
Fork-Join framework and Habanero-Java.

Figure 11 shows speedup relative to DefaultWS for each
of the benchmarks on our 16 core machine. The time with n
worker threads in ReturnBarrierWS is normalized to the time
for n worker threads in DefaultWS. Values above 1.0 reflect a
benefit. We can expect benefits at high steal rates, which also
happens as parallelism increases. Jacobi reaches the 10%
mark with 13 threads. With 16 threads, Jacobi is 13% faster
and FFT is 20% faster. CilkSort gets a maximum benefit of
5% (15 threads). UTS, LUD and Barnes-Hut almost remains
unchanged.

The absence of a performance improvement in LUD and
Barnes-Hut is despite the fact that their maximum dynamic
overheads (close to 6%) are even higher than that of FFT
(3.5%). The reason for this is little improvement in their
dynamic overheads due to the presence of a shallow stack
(Section 6.3). On the other hand, UTS already has very low
dynamic overhead in DefaultWS (max 0.5%). This results
in no benefit in performance even by reducing its dynamic
overhead by 60%.

6.5 Comparison to Fork-Join and Habanero-Java
The Fork-Join framework [22], which is now a part of Java
7, is a widely used work-stealing framework. Habanero-Java
is another such project, which is inspired from X10 and is
actively being used [7, 13, 14, 23, 34, 37]. To determine the
performance of our system, we now do a speedup compar-
ison with Fork-Join and Habanero-Java on all our bench-
marks. We measure speedup relative to the sequential Java
version of each benchmark.

From the speedup graph in Figure 12, we can see that
ReturnBarrierWS achieves significantly better speedup on
Jacobi, FFT, CilkSort and Barnes-Hut than both the other
systems. For UTS, ReturnBarrierWS performs similar to
Fork-Join but better than Habanero-Java (threads 2 to 10).
LUD performs better in Habanero-Java than both ReturnBar-
rierWS and Fork-Join. However, the gap in LUD speedup
across all the three systems is not very wide.

One interesting point to notice is the poor speedup of
Barnes-Hut and Jacobi in Fork-Join and Habanero-Java.
Compared to the sequential Java version, single threaded
Barnes-Hut is 83% slower in Fork-Join, 95% slower in
Habanero-Java and 30% slower in ReturnBarrierWS. Sim-
ilarly, Jacobi is 70% slower in Fork-Join, 90% slower in
Habanero-Java and 10% slower in ReturnBarrierWS. The
large slowdown in Fork-Join and Habanero-Java is because
of the sequential overheads of work-stealing. Kumar et al.’s
work, which we build upon, successfully attacked sequential
overheads, leading to the good underlying performance we
see here. To verify our findings, we also ran Barnes-Hut and
Jacobi on both Fork-Join and Habanero-Java with OpenJDK
JVM and observe the same behavior. This verified our belief
that its the sequential overhead that is taking the toll on these
two benchmarks.

6.6 Summary
These encouraging results demonstrate that our approach is
effective at reducing the dynamic overhead and also im-
proves scalability. Our approach therefore promises im-
proved performance with increasing parallelism. However,
even for benchmarks with very small dynamic overhead, our
approach does not negatively affect performance.

7. Related Work
Stealing overheads In our work-stealing implementation,
we steal only one task at a time as in native X10, Cilk, Fork-
Join etc. Though stealing one task at a time has been shown
to be sufficient to optimize computation along the ‘criti-
cal path’ to within a constant factor [4, 6], several authors
have argued that the scheme can be improved by allowing
multiple tasks to be stolen at a time [5]. Dinan et al. [10]
demonstrate that a ‘steal-half’ policy gave the best perfor-
mance in their distributed setting. Stealing multiple tasks in
a distributed setting has proven to be better in several other
studies [24, 25, 29]. Guo et al. [13] introduce and evaluate
the help first scheduling policy for the scalability of depth
first search algorithms. Cong et al. [9] explore the idea of
adaptive task batching for irregular graph algorithms. The
thieves steal a batch of tasks at a time, where the batch size
is determined adaptively. Several other authors have also ar-

