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Abstract
Many of today’s programming languages are broken. Poor performance, lack of features and
hard-to-reason-about semantics can cost dearly in software maintenance and inefficient execu-
tion. The problem is only getting worse with programming languages proliferating and hardware
becoming more complicated. An important reason for this brokenness is that much of language
design is implementation-driven. The difficulties in implementation and insufficient understand-
ing of concepts bake bad designs into the language itself. Concurrency, architectural details and
garbage collection are three fundamental concerns that contribute much to the complexities of
implementing managed languages.

We propose the micro virtual machine, a thin abstraction designed specifically to relieve
implementers of managed languages of the most fundamental implementation challenges that
currently impede good design. The micro virtual machine targets abstractions over memory
(garbage collection), architecture (compiler backend), and concurrency. We motivate the micro
virtual machine and give an account of the design and initial experience of a concrete instance,
which we call Mu, built over a two year period. Our goal is to remove an important barrier to
performant and semantically sound managed language design and implementation.
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1 Introduction

Today’s programming landscape is littered with otherwise important languages that are
inefficient and/or hard to program. The proliferation of these languages is not symptomatic
of a disease but evidence of a vibrant programming language ecosystem. The appeal of
such languages has seen them become heavily used in critical settings. Unfortunately, the
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Figure 1. Three implementation strategies for a managed language L. Traditional VMs (left)
are typically monolithic designs, reusing little or nothing. Macro VMs such as the JVM and .NET
(center) provide heavyweight reuse but offer far more than many language runtimes need. A micro
virtual machine (right) provides only a thin abstraction over core concerns.

performance overheads in many cases are best measured on a log scale, leading to very
real costs for the companies that have come to depend on them. Likewise, inscrutable
semantics cost dearly as systems grow and maintenance becomes a nightmare. The vibrancy
of the language ecosystem and rapid changes in the nature of the systems on which they are
deployed suggests to us that this is a problem that is set only to get worse.

Our position is that many of the performance and semantic issues that befall such
languages can be traced to fundamental implementation challenges. For example, PHP’s
confounding copy-on-write semantics [16], can be traced directly to a bug report dating
to 2002, in which a user first observed the behavior [15]. Five days later, upon realizing
that the fix would be challenging, the developers declared the “broken” semantics to be
a feature of the language, and it has remained so to this day. The engineering challenge
of implementing a garbage collector has led many languages to depend on naïve reference
counting in their earliest implementations despite its well-known performance limitations
and inability to collect cycles [11, 2]. When the owners of the language then make virtue
of necessity and expose reference counting semantics in the language, this expensive but
expedient implementation choice gets baked in. Similarly, the intellectual challenge of
correctly supporting concurrency has led many languages to have a weak, broken, or absent
model of concurrency, a limitation that grows increasingly embarrassing as stock hardware
offers higher and higher degrees of parallelism.

Three fundamental concerns contribute to much of the complexity of language imple-
mentation: compiler back ends, garbage collection, and concurrency. Each are technical
minefields in their own right but when brought together in a language runtime, their respect-
ive complexities combine in very challenging ways. Each of these concerns is rich enough to
warrant a well developed research sub-community and rich literature of its own. We surveyed
a handful of language maintainers and found a near-universal desire to be unburdened of the
need to deal with these elements of language implementation, which cannot be ignored and
yet frequently distract from the language implementer’s principal interest in the higher levels
of the language’s design and implementation.

We propose a micro virtual machine as a robust, performant and lightweight abstraction
over just three concerns: hardware (compiler back end), memory (garbage collector), and
concurrency (scheduler and memory model for language implementers). Such a foundation
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attacks many of the issues that face existing language designs and implementations, leaving
language implementers free to focus on the higher levels of the language design.

Unlike LLVM [13], a micro virtual machine is not a compiler framework, it natively
supports garbage collection and concurrency, while performance-critical language-specific
optimizations are performed outside the micro virtual machine in higher layers of the run-
time stack. Unlike monolithic language implementations, a micro virtual machine explicitly
supports cross-language reuse of demanding implementation details. Unlike the JVM, CLR,
and LLVM, a micro virtual machine is minimalist, and explicitly designed to support the
development of new languages, targeting a low level of abstraction, minimizing the semantic
gap [5].

We have embarked on the ambitious project of designing and constructing a concrete
instantiation of a micro virtual machine, with the goal of testing our hypothesis that it
will advance the cause of language design and implementation. This paper reports on our
motivation and two years of experience in designing and building a prototype micro virtual
machine, which we call Mu. The current Mu specification is available online [14]. We will
discuss a few of the more interesting aspects of the system design and implementation,
including the type system, exact garbage collection, dynamism including OSR, the IR and
API, and the pervasive design requirement of minimalism. We will include discussion of our
preliminary experience in targeting Lua and Python implementations to Mu.

