
Work-Stealing Without The Baggage ∗

Vivek Kumar†, Daniel Frampton†§, Stephen M. Blackburn†, David Grove‡, Olivier Tardieu‡

†Australian National University §Microsoft ‡IBM T.J. Watson Research

Abstract
Work-stealing is a promising approach for effectively ex-
ploiting software parallelism on parallel hardware. A pro-
grammer who uses work-stealing explicitly identifies poten-
tial parallelism and the runtime then schedules work, keep-
ing otherwise idle hardware busy while relieving overloaded
hardware of its burden. Prior work has demonstrated that
work-stealing is very effective in practice. However, work-
stealing comes with a substantial overhead: as much as 2×
to 12× slowdown over orthodox sequential code.

In this paper we identify the key sources of overhead
in work-stealing schedulers and present two significant re-
finements to their implementation. We evaluate our work-
stealing designs using a range of benchmarks, four dif-
ferent work-stealing implementations, including the popu-
lar fork-join framework, and a range of architectures. On
these benchmarks, compared to orthodox sequential Java,
our fastest design has an overhead of just 15%. By contrast,
fork-join has a 2.3× overhead and the previous implemen-
tation of the system we use has an overhead of 4.1×. These
results and our insight into the sources of overhead for work-
stealing implementations give further hope to an already
promising technique for exploiting increasingly available
hardware parallelism.

Categories and Subject Descriptors D1.3 [Software]: Con-
current Programming – Parallel programming; D3.3 [Program-
ming Languages]: Language Constructs and Features – Concurrent
programming structures; D3.4 [Programming Languages]: Pro-
cessors – Code generation; Compilers; Optimization; Run-time en-
vironments.
General Terms Design, Languages, Performance.
Keywords Scheduling, Task Parallelism, Work-Stealing, X10,
Managed Languages.

∗ This work is supported by IBM and ARC LP0989872. Any opinions,
findings and conclusions expressed herein are the authors’ and do not
necessarily reflect those of the sponsors.

[Copyright notice will appear here once ’preprint’ option is removed.]

1. Introduction
Today and in the foreseeable future, performance will be
delivered principally in terms of increased hardware paral-
lelism. This fact is an apparently unavoidable consequence
of wire delay and the breakdown of Dennard scaling, which
together have put a stop to hardware delivering ever faster
sequential performance. Unfortunately, software parallelism
is often difficult to identify and expose, which means it is
often hard to realize the performance potential of modern
processors. Work-stealing [3, 9, 12, 18] is a framework for
allowing programmers to explicitly expose potential paral-
lelism. A work-stealing scheduler within the underlying lan-
guage runtime schedules work exposed by the programmer,
exploiting idle processors and unburdening those that are
overloaded. Work-stealing schedulers are used in program-
ming languages, such as Cilk [9] and X10 [3], and in applica-
tion frameworks, such as the Java fork/join framework [12]
and Intel Threading Building Blocks [18].

Although the specific details vary among the various im-
plementations of work-stealing schedulers, they all incur
some form of sequential overhead as a necessary side ef-
fect of enabling dynamic task parallelism. If these over-
heads are significant, then programmers are forced to care-
fully tune their applications to expose the “right” amount
of potential parallelism for maximum performance on the
targeted hardware. Failure to expose enough parallelism re-
sults in under-utilization of the cores; exposing too much
parallelism results in increased overheads and lower over-
all performance. Over-tuning of task size can lead to brit-
tle applications that fail to perform well across a range of
current hardware systems and may fail to properly exploit
future hardware. Therefore, techniques that significantly re-
duce the sequential overheads of work-stealing schedulers
would simplify the programmer’s task by mostly eliminat-
ing the need to tune task size.

In this paper, we analyze the source of the sequential
overheads in the X10 work-stealing implementation. We
then identify two substantially more efficient designs. The
key to our approach is exploiting runtime mechanisms al-
ready available within managed runtimes, namely: a) dy-
namic compilation, b) speculative optimization via code-
patching and on-stack-replacement, and c) support for ex-
ception delivery. We implement our ideas in the Jikes RVM

Work-Stealing Without The Baggage, Kumar et al, OOPSLA 2012 1 2012/12/3



infrastructure and empirically assess them using both a
language-based work stealing scheduler, X10, and a library-
based framework, Java fork/join. We evaluate our implemen-
tation on a range of x86 processors and use the OpenJDK
JVM to validate some of our important results. Our new de-
signs reduce the sequential overhead of X10’s work-stealing
implementation to just 15%, down from a factor of 4.1×.
Our implementation also performs substantially better than
the alternative fork-join framework on our benchmark set.

The principal contributions of this paper are as follows:
a) a detailed study of the sources of overhead in an existing
work-stealing implementation; b) two new designs for work-
stealing that leverage mechanisms that exist within modern
JVMs; c) an evaluation using a set of benchmarks ported to
run in native Java, the Java fork-join framework, and X10;
and d) performance results that show that we can almost
completely remove the sequential overhead from a work-
stealing implementation. These contributions should give
further impetus to work-stealing as a model for effectively
utilizing increasingly available hardware parallelism.

2. Background
This section provides a brief overview of work-stealing be-
fore discussing the fundamental operations required to im-
plement work-stealing. The section also describes two basic
approaches for expressing work-stealing: the finish-async
model (as used by X10), and fork-join.

Abstractly, work-stealing is a simple concept. Worker
threads maintain a local set of tasks and when local work
runs out, they become a thief and seek out a victim thread
from which to steal work.

The elements of a work-stealing runtime are often character-
ized in terms of the following aspects of the execution of a
task-parallel program:

Fork A fork describes the creation of new, potentially par-
allel, work by a worker thread. The runtime makes new work
items available to other worker threads.

Steal A steal occurs when a thief takes work from a victim.
The runtime provides the thief with the execution context of
the stolen work, including the execution entry point and suf-
ficient program state for execution to proceed. The runtime
updates the victim to ensure work is never executed twice.

Join A join is a point in execution where a worker waits
for completion of a task. The runtime implements the syn-
chronization semantics and ensures that the state of program
reflects the contribution of all the workers.

2.1 An Implementation-Oriented Overview
The focus of this is paper is on identifying and reducing
the sequential overheads of work-stealing, so we now turn
to those issues that are pertinent to implementing work-
stealing. It may help to think of the implementation of work-

fib(4)

fib(3) fib(2)

fib(2) fib(1) fib(1) fib(0)

fib(1) fib(0)

(a) Execution graph for fib(4)

1 def fib(n:Int):Int {
2 if (n < 2) return n;
3

4 val a:Int;
5 val b:Int;
6

7 finish {
8 async a = fib(n-1);
9 b = fib(n-2);

10 }
11

12 return a + b;
13 }

(b) Coded in X10.

1 Integer compute() {
2 if (n < 2) return n;
3

4 Fib f1 = new Fib(n - 1);
5 Fib f2 = new Fib(n - 2);
6

7 f1.fork();
8 int a = f2.compute();
9 int b = f1.join();

10

11 return a + b;
12 }

(c) Coded in Fork-Join.

Figure 1. Using work-stealing to implement Fibonacci.

stealing in terms of the following basic phases, each of
which require special support from the runtime or library:

1. Initiation. (Allow tasks to be created and stolen atomi-
cally).

2. State management. (Provide sufficient context for the
thief to be able to execute stolen execution, and the ability
to return results).

3. Termination. (Join tasks and ensure correct termination).

We now explain each of these and what they require of
the runtime, first generally, then concretely in terms of X10
and Java Fork-Join implementations.

To help illustrate work-stealing, we use a running ex-
ample of the recursive calculation of Fibonacci numbers.
Figure 1 shows X10 and Fork-Join code for computing Fi-
bonacci numbers, along with a graph of the recursive calls
made when executing fib(4). Calls to the non-recursive
base case (n < 2) are shown as rectangles.

Work-Stealing Without The Baggage, Kumar et al, OOPSLA 2012 2 2012/12/3



fib(4)

fib(3) fib(2)

fib(2) fib(1) fib(1) fib(0)

fib(1) fib(0)

(a) Execution state

fib(4)

fib(3)

(b) Deque

Figure 2. State during evaluation of fib(4). Execution is
at the first fib(0) task. Dashed arrows indicate work to be
done. Dotted boxes indicate completed work.

2.2 Initiation
Initiation is concerned with ensuring that: 1) tasks are avail-
able to be stolen whenever appropriate, and 2) each task is
only executed once. An idle thread may make itself useful
by stealing work, so becoming a thief. This begins with the
thief identifying a victim from which to steal. For example,
the thief may randomly select a potential victim and if they
appear to have work available, attempt a steal.