 0

 1

 2

 3

 4

 5

 6

 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
p

e
e

d
u

p
 o

v
e

r
S

e
q

u
e

n
ti
a

l

Threads

ReturnBarrierWS

ForkJoin

Habanero-Java

(a) Jacobi

 0

 1

 2

 3

 4

 5

 6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
p

e
e

d
u

p
 o

v
e

r
S

e
q

u
e

n
ti
a

l

Threads

ReturnBarrierWS

ForkJoin

Habanero-Java

(b) FFT

 0

 2

 4

 6

 8

 10

 12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
p

e
e

d
u

p
 o

v
e

r
S

e
q

u
e

n
ti
a

l

Threads

ReturnBarrierWS

ForkJoin

Habanero-Java

(c) CilkSort

 0

 1

 2

 3

 4

 5

 6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
p

e
e

d
u

p
 o

v
e

r
S

e
q

u
e

n
ti
a

l

Threads

ReturnBarrierWS

ForkJoin

Habanero-Java

(d) Barnes-Hut

 0

 1

 2

 3

 4

 5

 6

 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
p

e
e

d
u

p
 o

v
e

r
S

e
q

u
e

n
ti
a

l

Threads

ReturnBarrierWS

ForkJoin

Habanero-Java

(e) UTS

 0

 2

 4

 6

 8

 10

 12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
p

e
e

d
u

p
 o

v
e

r
S

e
q

u
e

n
ti
a

l

Threads

ReturnBarrierWS

ForkJoin

Habanero-Java

(f) LUD

Figure 12. Speedup over sequential Java.

gued that stealing multiple tasks works best in irregular al-
gorithms [1, 15, 16, 31].

These studies show that stealing multiple tasks is better
in two cases: a) when performing work-stealing over a dis-
tributed setting, where the cost of stealing from remote node
is substantial and hence stealing multiple tasks amortizes the
communication overhead; and b) in irregular problems, such
as depth-first-search algorithm, that do not fit into the divide-
and-conquer model. However, not all the workloads are ir-
regular in design nor do all follow the divide-and-conquer
style algorithm, where the steal one approach always works
better in non-distributed setting. Though we have targeted
divide-and-conquer style algorithms, our insight of using a
return barrier to reduce the cost of stealing will perform well
in irregular algorithms as well.

Our return barrier mechanism for work-stealing and the
framework by Kumar et al. on which it is built have some
similarity with Umatani et al.’s work [33]. The fundamental
insight is the same in both systems: work-stealing overheads
can be significantly reduced by deferring operations that
most other work-stealing systems perform eagerly. However,
the systems are different in a number of ways including: a)
In their system a thread starts with stack allocated activa-
tion frames. They consider steals to be very infrequent and
hence at every steal, the victim heap allocates all of its con-
tinuations and stores on its deque. This greatly differs from
our system. Frames in our system are always part of exe-

cution stack and simply copied from victim to thief’s exe-
cution stack (not heap allocated). As reported in Section 4,
steals are not always infrequent and hence Umatani et al.’s
assumption would lead to large overheads in those cases. b)
To start a stolen task, explicitly saved states have to be re-
stored from heap. In DefaultWS, states are already a part of
an execution stack and our thief merely throws a special ex-
ception to launch the stolen task. c) In their system, when the
victim’s stack is empty, it tries to get an unstolen heap frame
from its deque. This transition between stack to deque can
be thought of as a return barrier. For the first steal, victim re-
quired synchronization and then again while fetching a heap
allocated frame. However, we use explicit return barriers as
we treat the victim’s execution stack as its implicit deque. d)
They used only two microbenchmarks (Fibonacci and Mat-
mul) to evaluate their implementation. We don’t have access
to their versions of these two tests, but the data presented
in their paper suggests that the sequential overhead on their
improved system for these two tests is about 57% and 20%
respectively. For the same microbenchmarks, Kumar et al.
see sequential overheads on JavaWS (Try-Catch) of 35% and
18% respectively. Like Kumar et al., we too use more bench-
marks including several real world benchmarks.

Return barriers The return barrier mechanism was first
used in [17] in the context of debugging optimized code, to
allow lazy dynamic deoptimization of the stack. It has also

been used in various garbage collector algorithms [19, 30,
35, 36]. In this work, we exploit the return barrier mecha-
nism to optimize the steal process. To our knowledge, return
barriers have not been applied to work-stealing until now.

8. Conclusion
Effectively exposing software parallelism to underlying
hardware is a pressing issue, a problem addressed by task-
based scheduling offered by systems such as the Fork-Join
framework and languages such as X10 and Habanero-Java.
These systems use work-stealing to schedule work across the
underlying parallel hardware. Unfortunately work-stealing
comes with significant overheads. In this work, we identify
victim yields as a major source of remaining overhead, and
show that a return barrier can be used to greatly reduce this
source of overhead. The return barrier allows a thief to steal
from a victim’s stack without requiring the victim to yield in
the common case. Our technique enables improvements of
as much as 20% in total execution time. The extremely low
dynamic overhead should enable increasing speedups with
the increasing parallelism in modern hardware.