Ambitious as it is, our primary goal is that future languages will be less likely to have their
semantics and performance dictated by fundamental implementation hurdles imposed upon
the designers early in the language’s life. A secondary goal is to improve existing language
implementations, unburdening developers from elements of the language implementation that
are critical but relatively uninteresting to them. It is not a goal of our project to improve
upon language implementations that have benefited from massive commercial investments,
such as Java.

2 Motivation

A large fraction of today’s software is written in managed languages. Examples include JavaS-
cript, PHP, Objective-C, Java, C#, Python, and Ruby. These languages are economically
important. For example, Facebook depends on servers running PHP for its core business of ef-
ficiently delivering hundreds of billions of page views a month, Apple depends on Objective-C
for every iPhone app, while Google depends on Java for its Android apps, and uses JavaScript
to power its most widely used web applications including search and Gmail. Unfortunately,
some of these languages are notoriously inefficient, imposing overheads as large as a factor of
fifty compared to orthodox language choices such as C. The source of this inefficiency often
lies in the language implementation (rather than the language itself), and this systemically
impedes all applications written in that language. Moreover, early implementation choices
often impede evolution of the language and/or implementation by baking implementation
decisions into the language definition. A classic example is the transition from the early
implementation “mistake” that resulted in dynamic scoping for LISP to the much saner
static scoping. Similarly, PHP and Perl assume that their implementations use an extremely
naïve reference counting memory management strategy [18]. As another example, Python’s
infamous “global interpreter lock” (GIL) [3] is a relic of an early implementation decision that
limits Python and its GIL-infected peers (e.g., Ruby) to sequential (non-parallel) execution,
preventing programs from fully exploiting modern parallel hardware.

Implementing a new language can be easy when it is done naïvely, but taking the care
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to avoid early bad design decisions is hard. Enthusiastic implementers want to get their
new language up and running without initially worrying about performance. But improving
performance can require significant investment to achieve: witness the large investment by
Sun/Oracle, IBM and others over many years to get Java to perform, and the competition
among companies to make their JavaScript implementations outperform their competitors.
And bad early language design and implementation decisions can cost even more to overcome.

The origins of systemic inefficiency of new languages often comes from the way they
are implemented. When a language is implemented from the ground up in a monolithic
fashion, developers must directly address every performance challenge. The problem is
that different challenges often have subtle interactions. For example, the compiler, garbage
collector, and thread subsystems must be designed to work together, but few developers
have expertise in more than one of these subsystems. Fewer still will have expertise in
their intersection, such as in the design and implementation of GC maps. An alternative
approach is to avoid implementation challenges by building on top of existing language
infrastructures, such as the JVM or .NET. These are large, heavily-invested platforms
supporting advanced memory management, portability, aggressive just-in-time compilation,
advanced support for concurrency, and come with extensive libraries. Both the JVM and
CLR dictate a high level of abstraction tailored to the languages they support, which reduces
the implementation effort, but which can be a poor match to the new language [5]. There
are less obvious disadvantages. For example, the ease of integration of JRuby with Java leads
developers to write performance-critical code in Java. Though inefficient compared to C,
JRuby outperforms other Ruby implementations, so performance-critical Ruby applications
inadvertently and unintentionally become dependent on Java.

Other infrastructures as a supporting substrate for language implementation, such as
LLVM, have their own deficiencies. LLVM’s focus on C means that support for garbage
collection, concurrency, and dynamic typing are minimal or weak. Moreover, LLVM’s focus
on heavy-duty static optimizing compilation of C/C++ leaves its support for dynamic
just-in-time (JIT) compilation as somewhat of an afterthought, receiving less attention to
quality and maintenance. In contrast, dynamic languages rely heavily on on-going run-time
(re)compilation to achieve good performance. Nonetheless, LLVM offers a good model with
respect to intermediate language design and level of abstraction. Other infrastructures such
as VMkit are composed from discrete library components that do not address the need
for cross-cutting designs that span compilation, concurrency, and memory management, as
discussed earlier.

The lack of suitable infrastructures drives us to propose micro virtual machines as a
unifying substrate for language implementers that will support efficient execution of the
abstractions it presents. We describe a micro virtual machine instance that will execute
low-level code issued by high-level language compilers and/or run-time systems, sitting at
the base of language implementations. It will take care of the most fundamental concerns
of managed languages, with the bulk of the client run-time system above providing the
personality of the specific client language. A micro virtual machine offers implementers
a “third way,” giving them access to state of the art foundations, whilst freeing them to
implement language-specific semantics with maximum liberty and efficiency. Moreover, we
hope that by keeping its code base as small as possible (approximately 25K lines of code),
our micro virtual machine will present a suitable target for verification, allowing it to join
the trusted computing base.
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3 Mu: A Concrete Micro Virtual Machine

We now flesh out the design and implementation of Mu, our initial instantiation of a micro
virtual machine. Space constraints limit the discussion here to a high level with a few key
details, but Mu is open source, and both the specification and the source code of reference
implementations are available on our website [14].