Tasks are typically managed by each worker using a
double ended queue (deque), one deque per worker, as il-
lustrated in Figure 2. Each worker pushes tasks onto the
head of its deque using an unsynchronized store operation.
Both the worker and any potential thieves then use atomic
compare-and-swap (CAS) instructions to remove tasks from
the worker’s deque, with the worker acquiring from the
head (newest), and thieves attempting to acquire from the
tail (oldest). Tasks are thus made available and only stolen
once, with the deque discipline minimizing contention and
increasing the probability that long-running tasks are stolen.

2.3 State Management
When a task is stolen, the thief must: 1) acquire all state re-
quired to execute that task, and 2) provide an entrypoint to
begin execution of the task, and 3) be able to return or com-
bine return state with other tasks. Work-stealing implemen-

fib(4)*

fib(3)

fib(2) fib(1)

fib(1) fib(0)

(a) Victim

fib(4)*

fib(2)

fib(1) fib(0)

(b) Thief

Figure 3. State for victim and thief after stealing the con-
tinuation of fib(4).

tations typically meet requirements 1) and 3) through the use
of state objects that capture the required information about
the task, and provide a location for data to be stored and
shared across multiple tasks. Requirement 2) is handled dif-
ferently depending on the execution model, and is discussed
in more detail below for specific systems.

2.4 Termination
In general, the continued execution of a worker is depen-
dent on completion of some set of tasks, each of which may
be executed locally, or by a thief. Such dependencies are
made explicit by the programmer and must be respected by
the implementation of the work-stealing runtime. The work-
stealing runtime must: 1) handle the general case where ex-
ecution waits, dependent on completion of stolen tasks exe-
cuting in parallel. However, it is also critical for the sched-
uler to: 2) efficiently handle the common case where no tasks
in a particular context are stolen, and therefore are all exe-
cuted in sequence by a single worker. Furthermore, work-
stealing schedulers also aim to: 3) maintain a particular level
of parallelism. To ensure that this occurs, when a worker is
waiting on completion of a stolen task, instead of suspending
the worker, the scheduler may attempt to have that worker
find and execute another task.

Work-Stealing Without The Baggage, Kumar et al, OOPSLA 2012 3 2012/12/3



 1

 2

 4

 8

 16

Fib Heat
Integrate

Jacobi

LUD
Matmul

NQueens

QuickSort

min
max

mean
geomean

T
im

e
 /
 T

im
e
 f
o
r 

s
e
q
u
e
n
ti
a
l 
J
a
v
a

Fork-Join

Fork-Join (No Deque)

X10WS (Default)

X10WS (No Deque)

X10WS (No Context, No Deque)

Figure 4. Sequential overheads for work-stealing runtimes on Jikes RVM.

2.5 Work-Stealing in X10
X10 is a strongly-typed, imperative, class-based, object-
oriented programming language. X10 includes specific fea-
tures to support parallel and distributed programming. A
computation in X10 consists of one or more asynchronous
activities (light-weight tasks). A new activity is created by
the statement async S. To synchronize activities, X10 pro-
vides the statement finish S. Control will not return from
within a finish until all activities spawned within the scope
of the finish have terminated.

X10 restricts the use of a local mutable variable inside
async statements. A mutable variable (var) can only be
assigned to or read from within the async it was declared in.
To mitigate this restriction, X10 permits the asynchronous
initialization of final variables (val). A final variable may be
initialized in a child async of the declaring async. A definite
assignment analysis guarantees statically that only one such
initialization will be executed on any code path, so there will
never be two conflicting writes to the same variable.

X10’s work-stealing scheduler is implemented as the
combination of an X10-source-to-X10-source program trans-
formation and a runtime library. The program transformation
synthesizes code artifacts (continuation methods and frame
classes) required by the runtime scheduler. X10 meets the
key work-stealing requirements as follows:

Initiation. X10’s work-stealing workers use deques as de-
scribed above. Like Cilk, X10 adopts a work-first schedul-
ing policy: when a worker encounters an async statement, it
pushes the continuation of the current task to its deque and
proceeds with the execution of the async body. For instance,
a worker running fib(4) first executes fib(3) (Figure 1(b)
line 8), making the fib(2) work item (line 9) available for
others to steal. When done with async fib(3), the worker
attempts to pop the head deque item and if non-null, will
execute the continuation (fib(2), line 9).

State management. Each thread’s stack is private, so in or-
der to permit multiple workers to concurrently access and
update the program state, the X10 compiler encapsulates
sharable state into frame objects. Consequently, methods are
rewritten to operate on fields of frame objects instead of local
variables. Frame objects are linked together into trees that
shadow the tree structure of the task graph. In other words,
Figure 1(a) represents the tree of frame objects assembled
during the execution of fib(4). When X10 is compiled to
Java, frame objects are created on the heap to ensure that
they are accessible to both the worker and potential thieves.
In the C++ implementation however, an optimization is per-
formed that sees frame objects stack-allocated by default,
and only lazily migrated to the heap when a steal occurs [19].
The X10 compiler analyzes the source code and indexes all
of the points immediately after async statements (‘reentry’
points). It then generates a second copy of the source code in
which methods take a pc (program counter) as an extra argu-
ment. The control flow of the generated methods is altered
so as to permit starting execution at the specified pc.

Termination. If a worker proceeds from the beginning of
a finish block to its end without detecting a steal, then that
worker has itself completed every task in the finish context
and may return. Termination is more complex when a steal
occurs. When a thief steals a work item within the scope of
a finish, the scheduler begins maintaining an atomic count
of the active tasks within that finish body. When a worker
completes a task, or execution reaches the end of the finish

body, the count is atomically reduced and checked. If the
count is non-zero, the worker gives up and searches for other
work to process. When the count is zero, then the finish is
complete and worker starts executing the continuation of the
finish statement.

Work-Stealing Without The Baggage, Kumar et al, OOPSLA 2012 4 2012/12/3



2.6 Work-Stealing in Java Fork-Join
The general design of Fork-Join framework is a variant of the
work-stealing framework devised by Cilk and is explained
in detail in [12]. Here we briefly discuss its key components.
The Fibonacci code for Fork-Join is shown Figure 1(c).
Initiation. The Fork-Join library includes both help-first
and work-first implementations. To allow fib(n-1) to be
stolen, the user explicitly heap-allocates a Fib object (Fig-
ure 1(c), line 4) and calls fork() on this object (line 7). Like
X10, every worker thread maintains a deque. fork pushes a
task to the deque, making it available to be stolen.
State Management. In Fork-Join, tasks are represented as
task objects. These objects include: methods for scheduling
and synchronizing with the task, any state associated with
the task, and an explicit entrypoint for executing the task.
Termination. When a worker thread encounters a join

operation, it processes other tasks, if available, until the
subject of the join has been completed (either by the worker
or by a thief). When a worker thread has no work and fails to
steal any from others, it backs off (via yield, sleep, and/or
priority adjustment) and tries again later unless all workers
are known to be similarly idle, in which case they all block
until another task is invoked from the top-level.

3. Motivating Analysis
As we noted earlier, although work-stealing is a very promis-
ing mechanism for exploiting software parallelism, it can
bring with it formidable overheads to the simple sequen-
tial case. These overheads make the task of the program-
mer challenging because they must use work-stealing judi-
ciously so as to extract maximum parallelism without incur-
ring crippling sequential overheads. To shed light on this and
further motivate our designs, we now: 1) identify and mea-
sure the sequential overheads imposed by existing work-
stealing runtimes, and 2) measure the dynamic steal ratio
across a range of parallel benchmarks, showing that un-
stolen tasks are by far the common case. We use eight well-
known benchmarks expressed in X10, Fork-Join and sequen-
tial Java. We ported the code where necessary and have made
the code publicly available (section 6). We discuss the details
of our methodology in Section 6.

3.1 Sequential Overheads
In order to measure sequential overheads, we take work-
stealing runtimes and execute each of them with a single
worker. No stealing can occur in this case, so the runtime
support for stealing is entirely redundant to this set of exper-
iments. This artificial situation allows us to selectively leave
out aspects of the runtime support, providing an opportunity
to analyze the overheads due to work-stealing in more de-
tail. As a baseline we use a straightforward (sequential) Java
implementation of each benchmark.