References
[1] U. A. Acar, A. Chargueraud, and M. Rainey. Scheduling par-

allel programs by work stealing with private deques. In Pro-
ceedings of the 18th ACM SIGPLAN Symposium on Princi-
ples and Practice of Parallel Programming, PPoPP ’13, pages
219–228, New York, NY, USA, 2013. ACM. ISBN 978-1-
4503-1922-5. doi: 10.1145/2442516.2442538.

[2] B. Alpern, C. Attanasio, J. Barton, M. Burke, P. Cheng,
J. Choi, A. Cocchi, S. Fink, D. Grove, M. Hind, et al. The
Jalapeño virtual machine. IBM Systems Journal, 39(1):211–
238, 2010. ISSN 0018-8670. doi: 10.1147/sj.391.
0211.

[3] M. Arnold, S. Fink, D. Grove, M. Hind, and P. F. Sweeney.
Adaptive optimization in the Jalapeño JVM. In Proceedings
of the 15th ACM International Conference on Object Oriented
Programming Systems Languages and Applications, OOP-
SLA ’00, pages 47–65, New York, NY, USA, 2000. ACM.
ISBN 1-58113-200-X. doi: 10.1145/353171.353175.

[4] N. S. Arora, R. D. Blumofe, and C. G. Plaxton. Thread
scheduling for multiprogrammed multiprocessors. In Pro-
ceedings of the Tenth Annual ACM Symposium on Paral-
lel Algorithms and Architectures, SPAA ’98, pages 119–129,
New York, NY, USA, 1998. ACM. ISBN 0-89791-989-0.
doi: 10.1145/277651.277678.

[5] P. Berenbrink, T. Friedetzky, and L. A. Goldberg. The natural
work-stealing algorithm is stable. SIAM J. Comput., 32(5):
1260–1279, May 2003. ISSN 0097-5397. doi: 10.1137/
S0097539701399551.

[6] R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded
computations by work stealing. J. ACM, 46(5):720–748, Sept.
1999. ISSN 0004-5411. doi: 10.1145/324133.324234.

[7] V. Cavé, J. Zhao, J. Shirako, and V. Sarkar. Habanero-Java: the
new adventures of old X10. In Proceedings of the 9th Inter-
national Conference on Principles and Practice of Program-
ming in Java, PPPJ ’11, pages 51–61, New York, NY, USA,

2011. ACM. ISBN 978-1-4503-0935-6. doi: 10.1145/
2093157.2093165.

[8] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar. X10: An object-
oriented approach to non-uniform cluster computing. In Pro-
ceedings of the 20th Annual ACM SIGPLAN Conference on
Object Oriented Programming Systems Languages and Ap-
plications, OOPSLA ’05, pages 519–538, New York, NY,
USA, 2005. ACM. ISBN 1-59593-031-0. doi: 10.1145/
1094811.1094852.

[9] G. Cong, S. Kodali, S. Krishnamoorthy, D. Lea, V. Saraswat,
and T. Wen. Solving large, irregular graph problems using
adaptive work-stealing. In Proceedings of the 2008 37th Inter-
national Conference on Parallel Processing, ICPP ’08, pages
536–545, Washington, DC, USA, 2008. IEEE Computer So-
ciety. ISBN 978-0-7695-3374-2. doi: 10.1109/ICPP.
2008.88.

[10] J. Dinan, D. B. Larkins, P. Sadayappan, S. Krishnamoorthy,
and J. Nieplocha. Scalable work stealing. In Proceedings of
the Conference on High Performance Computing Networking,
Storage and Analysis, SC ’09, pages 53:1–53:11, New York,
NY, USA, 2009. ACM. ISBN 978-1-60558-744-8. doi: 10.
1145/1654059.1654113.

[11] S. J. Fink and F. Qian. Design, implementation and evaluation
of adaptive recompilation with on-stack replacement. In Pro-
ceedings of the International Symposium on Code Generation
and Optimization: Feedback-directed and Runtime Optimiza-
tion, CGO ’03, pages 241–252, Washington, DC, USA, 2003.
IEEE Computer Society. ISBN 0-7695-1913-X.

[12] M. Frigo, H. Prokop, M. Frigo, C. Leiserson, H. Prokop,
S. Ramachandran, D. Dailey, C. Leiserson, I. Lyubashevskiy,
N. Kushman, et al. The Cilk project. Algorithms, 1998.