The broad architecture of Mu is reminiscent of other virtual machines such as the JVM
or .NET. It executes dynamically loaded code by interpretation or compilation. A language-
specific run-time system and supporting libraries sits above it. The principal difference is
in the much lower level of abstraction at which micro virtual machines operate. The Mu
instruction set is SSA-based rather than stack-based, the type system is much simpler, the
concurrency primitives are low-level, and all high-level optimizations are the responsibility of
the client run-time system, not the micro virtual machine.

A number of principles underpin the design of Mu: (1) Mu is explicitly minimal; any
feature or optimization that can be deflected to the higher layers will be. (2) Minimalism will
be compensated for by client libraries that sit above Mu, implementing higher level features,
conveniences, transformations, and optimizations common to more than one language client.
(3) The specification allows for formally verifiable instantiations, supporting our long term
goal of a formally verified Mu instance. (4) Mu’s client is trusted; it is allowed to shoot
itself in the foot. (5) We use LLVM IR [13] as a common frame of reference for our IR,
deviating only where we find compelling cause to do so. (6) We separate specification and
implementation; Mu is an open specification against which clients can program and which
different instantiations may implement. (7) We aim to support diverse language clients.
(8) The Mu design will facilitate high performance language implementations

Our goal is that Mu will facilitate the design and implementation of new and existing
languages by abstracting over three of the most fundamental implementation concerns. Our
focus is on languages most exposed to these concerns, namely dynamic managed languages.
However, we are exploring clients for languages as diverse as Erlang, Haskell, Go, Lua and
Python. It is not our goal to provide an implementation layer that will compete with mature,
highly tuned runtimes such as the HotSpot JVM, which have benefited from enormous
investment over a decade or more.

3.1 Mu Architecture
The Mu specification consists of the Mu intermediate representation and the Mu client
interface. The Mu IR is the low-level language accepted and executed on Mu, while the Mu
client interface defines the programming interface for client language runtimes. The client
language runtime is responsible for (JIT-)compiling source code, bytecode or recorded traces
into Mu IR. Mu IR code is delivered to Mu in the unit of code bundles, the counterpart of
LLVM modules and Java class files. The Mu client interface specifies how the client may
directly manipulate the state of Mu, including loading Mu IR bundles by sending messages
to Mu, and how Mu-generated asynchronous events are handled by the client.

The abstract state of an executing Mu instance comprises some number of execution
engines (threads), execution contexts (stacks), and memory accessed via references. Mu’s
abstract threads are similar to (and may directly map to) native OS/hardware threads.
Stacks contain frames, each containing the context of a function activation, including its
current instruction and values of local variables. Memory consists of a garbage-collected
heap, a global memory, and memory cells allocated on the stacks. The abstract state can
be changed by executing Mu IR code directly or by invocation of operations by the client
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through the Mu client interface.
The Mu project is under active development. The website [14] includes an initial Mu

specification and source code for a reference implementation (which does not consider
performance). We are concurrently developing a high performance Mu implementation. The
reference implementation is intended for early evaluators to experiment with Mu.

3.2 Type System
The Mu type system is very simple, and designed to support both safe and unsafe memory
operations. It features integer types in varying bit-widths, two floating point types, vector
types for SIMD instructions, composite types in the form of structs and arrays, multiple
kinds of memory reference types and opaque reference types:

τ0 ::= void | int〈n〉 | float | double
| vector〈int〈n〉; m〉 | vector〈float;n〉 | vector〈double;n〉
| struct〈τ+

0 〉 | array〈τ0;n〉
| func〈τ∗

0 ; τ0〉 | thread | stack
| ref〈τ〉 | iref〈τ〉 | weakref〈τ〉 | ptr〈τ〉 | tagref64

τ ::= τ0 | hybrid〈τ0; τ0〉

Types can be recursive under the reference types. The most basic types are scalar and vector
integer and floating point types. Integers do not have signedness, but concrete operations,
including UDIV and SDIV, may treat integer operands as signed or unsigned.