We have identified three major sources of sequential over-
head in existing work-stealing runtimes. Two are closely re-

lated to the overheads identified in the previous sections,
namely initiation and state management. The final overheads
relate to code restructuring and other changes necessary to
support work-stealing.
Initiation. The deque is an obvious source of overhead
for the victim, which must use synchronized operations to
perform work (even when nothing is stolen). This overhead
may be a significant problem for programs with fine-grained
concurrency. To measure this overhead, we took the X10
and Fork-Join work-stealing runtimes and measured sin-
gle worker performance with all deque operations removed.
(Recall that the deque manages pending work, so the strictly
sequential case of a single worker, it is entirely redundant.)
These results are shown as X10WS (No Deque) and Fork-

Join (No Deque) in Figure 4. These results show that the
deque accounts for just over 30% and 50% of all sequential
overheads for X10WS (Default) and Fork-Join respectively.
State Management. As discussed in Section 2, work-
stealing runtimes typically allocate state objects to allow
sharing and movement of execution state between tasks. In
pure Java, these objects must be heap allocated, leading to
significant overheads. In addition to the direct cost of al-
location and garbage collection, these objects may also be
chained together, and may limit compiler optimizations. Fig-
ure 4 shows the overhead of allocating these state objects in
the X10 Java work-stealing runtime by removing their al-
location in a system that already had the deques removed.
In this case all values are passed on the stack, and no copy-
ing was required because only a single worker exists. This
is shown as X10WS (No Context, No Deque) in Figure 4.
We did not need to perform a similar experiment for Fork-
Join as it would reduce to the sequential Java case (and thus
would show zero overhead). We can see that the allocation
of these state objects is a very significant cost, averaging just
under half of the total overhead.
Code Restructuring. In order to support the stealing of
tasks, the runtime must generate entrypoints with which the
thief can resume execution. This is typically performed by
splitting up methods for the different finish and asyncs.
This code restructuring accounts for part of the performance
gap between X10WS (No Context, No Deque) and sequential
Java. In effect, this overhead includes all overheads due to
X10-to-Java compilation, of which only a subset would be
necessary to support work-stealing.

3.2 Steal Ratio
Work-stealing algorithms aim to ensure that sufficient tasks
are created to keep all processors busy. In practice, how-
ever, much of this potential parallelism is not realized, due to
other activities or a reduced availability of parallelism. Con-
sequently it may be the case that most tasks are consumed
locally. Clearly the number of stolen tasks is bounded by the
total number of tasks, but the fraction of tasks actually stolen
(the steal ratio) is an important component in determining

Work-Stealing Without The Baggage, Kumar et al, OOPSLA 2012 5 2012/12/3



 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

2 3 4 5 6 7 8 9 10 11 12

S
te

a
ls

 /
 T

a
s
k

Threads

Fibonacci

Integrate

Jacobi

Matmul

NQueens

QuickSort

LU

Heat

(a) X10

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

2 3 4 5 6 7 8 9 10 11 12

S
te

a
ls

 /
 T

a
s
k

Threads

Fibonacci

Integrate

Jacobi

Matmul

NQueens

QuickSort

LU

Heat

(b) Fork-Join

Figure 5. Steals to task ratio

if, and how, cost should be traded off between all tasks and
stolen tasks.

We performed a study to understand the steal ratios across
a range of benchmarks. We instrumented each of the work-
stealing runtimes to measure both the total number of tasks
produced (executed async blocks in X10, and fork() calls in
Fork-Join) as well as total number of tasks stolen. We show
the measured ratio in Figure 5.

It is clear from the figure that stealing is generally uncom-
mon and in many cases extremely rare. A single steal may
move substantial work (consider divide-and-conquer algo-
rithms). Because of this, relatively few steals may address a
load imbalance. Although both LU and Heat workloads have
steal ratios that approach one in ten, for many of the bench-
marks the ratio is around one in a million. This result shows
that steals are generally uncommon and suggest that eagerly
preparing for a steal is likely to be an inefficient strategy.

4. Approach
As discussed in Section 2, for work-stealing to function
correctly we must be able to 1) identify a task to be stolen, 2)
provide sufficient context to allow a thief to execute a stolen
task, and 3) reintegrate state due to computation performed
by a thief back into the victim’s execution context.

Each of these operations is only required for tasks that are
actually stolen, and as we saw in 3.2, steal ratios for many
programs are close to zero. The performance of unstolen
tasks is therefore critical to overall performance. In this
work, we try to push the limits as to what aspects of the
above functions can be deferred until a steal occurs, moving
them off the critical path of unstolen tasks. Our particular
approach is to leverage advanced facilities that exist within
the implementation of a modern managed runtime.

4.1 Scalability Concerns
A simple measure of the success of a parallelization con-
struct is scalability. Of course one way to ‘improve’ scala-
bility is to enhance the parallel case at the expense of the
base sequential case. In practice, this is what happens with
existing work-stealing frameworks, which involve substan-
tial overheads in the sequential case. By corollary, our ap-
proach of moving overhead off the common sequential case
(to be absorbed at steal time by the thief) will reduce the
apparent scalability. In our evaluation we express scalability
for all systems as speedup relative to the sequential Java base
case, sidestepping this pitfall by focusing instead on overall
performance. Our argument is that scalability is a means to
improved overall performance, not an end in and of itself.
The question then becomes, is it possible to build a system
that aggressively defers steal-related work, and what is the
actual cost tradeoff of doing so.

4.2 Techniques
Our approach is based on several basic techniques, each de-
scribed in more detail in the context of the implementations
discussed in Section 5.

1. We use the victim’s execution stack as an implicit deque.

2. We modify the runtime to extract execution state directly
from the victim’s stack and registers.

3. We dynamically switch the victim to slow versions of
code to reduce coordination overhead.

We are unaware of any previous work that uses either of
the first two approaches, and due to the support of a managed
runtime, we are able to perform the third more aggressively
than prior work, and with reduced overhead in the common
case.

Work-Stealing Without The Baggage, Kumar et al, OOPSLA 2012 6 2012/12/3



5. Implementation
We have implemented and evaluated two work-stealing run-
times, X10WS (OffStack): a modification of the default X10
work-stealing runtime for JVMs, and X10 (Try-Catch): a
simple runtime implementation on plain Java. Both imple-
mentations support the X10 finish-async model of execu-
tion. Our plain Java X10 (Try-Catch) runtime is targeted by
the X10 compiler.

This section describes each of our work stealing runtime
implementations in terms of the work-stealing requirements
we enumerated in Section 2: initiation, state management,
and termination.

5.1 Runtime Supported X10WS (OffStack)
5.1.1 Initiation
One of the key insights behind the X10WS (OffStack) de-
sign is that we can avoid maintaining an explicit deque by
using existing runtime mechanisms to extract the informa-
tion from the worker’s call stack. This approach eliminates
the significant overhead of managing an explicit deque, but
requires alternative mechanisms to synchronize the victim
and thief, and to manage the set of stealable tasks.
Stack as an implicit deque. In our system the deque is im-
plicitly stored within the worker’s call stack. The X10 com-
piler transforms each X10 async body into a separate Java
method (as it does normally). We attach @IsAsync annota-
tions to these methods, and @HasContinuation annotations
to all methods that call async (and thus have continuations).
A stealable continuation is identified by a caller–callee pair
with a caller marked @HasContinuation and a callee marked
@IsAsync. The head of the deque corresponds to the top
of the worker’s stack. Each worker maintains a stealFrame

pointer, which points to the tail of the deque and is managed
as described below. The body of the deque is the set of all
stealable frames between the top of the stack and the frame
marked by stealFrame. Any worker thread with a non-null
stealFrame field is a potential victim.
Victim–Thief handshake. Once a thief finds a potential
victim, it uses the runtime’s yieldpoint mechanism to force
the victim to yield—the victim is stopped while the steal is
performed. The yieldpoint mechanism is used extensively
within the runtime to support key features, including exact
garbage collection, biased locking, and adaptive optimiza-
tion. Reusing this mechanism allows us to add the hooks to
stop the victim without any additional overhead. Note that
between the point at which a thief attempts a steal, and the
point the victim–thief handshake begins, it is possible that a
task may no longer be available to steal. We measured the
frequency of such failed steal attempts in our evaluation at
around 5-10%.
Maintaining stealFrame. Recall that stealFrame is the
pointer to the tail of the implicit deque. Workers and thieves
maintain stealFrame cooperatively. When a worker starts
executing a task, stealFrame is null, signifying that there

is nothing available to steal. When a worker wants to add
a task to its (implicit) deque, it first checks stealFrame.
If stealFrame is null, then the implicit deque is empty so
stealFrame is updated to point to the new task, which is
now the tail of the (implicit) deque. If stealFrame is already
set, then the new task is not the tail so stealFrame is left un-
modified. stealFrame must also be updated as tasks are re-
moved. A worker must clear stealFrame when it consumes
the tail. A thief updates stealFrame during a steal to either
point to the next stealable continuation, or null if no other
stealable continuation exists.
Ensuring atomicity. A worker detects that a continua-
tion it expected to return to has been stolen by checking if
stealFrame has been set to null. In this case there is no work
left locally, and the worker becomes a thief and searches for
other work to execute.