[13] Y. Guo, R. Barik, R. Raman, and V. Sarkar. Work-first and
help-first scheduling policies for async-finish task parallelism.
In Proceedings of the 2009 IEEE International Symposium
on Parallel & Distributed Processing, IPDPS ’09, pages 1–
12, Washington, DC, USA, 2009. IEEE Computer Society.
ISBN 978-1-4244-3751-1. doi: 10.1109/IPDPS.2009.
5161079.

[14] Y. Guo, J. Zhao, V. Cave, and V. Sarkar. SLAW: A scalable
locality-aware adaptive work-stealing scheduler for multi-
core systems. In Proceedings of the 15th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Program-
ming, PPoPP ’10, pages 341–342, New York, NY, USA,
2010. ACM. ISBN 978-1-60558-877-3. doi: 10.1145/
1693453.1693504.

[15] D. Hendler and N. Shavit. Non-blocking steal-half work
queues. In Proceedings of the Twenty-first Annual Symposium
on Principles of Distributed Computing, PODC ’02, pages
280–289, New York, NY, USA, 2002. ACM. ISBN 1-58113-
485-1. doi: 10.1145/571825.571876.

[16] R. Hoffmann and T. Rauber. Adaptive task pools: efficiently
balancing large number of tasks on shared-address spaces.
International Journal of Parallel Programming, 39(5):553–
581, 2011.

[17] U. Hölzle, C. Chambers, and D. Ungar. Debugging optimized
code with dynamic deoptimization. In Proceedings of the
ACM SIGPLAN 1992 Conference on Programming Language
Design and Implementation, PLDI ’92, pages 32–43, New

http://dx.doi.org/10.1145/2442516.2442538
http://dx.doi.org/10.1147/sj.391.0211
http://dx.doi.org/10.1147/sj.391.0211
http://dx.doi.org/10.1145/353171.353175
http://dx.doi.org/10.1145/277651.277678
http://dx.doi.org/10.1137/S0097539701399551
http://dx.doi.org/10.1137/S0097539701399551
http://dx.doi.org/10.1145/324133.324234
http://dx.doi.org/10.1145/2093157.2093165
http://dx.doi.org/10.1145/2093157.2093165
http://dx.doi.org/10.1145/1094811.1094852
http://dx.doi.org/10.1145/1094811.1094852
http://dx.doi.org/10.1109/ICPP.2008.88
http://dx.doi.org/10.1109/ICPP.2008.88
http://dx.doi.org/10.1145/1654059.1654113
http://dx.doi.org/10.1145/1654059.1654113
http://dx.doi.org/10.1109/IPDPS.2009.5161079
http://dx.doi.org/10.1109/IPDPS.2009.5161079
http://dx.doi.org/10.1145/1693453.1693504
http://dx.doi.org/10.1145/1693453.1693504
http://dx.doi.org/10.1145/571825.571876

York, NY, USA, 1992. ACM. ISBN 0-89791-475-9. doi: 10.
1145/143095.143114.

[18] Intel Corporation. Using the RDTSC instruc-
tion for performance monitoring, 1997. URL
http://www.intel.com.au/content/dam/
www/public/us/en/documents/white-papers/
ia-32-ia-64-benchmark-code-execution-paper.
pdf.

[19] G. Kliot, E. Petrank, and B. Steensgaard. A lock-free, concur-
rent, and incremental stack scanning for garbage collectors.
In Proceedings of the 2009 ACM SIGPLAN/SIGOPS Interna-
tional Conference on Virtual Execution Environments, VEE
’09, pages 11–20, New York, NY, USA, 2009. ACM. ISBN
978-1-60558-375-4. doi: 10.1145/1508293.1508296.

[20] M. Kulkarni, M. Burtscher, C. Cascaval, and K. Pingali. Lon-
estar: A suite of parallel irregular programs. In Performance
Analysis of Systems and Software, 2009. ISPASS 2009. IEEE
International Symposium on, pages 65–76, 2009. doi: 10.
1109/ISPASS.2009.4919639.

[21] V. Kumar, D. Frampton, S. M. Blackburn, D. Grove, and
O. Tardieu. Work-stealing without the baggage. In Pro-
ceedings of the ACM International Conference on Object
Oriented Programming Systems Languages and Applica-
tions, OOPSLA ’12, pages 297–314, New York, NY, USA,
2012. ACM. ISBN 978-1-4503-1561-6. doi: 10.1145/
2384616.2384639.