Object references ref〈τ〉 are references to objects1 that have been allocated in the heap,
and that will be managed by the garbage collector. Internal references iref〈τ〉 provide
references to memory locations that may be internal to objects (e.g., array elements or
struct fields). Both object references and internal references are traced, and will keep their
referents alive on the heap if the reference is itself reachable from GC roots. Weak references
weakref〈τ〉 are object references that may be set to NULL when their referent is not otherwise
(strongly) reachable. The ptr〈τ〉 type is an untraced pointer type, which can be used to
reference memory locations potentially visible to native programs outside Mu.2

The type system also includes a number of opaque reference types, referring to Mu-specific
entities: thread, stack, func〈τ∗

0 ; τ0〉 referring to threads, stacks and functions, respectively.
A type of the form hybrid〈F ;V 〉 is akin to a struct with a fixed prefix F , followed

by an array of unspecified size having elements from (non-hybrid) type V . The size of the
variable-length array part in a hybrid is specified at allocation time. We expect, for example,
that most language clients would implement their string types with a hybrid type. Similarly,
a Java client might represent Java arrays as a fixed prefix int holding the size of the array
and a variable-length part for the payload.

All variables and memory locations in Mu must hold values with well-defined Mu types.
This restriction eliminates the option of letting the client customize the object layout and
identify references in objects as VMKit does [9]. However, the Mu type system is powerful
enough to express complex high-level types using a combination of nested aggregate types
including structs, arrays and hybrids. Mu does not have a “union” type because a union

1 In Mu, an object is defined as the unit of memory allocation in the heap. We are deliberately agnostic
about the sorts of languages and type systems implemented by clients; our use of the term object does
not presuppose any sort of object-orientation. From the client’s perspective, objects are headerless.

2 The ptr type is a feature planned to be added in the next version of Mu. It may not be visible in the
Mu specification when this paper appears.
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of reference and value types will make a memory location ambiguous to the garbage collector
with respect to its contents holding a reference or not. However, Mu provides a tagged
reference type tagref64. It uses several bits of a 64-bit word to indicate whether it currently
holds an object reference, an integer or a double. In this way, exact garbage collection is
still possible.

3.3 Intermediate Representation
The Mu IR is low-level and language-neutral. It is similar to the SSA-based LLVM IR [13].
This grounds our design, providing a reference against which each Mu IR design decision can
be measured and audited with respect to Mu design principles.

The top-level unit of the Mu IR is a code bundle, which contains definitions of types,
function signatures, constants, global cells and functions. A function has basic blocks and
instructions. The Mu instruction set contains LLVM-like primitive arithmetic and logical
instructions as well as Mu-specific garbage-collection-aware memory operations, thread/stack
operations, and traps.

3.3.1 Basic Instructions
A Mu instruction can be very simple. For example, an ADD instruction “%c = ADD <@i64>
%a %b” adds two numbers and a SITOFP instruction “%r = SITOFP <@i64 @double> %x”
converts an integer to a floating point number, treating the integer operand as signed. For
the convenience of the micro virtual machine rather than the client, the types of the operands
are explicitly written as type arguments so that Mu does not need to infer the type of any
instruction from the types of its operands.

3.3.2 Function Calls and Exception Handling
A CALL instruction “%rv = CALL <@sig> @func (%arg1 %arg2)” calls a Mu function.3 Mu
IR programs must explicitly truncate, extend, convert or cast the arguments to match the
signature. Mu also provides a TAILCALL instruction which directly replaces the stack frame
of the caller with a frame of the callee rather than pushing a new frame. The client must
explicitly generate TAILCALL instructions to utilize this feature. Mu implementations need
not automatically convert conventional CALLs into TAILCALLs, though an implementation
might.

Mu has built-in exception handling primitives that do not depend on system libraries,
unlike LLVM. The THROW instruction generates an exceptional transfer of control to the caller
of the current function.4 The exception is caught by the nearest caller’s CALL instruction
with an exception clause of the form “CALL <@sig> @func (%arg) EXC(%nor %exc)”, which
branches to the designated basic block where a LANDINGPAD instruction receives the exception
value. Unlike LLVM, an exception in Mu is an arbitrary object reference. This kind of CALL
unconditionally catches all exceptions and the return type of LANDINGPAD is ref<void>. The
client is responsible for implementing its own exception hierarchy which can be complex
(like Java’s and Python’s) or simple (like Lua’s and Haskell’s, where an error is simply a

3 Calling a native function requires a foreign function interface (FFI) that is still under design.
4 Exception handling within a function, for example, a throw statement in a try-catch block in Java,

should be translated to branching instructions (BRANCH and BRANCH2) in the Mu IR. In this case, Mu is
not aware of any exceptions being thrown.
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string message). The client should generate Mu IR code to check the run-time type of the
exception object, and decide whether to handle, re-throw or clean up the current context.5

3.3.3 Memory Operations
Support for precise (exact) garbage collection is integral to the design of the instruction
set. Heap memory allocation is a primitive operation in Mu. The NEW and the NEWHYBRID
instructions allocate fixed and variable-length objects in the heap, respectively, automatically
managed by the garbage collector. Memory can also be dynamically allocated on stacks or
statically allocated in the global memory.