5.1.2 State Management
When a task is stolen, the thief must take with it sufficient
state to run the task within the thief’s own context. This
includes all local variables used by the stolen task. In our
running example, it is just the parameter n, which is used on
line 9 of Figure 1(b). In the X10WS (OffStack) system, we
perform lazy state extraction, extracting the state from the
victim thread only when a steal occurs.
Extracting state off the stack. We extract state from the
victim stack into the heap so that the thief may access the
state while the victim continues to execute. Because the vic-
tim is stopped during a steal, we are trivially able to dupli-
cate its complete execution state down to the steal point, in-
cluding the stack and registers. At this point the victim may
resume execution. The thief then extracts the state out of the
duplicate stack for each stolen continuation. It does this by
unwinding the duplicate stack whilst a copyingStates flag
is set, which causes reflectively generated code to be exe-
cuted for each frame. The reflective code captures local state
for the frame and interns it in a linked list of heap objects,
one object per frame. At this point all necessary victim state
has been captured and the thief may commence execution.

The principal difference between our approach and the
default X10 mechanism is that we perform state extraction
lazily, only when an effective steal occurs. Compared to
the X10 Java backend, our lazy approach avoids a large
amount of heap allocation. The X10 C++ backend also has
an approach which delays the allocation, but not the use of
state objects, by initially allocating them on the stack and
only lazily moving them to the heap when a steal occurs [19].
In the common case our approach avoids state extraction and
allocation altogether.
Executing stolen tasks. Once state has been extracted, the
thief executes against its heap-interned duplicate stack. The
thief executes specially generated ‘slow’ versions of the
continuations, which access the heap rather than the call
stack for local variables. This is essentially identical to the
default X10 implementation.

Work-Stealing Without The Baggage, Kumar et al, OOPSLA 2012 7 2012/12/3



5.1.3 Termination
Control must only return from a finish context when all
tasks within the context have terminated. To support this,
each thread has a singly linked list with a node for each
finish context that the thread is executing. Each dynamic
finish context has a unique node shared by all threads
running in that context. These nodes form a tree structure,
with a root node for the finish context that represents the
entire program. In X10WS (OffStack), four important pieces
of information are saved at each finish node:

• A linked list of stolen states.
• Frame pointers that identify where it was stolen from the

victim, and where it is now running in the thief.
• A synchronized count of the number of active workers

(initially 2 for the thief and victim).
• An object for storing partial results.

To ensure termination, when each thread leaves the
finish context they decrement the synchronized count. The
thread that drops the count to zero is responsible for execut-
ing the continuation of the finish context. The nodes are
also used as the point for communicating any data that is
required to be made available after the finish.

5.2 X10 (Try-Catch) Java implementation
Our X10 (Try-Catch) implementation is more radical. Our
principal goal was to understand just how far we could re-
duce sequential overheads. To do this we started with plain
Java and built a basic work-stealing framework upon it. We
have modified the X10 compiler to compile to X10 (Try-
Catch). Thus X10 (Try-Catch) represents a new backend for
work-stealing. Because we express X10 (Try-Catch) directly
in plain Java code, it is straightforward to make direct com-
parisons with Java Fork-Join and sequential Java.

5.2.1 Leveraging Exception Handling Support
In Java, the programmer may wrap sections of code in try

blocks, and provide catch blocks to handle particular types
of runtime exceptions. When an exception is thrown within
the context of a try block for which there is a catch block
that matches the exception’s type, control is transferred to
the start of the catch block. Exceptions propagate up the
call stack until a matching catch block is found, or if no
matching block is found the thread is terminated. To support
exception handling, the runtime must maintain a table with
entries that map the instruction address range of a try block
to the instruction address for the catch block, annotated by
the type of exception that can be handled.

Exception handling is designed to allow for the graceful
handling of errors. Because exceptions are important and po-
tentially expensive, JVM implementers have invested heav-
ily in optimizing the mechanisms. Our insight is to leverage
these optimized mechanisms to efficiently implement the pe-

1 int fib(n) {
2 if (n < 2) return n;
3 int a,b;
4 try {
5 try {
6 WS.setFlag();
7 a = fib(n-1);
8 WS.join();
9 } catch (WS.JoinFirst j) {

10 j.addFinishData(0, a);
11 WS.completeStolen();
12 } catch (WS.Continuation c) {
13 // entry point for thief
14 }
15 b = fib(n-2);
16 WS.finish();
17 } catch (WS.FinishFirst f) {
18 f.addFinishData(1, b);
19 WS.completeFinish();
20 } catch (WS.Finish f) {
21 for(WS.FinishData fd: f.data) {
22 if (f.key == 0) a = fd.value;
23 if (f.key == 1) b = fd.value;
24 }
25 }
26 return a + b;
27 }

Figure 6. Pseudocode for the transformation of fib(n) into
X10 (Try-Catch).

culiar control flow requirements of work-stealing. We can
avoid much of the expense generally associated with excep-
tion handling as we never generate a user-level stack trace;
we do not require this trace for work-stealing (we only need
the VM-level stack walk).

Our X10 (Try-Catch) system annotates async and finish

blocks by wrapping them with try/catch blocks with special
work-stealing exceptions as shown in Figure 6. We can then
leverage the exception handling support within the runtime
and runtime compilers to generate exception table entries
to support work stealing. These allow the X10 (Try-Catch)
runtime to walk the stack and identify all async and finish

contexts within which a thread is executing. The role of
each exception type, and how the information is used in
the runtime are described in more detail over the following
sections.

5.2.2 Initiation
As in the X10WS (OffStack) implementation, X10 (Try-
Catch) avoids maintaining an explicit deque. The key differ-
ence between the implementations is that in X10 (Try-Catch)
we use marker try/catch blocks, not method annotations,
to communicate the current deque state to the work-stealing
runtime. Instead of identifying a continuation by a pair of
methods using a frame pointer, we use a combination of the
frame pointer and the offset of a specific catch block. We
use the same thief-initiated handshake for synchronization
between the victim and the thief.
Stack as an implicit deque. X10 (Try-Catch) maintains a
steal flag for each worker thread that indicates that its deque
may have work available to steal. The steal flag is set as the

Work-Stealing Without The Baggage, Kumar et al, OOPSLA 2012 8 2012/12/3



first action within an async (see line 6 in Figure 6). The
steal flag is cleared when the worker or a thief determines
that there is no more work to steal. As with X10WS (OffS-
tack), the head of the task deque corresponds to the top of the
call stack. The list of continuations (from newest to oldest)
is established by walking the set of catch blocks that wrap
the current execution state. We walk this list by running a
modified version of the runtime’s exception delivery code,
searching for catch blocks that handle WS.Continuation

exceptions. As we find entries, we simulate advancing into
the catch block and repeat the search for exception han-
dlers again, finding successively older continuations. Each
worker has a stealToken that acts as a tail for the deque.
The stealToken indicates the point at which the continua-
tion of that worker has been stolen. Any continuations dis-
covered after that point do not belong to that worker, and
must therefore not be stolen from it.
Ensuring atomicity. Atomicity is guaranteed through the
use of the stealToken, which acts as a roadblock for the
worker and thieves to prevent either running or stealing con-
tinuations past that point. We saw above how the stealToken
is used during the steal operation. To ensure that the vic-
tim does not run the continuation again, each async ends
with a call to WS.join(). This call is responsible for check-
ing whether the continuation has been stolen. This requires
checking whether the frame pointer and catch block off-
set for the stealToken match the innermost continuation for
that async, which is discovered using modified exception de-
livery code. When a steal is performed, the thief must also
steal the stealToken from the victim thread, and place a new
stealToken on the victim to prevent it from executing the
stolen continuation.

5.2.3 State Management
In X10 (Try-Catch), state is acquired by the thief through
duplicating the entire execution state of the victim thread, in-
cluding the stack and register state. Unlike in X10WS (Off-
Stack), the state is not extracted to the heap, but is used
directly. No additional resume method is required for the
entrypoint; execution can be transferred to the appropriate
continuation point by delivering a WS.Continuation excep-
tion. The exception delivery code must be slightly different,
because the exception must be delivered to the correct han-
dler (it is not always the innermost exception handler for
WS.Continuation that is correct).
Merging local variable state. While providing the correct
state to start the continuation is made easy, X10 (Try-Catch)
does not have a resume mode to fall back on where local vari-
able state is all stored on the heap. This complicates merg-
ing the results of each of the tasks because the system must
merge the local variables held by multiple copies of the same
frame. In the Fibonacci example, the value of a is set within
the async, while the value of b is set in the continuation.
After the finish, both a and b must be set to ensure that the
correct value is returned. At the end of each async or finish

block there is a call to a runtime support method (WS.join()
or WS.finish()). When these methods are called, two con-
ditions are checked: 1) a steal has occurred within the ap-
propriate finish block, and 2) the programmer has defined
a catch block (WS.Join or WS.FinishFirst respectively)
to save results. If both conditions are met, control is re-
turned to the catch block by throwing an exception, allow-
ing the code to provide local variable values with calls to
addFinishData(key, value). Each key represents a local
variable: in our example key 0 maps to a and 1 maps to b.
The last task to finish executing within the finish can then
access all of these provided values, ensuring that all results
are set correctly.