[22] D. Lea. A Java Fork/Join framework. In Proceedings of the
ACM 2000 Conference on Java Grande, JAVA ’00, pages 36–
43, New York, NY, USA, 2000. ACM. ISBN 1-58113-288-3.
doi: 10.1145/337449.337465.

[23] R. Lublinerman, J. Zhao, Z. Budimlić, S. Chaudhuri, and
V. Sarkar. Delegated isolation. In Proceedings of the 2011
ACM International Conference on Object Oriented Program-
ming Systems Languages and Applications, OOPSLA ’11,
pages 885–902, New York, NY, USA, 2011. ACM. ISBN 978-
1-4503-0940-0. doi: 10.1145/2048066.2048133.

[24] R. Lüling and B. Monien. A dynamic distributed load bal-
ancing algorithm with provable good performance. In Pro-
ceedings of the Fifth Annual ACM Symposium on Parallel
Algorithms and Architectures, SPAA ’93, pages 164–172,
New York, NY, USA, 1993. ACM. ISBN 0-89791-599-2.
doi: 10.1145/165231.165252.

[25] M. Mitzenmacher. Analyses of load stealing models based
on differential equations. In Proceedings of the Tenth Annual
ACM Symposium on Parallel Algorithms and Architectures,
SPAA ’98, pages 212–221, New York, NY, USA, 1998. ACM.
ISBN 0-89791-989-0. doi: 10.1145/277651.277687.

[26] E. Mohr, D. A. Kranz, and R. H. Halstead, Jr. Lazy task
creation: A technique for increasing the granularity of parallel
programs. In Proceedings of the 1990 ACM Conference on
LISP and Functional Programming, LFP ’90, pages 185–197,
New York, NY, USA, 1990. ACM. ISBN 0-89791-368-X.
doi: 10.1145/91556.91631.

[27] S. Olivier, J. Huan, J. Liu, J. Prins, J. Dinan, P. Sadayappan,
and C.-W. Tseng. UTS: an unbalanced tree search bench-
mark. In Proceedings of the 19th International Conference on
Languages and Compilers for Parallel Computing, LCPC’06,

pages 235–250, Berlin, Heidelberg, 2007. Springer-Verlag.
ISBN 978-3-540-72520-6. URL http://dl.acm.org/
citation.cfm?id=1757112.1757137.

[28] J. Reinders. Intel threading building blocks: outfitting C++
for multi-core processor parallelism. O’Reilly Media, Inc.,
2010.

[29] L. Rudolph, M. Slivkin-Allalouf, and E. Upfal. A simple load
balancing scheme for task allocation in parallel machines. In
Proceedings of the Third Annual ACM Symposium on Paral-
lel Algorithms and Architectures, SPAA ’91, pages 237–245,
New York, NY, USA, 1991. ACM. ISBN 0-89791-438-4.
doi: 10.1145/113379.113401.

[30] H. Saiki, Y. Konaka, T. Komiya, M. Yasugi, and T. Yuasa.
Real-time GC in JeRTyTM VM using the return-barrier
method. In Proceedings of the Eighth IEEE Interna-
tional Symposium on Object-Oriented Real-Time Distributed
Computing, ISORC ’05, pages 140–148, Washington, DC,
USA, 2005. IEEE Computer Society. ISBN 0-7695-2356-0.
doi: 10.1109/ISORC.2005.45.

[31] D. Sanchez, R. M. Yoo, and C. Kozyrakis. Flexible archi-
tectural support for fine-grain scheduling. In Proceedings of
the Fifteenth Edition of ASPLOS on Architectural Support for
Programming Languages and Operating Systems, ASPLOS
XV, pages 311–322, New York, NY, USA, 2010. ACM. ISBN
978-1-60558-839-1. doi: 10.1145/1736020.1736055.

[32] V. Sundaresan, D. Maier, P. Ramarao, and M. Stoodley. Ex-
periences with multi-threading and dynamic class loading in
a Java Just-In-Time compiler. In Proceedings of the Inter-
national Symposium on Code Generation and Optimization,
CGO ’06, pages 87–97, Washington, DC, USA, 2006. IEEE
Computer Society. ISBN 0-7695-2499-0. doi: 10.1109/
CGO.2006.16.