To implement exact garbage collection, Mu must be able to identify all references into
the Mu heap. The GC root set is precisely defined as all references in live local variables,
stack memory, global memory, and those explicitly held by the client. Because all values in
Mu come from the Mu type system, which never confuses references and untraced values, the
micro virtual machine can perform garbage collection internally without client intervention.

3.3.4 Atomic Instructions and Concurrency
Mu is designed with multi-threading in mind. Mu has threads and a C11/C++11-like memory
model, allowing annotation of memory operations with the desired memory ordering semantics.
Mu threads may execute simultaneously. Like LLVM, Mu has no “atomic data types”, but
defines a set of primitive data types eligible for atomic accesses. The supported memory
orders are NOT_ATOMIC, RELAXED, CONSUME, ACQUIRE, RELEASE, ACQ_REL (acquire and release)
and SEQ_CST (sequentially consistent). This gives the client the freedom and responsibility
to implement whatever memory model is imposed (or not) by the client language. For
example, the very weak CONSUME order is essential in the efficient implementation of the read-
copy-update (RCU) pattern which facilitates extremely low-overhead lock-free concurrent
memory accesses. Outdated records left by RCU updates can be garbage-collected when
unused, which has been a major difficulty in implementing RCU in the Linux kernel without
GC.

Supporting relaxed memory models is not trivial. As a design principle, the client is
trusted, and can to shoot itself in the foot. Abusing the memory model may result in program
errors or even undefined behaviors. However, Mu does not force all users to understand the
most subtle memory orders. A novice language-client implementer can exclusively use the
SEQ_CST order even though the Mu implementation supports weaker orderings. Conversely,
a conservative implementer of Mu itself can always correctly implement a stronger memory
model than required, for example, implementing CONSUME as ACQUIRE or implementing all
memory models as SEQ_CST, which will trade performance for simplicity and perhaps ease of
verification of the micro virtual machine.

In addition to the standard C11-like atomic operations (such as compare-and-swap) Mu
provides a futex-like [8] wait mechanism, as well as basic thread park/unpark operations.
The client is responsible for implementing other shared-memory machinery such as blocking
locks and semaphores. As these can be difficult and tedious to implement, they may be
provided by client-level libraries, enabling complex implementations to be shared among
multiple language clients.

5 There is no finally in Mu, but it can be implemented as an unconditional catch followed by the actions
in the finally block and another THROW instruction.
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3.3.5 Stack Binding and the Swap-stack Operation
Unlike many language runtimes, Mu clearly distinguishes between threads (executors) and
stacks (execution contexts).

A thread is an abstraction of a processor, while a stack is the context in which a thread
runs. Each stack includes abstract execution state such as the program counter and the
values of local variables in each frame. A thread is not permanently bound to any particular
stack.

The SWAPSTACK instruction unbinds a thread from one context and rebinds it to another
context [6]. When rebound, the thread continues from the corresponding instruction (usually
another SWAPSTACK) where the destination context paused when last active (bound to a
thread). This semantics directly provides an implementation of symmetric co-routines, which
can in turn implement high-level language features including user-level “green” threads, the
m× n threading model, generators, and one-shot continuations.

Dolan et al. [6] showed that this lightweight context switching mechanism can be imple-
mented fully in user space with only a few instructions, so it is more efficient than native
threads which inevitably involve transitioning through the kernel. Mu also assumes a client
code generator that knows and can specify the liveness of variables at each SWAPSTACK, so
only the needed registers are saved. This is impossible for library-based approaches, including
setjmp/longjmp, swapcontext or customized assembly code, which have no information
from a compiler and must conservatively save all registers.

The same stack binding and unbinding mechanisms are also used in other places besides
the SWAPSTACK instruction, and many Mu design choices are based on this mechanism.
Unbound threads and stacks are inactive. Only when a thread is bound to a stack context
does it begin/resume executing from that context. Stack binding and unbinding are also
used in trap handling, which are discussed below as part of the Mu client interface.

3.3.6 Traps and Watchpoints
A Mu IR program can temporarily pause execution and transfer control to the client by
executing a TRAP instruction, which is trivial in Mu: “%trap_name = TRAP <@RetTy>”.6
Traps give clients the opportunity to introspect execution state to adapt and optimize
the running program. The WATCHPOINT instruction is a conditional variant of TRAP which
is disabled in the common case but can be enabled asynchronously by a client thread.
WATCHPOINT is particularly useful for invalidating speculatively optimized code.

3.4 Client Interface
The Mu client interface is bi-directional. The client can send messages to Mu for the
purposes of: (1) loading Mu IR code bundles into Mu, (2) accessing the Mu memory, and
(3) introspecting and manipulating the state of Mu threads and stacks. Mu sends messages
to the client if a TRAP or WATCHPOINT instruction is executed, or a declared but not defined
function is called.