5.2.4 Termination
Termination is handled in a similar way to X10WS (OffS-
tack). A node is lazily created for each finish context in
which a task is stolen. This node maintains an atomic count
of the number of active tasks in the finish context, and
provides a location for local variable state to be passed be-
tween threads, as described in the previous section. When
a thread decrements the atomic count to zero, it becomes
responsible for running the continuation of the finish con-
text. The X10 (Try-Catch) runtime will deliver a WS.Finish

exception at the appropriate point, allowing the thread to ex-
tract local variable state and continue out from the finish.
This may also update the thread’s stealToken, if the last
thread to finish execution was not the thread running the end
of the finish body. When this occurs, that thread runs the
body of any WS.FinishFirst handler to communicate lo-
cal variables, deposits its stealToken in the finish node, and
searches for other work to complete.

5.2.5 Optimizing Runtime Support Calls
Within the X10 (Try-Catch) runtime, there are many calls
to various WS methods. In the common case where no steal
has occurred, only the call to WS.setFlag() needs to be ex-
ecuted. The call to WS.join() is only required if the con-
tinuation for the enclosing async has been stolen. Similarly,
the call to WS.finish() is only required if at least one steal
has occurred within that finish context. To avoid sequen-
tial overhead in the common case, we generate special fast
versions of methods with these calls, where compiled code
for the calls to these methods are overwritten by NOP instruc-
tions. This makes it simple for us to transfer execution be-
tween these methods as required, without requiring any ad-
ditional exception handling tables for the fast version of the
code. Both fast and slow versions of the code always make
calls to fast versions. We also force calls to WS.setFlag() to
be inlined by the optimizing compiler, which on our primary
Intel platform reduces to a simple store instruction.

Excluding indirect changes in compilation due to the
presence of the try/catch blocks, the only sequential over-
head in X10 (Try-Catch) is the execution of WS.setFlag(),
and some additional NOP instructions.

Work-Stealing Without The Baggage, Kumar et al, OOPSLA 2012 9 2012/12/3



6. Methodology
6.1 Benchmarks
Because the primary goal of our work is to reduce the se-
quential overheads of work-stealing, we have intentionally
selected benchmarks with fairly fine-grained task struc-
tures. As the parallel tasks become coarser, the overheads
of work-stealing become less significant for overall perfor-
mance and the performance of all the approaches to work-
stealing tend to converge. We have used a collection of
eight benchmarks, which are briefly described below (they
are available at http://cs.anu.edu.au/˜vivek/
ws-oopsla-2012/). For each case we ported the bench-
mark to native Java (for the sequential case), Java Fork-Join,
X10 (using both the try-catch and default targets), and our
plain Java try-catch system. For six of the eight benchmarks
we manually generated the code to target the X10WS (OffS-
tack) runtime (we did not implement automatic codegen sup-
port for X10WS (OffStack)). Having implementations of a
common set of benchmarks allowed us to perform apples-to-
apples comparisons of the different work-stealing systems.
Unless specified below, each benchmark is run without any
granularity parameter. The six benchmarks we have for all
systems are:

Fibonacci A simple recursive computation of Fibonacci
numbers. This benchmark is a commonly used micro-
benchmark for task scheduling overhead, as the problem
is embarrassingly parallel and the amount of computation
done within each task is trivial. For our experiments we
computed the 40th Fibonacci number.

Integrate Recursively calculate area under a curve for the
polynomial function x3 + x in the range 0 <= x <=
10000. This benchmark is similar in spirit to Fibonacci,
but each task contains an order of magnitude more work.

Jacobi Iterative mesh relaxation with barriers: 100 steps
of nearest neighbor averaging on 1024 × 1024 matri-
ces of doubles (based on an algorithm taken from Fork-
Join [12]).

Matmul Matrix multiplication of 1024× 1024 matrices of
doubles (based on an algorithm from Habanero Java [2]).

NQueens The classic N-queens problem where 12 queens
are placed on a 12 × 12 board such that no piece could
move to take another in a single move (based on an
algorithm from Barcelona OpenMP Tasks Suite [6]).

Quicksort A recursive algorithm to quicksort a 100 million
element array. It is very sensitive to memory bandwidth
due to the consequences of having to move data between
processors, and thus to aggregate memory bandwidth of
the system as a whole.

The final two benchmarks are significantly more compli-
cated and we did not perform the manual code translation
required for X10WS (OffStack):

LU Decomposition Decomposition of 1024×1024 matri-
ces of doubles (based on algorithm from Cilk-5.4.6 [16]).
Block size of 16 is used to control the granularity.

Heat Diffusion Heat diffusion simulation across a mesh
of size 4096 × 1024 (based on algorithm from Cilk-
5.4.6). Leaf column size of 10 is the granularity parame-
ter. Timestep used is 200.

6.2 Hardware Platform
All experiments were run on a machine with two Intel Xeon
E7530 Nehalem processors. Each processor has six cores
running at 1.87 GHz sharing a 12 MB L3 cache. The ma-
chine is configured with 16 GB of memory.

6.3 Software Platform
We modified both X10 and Jikes RVM, starting with the base
versions described below.

Jikes RVM Version 3.1.2. We used the production build.

X10 (Try-Catch) and X10WS (Default) Based on X10
2.2.2.1, svn revision 23688.

Fork-Join Version 1.7.0.

X10WS (OffStack) Based on X10 2.1.2, svn revision 20276.

Cilk++ Intel’s Cilk++ SDK preview (build 8503) [1]. We
compile our benchmarks with optimization level -O2 and
used the Miser memory manager to avoid the lock con-
tention and false sharing associated with C/C++ runtime
memory management functions [15].

OpenJDK 64-Bit Server VM (build 20.0-b11, mixed mode).

6.4 Measurements
For each benchmark–configuration combination, we ran six
invocations, with three iterations per invocation, where each
iteration performed the kernel of the benchmark five times.
We report the mean of the final iteration, along with a 95%
confidence interval based on a Student t-test. For each in-
vocation of the benchmark, the total number of garbage col-
lector threads is kept the same as application threads. A heap
size of 921 MB is used across all systems. Other than this, all
VMs used in our experiments preserve their default settings.

Many of the benchmarks make extensive use of arrays.
While the Fork-Join and sequential versions of the bench-
marks use Java arrays directly, the X10 compiler is not cur-
rently able to optimize X10 array operations directly into
Java array operations, but does so through a wrapper with
get/set routines. To understand the significance of this over-
head, we also measure a system that we call JavaWS (Try-
Catch), which uses try-catch work-stealing but operates di-
rectly on Java arrays without X10.

Work-Stealing Without The Baggage, Kumar et al, OOPSLA 2012 10 2012/12/3

http://cs.anu.edu.au/~vivek/ws-oopsla-2012/
http://cs.anu.edu.au/~vivek/ws-oopsla-2012/


7. Results
We start by measuring the sequential overhead of each of
the systems before evaluating overall performance, includ-
ing speedup. We then examine the effect of the different
approaches on memory management overheads. We finish
by measuring steal ratios and failed steal attempts for each
benchmark using the modified systems.

7.1 Sequential Overhead
Our primary focus for this paper is the reduction of sequen-
tial overheads as a means of improving overall throughput.
Using the same methodology as in Section 3.1, we restrict
the work-stealing runtimes so that they only use a single
worker thread and then compare their performance to the
purely sequential version of the program.

Figure 7 shows the sequential overhead of the original
X10WS (Default), Fork-Join, our two optimized implemen-
tations, and the JavaWS (Try-Catch) system that uses regular
Java arrays.

Sequential overheads for X10WS (Default) and Fork-
Join are as high as 18× and 8.4× respectively (both for
the Fibonacci benchmark). On average X10WS (OffStack)
eliminates more than half of the sequential overheads of
X10WS (Default) and performs slightly better than Fork-
Join. The X10 (Try-Catch) implementation has consistently
low sequential overheads across all benchmarks, including
for Heat Diffusion and LU Decomposition, where the se-
quential overhead is already quite low on all the systems.

7.2 Work Stealing Performance
Figure 8 shows the speedup relative to sequential Java for
each of the benchmarks and runtimes on our 12 core ma-
chine. Note that we did not measure LU Decomposition and
Heat Diffusion for X10WS (OffStack). This is because we
do not have automatic codegen support for X10WS (Off-
Stack). These results clearly illustrate that the sequential
overheads of work-stealing are the dominant factor in over-
all program performance. The results for the JavaWS (Try-
Catch) runtime are extremely promising. Even in extreme
examples of fine-grained concurrency like Fibonacci and In-
tegrate it is able to outperform the sequential version of the
program at 2 cores and deliver a significant speedup at 12
cores (7× and 8.5× respectively). Despite exhibiting excel-
lent scalability, neither X10WS (Default) or Fork-Join are
able to overcome their larger sequential overheads and show
significant performance improvements over the sequential
code for Fibonacci or Integrate even when using all 12
cores. The differences between the runtimes are less dra-
matic on the other five benchmarks, but the overall trend
holds. All four runtimes show reasonable levels of scala-
bility, but the lower sequential overheads of JavaWS (Try-
Catch) and X10WS (OffStack) result in better overall per-
formance.