[33] S. Umatani, M. Yasugi, T. Komiya, and T. Yuasa. Pursu-
ing laziness for efficient implementation of modern multi-
threaded languages. In A. Veidenbaum, K. Joe, H. Amano,
and H. Aiso, editors, High Performance Computing, volume
2858 of Lecture Notes in Computer Science, pages 174–188.
Springer Berlin Heidelberg, 2003. ISBN 978-3-540-20359-9.
doi: 10.1007/978-3-540-39707-6_13.

[34] E. Westbrook, J. Zhao, Z. Budimlić, and V. Sarkar. Practi-
cal permissions for race-free parallelism. In Proceedings of
the 26th European Conference on Object-Oriented Program-
ming, ECOOP’12, pages 614–639, Berlin, Heidelberg, 2012.
Springer-Verlag. ISBN 978-3-642-31056-0. doi: 10.1007/
978-3-642-31057-7_27.

[35] T. Yuasa. Real-time garbage collection on general-purpose
machines. J. Syst. Softw., 11(3):181–198, Mar. 1990. ISSN
0164-1212. doi: 10.1016/0164-1212(90)90084-Y.

[36] T. Yuasa, Y. Nakagawa, T. Komiyay, and M. Yasugiy. Return
barrier. In Proceedings of the International Lisp Conference,
2002.

[37] J. Zhao, R. Lublinerman, Z. Budimlić, S. Chaudhuri, and
V. Sarkar. Isolation for nested task parallelism. In Proceed-
ings of the 2013 ACM SIGPLAN International Conference on
Object Oriented Programming Systems Languages and Appli-
cations, OOPSLA ’13, pages 571–588, New York, NY, USA,
2013. ACM. ISBN 978-1-4503-2374-1. doi: 10.1145/
2509136.2509534.

http://dx.doi.org/10.1145/143095.143114
http://dx.doi.org/10.1145/143095.143114
http://www.intel.com.au/content/dam/www/public/us/en/documents/white-papers/ia-32-ia-64-benchmark-code-execution-paper.pdf
http://www.intel.com.au/content/dam/www/public/us/en/documents/white-papers/ia-32-ia-64-benchmark-code-execution-paper.pdf
http://www.intel.com.au/content/dam/www/public/us/en/documents/white-papers/ia-32-ia-64-benchmark-code-execution-paper.pdf
http://www.intel.com.au/content/dam/www/public/us/en/documents/white-papers/ia-32-ia-64-benchmark-code-execution-paper.pdf
http://dx.doi.org/10.1145/1508293.1508296
http://dx.doi.org/10.1109/ISPASS.2009.4919639
http://dx.doi.org/10.1109/ISPASS.2009.4919639
http://dx.doi.org/10.1145/2384616.2384639
http://dx.doi.org/10.1145/2384616.2384639
http://dx.doi.org/10.1145/337449.337465
http://dx.doi.org/10.1145/2048066.2048133
http://dx.doi.org/10.1145/165231.165252
http://dx.doi.org/10.1145/277651.277687
http://dx.doi.org/10.1145/91556.91631
http://dl.acm.org/citation.cfm?id=1757112.1757137
http://dl.acm.org/citation.cfm?id=1757112.1757137
http://dx.doi.org/10.1145/113379.113401
http://dx.doi.org/10.1109/ISORC.2005.45
http://dx.doi.org/10.1145/1736020.1736055
http://dx.doi.org/10.1109/CGO.2006.16
http://dx.doi.org/10.1109/CGO.2006.16
http://dx.doi.org/10.1007/978-3-540-39707-6_13
http://dx.doi.org/10.1007/978-3-642-31057-7_27
http://dx.doi.org/10.1007/978-3-642-31057-7_27
http://dx.doi.org/10.1016/0164-1212(90)90084-Y
http://dx.doi.org/10.1145/2509136.2509534
http://dx.doi.org/10.1145/2509136.2509534

	Introduction
	Background
	Return Barriers
	Work-stealing
	X10
	DefaultWS work-stealing framework

	Methodology
	Benchmarks
	Hardware Platform
	Software Platform
	Measurements

	Motivating Analysis
	Steal Rate
	Steal Overhead

	Design and Implementation
	Return Barrier Implementation
	Overview of Conventional Steal Process
	Installing the First Return Barrier
	Synchronization Between Thief and Victim During Steal Process
	Victim Moves the Return Barrier
	Stealing From a Victim with Return Barrier Pre-installed

	Results
	Dynamic Overhead
	Overhead of Executing Return Barrier
	Free Steals From Return Barrier
	Overall Work-Stealing Performance
	Comparison to Fork-Join and Habanero-Java
	Summary

	Related Work
	Conclusion