All Mu values, including references, may be indirectly exposed to the client via opaque
handles tracked by Mu. This makes exact GC easy to implement because all externally held

6 Lameed et al. [12] implemented something similar in LLVM, but it required non-trivial work in both the
JIT compiler and the runtime library in order to achieve the same goal as the TRAP instruction in Mu.
For compatibility reasons, they did not modify LLVM itself, so could not introduce new instructions.
Since Mu is designed from scratch, it has no such restriction.



10 Micro Virtual Machines

references are tracked. Copying and concurrent GC is also easier with a level of indirection.
This design, which is also used by JNI and the Lua C API [10], also segregates the different
type systems of Mu and the language the client is written in and, thus, makes the interface
cleaner.

3.4.1 Bundle Loading and Code Redefinition
The client submits Mu IR code bundles to Mu via the interface. When a declared but not
defined function is called, Mu will send a message to the client, which will be handled by
a registered handler. The client should define the function by submitting another bundle
containing the function definition. The client can also redefine existing functions. All existing
call sites remain valid and Mu always calls the newest version of any function. This feature
allows optimizing compilers to replace functions with (re-)optimized versions.

3.4.2 Traps and Stack Operations
Traps and watchpoints use the same stack binding mechanism as the SWAPSTACK instruction.
When a TRAP or WATCHPOINT instruction is executed, the current thread is unbound from its
current stack just before entering the registered trap handler in the client, leaving the stack
in a clean state ready for introspection and on-stack replacement (OSR). During execution
of the trap handler, the client can introspect the state of the stack frames, including the
current function, the current instruction and the value of local variables. At the end of the
trap handler, the client designates an unbound stack to which the original thread will be
rebound. This stack does not need to be the same stack to which the thread was bound
before the trap, so the thread may continue in a brand new context.

Some optimizations involve on-stack replacement: replacing a stack frame with a new
frame of an optimized version of a function and continuing from the equivalent place it
paused at. The Mu client interface supports this by providing two primitive operations:
(1) popping a frame from a stack, and (2) making a new frame for a given function and its
arguments on the top of a stack, and continuing from the beginning of that function. The
client can emulate continuing from the middle of a function by inserting branches in the
high-level language; a well-established approach [7].

3.4.3 Miscellaneous Operations
Many operations available as Mu IR instructions are intentionally duplicated to be used via
the Mu client interface. The client can allocate and access the Mu memory via this interface,
too. With an layer of indirection, this interface is designed for infrequent introspection.
The client can also create threads and stacks, which is the proper way to start new Mu IR
programs.

4 Building Mu Clients

The client is the program sitting on top of Mu, the micro virtual machine. It is the user
of Mu and the implementer of the concrete high-level programming language, ‘LVM’ in
Figure 1c. The Mu specification defines an interface for clients to manipulate and control the
virtual machine, but does not impose any other requirements on the client. Here, we describe
a number of strategies for building Mu clients, client-level libraries, and other higher-level
client-specific abstractions.
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4.1 Strategies for Building Clients

Mu supports a number of different approaches for implementing client languages. A client
might dynamically compile to Mu IR just-in-time, compile to Mu IR ahead-of-time, or
execute as an interpreter against either the Mu API or running itself as a Mu-coded client.
We now discuss these options.

4.1.1 Just-in-time Compiling

The Mu client interface gives the client the power and responsibility to deliver Mu IR code
to Mu. The most intuitive strategy is a compile-only approach, just-in-time compiling the
higher-level language source code or byte code into the Mu IR, possibly via several extra
layers of higher-level intermediate representations and optimizations. It us up to the client to
decide how much optimisation it does to balance between compile time and code performance.

The generated Mu functions need not mirror high-level language functions. A tracing
JIT compiler may deliver a recorded trace as a Mu function which may cross the boundary
of many high-level functions, or may be a single loop within a high-level function.

4.1.2 Ahead-of-time Compiling

The Mu specification does not require code to be generated at run time. In fact, a valid
implementation could ahead-of-time compile the high-level language program into the Mu IR
before execution. In this way, the client merely loads Mu IR code from the disk and delivers
it directly to Mu without further processing.

A valid full ahead-of-time implementation could also generate a single binary which
behaves like an amalgamation of the micro virtual machine, a set of bundles, and a client
which loads the bundles, starts with a particular Mu function and handles specific trap
events. This approach is similar to the “boot image” of JikesRVM [1]. In this way, a
Mu implementation of a client language might behave much like traditional ahead-of-time
compilers.

4.1.3 Interpreting

For the ease of engineering, the first implementation of many languages is usually an
interpreter. Although implementing the interpreter in the client and using the Mu heap
via the Mu client interface is possible, it is not recommended because the interface is not
designed for frequent lightweight calls, so will introduce an overhead.