In Figure 8 LU Decomposition and Heat Diffusion show
unusual behavior. In LU Decomposition Fork-Join outper-
forms X10 (Try-Catch), and in Heat Diffusion all of the
systems perform nearly identically. Figure 5(a) shows that
LU Decomposition and Heat Diffusion are two benchmarks
with high steal ratios (8% and 13% respectively at 12 cores).
From Figure 2.4 we can also see that the LU Decomposition
and Heat Diffusion benchmarks have almost zero sequential
overhead, indicating that the total number of stealable tasks
is low. This is not a situation where our approach will deliver
significant gains, but we can see that JavaWS (Try-Catch)
still performs nearly the same as all other systems.

To increase the confidence in our results, we also com-
pared overall performance with Cilk++, a C++ implementa-
tion of work stealing, and Fork-Join running on OpenJDK.
Figure 9 shows the result of this experiment. In most cases,
the running time for JavaWS (Try-Catch) is very compet-
itive, particularly as the number of threads is increased. A
notable exception is LU Decomposition where the JavaWS
(Try-Catch) implementation is significantly slower. The
Jikes RVM results in Figure 8(g) show that this slowdown
affects all Jikes RVM configurations, not just JavaWS (Try-
Catch), suggesting pathology in the underlying VM which is
independent of our work stealing implementations. We are
looking into this.

7.3 Memory Management Overheads
A significant source of performance improvement is due
to the fact that X10WS (OffStack) dramatically reduces
the number of heap-allocated frame objects, and X10 (Try-
Catch) removes them altogether. Figure 10 shows the frac-
tion of time spent performing garbage collection for each of
the systems measured. As expected, X10WS (OffStack) and
X10 (Try-Catch) have significantly lower memory manage-
ment overheads than the other work-stealing runtimes. There
is still measurable time spent in garbage collection for the
NQueens and LU Decomposition benchmarks, but this is the
case even for the sequential versions of these benchmarks.
Across all programs the garbage collection fraction is less
than 10%. Note that the garbage collection fraction does not
include the potentially significant cost of object allocation
during application execution. To ensure our performance
improvements were not due to poor collector performance
in Jikes RVM, we also measured the Java based systems
on OpenJDK, and saw that the collection time fraction was
similar, and we know from previous work [21] that the allo-
cation performance of Jikes RVM is highly competitive.

7.4 Steal Ratios
To ensure that our modifications did not dramatically affect
behavior, we also measured the steal ratios for our optimized
systems. The results in Figure 11(c) for X10WS (OffStack)
do not differ significantly to those for the original system in
Figure 5(a). The steal ratio for X10 (Try-Catch) is between
the steal ratios for the other two systems and is shown in

Work-Stealing Without The Baggage, Kumar et al, OOPSLA 2012 11 2012/12/3



 1

 2

 4

 8

 16

Fibonacci

Integrate

Jacobi

Matmul

NQueens

QuickSort

LU*
Heat*

min
max

mean
geomean

T
im

e
 /
 T

im
e
 f
o
r 

s
e
q
u
e
n
ti
a
l 
J
a
v
a

Fork-Join

X10WS (Default)

JavaWS (Try-Catch)

X10WS (OffStack)

X10WS (Try-Catch)

∗We have no implementation of LU Decomposition or Heat Diffusion for X10WS (OffStack).

Figure 7. Overhead when running with a single thread (relative to sequential Java).

Figure 11(a). We also measured the frequency at which steal
attempts failed (due to either another thief or the victim
winning the race to start that continuation). Figure 11(b)
and Figure 11(d) show the failed steal attempts for X10
(Try-Catch) and X10WS (OffStack) respectively. In general,
the fraction of steal failures is less than 10%, only rising
above this figure for a subset of benchmarks (Matmul, LU
Decomposition, and Heat Diffusion) when running with a
small number of threads.

We noticed that the steal ratio for Matmul with three
threads is a persistent outlier for X10 (Try-Catch), X10WS
(OffStack), and also Fork-Join and X10WS (Default) (Fig-
ures 5(a) and 5(b)). We are investigating this anomaly.

7.5 Summary
These results demonstrate that our approach is extremely ef-
fective at reducing sequential overheads, and does not do
this at the cost of scalability. While the size of the benefit
depends on the nature of the benchmark, in the cases where
our approach does not provide a significant benefit, impor-
tantly it also does not negatively affect performance.

8. Related Work
The ideas behind work-stealing have a long history which
includes lazy task creation [17] and the MIT Cilk project [9],
which offered both a theoretical and practical framework.

Languages versus Libraries Work-stealing has been made
available to the programmer as libraries or as part of lan-
guages. Java’s fork/join framework [12], Intel’s Threading
Building Blocks [18], PFunc [11], and Microsoft’s Task Par-
allel Library [13] are all examples of libraries that imple-
ment work-stealing. Users write explicit calls to the library
to parallelize their computation, as in Figure 1(c). X10, the
Cilk-5 runtime [8] and the Habanero runtime [2] on the other

hand are all examples of direct language support for work-
stealing. In principle, a language supported work-stealing
implementation has more opportunities for optimization be-
cause it can bind to and leverage internal runtime mecha-
nisms that are not visible to a library implementation. Con-
versely, library implementations have the pragmatic advan-
tage of being applicable to pre-existing languages.

Work-stealing Deques Several prior studies [4, 5, 14, 20]
use cut-off strategies to control the recursion depth of func-
tion calls during the task generation. This is intended to re-
duce the overhead of task creation and deque operations.
One of our contributions is to be able to use the worker’s
Java thread stack as an implicit deque and thus eliminate the
need to employ cut-off strategies to control sequential over-
head.

Cilk introduced the concept of THE protocol [8] to man-
age the deque. Actions by the worker on the head of the
deque contribute to sequential overhead, while actions by
the thieves on the tail of the deque contribute only to non-
critical-path overhead. Almost all modern work-stealing
schedulers follow this approach. We do not take this ap-
proach. Instead we observe that steals are infrequent and
force the victim to yield when a steal occurs. Although this
implies that the victim does some steal-related work, it only
does so when a steal occurs. As long as the steal ratios are
relatively modest the gain in overall system performance
from our approach results in better scalability than the tradi-
tional approach.

Harnessing Rich Features of a Managed Runtime Man-
aged runtimes provide many sophisticated features, which
are not usually available in a low-level language implemen-
tation. A key runtime feature we use in our work is on-stack
replacement [10], which is already employed in Jikes RVM
for speculative optimizations and adaptive multi-level com-

Work-Stealing Without The Baggage, Kumar et al, OOPSLA 2012 12 2012/12/3



 0

 1

 2

 3

 4

 5

 6

 7

 8

1 2 3 4 5 6 7 8 9 10 11 12

S
p

e
e

d
u

p
 o

v
e

r 
S

e
q

u
e

n
ti
a

l

Threads

Fork-Join

X10WS (Default)

JavaWS (Try-Catch)

X10WS (OffStack)

X10WS (Try-Catch)

(a) Fibonacci

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

1 2 3 4 5 6 7 8 9 10 11 12

S
p

e
e

d
u

p
 o

v
e

r 
S

e
q

u
e

n
ti
a

l

Threads

Fork-Join

X10WS (Default)

JavaWS (Try-Catch)

X10WS (OffStack)

X10WS (Try-Catch)

(b) Integrate

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

1 2 3 4 5 6 7 8 9 10 11 12

S
p

e
e

d
u

p
 o

v
e

r 
S

e
q

u
e

n
ti
a

l

Threads

Fork-Join

X10WS (Default)

JavaWS (Try-Catch)

X10WS (OffStack)

X10WS (Try-Catch)

(c) Jacobi

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

1 2 3 4 5 6 7 8 9 10 11 12

S
p

e
e

d
u

p
 o

v
e

r 
S

e
q

u
e

n
ti
a

l

Threads

Fork-Join

X10WS (Default)

JavaWS (Try-Catch)

X10WS (OffStack)

X10WS (Try-Catch)

(d) Matmul

 0

 1

 2

 3

 4

 5

 6

1 2 3 4 5 6 7 8 9 10 11 12

S
p

e
e

d
u

p
 o

v
e

r 
S

e
q

u
e

n
ti
a

l

Threads

Fork-Join

X10WS (Default)

JavaWS (Try-Catch)

X10WS (OffStack)

X10WS (Try-Catch)

(e) NQueens

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

1 2 3 4 5 6 7 8 9 10 11 12

S
p

e
e

d
u

p
 o

v
e

r 
S

e
q

u
e

n
ti
a

l

Threads

Fork-Join

X10WS (Default)

JavaWS (Try-Catch)

X10WS (OffStack)

X10WS (Try-Catch)

(f) Quicksort

 0

 1

 2

 3

 4

 5

 6

 7

 8

1 2 3 4 5 6 7 8 9 10 11 12

S
p

e
e

d
u

p
 o

v
e

r 
S

e
q

u
e

n
ti
a

l

Threads

Fork-Join

X10WS (Default)

JavaWS (Try-Catch)

X10WS (Try-Catch)

(g) LU Decomposition

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

1 2 3 4 5 6 7 8 9 10 11 12

S
p

e
e

d
u

p
 o

v
e

r 
S

e
q

u
e

n
ti
a

l

Threads

Fork-Join

X10WS (Default)

JavaWS (Try-Catch)

X10WS (Try-Catch)

(h) Heat Diffusion

Figure 8. Speedup relative to sequential Java.