One strategy would be to implement the interpreter itself in the Mu IR, or in any language
that already compiles to the Mu IR. For example, if there is a client for Java running on Mu,
then interpreters written in Java, including Jython and JRuby, will run on Mu. Currently we
are working on translating RPython into Mu IR. The PyPy interpreter (written in RPython)
will then run on Mu, as will other languages that have an implementation in RPython,
including Prolog, Scheme and Erlang. Like Jython, this implementation strategy makes use
of the concurrency and GC provided by the underlying VM, but does not directly utilize the
underlying JIT compiler.

The Truffle/Graal project demonstrated that it is possible to generate a specializing JIT
compiler from an interpreter by partial evaluation. In this way, the language implementer
only needs to write an interpreter, but ultimately makes use of the JIT compiler.
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4.2 Client-level Libraries

A micro virtual machine is minimalist, providing only a thin layer on which a language
runtime can be built. Mu aims to deal with three of the most fundamental and conceptually
challenging concerns within this layer. However the client is left with much to do. Rather
than succumbing to the temptation to grow Mu, we adopt the principle of lifting additional
features and amenities to client-level libraries, sitting above Mu. These may include helper
features for generating SSA-form Mu IR, and Mu IR to Mu IR optimization libraries for
common higher-level optimizations.

For example, there may be library support for dynamic languages that provides com-
mon specialization mechanisms, support for functional languages that handles higher-order
functions, a library for concurrent languages which provides code snippets that implement
synchronization primitives, etc. High-level frameworks, similar to RPython, Truffle, Terra
or Lancet, can also be provided as libraries on the client side. In this way, the high-level
language implementer can work on a much higher level, and does not always need to work
with Mu directly.

4.3 Metacircular Clients

The client is just a program interacting with the micro virtual machine and, in theory, can
be implemented in any language. It is possible to implement a metacircular client which
runs as a Mu IR program inside the same Mu instance hosting other high-level programs. In
this approach, the border between the client and the micro virtual machine is blurred. The
client can directly refer to values or objects in Mu, and API messages can be implemented
as simple function calls or SWAP-STACK operations. Special Mu IR instructions will give
Mu IR programs access to the internals of Mu, including loading bundles, handling traps
and introspecting stack states.7

4.4 Higher-level Abstraction

Mu is minimal, and does not provide any abstractions of classes, type hierarchies, meth-
ods, virtual dispatching, run-time type checking, strings, character encoding, higher-order
functions, closures, events or message passing. The client is supposed to map its high-level
language elements to the Mu IR. Two clients may map these elements differently even if they
implement the same language.

Mu is designed to support multiple languages by minimizing semantic mismatching.
However, unlike the .NET framework, Mu does not provide an abstract platform where
programs in different languages can call each other. A client may implement such a platform
by mapping different languages in a uniform way so that they can exchange data and make
cross-language calls on the micro virtual machine level. The client can also implement a
specific common intermediate language (like Java bytecode or the .NET CIL) above the Mu
IR, and different languages can interoperate on that level. Mu understands only the Mu IR
and remains oblivious of the actual high-level languages.

7 Mu IR instructions to facilitate metacircular clients are still under consideration at the time of writing.
Even without special instructions, such Mu IR-initiated introspection and controlling operations can be
supported by traps and the assistance of a “conventional” client. This allows some Mu IR programs,
such as an interpreter, to manage the state of Mu in a non-metacircular Mu implementation.
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5 Related Work

5.1 Java Virtual Machines
The Java Virtual Machine (JVM) was originally designed for the Java programming language,
but its portable Java Bytecode, clearly specified behaviors and performance attracted a wide
range of language implementations to be hosted on the JVM, including Jython, JRuby, Scala,
X10, etc.

This approach—reusing the existing JVM for new languages—bears several fundamental
problems. The obvious one is the semantic gap between the new language and Java. The JVM
implements many Java-specific semantics which are irrelevant to other languages. Working
around them introduces overheads. On the other hand, Mu takes the lesson and is carefully
designed to be language-agnostic at a much lower level to avoid the semantic gap.

Another problem is the JVM’s lack of optimizations for languages other than Java.
These optimizations include type inference and specialization, which are vital to dynamic
languages [5], and inline caches for languages with dynamic dispatching. Mu, on the other
hand, assumes most optimizations will be done by a client above it. For this reason, Mu
exposes many low-level mechanisms, including vector instructions, on-stack replacement,
swap-stack, tagged references, traps and watchpoints, to the client. Those mechanisms are
either private or non-existent in the JVM, but they enable many advanced implementation
techniques. For example, it is expensive to map Erlang processes to Java threads, which are
usually mapped to native threads. In Mu, we believe stacks would work well in this role.
Similarly, Mu’s tagged reference type is a good candidate for implementing Lua’s values,
which have reference semantics, but refer to floating point numbers most of the time.