Work-Stealing Without The Baggage, Kumar et al, OOPSLA 2012 13 2012/12/3



 0

 1

 2

 3

 4

 5

 6

 7

1 2 3 4 5 6 7 8 9 10 11 12

T
im

e
 (

s
e

c
o

n
d

s
)

Threads

JavaWS (Try-Catch)

Fork-Join

Cilk++

(a) Fibonacci

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

1 2 3 4 5 6 7 8 9 10 11 12

T
im

e
 (

s
e

c
o

n
d

s
)

Threads

JavaWS (Try-Catch)

Fork-Join

Cilk++

(b) Integrate

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

1 2 3 4 5 6 7 8 9 10 11 12

T
im

e
 (

s
e

c
o

n
d

s
)

Threads

JavaWS (Try-Catch)

Fork-Join

Cilk++

(c) Jacobi

 0

 20

 40

 60

 80

 100

 120

1 2 3 4 5 6 7 8 9 10 11 12

T
im

e
 (

s
e

c
o

n
d

s
)

Threads

JavaWS (Try-Catch)

Fork-Join

Cilk++

(d) Matmul

 0

 0.5

 1

 1.5

 2

 2.5

 3

1 2 3 4 5 6 7 8 9 10 11 12

T
im

e
 (

s
e

c
o

n
d

s
)

Threads

JavaWS (Try-Catch)

Fork-Join

Cilk++

(e) NQueens

 0

 2

 4

 6

 8

 10

 12

 14

1 2 3 4 5 6 7 8 9 10 11 12

T
im

e
 (

s
e

c
o

n
d

s
)

Threads

JavaWS (Try-Catch)

Fork-Join

Cilk++

(f) Quicksort

 0

 1

 2

 3

 4

 5

 6

1 2 3 4 5 6 7 8 9 10 11 12

T
im

e
 (

s
e

c
o

n
d

s
)

Threads

JavaWS (Try-Catch)

Fork-Join

Cilk++

(g) LU Decomposition

 0

 2

 4

 6

 8

 10

 12

 14

1 2 3 4 5 6 7 8 9 10 11 12

T
im

e
 (

s
e

c
o

n
d

s
)

Threads

JavaWS (Try-Catch)

Fork-Join

Cilk++

(h) Heat Diffusion

Figure 9. Running time

Work-Stealing Without The Baggage, Kumar et al, OOPSLA 2012 14 2012/12/3



 1e-05

 0.0001

 0.001

 0.01

 0.1

Fibonacci

Integrate

Jacobi

Matmul

NQueens

QuickSort

LU*
Heat*

F
ra

c
ti
o
n
 o

f 
ti
m

e
 i
n
 G

C

Fork-Join

Sequential

X10WS (Default)

JavaWS (Try-Catch)

X10WS (OffStack)

X10WS (Try-Catch)

∗We have no implementation of LU Decomposition or Heat Diffusion for X10WS (OffStack).

Figure 10. Fraction of time spent performing garbage collection work.

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

2 3 4 5 6 7 8 9 10 11 12

S
te

a
ls

 /
 T

a
s
k

Threads

Fibonacci

Integrate

Jacobi

Matmul

NQueens

QuickSort

LU

Heat

(a) X10 (Try-Catch) steal ratio

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

2 3 4 5 6 7 8 9 10 11 12

F
a

ile
d

 s
te

a
l 
a

tt
e

m
p

ts
 /

 s
u

c
c
e

s
s
fu

l 
s
te

a
ls

Threads

Fibonacci

Integrate

Jacobi

Matmul

NQueens

QuickSort

LU

Heat

(b) X10 (Try-Catch) failure rate

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

2 3 4 5 6 7 8 9 10 11 12

S
te

a
ls

 /
 T

a
s
k

Threads

Fibonacci

Integrate

Jacobi

Matmul

NQueens

QuickSort

(c) X10WS (OffStack) steal ratio

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

2 3 4 5 6 7 8 9 10 11 12

F
a

ile
d

 s
te

a
l 
a

tt
e

m
p

ts
 /

 s
u

c
c
e

s
s
fu

l 
s
te

a
ls

Threads

Fibonacci

Integrate

Jacobi

Matmul

NQueens

QuickSort

(d) X10WS (OffStack) failure rate

Figure 11. Steals to task ratio and steal failure rates for X10 (Try-Catch) and X10WS (Default).

Work-Stealing Without The Baggage, Kumar et al, OOPSLA 2012 15 2012/12/3



pilation [7]. To support on-stack replacement, Jikes RVM’s
compilers generate machine code mapping information for
selected program points that enable extraction of the Java-
level program state from the machine registers and thread
stack and the transfer of this state to newly created stack
frames. We use these existing mechanisms inside Jikes RVM
to walk a victim’s Java thread stack and extract all the pro-
gram state. The thief uses this to establish the necessary con-
text for it to be able to execute stolen work.

The C++ implementation of X10 performs speculative
stack allocation [19]. The victim starts by allocating the
frames on a stack. The thief is responsible for copying the
stolen frames from the victim’s stack to the heap. This is not
possible in the Java X10 implementation since Java does not
support stack allocation. However we are able to leverage
the runtime’s stack walking mechanism to achieve an even
simpler result—the thread state is not preprocessed. There
are no frame objects on either the stack or the heap. Instead,
by using the virtual machine’s internal thread stack walking
capability, we extract the state directly from the stack when
a steal occur. Our approach radically lowers the memory
management load of work-stealing. We are not aware of such
functionality in any work-stealing scheduler.

9. Conclusion
We believe that work-stealing will be an increasingly impor-
tant approach for effectively exploiting software parallelism
on parallel hardware. In this work, we analyzed the sources
of sequential overhead in work-stealing schedulers and de-
signed and implemented two optimized work-stealing run-
times that significantly reduce them by building upon exist-
ing runtime services of modern JVMs. Our empirical results
demonstrate that we can almost completely remove the se-
quential overhead from a work-stealing implementation and
therefore obtain performance improvements over sequential
code even at modest core counts.

We plan to continue exploring ways in which JVM run-
time mechanisms can be adapted to further improve work-
stealing. One avenue of exploration is to investigate tech-
niques for reducing the stop time on the victim threads by
applying ideas from concurrent garbage collection. For ex-
ample, stack barriers could be employed to enable state ex-
traction by the thief to happen mostly concurrently with vic-
tim execution. This should reduce stealing overheads and en-
able the system to tolerate much higher steal ratios without
losing performance.

References
[1] Intel R© CilkTM Plus sdk. URL http://software.

intel.com/en-us/articles/intel-cilk-plus.

[2] V. Cavé, J. Zhao, J. Shirako, and V. Sarkar. Habanero-Java: the
new adventures of old X10. In Proceedings of the 9th Inter-
national Conference on Principles and Practice of Program-
ming in Java, PPPJ ’11, pages 51–61, New York, NY, USA,

2011. ACM. ISBN 978-1-4503-0935-6. doi: 10.1145/
2093157.2093165.

[3] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar. X10: an object-
oriented approach to non-uniform cluster computing. In Pro-
ceedings of the 20th annual ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and ap-
plications, OOPSLA ’05, pages 519–538, New York, NY,
USA, 2005. ACM. ISBN 1-59593-031-0. doi: 10.1145/
1094811.1094852.

[4] G. Cong, S. Kodali, S. Krishnamoorthy, D. Lea, V. Saraswat,
and T. Wen. Solving large, irregular graph problems using
adaptive work-stealing. In Proceedings of the 2008 37th Inter-
national Conference on Parallel Processing, ICPP ’08, pages
536–545, Washington, DC, USA, 2008. IEEE Computer So-
ciety. ISBN 978-0-7695-3374-2. doi: 10.1109/ICPP.
2008.88.

[5] A. Duran, J. Corbalán, and E. Ayguadé. Evaluation of
OpenMP task scheduling strategies. In Proceedings of the 4th
international conference on OpenMP in a new era of paral-
lelism, IWOMP’08, pages 100–110, Berlin, Heidelberg, 2008.
Springer-Verlag. ISBN 3-540-79560-X, 978-3-540-79560-
5. URL http://dl.acm.org/citation.cfm?id=
1789826.1789838.

[6] A. Duran, X. Teruel, R. Ferrer, X. Martorell, and E. Ayguade.
Barcelona OpenMP tasks suite: A set of benchmarks targeting
the exploitation of task parallelism in OpenMP. In Proceed-
ings of the 2009 International Conference on Parallel Pro-
cessing, ICPP ’09, pages 124–131, Washington, DC, USA,
2009. IEEE Computer Society. ISBN 978-0-7695-3802-0.
doi: 10.1109/ICPP.2009.64.

[7] S. J. Fink and F. Qian. Design, implementation and eval-
uation of adaptive recompilation with on-stack replacement.
In Proceedings of the international symposium on Code
generation and optimization: feedback-directed and runtime
optimization, CGO ’03, pages 241–252, Washington, DC,
USA, 2003. IEEE Computer Society. ISBN 0-7695-1913-
X. URL http://dl.acm.org/citation.cfm?id=
776261.776288.

[8] M. Frigo, C. E. Leiserson, and K. H. Randall. The imple-
mentation of the Cilk-5 multithreaded language. In Proceed-
ings of the ACM SIGPLAN 1998 conference on Programming
language design and implementation, PLDI ’98, pages 212–
223, New York, NY, USA, 1998. ACM. ISBN 0-89791-987-4.
doi: 10.1145/277650.277725.

[9] M. Frigo, H. Prokop, M. Frigo, C. Leiserson, H. Prokop,
S. Ramachandran, D. Dailey, C. Leiserson, I. Lyubashevskiy,
N. Kushman, et al. The Cilk project. Algorithms, 1998.

[10] U. Hölzle, C. Chambers, and D. Ungar. Debugging optimized
code with dynamic deoptimization. In Proceedings of the
ACM SIGPLAN 1992 conference on Programming language
design and implementation, PLDI ’92, pages 32–43, New
York, NY, USA, 1992. ACM. ISBN 0-89791-475-9. doi: 10.
1145/143103.143114.

[11] P. Kambadur, A. Gupta, A. Ghoting, H. Avron, and A. Lums-
daine. PFunc: modern task parallelism for modern high
performance computing. In Proceedings of the Conference

Work-Stealing Without The Baggage, Kumar et al, OOPSLA 2012 16 2012/12/3

http://software.intel.com/en-us/articles/intel-cilk-plus
http://software.intel.com/en-us/articles/intel-cilk-plus
http://dx.doi.org/10.1145/2093157.2093165
http://dx.doi.org/10.1145/2093157.2093165
http://dx.doi.org/10.1145/1094811.1094852
http://dx.doi.org/10.1145/1094811.1094852
http://dx.doi.org/10.1109/ICPP.2008.88
http://dx.doi.org/10.1109/ICPP.2008.88
http://dl.acm.org/citation.cfm?id=1789826.1789838
http://dl.acm.org/citation.cfm?id=1789826.1789838
http://dx.doi.org/10.1109/ICPP.2009.64
http://dl.acm.org/citation.cfm?id=776261.776288
http://dl.acm.org/citation.cfm?id=776261.776288
http://dx.doi.org/10.1145/277650.277725
http://dx.doi.org/10.1145/143103.143114
http://dx.doi.org/10.1145/143103.143114


on High Performance Computing Networking, Storage and
Analysis, SC ’09, pages 43:1–43:11, New York, NY, USA,
2009. ACM. ISBN 978-1-60558-744-8. doi: 10.1145/
1654059.1654103.

[12] D. Lea. A Java fork/join framework. In Proceedings of the
ACM 2000 conference on Java Grande, JAVA ’00, pages 36–
43, New York, NY, USA, 2000. ACM. ISBN 1-58113-288-3.
doi: 10.1145/337449.337465.

[13] D. Leijen, W. Schulte, and S. Burckhardt. The design of a
task parallel library. In Proceedings of the 24th ACM SIG-
PLAN conference on Object oriented programming systems
languages and applications, OOPSLA ’09, pages 227–242,
New York, NY, USA, 2009. ACM. ISBN 978-1-60558-766-0.
doi: 10.1145/1640089.1640106.

[14] H.-W. Loidl and K. Hammond. On the granularity of divide-
and-conquer parallelism. In Proceedings of the 1995 Interna-
tional Conference on Functional Programming, FP’95, pages
135–144, Swinton, UK, UK, 1995. British Computer Soci-
ety. URL http://dl.acm.org/citation.cfm?id=
2227330.2227343.

[15] J. Mellor-Crummey. Cilk++, parallel performance,
and the cilk runtime system. URL http://www.
clear.rice.edu/comp422/lecture-notes/
comp422-2012-Lecture5-Cilk++.pdf.

[16] MIT. The Cilk project. URL http://supertech.
csail.mit.edu/cilk/index.html.

[17] E. Mohr, D. Kranz, Halstead, and J. R.H. Lazy task cre-
ation: A technique for increasing the granularity of parallel
programs. Technical report, Cambridge, MA, USA, 1991.

[18] J. Reinders. Intel threading building blocks: outfitting C++
for multi-core processor parallelism. O’Reilly Media, Inc.,
2007.

[19] O. Tardieu, H. Wang, and H. Lin. A work-stealing scheduler
for X10’s task parallelism with suspension. In Proceedings
of the 17th ACM SIGPLAN symposium on Principles and
Practice of Parallel Programming, PPoPP ’12, pages 267–
276, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-
1160-1. doi: 10.1145/2145816.2145850.

[20] L. Wang, H. Cui, Y. Duan, F. Lu, X. Feng, and P.-C. Yew. An
adaptive task creation strategy for work-stealing scheduling.
In Proceedings of the 8th annual IEEE/ACM international
symposium on Code generation and optimization, CGO ’10,
pages 266–277, New York, NY, USA, 2010. ACM. ISBN 978-
1-60558-635-9. doi: 10.1145/1772954.1772992.

[21] X. Yang, S. M. Blackburn, D. Frampton, J. B. Sartor, and
K. S. McKinley. Why nothing matters: the impact of ze-
roing. In Proceedings of the 2011 ACM international con-
ference on Object oriented programming systems languages
and applications, OOPSLA ’11, pages 307–324, New York,
NY, USA, 2011. ACM. ISBN 978-1-4503-0940-0. doi: 10.
1145/2048066.2048092.

Work-Stealing Without The Baggage, Kumar et al, OOPSLA 2012 17 2012/12/3

http://dx.doi.org/10.1145/1654059.1654103
http://dx.doi.org/10.1145/1654059.1654103
http://dx.doi.org/10.1145/337449.337465
http://dx.doi.org/10.1145/1640089.1640106
http://dl.acm.org/citation.cfm?id=2227330.2227343
http://dl.acm.org/citation.cfm?id=2227330.2227343
http://www.clear.rice.edu/comp422/lecture-notes/comp422-2012-Lecture5-Cilk++.pdf
http://www.clear.rice.edu/comp422/lecture-notes/comp422-2012-Lecture5-Cilk++.pdf
http://www.clear.rice.edu/comp422/lecture-notes/comp422-2012-Lecture5-Cilk++.pdf
http://supertech.csail.mit.edu/cilk/index.html
http://supertech.csail.mit.edu/cilk/index.html
http://dx.doi.org/10.1145/2145816.2145850
http://dx.doi.org/10.1145/1772954.1772992
http://dx.doi.org/10.1145/2048066.2048092
http://dx.doi.org/10.1145/2048066.2048092

	Introduction
	Background
	An Implementation-Oriented Overview
	Initiation
	State Management
	Termination
	Work-Stealing in X10
	Work-Stealing in Java Fork-Join

	Motivating Analysis
	Sequential Overheads
	Steal Ratio

	Approach
	Scalability Concerns
	Techniques

	Implementation
	Runtime Supported X10WS (OffStack)
	Initiation
	State Management
	Termination

	X10 (Try-Catch) Java implementation
	Leveraging Exception Handling Support
	Initiation
	State Management
	Termination
	Optimizing Runtime Support Calls


	Methodology
	Benchmarks
	Hardware Platform
	Software Platform
	Measurements

	Results
	Sequential Overhead
	Work Stealing Performance
	Memory Management Overheads
	Steal Ratios
	Summary

	Related Work
	Conclusion