Besides, Mu aims to be a thin substrate while the JVM is a monolithic VM.

5.2 LLVM
The Low Level Virtual Machine (LLVM) [13] is a compiler framework including a collection of
modular and reusable compilation and toolchain technologies. The LLVM compiler framework
and its code representation (LLVM IR) together provide a combination of key capabilities
that are important for language implementations. LLVM is the main reference according to
which we designed Mu.

Mu also includes a number of significant differences from the LLVM. Firstly, Mu is
designed to support managed languages while the LLVM is designed for C-like languages.
Like C, the LLVM IR type system contains raw pointer types but not reference types. The
LLVM does not provide a garbage collector, instead defining intrinsic functions including
read/write barriers and yieldpoints, on top of which garbage collection must be implemented
or inserted by the language frontend. Secondly, Mu is designed to be minimal while the
LLVM is maximal. The LLVM tries to minimize the job of language frontends and include
many optimization passes, while the Mu pushes as much work to the client as possible.

5.3 VMKit
VMKit [9] is a common substrate for the development of high-level managed runtime envir-
onments (client language runtimes), providing abstractions for concurrency, JIT-compiling
and garbage collection. VMKit glues together three existing libraries: LLVM as the JIT
compiler, MMTk as the memory manager, and POSIX threads for threading. The VMKit
developers built two clients, for the CLI and JVM respectively as a proof of concept.
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As the name suggests, VMKit is not a self-contained virtual machine, but a toolkit
that provides incomplete abstractions over certain features. For example, VMKit leaves
the object layout to be implemented by the client. As a consequence, the client runtime
developed by the high-level language developer, must participate in object scanning and the
identification of GC roots. VMKit’s solution to concurrency is the POSIX Threads library,
but threads cannot be implemented as a library [4], and require a carefully defined memory
model involving both garbage collection and the JIT compiler.

Nonetheless, VMKit demonstrates that a toolkit that abstracts over the common key
features can ease the burden of the development of language implementations, which is also
part of the motivation for a micro virtual machine.

5.4 Others
Common Language Infrastructure

The Common Language Infrastructure (CLI) is Microsoft’s counterpart to the JVM. Its
Common Intermediate Language (CIL) is designed for several languages with similar level to
VB.NET, C#, etc., but also hosts many different languages including Managed C++, F#
and JavaScript. The CLI shares similar problems to the JVM in that it is a monolithic VM
and was designed for certain kinds of languages.

Truffle/Graal

Truffle and Graal [17] are reusable VM components for code execution developed by Oracle.
Truffle serves as an AST interpreter with speculative execution and AST rewriting. Graal
takes stabled Truffle AST and uses partial evaluation to JIT compile AST nodes. They aim
to provide a reusable code execution engine for implementations of object-oriented languages.
This goal sits on a much higher level than Mu.

6 Status and Future Work

During the early prototyping phase, we implemented a subset of Lua on a prototype micro
virtual machine. Such a prototype could run simple Lua programs. It proved feasible to
offload basic control flow analysis, including the conversion to the SSA form, up to the
client. It also showed the usefulness of tagged references in the implementation of a dynamic
language.

Currently we are experimenting with using Mu as a backend of RPython, the lower level
of the PyPy project. Currently Mu can run simple RPython programs. This effort will
eventually bring about a high-performance micro VM-based implementation of Python as
well as other languages on RPython.

In the future, we will evaluate a diverse collection of languages, with Python, Haskell and
Erlang having high priority, to test the ability of Mu to accommodate different languages. We
will also bring transactional memory to Mu, which is known to solve the global interpreter
lock (GIL) problem in Python and Ruby. Ultimately, we hope to produce a verified micro
VM, perhaps combining it with the verified seL4 micro-kernel, thereby bringing us one step
closer to a completely verified system with a managed runtime.

Mu abstracts over hardware. Although our immediate focus has been abstraction over
ISAs and memory models, increasing hardware diversity invites a number of important future
considerations. These include optimizing for energy as well as performance, abstracting over
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single-ISA heterogeneous hardware, and more radical hardware heterogeneity such as GPUs
and FPGAs. These are open topics for future research.

7 Conclusion

The current proliferation of new languages is evidence of a vibrant programming languages
ecosystem. Unfortunately many languages are seriously inefficient, in terms of performance
or maintenance, or both. We suggest that fundamental implementation challenges are a root
cause of much of this inefficiency, and that a micro virtual machine may provide a solid
foundation for the development of new languages. We describe a new micro virtual machine,
Mu, developed over the past two years, with the specific goal of addressing this problem. Our
hope is that micro virtual machines will change the way the next generation of languages are
built, for the better.
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